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1. Introduction

The traditional macroeconomic view is that trends and cycles in economic activity
are unsefully investigated as distinct economic phenomena. The argument is that the
trend elements of real per capita production, as well as relative prices, are explained by
the ﬁerma.nent evolution of tastes and technology. For example, in the growth theory
of Robert Solow [1970], a common deterministic trend in the per capita levels of
consumption, investment, and output arises from technological change that augments
general production opportunities. With growth explained in this manner, the traditional
view attributes cyclical fluctuations in prices and production to other sources, including
monetary events, fiscal policies, and temporary real shocks such as energy price
movements.

Some key features of macroeconomic time series are widely viewed as supporting
this traditional view. While measures of consumption, investment and output grow
over time, the ratios of consumption or investment to mational product have remained
roughly constant in the United States. These observations are widely viewed as
rationalizing the Solow growth dynmamics and led Richard Kosobud and Lawrence Klein
[1961] to include these in their list of "great ratios." On the other hand, since
investment fluctuates much more than output, the investment ratio exhibits substantial
variation over the business cycle; the consumption ratio fluctuates much less. To
many, this has suggested that trend and cycle must be explained with different models
or, at 3 minimum, with different impulses or sources of shocks.

In this paper, we depart from this traditional view by conducting an empirical
investigation of the extent to which business cycle fluctuations can be understood as
the result of one or more common unobserved stochastic trends. Shocks to these
stochastic trends permanently shift the levels of consumption, investment and output
but may leave the great ratios relatively unchanged in the long term. Working with

post-war U.S. data, our results indicate that an important component of variation in



output over the business cycle—between one half and four fifths—can be traced to such
common stochastic trends. Thus, at this level, our resuits lend support to those model
building efforts based on the real business cycle program—initiated by Finn Kydland
and Edward Prescott [1982] and John Long and Charles Plosser [1983]—that seek to
integrate the study of trends and cydes.l At the same time, our attempts to identify
the source of these shocks turns up evidence that is not easily reconciled with real
business cycle models or with any of the commonly discussed alternatives.

Our investigation draws together three lines of recent research activity. First,
there is an accumulation of empirical evidence, stemming from the initial work of
Charles Nelson and Charles Plosser [1982], that individual macroeconomic time series
may contain important stochastic trend components. Second, theoretical research into
real business cycle models—see, for example, Robert King, Charles Plosser and Sergio
Rebelo [1988b, section 2]—shows that permanent productivity disturbances have
important transitory effects on the fractions of pational product that are invested and
consumed. This suggests that it is important to design statistical procedures that
permit shifts in stochastic trends to have different effects on various measures of
economic activity at business cycles horizons. Third, the concept of cointegration as
developed by Robert Engle and Clive W. J. Granger [1987] suggests a new set of
econometric procedures that can be adapted to multivariate models with common
stochastic trends. Specifically, methods based on cointegration enable us to move the
study of stochastic trends beyond the univariate analyses mentioned above. In this
regard, a key contribution of our analysis is to establish a natural, formal link between
the theory of cointegrated econometric structures—where certain linear combinations of
nonstationary variables are stationary—and models of common stochastic trends—where
the nonstationary nature of a vector of variables is attributed to a smaller number of
unobservable stochastic trends. | }

The organization of the paper is as follows. Section 2 provides a brief overview of

the models of growth and fluctuations that motivate our research. Section 3 examines



the trend and cointegrating properties of a variety of post-war U.S. economic time
series. Section 4 develops a framework for extracting and identifying permanent
components building on work by Stephen Beveridge and Charles Nelson [1881] and
Engle and Granger [1987]. In section 5 these methods are applied in two stages.
First, we study a three variable system consisting of consumption, investment and
output. Second, we augment this system with additional variables, including real
money balances, inflation and nominal interest rates. Analysis of this larger system
allows us to investigate the sensitivity of the common stochastic trends model to the
list of variables, the number of unobservable stochastic trends estimated and alternative
procedures for their identification. Section 6 compares our estimate of the common
stochastic trend with two variants of Solow's [1957] measure of factor productivity and

Edward Denison's [1985] estimate of potential GNP. Section 7 summarizes our findings.
2. Growth and Fluctuations: A Perspective

The empirical hypothesis investigated in this paper is that macroeconomic time
series contain common stochastic trends and that these stochastic growth components
have a significant influence on the character of economic fluctuations. To motivate
why we think it is important to investigate potential interactions between growth and

fluctuations, we review some related empirical and theoretical research.

Econometric Background

Recent empirical research—stemming from the work of Nelson and Plosser [1882)
and surveyed in James Stock and Mark Watson [1988a]—suggests that individual
macroeconomic time series contain stochastic trends, including consumption, investment,
output and measures of factor productivity. The stochastic trend in the logarithms of
these macroeconomic quantities is modeled as a random walk, Tn=s+ T+,

where 7, i the value of the trend at date t, p is the average change in 7 and n,



represents serially uncorrelated stochastic growth. In this stochastic difference equation
with a "unit root," the influence of n, on 7T, is permanent in the sense that it implies

a parallel shift in the expected trend path at all future dates: E 7 E

tTt4s T Ft-1 Tt4s T
A for all s > 0. While many individual series appear to contain stochastic trends,
univariate evidence such as that provided by Nelson and Plosser [1982] cannot
determine whether these are common—affecting one or more series simulataneously—or
specific to the individual series.

The recent literature on cointegration, stemming from Engle and Granger [1987],
provides a natural framework for thinking about common stochastic trends. A column
vector of o random variables Xt is said to be cointegrated if its elements are
individually integrated of order ome (i.e., the first difference of each of the elements of
](t is stationary) and if there is at least one linear combination of elements of Xt, say
a’X, that is stationary. The vector a is called the cointegrating vector. In recent
years, there has been substantial work developing methods for estimation and hypothesis
testing in systems with cointegrated variables. We use these methods since cointegration
naturally arises when one or more common stochastic trends is the sole source of

nonstationarity in a vector of variables.

ti ck
In order to be more specific and to fix some notation for the analysis that follows,
we outline a simple real business cycle model with permanent productivity shocks. (See
‘King, Plosser and Rebelo [1988b) for a detailed discussion.) The standard neoclassical
aggregate production function specifies that commodity output, Yt' is produced
according to a Cobb-Douglas technology with constant returns to scale,

R .Y
(2.1) Y, = MK TN,

where Nt is the number of units of labor effort employed and Kt is the capital stock

at the beginning of date t. The capital stock evolves over time as the net result of



gross investment, 1., and depreciation at rate, 5, 80 K‘+1 = (1 - é)')Kt + 1. The
resource constraints are that consumption and investment exhaust output, Ct + It =
Y‘, and time is allocated between work, Nt’ and leisure, Lt'

Total factor productivity, A , is assumed to follow a logarithmic random walk,

L
(2.2) 1050‘) = py + log(/\t__l) + f‘,

where the innovation {t is taken to be independently and identically distributed with
mean zero and variance o2. Thus the average growth of total factor productivity is
By although in any period the actual growth rate will deviate from By by some
unpredictable amount ft‘

Restrictions on Trends. Within the basic neoclassical model with deterministic
trends, it is familiar—from Solow [1970]—that consumption, investment and output all
asymptotically grow at the rate pA/ 6. That is, the "great ratios"—of investment to
output #nd consumption to output—are constant along a steady state path.

When uncertainty is added, realizations of {, change the forecast of the trend path

of productivity: Etlog(/\ =4y o5+ log()‘t). The net effect of {, > 0 is to raise

H-S)
the expected long run growth path so that the levels of output, consumption,
investment and the capital stock must be higher. This induces a common stochastic
trend, 7, in consumption, investment, output and capital. The stochastic trend is
related to total factor productivity by = a\t/ 6, which is the analogue of the
restriction that the deterministic trend growth rates are 4,/f. In the presence of
common stochastic trends, the "great ratios" become stationary stochastic processes.
Cointegration and Common Trends: To interpret this economic result using the
statistical concept of cointegration, suppose that the elements of the vector xt are the
logs of output, consumption and investment respectively. [Each of these variables will
be nonstationary becanse of the random walk character of productivit):. The theory,
however, predicts that these variables have a common stochastic trend. The the log of

consumption minus the log of output will be stationary as will the log of investment



minus the log of output. Thus, there are two independent cointegrating vectors; al' =
[<1 1 0] and @’ = [-1 0 1], which isolate the logs of the stationary "great
xatios."2

Trends and Fluctuations. To study the dynamic adjustment process that results
from a permanent increase in productivity, additional information on preferences is
required (as in Lawrence Christiano [1988], Gary Hansen [1988], or King, Plosser and
Rebelo [1888b]). But a general property of real business cycle models is that a positive
shift in the stochastic trend sets in motion 8 protracted transition. to a new steady
state growth path. For example, in the mode! studied in King, Plosser and Rebelo
[1988b, section 2] a onme percent permanent increase in total factor productivity implies
that the path of the capital stock, output, consumption and investment must all
eventually be 1/6 percent above their previous paths. ‘In order to reach this higher
growth path the investment ratio will temporarily rise, the consumption ratio will
temporarily fall and work effort will increase in the short term relative to its constant
steady state. During this transition the real interest rate will exceed the rate of time
preference. Asymptotically, however, this divergence disappears so that the real interest
rate is a etationary stochastic process, even though the level of total factor productivity
follows a random walk.

Additional Sources of Real Stochastic Trends. It is possible to introduce a variety
of additional sources of stochastic trends into macroeconomic models. For example, it
is sometimes suggested that there are prolonged periods during which the rate of
productivity growth is high or low (i.e. p, is itself stochastic with most of its power at
low frequencies). Such variation would induce long run changes in the fraction of
output allocated to investment and in the rate of interest, since with more rapid
growth individuals would effectively discount the future at a higher rate.

Additional stochastic trends might also arise from fiscal policies. For example, as
noted by Andrew Abel and Olivier Blanchard [1983] and others, a change in the

income tax rate—the proceeds of which are used to finance government



purchases—works exactly like a productivity shock as long as one views private
consumption and investment as constrained by private output. Thus, a change in the
income tax rate in such an environment would induce equiproportionate variation in
consumption, investment and output. Alternatively, with permanent changes in the
relative taxation of different types of income, fiscal trends can induce changes in the
composition of national product. For example, a permanent increase in the taxation of
capital—with the proceeds used to finance transfer payments—will lead to a decline in
the ratio of investment to national product.

Long Run Restrictions in Systems with Nominal Verigbles. In the real models
discussed above, permanent productivity shocks bave important implications for the
cointegration properties of real variables. Additional cointegrating relations arise in
systems that include nominal variables. In our empirical investigation below, we model
the logarithm of real balances, m, - p,, a5 3 linear function of the logarithm of
output, y, and the level of the nominal interest rate, Rt' That is, we specify a money

demand relation:

(2.3) my - Py = & T, + eg R, + v,

where v is the money demand disturbance. The conventional Fisher relation implies

that
(2.4) Ry =1 + Ebp,y

where I, is the ez—ante real interest rate and the second term is the expected rate of
inflation between t and t+1. These two specifications suggest further possible
cointegrating relations. For example, if the real rate of interest is stationary, then the
Fisher relation implies that nominal rates and inflation are cointegrated. That is,
permanent variations in the inflation rate—as suggested by the empirical analyses of G.
William Schwert [1987) and others—must be matched by permanent variations in
nominal interest. Another possibility is that the disturbance term in the money
demand relation (2.3) is stationary, so that real balances, output, and nominal interest



rates are cointegrated. (See Robert Lucas {1988] and Dennis Hoffman and Robert
Rasche [1989] for an alternative empirical investigation of the issue.) Such additional
cointegrating relations imply the existence of additional common stochastic trends. In
the empirical analysis we investigate the implications of these additional permanent

components for economic fluctuations.

Implications for Empirical Research

Our empirical analysis is structured around three §uations suggested by the
preceding discussion. First, what is the nature of the cointegration properties in the
post-war U.S. data, and are these properties broadly comsistent with the cointegrating
predictions of the dynamic economic models discussed above? Second, how important
are the implied common stochastic trends over horizons that are typically associated
with the business cycle? Third, is it possible to give a coherent economic

interpretation to the common stochastic trends found in the data?
3. Long Run Properties of Real Flows, Money, Prices and Interest Rates

Our empirical analysis considers quarterly U.S. time series data on real aggregate
national-income account flow variables, the money supply, inflation, and three interest
rates. The three aggregate real flow variables are the logarithms of per capita real
consumption expenditures (c), gross private domestic fixed investment (i), and "private"
gross national product (y), defined as total gross mational product less real total
government purchases of goods and services. The measure of the money supply used is
M2 (in logarithms, m). The price level is measured by the implicit price deflator for
our measure of private GNP (in logarithms, p). We consider three interest rates; the
rate on 3—-month U.S. Treasury bills (Rgs)' an average rate on 4 to 6 month'
commercial paper (%s)' and the yield on a portfolio of high—grade longer term
corporate bonds (rated AAA by Moody's; Rpl)' The sample period used for statistical



procedures that involve only real flows is 1949:1 through 1988:4. When money, interest
rates, or prices are involved, the analysis uses data from 1954:1 to 1988:4 to avoid
observations that occurred during periods of price controls, the Korean War, and the
Treasury-Fed accord. Data prior to 1949:1 (respectively 1954:1) are used as initial
observations in regressions that contain 1ags.3

Given that our national product measure is not the standard one we have graphed
the logarithm of the key real variables (y, ¢, i and m-p) in Figure 1. These plots
replicate the general features of the data familiar to students of economic growth and
business cycles. Output, consumption and investment display strong upward trends.
Investment is evidently the most volatile component, followed by output and then
consumption. Real balances (m-p) also display an upward trend.

Figure 2 plots the logarithm of the consumption output ratio (c-y) ard the
logarithm of the investment ratio (i-y). Over the postwar period, these ratios display
the stability reported by prior researchers; it is easy to view them as fluctuating
around a constant mean. This suggests that the growth evident in Figure 1 occurs in

a manner that is "balanced" between investment and consumption.

nivariate Unit t

Table 1 presents nniva.riaté unit root and trend test statistics for these series and
their first differences. Following the work of David Dickey and Wayne Fuller [1979],
we present two sets of unit root tests computed from univariate autoregressions with
and without deterministic time trends. The inclusion of deterministic trends allows the
regression to "partial out" deterministic growth in the series so that the regression
coefficients on lagged dependent variables reflect the presence or absence of stochastic
growth. The estimates ;; are of the sum of the autoregressive coefficients in a
fifth-order difference equation. Focusing first on the real flow variables, the
Dickey-Fuller statistics provide no evidence against the hypothesis the y and c

individually contain a single unit root potentially with nonzero drift. For example, the
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Dickey-Fuller (DF) "t" statistic for ¢ is -2.09, well above the 10% critical value of
-3.12. The unit root statistics for investment indicate that it may contain a
deterministic trend but not a stochastic one. However, this finding may also reflect a
more volatile temporary component that has adverse effects on the small properties of
the DF testing procedure.

The growth model suggests examining various ratios and growth rates. Results for
c-y, i-y, and c- suggest that these series are best viewed as stationary, containing
neither a unit root (stochastic trend) or a8 deterministic trend, although there is some
evidence of a small (0.1% per year) deterministic trend in c—y. There is no strong
evidence of deterministic or stochastic trends in the growth rates (Ac, Ai and Ay)
examined in Table 1. Overall, we interpret these results as being conmsistent with y, c,
and i being individually nonstationary and jointly pair wise cointegrated with
cointegrating vectors of (1, —1).4

The statistics for money and prices suggest that real balances (m-p) and inflation
(Ap) contain stochastic trends, but that their first differences are stationary. This
implies that both Ap and Am are nonmstationary, but contain the same stochastic trend,
i.e.,, permanent changes in Am are equal to permanent changes in Ap. Neither money
growth nor inflation shows evidence of a deterministic trend. The statistics in Table 1
also suggest that velocity can be modeled as being stationary with zero drift (i.e., m-p
and y are cointegﬁted).

While the results for the real flow variables, money and prices are easy to
interpret, it is more difficult to interpret the results for nominal and real interest rates.
If we rule out deterministic trends g priori, then nominal interest rates may be viewed
as ponstationary. (That is, one cannot reject p = 1 given a DF "t" of -2.25 for Rgs
and 2 10% critical level of —2.57.) While this may not be surprising given the
nonstationarity in inflation discussed earlier, Table 1 also provides evidence consistent

with the hypothesis that all three ex post real interest rates are nonstationary. On the
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other hand, the public/private (Rgs"Rps) and long/short (RPS-Rpl) spreads appear

stationary.

integration Result

We present three types of statistics on unit roots in the multivariate systems,
provided in Tables 2-5. First, we provide results based on an estimated fifth~order
vector autoregression (VAR(5)). The long run behavior of linear stochastic difference
equation systems is governed by the eigenvalues of the companion matrix (see, e.g.,
Gregory Chow [1986, Chapter 3]). Thus, the number of estimated eigenvalues with
modulus close to unity gives us guidance as to how many stochastic trends are present.
Second, we use multivariate unit root tests developed by Sgren Johansen [1988] and
Stock and Watson [1988b]. In these tests, we take as the null hypothesis that all
series are integrated but that there is no cointegration (there is one unit root present
for each series) and consider alternatives that there are a smaller number of unit roots
(which implies existence of a particular number of cointegrating relations). Third, we
provide estimates of cointegrating vectors, which can be compared to the null
hypotheses specified by our theory.

Results for Consumption, Investment and Output Table 2 examines 3-variable
systems with y, c, and i. Panel A presents the six largest eigenvalues from estimated
vector autoregressions (VAR's). An implication of y, ¢, and i being cointegrated with
two cointegrating vectors is that the VAR companion matrix will have one unit root
and the remaining roots will be less than one in modulus. Both specifications in Table
2 are consistent with this view.)

Panel B of Table 2 presents a battery of statistics designed to formally test the
one unit root hypothesis in the multivariate model. The J_(r) statistic is Jobansen's
[1988] test of the null hypothesis of r cointegrating vectors (n~r unit roots) versus the
alternative hypothesis of more than r cointegrating vectors (less than n-r unit rootxs).6

The qi(m,k) statistic is Stock and Watson's [1988Db] test of the null hypothesis of m
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pnit roots in the n—variable system (m<n) against the altermative of k unit roots (i.e.
n-k cointegrating vectors). The J_(0) and q£(3,2) statistics do not provide strong
evidence against the null of three unit roots in favor of a two unit roots. The q£(3,1)
test, however, strongly rejects three unit roots in favor of one unit root.

The final panel in Table 2 presents maximum likelihood estimates (MLE's) of the
cointegrating vectors, conditional on the presence of one unit root in the VAR. The
point estimates are close to (1, -1, 0) and (1, 0, ~1), the values for balanced growth in
output consumption and investment. Balanced growth imposes two constraints on the
cointegrating vectors, which can be tested with a likelihood ratio (LR) test. This
statistic fails to reject the balanced growth restrictions at the 10% level.”

Results for Inflation and fntercst Ratess The univariate results in Table 1 suggest
taking a closer look at the unit root properties of the ex—post real rate. Statistics
summarizing the four-variable system of inflation and the three interest rates are
presented in Table 3. The cointegration test statistics (panel B) provide evidence
against the four unit root model and evidence in favor of the one unit root model, i.e.
the model with three cointegrating vectors. The evidence presented by the estimated
cointegrating vectors (panel C) is, however, mixed: although the point estimates
appear consistent with the spreads and being stationary, they suggest that the real rate
may be nonstartionary. Moreover, the joint hypothesis that the spreads and the real
rate is stationary is rejected at the 5 percent level, while the hypothesis that the
spreads are stationary is not rejected at the 10% level.

Table 4 explores two possibilities suggested by the apparent nonstationarity of the
nominal and real interest rates over this period. First, although the results in Table 1
suggest that velocity can be modeled as being stationary, if the demand for money has
a nonzero long-run interest elasticity then a nominal rate would logically enter the
money—income cointegrating vector. This suggests estimating the long run money

demand relation, (m - p) = ¢_ y + R Rss. The estimate of the semi-elasticity ep

y
(Table 4, row (1)) is negative, as predicted by money demand theory, and significantly
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different from gero; the joint hypothesis of stationary velocity is rejected against the
alternative of non-unit income elasticity and nonzero interest semi~elasticity at the 5%
level. Although the income elasticity is estimated rather precisely (its 95% confidence
interval is (1.08, 1.28)), the interest rate semi-elasticity is estimated less precisely (its
95% confidence interval is (-7.22, -2.22)).3

The second issue examined in Table 4 is the possibility that the
consumption/output and investment/output ratios might exhibit permanent shifts
resulting from permanent shifts in real rates. Estimated bivariate cointegrating

relations (¢ ~ y) = ¢1(R - Ap)and (i ~y) = ¢2(Rgs- Ap) are shown in Table 4,

s
specifications (2) and (3)? As predicted by the long-run theory of the growth model,
for example, a higher real interest rate lowers the share of product going into
investment and, symmetrically, raises the share of consumption. The long-run effects,
however, are imprecisely estimated and small: a permanent increase in the annual real
rate of one percentage point is associated with a decline in the investment/output ratio
of 0.1 percentage points.

- Results for Siz-Variable Systems: The next set of results (Table 5) concerns two

6-variable systems, one with y, ¢, i, m -~ p, R__, and Ap (panel A) and one with y, c,

5
i, Rgs’ Rps’ and Ap (panel B). The foregoingganalysis suggests that each of the
variables entering these systems contains a unit root; Table 5 sheds light on the
number and nature of cointegration relations.

In each panel, we present ML estimates of cointegrating wectors if there are three
unit roots in the system. This unit root specification is suggested by the results of the
prior analysis (Tables 1-4). Further, the Stock~Watson test for the number of unit
toots—qf_(s,s) statistic—supports the view that each system can be modeled as having
three unit roots.?

Finally, each panel contains results of tests of some alternative hypotheses about
cointegrating vectors. In panel A, the first hypothesis that we examine involves

cointegration of output and consumption; output and investment; and real balances, real



output and nominal interest rates. The x2 statistic indicates only weak evidence
against this hypothesis (p—value = .528). In this specification, the real interest rate
permitted to be nonstationary. Inducing stationarity via the requirement that Rgs ar
Ap are cointegrated leads to the mext hypothesis—we find stronger evidence against
this set of restrictions. Our final two hypotheses permit a nonstationary real interest
rate to be cointegrated with the "ratios"—under alternative money demand |
specifications—and we find no strong evidence against these hypotheses. In panel B,
we similarly begin with a "balanced growth" specification without real interest rate
stationarity and then investigate alternative specifications that permit cointegration of
nominal interest and inflation (2) and real rates and ratios (3).

Taken together, the results of this section suggests that the money demand and
interest rate spread cointegrating relations are consistent with the observed behavior of
these time series. There is some evidence that the shares of consumption and
investment change in tandem with permanent shifts in the ex—post real rate. However,
this effect is economically small-—at least in the long run—and the hypothesis of

"balanced growth" also appears generally conmsistent with the data.
4. Reduced Form Analysis of Permanent Components: Methodology

This section describes a statistical methodology for analyzing the nature and
quantitative importance of stochastic trend components of economic time series. In
Section 5, we apply these statistical methods to some alternative reduced form
econometric models containing the various series considered in the previous section.
Throughout, our strategy is to develop empirical models with Juat enough assumptions
to identify the summary statistics of interest. 10

The empirical analysis of the previous section suggested that many macroeconomic

variables are well described as integrated of order one i.e., as containing a unit root.

Further, certain combinations of variables are well described as cointegrated. These
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considerations lead us to specify the following general model for the purpose of
exploring the relationship between common trends and cointegration. As above, let Xt
denote an n element column vector of two or more time series, each of which is
assumed to be individually integrated. After differencing the time series are assumed

to be stationary with the Wold moving average representation.
(4.1) aX, =1+ C(L)f:t

where C(L) is an n = n matrix of polynomials in the lag operator L and the
innovations ¢, are serially uncorrelated with mean zero (formally the €'s are a
martingale difference sequence) and covariance matrix E(. In addition, we make the
(weak) assumption that the moving average coefficients decay sufficiently rapidly so
that ):J.°=°0 gyl < e |

I X, is cointegrated with r > 1 cointegrating vectors, represented as an n x 1
matrix a, then—by Engle and Granger's [1987] definition—it follows that aX, is

integrated of order zero.l!  Given the representation (4.1), cointegration implies that

Al . a— w
a'C(1) = 0, where C(1) = y“j:O Cj‘

he Common Trends Model
On an intuitive level, if two time series are cointegrated, then they must share a
common stochastic trend in the sense that they have a common integrated component.
More generally, if AX, has the representation (4.1) with r 2 1, it is shown in the
appendix that X, then has the "common trends" representation,

(4.2) X, =X, +Ar, +D(L)e,, 1o =p+7 4+

7, i 2 k x 1 vector of random walks with drift 4 and innovations n,; and D(L) is a
B = n matrix of lag polynomials. The number of trends (the dimension of Tt) is equal
to the number of variables minus the number of cointegrating vectors, i.e. k = n-r.

To preserve the cointegration properties of Xz, the n = k matrix A has the property
that o'A = 0. '
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The common trends formulation (4.2) provides an explicit decomposition of X, into
permanent and transitory components. By construction, AT‘ is integrated of order one
but D(L)e, is integrated of order zero. An implication of the assumption Ej: OjIle <
o is that Zj:olel < ®, 80 that D(L)¢, bas a finite, generally nonsingular covariance
matrix. Thus Xf = A7, can be thought of as the common trends present in X,, while
X: = D(L)ct can be thought of as a stationary or transient component. Thus (4.2)

can be rewritten as a permanent-transitory decomposition,
= P s
(4.3) X =X, + X{ + X,

which is 3 multivariate generalization of the decomposition proposed by Stephen

Beveridge and Charles Nelson [1981].

Identification

The common trends model (4.2) is a special case of 2 dynamic factor model, where

12

the k factors are the random walks 7, and A is an n = k factor loading matrix.

t
Without additional restrictions on the relation between the innovations in the two
components, this factor model is not generally identified. In our context, however, the
fact that one of the components in (4.2) is nonstationary while the other is stationary
means that certain implications can be investigated without imposing additional
restrictions. |

Four features of the model (4.2) are of particular empirical interest: (i) the
number of stochastic trends (i.e., the dimension of 7,, k); (ii) the permanent
components XP; (iii) the innovations in the permanent. components, 7,; and (iv) various
statistics describing the dynamic response of X, to the permanent inrnovations (impulse
responses and forecast error variance decompositions). Identification of these four
properties require different assumptions, which we discuss in turn.

Identification of k. Because the number of common trends in (4.1) is n-1, the
problem of identifying k is equivalent to identifying r, the number of cointegrating
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vectors. The number of linearly independent cointegrating vectors is by definition n

minus the rank of C(1) (s0 rank (C(1)) = k). Thus k is identified directly from the
Wold representation (4.1). (This observation was exploited by the cointegration tests
reported in Section 3).

Identification of X*t’ The decomposition of X into permanent and transitory
components requires some additional restrictions. For example, it is insufficient to
define the permanent component to be "the integrated compornent" of Xt, for this is
not unique: both A7, and Ar, + D(L)¢, are integrated, so by this definition either
would do as a permanent componem.13

In the common trends model (4.2), the vector of permanent components,

XI: = A‘rt is identified by the assumption that 7, is a vector random walk, so that Xf
is also a random walk (with the singular covariance matrix EAXEAXI:' = AEnA'). As
Beveridge and Nelson {1981], Andrew Harvey [1985), and Watson {1986] emphasize, the
assumption that X‘" follows a random walk provides a natural definition of trend as the
long run forecast of X,. For large m, the forecast of X, = made at time ¢,

(X, +m|t)’ is arbitrarily close (in mean square) to X{’; that is,

EX? - (Xtmit = ym)? - > 0 as m ~ > o. Because X, can be formed given

-m | ¢
C(L), L ¢ and {‘t’ € 1 ...}, it follows that the assumption -:hal 7, is a vector random
walk suffices to identify XI:.

Identification of T, and g Given k and X’:, additional assumptions are required
to identify 7,. Because X} = A7,, A and 7, are only identified up to an acbitrary
transformation by a nonsingular k « k matrix R (ie. A7, = (AR)R™}r) = A'r,). If
k = 1, R is a scalar that normalizes the scale of . However, if Xk > 1 additional
considerations involving economic theory must be used to identify the k permanent
shocks.

In our empirical analysis of section 5 below, we achieve the necessary identification

in two stages. First, we use some @ priori restrictions on the long run influence of

changes in unobserved stochastic trends or observed variables. For example, we require
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that a long run change in the inflation rate has no long run effect on the level of
economic activity. Second, we order the unobserved permanent shocks in 8 Wold
causal chain, as in Christpober Sims' {1980] work with VAR systems. 4

Technically, this amounts to writing A as A I, where the cointegration restriction
is @A) = 0 and Il is a lower triangular k » k matrix with ones on the diagonal. The
choice of Ao reflects @ priori considerations about which permanent shock impinges on
which variable. The k permanent shocks are further assumed to be contemporaneously
uncorrelated and I1 is chosen to be the lower triangular Cholesky factorization of 277'
The assumptions embodied in the choice of AO, combined with the assumption that the
permanent shocks are uncorrelated, serve to identify A. Given A, T, is identified as 7,
= (Aa)axP

Impulse Responses and m~Quarter Ahead Forecast Errors. A major focus of our
empirical investigation is on the dynamic properties of our cointegrated system. We
examine these properties by estimating the responses of Xt to innovations in the
permanent components and the fraction of the forecast error variance of Xt attributable
to the permanent components. There are two ways to proceed at this point.

First, to separate the influence of the permanent innovations from the influence of
the transitory innovations, we must make an assumption about the correlation between
these sets of innovations. The precise assumption that we use is stated algebraically in
the Appendix. There we show that the k perina.nent innovations 1, can be written as
linear combinations of the n one-step ahead forecast errors € in equation (4.1). The
influence of these permanent innovations on X, can be identified by assuming that they
are uncorrelated with the other n-k linear combinations of the € that make up the
purely traﬁsitory innovations. This assumption allows us to separate the joint effects of
the permanent shocks from the joint effects of the transitory shocks.

Second, we can proceed further and identify the separate dynamic response of X,
to each of the permanent innovations by making the necessary assumptions specified
previously to identify A and Ty
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In the empirical work that follows we pursue both of these approaches. The first
has the advantage of being invariant to the ordering of the permanent innovations and
the other assumptions necessary to identify A and T, from Xf. The second procedure
is potentially interesting because one can investigate the character and implications of
the independent stochastic trends. In so doing, one may be able to provide some |

interpretation of the underlying unobservable factors.

Estimation

A common procedure for estimating the moving average representation of a
stationary multivariate time series model is to invert the estimated finite order VAR
Granger's Representation Theorem (Engle and Granger [1987]) implies that a similar
procedure can be used with the cointegrated system (4.1), or equivalently (4.2), except
that the cointegrating conditions are imposed by estimating a vector error correction
model (VECM) rather than a VAR. In the empirical implementation, the VECM is
assumed to be

(4.4) AX, =g+ B(L)AX_ - d(eX,_)) + ¢

where ¢, are the same innovations as in (4.1), g is 0 = 1, d is o = (n-k), and B(L) is
an n = n matrix lag polynomial of order p. The n-k stationary variables dxt are the
"error—correction" terms. Thus C(L) and ¢, are computed by estimating (4.4), given q,
and inverting the resulting VECM.

As discussed above, if k=1 then a'A=0 identifies A np to scale. For k>1, A is
written as A=A°n, where Ao is known and II is a lower triangular matrix with ones
on the diagonal and unknown parameters below the diagonal. Giéen Ao'» I and A are
estimated from a, é(l), and i“IS

The innovations statistics are computed from the estimated moving average
decomposition é(L) and the estimated transformation matrix F which transforms the

* * *
underlying errors into the permanent innovation (i.e., F € = 7, where U is the vector
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of orthogenized permanent innovations). The first k rows of f“ are given by F =
(AO'AO)AO'EJ(I), and the additional assumptions that the permanent and transitory
shocks are uncorrelated and that the permanent shock precedes the transitory shock in
a Wold causal sense permits computing moving average representatioﬁ of the vector X,
to the permanent innovations. The details underlying the construction of i‘. are given
in the Appendix.

In summary, the common trends model (4.2) has three desirable features. First,
the model involves no overidentifying restrictions beyond the testable restrictions
imposed by cointegration, although additional structure is needed to interpret its
dynamic properties. Second, it permits rather genmeral correlations between specific
permanent and transitory shocks. Third, the model is easily estimated using a finite
order VECM. |

5. Permanent Shocks and Economic Fluctuations: Empirical Results

In this section we investigate the quantitative importance of permanent components
in the fluctuations of output, consumption and investment at business cycle horizons.
We begin by considering the simple three variable system introduced in section 3 which
contains one common stochastic trend. Next we expand the system to include real
balances, a nominal interest rate and inflation. This expanded system enables us to
explore the implications of additional common stochastic trends and to investigate the

sensitivity of the results to a variety of identifying assumptions.

iabl w_Variabl
Our results are based on an estimated VECM using five lags of the first differences
of y, ¢ and i with an intercept and the two theoretical error correction terms, y—¢ and
y-i. Imposing the two balanced growth cointegrating vectors implies that the factor
loading matrix A is a8 3x1 matrix with equal elements. We adopt the normalization
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A=[1 1 1}, so that a one percent increase in the permanent component increases y, ¢
and i by one percent in the long run.

Since the system has only one stochastic trend, the analysis of the dynamics only
requires knowledge of the cointegrating vectors to estimate the VECM and an
assumption that the permanent shock is uncorrelated with and causally prior to the
transitory shock. Given these assumptions we have constructed the impulse response of
y, ¢ and i to a one unit innovation in Ty These estimated impulse responses are
plotted in Figure 3, where we also plot the responses plus and minus ome standard
c‘leviation.16 In response to a shock that leads to a one percent increase in the
permanent level, the values of output and investment increase by more than one
percent in the near term (one to two years), while consumption moves only slightly.
These results are consistent with the simple theoretical model discussed in section 2
where the capital stock rapidly increases at the short run cost of consumption.
Virtually all of the adjustment is completed within four years.

Are these responses large enough to explain a substantial fraction of the short run
variation in the data? This question is addressed in Table 6 and Figure 4. Table 6
shows the fraction of the forecast error variance that is attributed to an imnovation in
the common stochastic trend, at horizons of 1 to 24 quarters. These variance
decompositions indicate that innovations in the permanent component appear to play a
dominant role in the variation in GNP and consumption. At the one to four-quarter
horizon, the point estimates suggest that 50% to 60% of the fluctuations in private
GNP can be sttributed to the permanent component. This increases to 70% at the
~two year horizon and to 80% at the six—year horizon. The results for consumption are
similar. Interestingly, the permanent component explains a much smaller fraction of
the movements in investment. The point estimate is that the permanent component
explains only 25% of the one year ahead variance in unexpected investment. This

increases to 40% at the six year horizon.
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These results are illustrated in Figure 4, which presents plots of the three year
ahead forecast errors for y, ¢ and i and the portion of that error that is attributable to
the common stochastic trend. As can be seen, the variation due to the permanent
component tracks the major movements in the forecast errors of y and ¢ very closely.
On the other hand, the permanent component offers less of an explanation for
variations in investment.

This evidence suggests the existence of a strongly persistent—potentially
permanent—component that shifts the composition of real output between consumption
and investment. (If there were temporary components with negligible effect on forecast
errors after three or more years, then we would expect the variance ratios in Table 6
to increase more sharply at the longer horizons.) Thus, the results motivate us to
investigate the possibility of a permanent component in our six-variable system that

might account for such compositional effects.

ix=Variabl stems with Nominal Van

This section examines the semsitivity of the main result of the three variable
system—that permanent shocks can account for much of the short run movements in
output and consumption—to the incorporation of additional variables into the system.
This is done by estimating a six-variable system that includes the three real flow
variables plus real balances, interest rates and inflation, thereby expanding the potential
range of shocks. Our strategy is to analyze in detail a "benchmark" specification and
then briefly summarize a range of alternative formulations.

Cointegration Constraints and Estimates of the Permanent Component. The results
of section 3 suggest that a resonable specification incorporates three cointegrating
relations (and thus three common trends) among the six variables. For our benchmark
model we have chosen the following cointegrating relations: ¢ -y = ¢1(Rss -~ Ap),
i-y=¢2(R88-Ap)mdm-p=¢yy-cRR The first two permit variation

gs
in the real ratios arising from permanent shifts in the "real interest rates" and the
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third says that "money demand" disturbances are stationary. The values in Table 4
are used as estimates of ¢1, ¢2, ¢ and R

Given these cointegrating relations we are able to identify the total permanent
component Xp, and assuming that the permanent shocks are uncorrelated with and
causally prior to the temporary shocks, we are able to identify its short run effects on
each of the six variables. In order to individually identify the three stochastic trends
we must make some further assumptions. As discussed in the previous section, we do
this by specifying the 6x3 factor loading matrix A and an ordering of the stochastic
trends. The parameterization adopted reflects the requirement that a'A = 0 and is
designed to offer a potential interpretation of the three trends. The specific

formulation is:

'yl [t o0 0]
c 1 0 ¢
; 1o 4, 1 0 0
(5.1) m-p| = & R R Ty 1 07 4+ D(L)(t,
T2 732
Rgs 0 1 1
[Ap | 0 1 0 |

with the column vector of stochastic trends evolving according to =t T+
To interpret this specification, temporarily suppose that Tg) = ¥gq = 39 = 0.
The trend L0 has a balanced effect of y,' ¢, and i, plus an effect on real balances
determined by ey; by construction, it has no long-run effect on inflation and the
interest rate. In this 6—variable system, then, we interpret Ty 8 the counterpart to
the "balanced growth" component in the previous 3-variable system. A change in Ty
has a unit positive effect on nominal interest and inflation, no effect on real gquantities
and an effect on real balances governed by the interest elasticity of real money
balances. Hence, we interpret Ty 85 2 neutral shift in the level of the inflation rate.

A change in 74 has a unit effect on R__ but no effect on Ap, 80 it is interpreted as a

g8
permanent change in the real interest rate. Its effect on real balances is given by the
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interest rate elasticity. Nonzero ¢, and ¢, admit the possibility that this shock will
have a compositional effect on real activity.

In general, T2 Rz and 1,4 are nonzero. As discussed in Section 3, there is no
unique choice of the factorization of the covariance matrix of the permanent when k>1.
In the benchmark model, we adopt a factorization analogous to that of Sims' {1980},
but vary this as part of the sensitivity analysis below. For a discussion of these issues
in the context of conventional VAR's, see Blanchard and Watson [1986].

It is important to recall that our specification of the factor loading matrix is just
one possibility. After all, the 7's are fundamentally unobservable factors. Our choice
of parameterization is an attempt to interpret these factors as being associated with the
sorts of economic mechanisms we have described above. Nevertheless, nothing we have
done makes our interpretation unique or guarantees that the "true factors”" have any
such interpretation.

Our benchmark model (5.1) is estimated over the period 1954:1 to 1988:4 using a
VECM with eight lags and the three error correction terms implied by the
cointegrating relations. The first aspect of the model we investigate is the behavior of
the total permanent component, X’: . The summary statistics for this feature of the
model do not depend on our parameterization of the factor loading matrix or the
ordering of the individual stochastic trends. They do depend on the cointegrating
relations and the assumption that the permanent shocks are causally prior to the
temporary shocks.

Table 7 presents information on the explanatory power of the total permanent
component. These variance decompositions indicate that the three common stochastic
trends together account for over 60% of the one quarter ahead forecast error of output
and over 80% at the 12 quarter horizon. Interestingly the fraction of consumption's
forecast error explained by the permanent component is actually smaller at short
borizons in the six variable system than the three variable system, although the ratio is
roughly the same (60%) at the three year horizon in both setups. The permanent
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component in this six variable system, however, explains 8 much larger fraction of
investment than in the three variable system, almost 80% at the three year horizon.

The short run variation in the remaining variables in the system, m-p, r__ and Ap,

are also explained to a substantial degree by permanent components. ¢

By parameterizing the factor loading matrix, we can be more specific about the
implications and character of the three common trends. Table 8 presents the variance
decompositions of the forecast errors from the benchmark model. Four aspects of this
table are of particular interest. First, the importance of the real or "balanced growth"
shock (the first shock) in explaining the movements in output and consumption is
reduced, especially at the one to four quarter horizon. At the three to five year
borizon, however, it remains true that this shock has important explanatory power:
roughly one half of the variation in these forecast errors is attributable to the first
permanent component. Second, including the additional shocks in this expanded model
does not change the inability of the first permanent component to explain the short run
variations in investment. Third, the second component (associated with permanent
movements to inflation) explains a considerable amount of the variation in inflation at
medium to long horizons, but little else. Fourth, the third component (associated with
permanent movements in the real interest rate) explains most of the forecast errors for
the nominal rate and substantial amounts of the output and investment forecast errors.

Figure 5 visually illustrates the roles played by the different shocks by plotting the
forecast error at the three year horizon and the portion attributable to each stochastic
trend as well as the total, XP , for y c and i. These plots highlight the negligible role
of the second or "inflation” shock and the substantial role played by the first or
"balanced growth" shock and the third or "real interest rate" shock. Looking at
specific episodes in this figure, one finds that stochastic trend #1 has particular
explanatory power for the sustained growth of the 1960s. On the other hand,
stochastic trend #3 seems particularly important in the contraction of 1974 and the the
1981-82 recession.
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The last part of the dynamic analysis is to investigate the impulse response
functions of the key real variables, y,c and i, to the three permanent shocks. In
Figure 6 we have plotted these responses to unit impulses in the "balanced growth"
shock (trend #1), the "inflation" shock (trend #2) and the "real interest rate" shock
(trend #3). The estimated standard deviations of these underlying shocks are 0.7%,
0.08% and 0.12% per quarter. The response of output to the "balanced growth" shock
(shock #1) is negligible over the first few quarters, while consumption increases slightly
and investment declines. By a year, however, major increases in output, consumption
and investment are present. While these responses are smaller that those observed in
the three variable model, they seem to conform to how ome might think a system
would respond to "news" about technological developments.

The "infiation" shock is associated with some curious responses. Both output and
consumption respond negatively to this shock and then tend to oscillate between
positive and negative. Recall, however, that the model constrains this shock to have
zero long run impact on output. Investment, on the other hand, shows a positive
response to this shock for the first three quarters. Although not shown here, real
balances also respond positively to this shock in the short run. While these responses
do not correspond to how most economists would describe the effects of such a nominal
disturbance, it must be remembered that this shock plays very little role in explaining
any of these variables.

We bave already shown that the shock we have labeled a "real interest rate” shock
(shock #3), plays an important role in explaining the short run behavior of output and
investment. The impulse response functions make interpreting this shock as a
permanent change in the real rate of interest somewhat difficult. All three of the real
flow variables have an initial response to a permanent increase in this "real interest
rate” that is stroﬁgly positive, before turning negative two to three quarters out.

While there may be economic models that predict such responses to 8 permanent
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change in the real rate, standard omes do not: our findings lead us to question our
interpretation of this third and important common trend, as a real rate disburbance.

We draw four main conclusions from our analysis of the benchmark model. First,
permanent components arising from common stochastic trends are empirically important
factors influencing economic fluctuations. Second, the behavior of the "balanced
growth" factor, while having less explanatory power in the six variable system than in
the three variable system, retains a significant role in explaining movements at horizons
greater than 2 years. Third, a large fraction of the short—run (02 year) variability in
output and investment is explained by a factor that is related to persistent movements
in the real rate of interest. Fourth, the impulse response functions appear consistent
with our interpretation of the first shock as a real or "balanced growth" shock, but
lead us to question our interpretation of the third as a "real rate" shock, at least

within the context of standard models of the macroeconomy.

Sensitivity Analysis

We now turn our attention to the semsitivity of the main conclusions of the above
empirical analysis to various modifications to the benchmark six variable model.
Specifically, we consider changes in cointegrating vectors (and thus A matrices), changes
in the ordering of the permanent components, different dimension of the system, and
choice of variables. To save space, we focus on a key measure, the fraction of the
variance of the 3-year ahead forecast error in each of the variables explained by the
real or "balanced growth" component. The results of the specification analysis are
summarized in Table 9.17

Two robust conclusions emerge from the results in Table 9. First, looking across
specifications a substantial fraction of the forecast errors in output and consumption are
explained by movements in the "balanced growth" component; the point estimates fall
in the range of one-third to two-thirds. Second, the fraction of the forecast error
variance of investment explained by the real permanent component is never large (at
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most 41% in model B.6. These are consistent with the findings for the benchmark
model B.1 in Table 9.

In addition to these main conclusions, our work with this battery of models has
led to a number of additional results of interest. First, 8 comparison of the models in
panels B with those in panels C indicates that the real component has less explanatory
power for output when real balances are included in the system. A mechanical
explanation of this finding is that, in these systems, the real shock by comstruction
must explain part of the long-run movements in real balances, so that the effect on
output is attenuated. Second, whether ¢1 and ¢2 are set to zero makes little
difference for the forecast error variance decompositions. Third, changing the ordering
of the shocks (for example, putting the permanent real shock last in the Cholesky
factorization, as in model B.7) is quantitatively noticeable but does does not change the
overall qualitative features of the results. Fourth, the variance decompositions for
output and investment exhibit substantial stability when the model is estimated over
various subsamples. Fifth, the forecast error variance decompositions for the total
permanent component XI: is almost always greater than 80% at the three—year horizon
as long as the cointegrating vectors permit a stochastic trend in the "real interest
rate." In other models it ranges between 55% and 70%.

6. Analysis of Trend Components of Private GNP

Our method can be used to provide a decomposition of each element of X‘ into a
permanent (or trend) and a stationary (or cyclical) component. In this section, we
examine the trend component of private gross national product by comparing it to
standard estimates of productivity growth and trend output.

Trend Private GNP. The trend component of output, y‘:, is plotted in Figure 7
18 Despite the
very different approaches used to construct the two trend estimates they are broadly

along with Denison's [1985] estimate of real potential GNP per capita.
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similar. The three major differences between the two series are the prolonged growth
of the 1960s (where the benchmark model ascribes more of this growth to a shift in
the trend), the 1874 contraction, and the slowdown of the late 1870s.

Solow Residuals and the Balanced Grouwth Stochastic Trend. In tﬁe neoclassical
growth framework of Section 2, the common long run movements in aggregate variables
arise from changes in productivity. Is there any evidence that productivity movements
are related to innovations in the trend component of GNP or, more generally, to ”t?
We investigate this by comparing these estimated imnovations to a popular estimate of
the change in total factor productivity in the economy, the residual of Robert Solow
[1857). If the economy can be characterized by a Cobb-Douglas production
function—as in the theoretical model of Section 2—the Solow residual has the
convenient interpretation of being exactly ¢, in (2.1). Two measures of this
productivity residual are used: Robert Hall's {1986, Table 1} for total manufacturing
and that produced by Prescott {1986]. Hall's series is reported annually, and Prescott's
quarterly series was aggregated to the annual level for comparability.lg

The time path of the Solow residual and the change in the permanent component
of private GNP from the benchmark 6-variable model are plqtted in Figure 8a for
Hall's measure and in Figure 8b for Prescott's measure. Visual inspection suggests a
modest relation between Hall's Solow residual and extracted permanent cémponents (the
correlation is .56) and & stronger relationship between Prescott's Solow residual and the
permanent component (the correlation is .70). |

The Solow residual is well understood to be an imperfect measure of technical
change. For example, Prescott [1986] points to errors in measuring the variables used
in its construction and Hall [1986] has suggested that this measure of productivity will
misrepresent true technological progress in moncompetitive environments where price
exceeds marginal cost. These caveats suggest carrying out a more extensive
investigation into the relationship between our estimated permanent innovations and

various productivity measures. Nonetheless, these results suggest a fairly close link
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between real permanent shocks from the benchmark model and the longer swings in the
two measures of the Solow residual. These comparisons thus lend some credence to the
interpretation in Section 5 of the permanent real shocks as measuring economy-wide

shifts in productivity.
7. Condusion

This empirical investigation suggests four general conclusions. First, real per capita
private output, consumption, and investment, money balances, and interest rates appear
to be well<haracterized as containing common stochastic trends. Cointegrating
relations appear present among the real flow variables; among money, output and
interest rates (as a long run money demand relation);v and among nominal interest rates
(as stationarity of the spreads).

Second, when these common stochastic trends are modeled as random walks,
innovations in these trends appear to account for a substantial fraction of the
mbvements in the real and nominal variables, even over short horizons. In particular,
in the case of real per-capita GNP, approximately one-third to two-thirds of its
fqrecast errors at the 3—year horizon can be explained by movements in the permanent
real (balanced growth) shock.

Third, comparison of changes in the real permanent components with independent
estimates of Solow's (1957) measure of total factor productivity lends some support to |
the interpretation of this change in the real permanent component as in innovation to
economy-wide productive opportunities. '

Fourth, thus interpreted, our results lend some support to the empirical relevance
of the class of neoclassical growth models discussed in Section 2, in which productivity
shocks play a key role in generating business cycle fluctuations. While shocks to the
real permanent "balanced growth" component explain a sizable fraction of the
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movements in output at business cycle horizons, this explanatory power mainly arises
from some specific periods, notably the sustained growth of the 1960's.

Yet, shocks to the "balanced growth" permanent component shed little light on the
fluctuations during other important episodes, such as the 1874 contraction and the
1981-82 recession. Moreover, these permanent real shock accounts for less than
two—fifths of the movements in investment, even at the 6—year horizon.

Our investigation also indicates the explanatory power of an additional permanent
component, associated vﬁth interest rates, that is closely associated with swings in
investment. Further, in the 1974 contraction and the early 1980's, this component is
associated with the forecast errors in output as well. These observations suggest that
models in which productivity shocks are the sole source of cyclical fluctuations fail to

capture empirically important features of the postwar U.S. experience.
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Notes

1For some recent discussions, see Prescott [1986], King, Plosser and Rebelo
[1988a,b] and Plosser [1989)).

2']'.‘he log of consumption minus the log of investment is also stationary, but this is
not an independent cointegrating vector since it is just a linear combination of the first

two (a; - ay).

ALl data were obtained from Citibase. Using the Citibase mnemonics for the
series, the precise definitions of the variables are GC82/P16 (consumption), GIF82/P16
investment), and (GNP82-GGEB82)/P16 (real private output). The Citibase M2 series
FM2) was used for 1959:1~1985:4; the earlier M2 data was formed by splicing the M2
series reported in Banking and Monetary Statistics, 1941-1970, Board of Governors of
the Federal Reserve System to the Citibase data in January 1959. (We thank Dennis
Kraft for his advice on this matter.) The monthly data were averaged to obtain the
quarterly observations. The price deflator was obtained as the ratio of nominal private
GNP (the difference between Citibase series GNP and GGE) and real private GNP
g_the difference between Citibase series GNP82 and GGEB82). The interest rates are
YGM3, FYCP, and FYAAAC.

4 These univariate results are not robust to certain changes in the definition of the
variables. We highlight three examples. First, while the ratio of consumption to
private GNP appears to be stationary over the 1949-1988 period, there is a clear
upward trend in the ratio of consumption to total GNP over the 1853-1988 period.
Second, the ratio of real consumption of durables to total GNP (or private GNP)
shows a strong upward trend over the sample period. The inclusion of consumer
durable purchases in investment rather than consumption reduces the trend in the
consumption to total GNP ratio, but increases in trend in the investment to total GNP
ratio. Third, the investment/output ratio is more volatile when inventory changes are
included in the measure of investment. '

5'I‘here are three difficulties with the interpretation of these estimated roots. First,
just as in the univariate analyses, when the true root is unity its estimate is biased
towards zero. Second, when the true root is unity the distribution, including the mean,
of its estimator changes when a time trend is added to the system. Third, the
distribution of the roots depends on the additional parameters describing the short—run
dynamics in the VAR, and thus will vary from one n-variable system to the next.
Thus the point estimates are only suggestive; the formal umit root/cointegration
hypothesis tests provide more precise information regarding the number of unit roots.

6The r subscript on the statistics presented in Panel B of Table 2 indicate that
they were constructed using linearly detrended data. The asymptotic critical values for
J, differ from those tabulated in Johansen [1988], which are appropriate only for tests

constructed using data that have not been demeaned or detrended. It is
straightforward to use the results in Sims, Stock, and Watson [1980] to derive the
asymptotic null distribution of the J , Statistics. We have done this, and the p-values

shown in the table are based on this asymptotic distribution.
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7Formally, the LR statistic tests the hypothesis that the estimated cointegrating
vectors fall in the subspace spanned by theyg;pothesized cointegrating vectors, against

the alternative that they do not, under the maintained hypothesis that that the number
of cointegrating vectors is correctly specified. Johansen (1988) shows that the likelihood

ratio test statistics is distributed as a x2 random variable under the null hypothesis if
the first differences of the data have a mean of zero; this is extended to the case with
nonzero mean in Jobansen [1989)].

8 The imprecision in ;R highlights & point made by Stock {1988] about estimated
cointegrating vectors. While these estimators are "super—consistent" (Stock [1987)),
they may imprecisely estimated in a fixed sample; although the discrepancy between R
and €g converges to zero quickly as the sample size grows, it can still be large for a
given fixed sample size.

gThe point estimates of coefficients on nominal interest rates and inflation in the
consumption and investment equations make little sense and differ sharply from those
in Table 4. Since the real interest rate appears to be borderline nonstationary, the
nominal interest rate and inflation are very highly correlated in the long run. This
leads to a problem similar to multicolinearity in classic regression models. In this
framework, small sample bias in the individual coefficients as well as imprecision is
likely to result from the problem. The variance decompositions and impulse response
functions reported below were calculated using the point estimates of the cointegrating
vectors from Table 4.

1045 alternative approach to identifying these long run properties would be to take
8 structural model explicitly derived from economic theory and to impose the implied
restrictions on the reduced form. The main difficulty with this approach is the lack of
a set of readily agreed upon restrictions that could be imposed and used to interpret
the data. Moreover, this would defeat our objective of summarizing long-run empirical
regularities while imposing a minimal number of questionable theoretical restrictions.

1157 this section we use I(1) to denote stationary processes and I(0) to denote
covariance stationary processes with imvertible Wold representations, In general I(q)
processes need not be covariance stationary.

12Gene:ml discussions of dynamic factor models are provided by John Geweke and
Kenneth Singleton [1981] and Mark Watson and Robert Engle [1983).

13The only long-run property of X that is identified directly from the Wold
decomposition (4.1) is the spectral density of AX; at frequency sero, which has rank k.

This is an alternative way of describing the fact that the number of common trends
can be determined without additional identifying assumptions.

) 14Addjtiox.m.l assumptions would be necessary to compute impulse responses and
variance decompositions with respect to the transitory innovations.
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15From (4.1), (4.2) and (4.3) it follows that, conditional on ¢, = 0 for s <0, Xg

= C(1)5;_;¢ = Ar,. Combining this with the assumption that E,m = I (the k x
k identity matrix), if follows that C(1)L ‘C(l)' = A IITA, . Given estimates of I,
and C(1), I is therefore estimated as the lower triangular Cholesky factor of

(AgAg) T AGC(LE,C1YA (AjA ).

161, reported impulse responses are deviations from a (common) deterministic
time trend. Thus & permanent response of 1 percent actually represents a shift
upwards of the long—run growth path by 1 percent. The standard errors for the
impulse response functions and variance decompositions were computed using 500
simulations as discussed by Thomas Doan and Robert Litterman [1986], page 19—4.

1 The models in panel A and C were estimated using 5 lags. The results from
these models were robust to changing the lag length to 8 or 10 lags. The results in
panel B, based on models with 8 lags, were sensitive to decreases but not increases in
the lag lengths. Likelihood ratio test statistics suggested that lags 6-8 of the nominal
variables entered some of the equations, particularly the equations for money and
ijnﬂ;tigp. For panel B, this suggested using the specifications with the longer lags to

mit bias.

18Danjson's measure of potential output is computed by adjusting actual output
using an Okun's law relationship, by adjusting for capacity utilization, and by making
other adjustments such as for labor disputes, the weather, and the size of the armed
forces. Source: Denison (1985), Tables 2—4.

) we are grateful to Gary Hansen for providing us with Prescott's Solow residual
series.
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Appendix
Common Trends and Cointegration

This appendix presents the derivation of the "common trends" model (4.2) from
Engle and Granger's (1987) cointegrated model. Suppose that the nx1 vector X, has a

moving average representation in first differences, perhaps with a nonzero nxl drift r
(A.1) X, = 7+ C(L)e,

where E(¢,[e8 < t) = 0, E(¢e [{¢]}), 6 <mint, 1)) =0, t #r,and =L, t = 1.
Engle and Granger (1987) define X, to be cointegrated if there exists a nxr matrix a
such that a'X, is integrated of order zero, which implies that aC(1) = 0.
Cointegration can in principle be defined so that a‘X‘ might have a deterministic (but
not stochastic) trend. Here, however, we use the stronger definition that this
deterministic trend is zero, i.e., that a'y = 0. Assume that there are r = n-k
cointegrating wectors.

To obtain the common trends representation (4.2), first rewrite (A.1) as
(A.2) X, =Xy + 1t + C(1){, + D(L)e,

- - wt
where D; = IT_..) G and § =3, ¢

Deﬁnertobe;ﬁxedknmttixoffullcolumnrmkmchthat a'Ao=0,a.ndlet

Note that ft is a nx] random walk.

H be the nxn matrix,

1] -1 2 []
(Aoa 2] 1B

(a’a)'llza' H,



where Mll 2 denotes the matrix square root of M. Note that BH' = I (the nxn

identity matrix), so that E™' = H. Also note that

5o = HC) | (AA) 24 rC()
E,C(1) 0

"1 ' ' ' ' "1 1 —
Thus, C(1) = ETBC(1) = [H; B;JEC(1) = H{H,C(1) = A (A;A)"A C(1) = AT,
where F = (A(’)Ao)"lA(')C(l) is kxn. Similarly, o'6 = 0 implies that § = AOZI , where
B=(AA)TAG is kel Thus,

(A.3) X, =X, + Ao;'n + AF{ + D(L)g = X, + AQ?t + D(L)e,

where 7, = @t + F{, = 7,_, + 7, where , = Fe,.

The innovations ﬁt have nondiagonal covariance matrix 277 = FE(F'. Define n, to
be the transformed innovation such that ﬁt = Hr;t, where II is some nonsingular kxk
matrix such that En 7, is diagonal. Then (A.3) can be written in the common trends

form,
(A.4) " X, =7+ A7, + D(L)¢,

~where A = A Tl and E(AYAY') is diagonal. Note that Il can always be chosen to be
lower triangular with ones on the diagonal, which is normalization adopted in the text.

As discussed in Section 4, if k > 1 then further identifying assumptions are needed
to compute the innovation statistics. With the additional assumptions that (i) the
perrhanent and transitory shocks are uncorrelated and (ii) the permanent shocks appear
first in a Wold causal ordering, the combined vector of (correlated) permanent

innovations 7, and transitory innovations (¥,) can be written,



+ _ ¥+, _
(A.5) n, =F¢ =

Fct _ A

Gtst A

where G is such that F' is nonsingular. Let I1* be a lower triangular matrix such
that TI* has ones on the diagonal and that F*I F* = N*D*N1*', where D* is diagonal.

Then, the desired moving average representation of the orthogonal permanent
innovations is C*(L) = C(L)(F+)'1H‘. Note that the upper left~hand (k,k) block of
I1* is 1. Because only the first k column of C*(L) are of interest, it is
inconsequential how G is computed as long as Fro* s ponsingular. A computationally
convenient procedure (used in the empirical work) is to let the rows of G be the right
eigenvectors corresponding to the (n-K) nonzero eigenvalues of I - F'(FF’)'lF.

In the univariate case, F = -1 ard the common trends representation (A.4)
reduces to the stationary/nonstationary decomposition proposed by Beveridge and Nelson

[1981].



Table
Tests for Stochastic and Deterministic Trends

= == e
Series® Estimate of Largest Root Estimate of Deterministic
In Univariate Autoropouicmb Trend Slope Coefficiant®
/0 Deterministic w/Deterministic Levels Nean
Trend Trend Regession Change
P DF "¢t" p DF =" by t, b t,

A. (Cutput, Consumption, and Investment, 1949:1 - 1988:4

y 1.00 - .90 94 <2.45 1.63 2.50 1.72 3.10
c 1.00 -1.22 .96 <2.09 1.67 2.01 1.89 6.12
i .89 - .98 .89 -3.44 1.66 3.3 1.70 1.41
Ay 12 -5.92 .12 -5.93 - .00 -~ .45 .00 .01
Ac 14 -6.41 12 5.48 - .01 - .89 - .00 =~ .03
Ai .27 =5.49 .27 =5.48 .00 .01 .02 .04
c-y .85 3.46 7 —4.21 .10 2.26 17 .46
iy .81 —4.02 .81  =3.99 .00 .02 -~ .0 -~ .02
c-i .8¢ —4.10 .82 —4.26 .10 1.18 .18 .18

B. Momey, Prices, and Interest Rates, 1954:1 - 1988:4

»p 1.00 -~ .83 96 -2.78 1.57 2.3 1.54 2.70
Am-Ap .61 —~4.01 .61 —4.00 - .00 - .08 - .00 - .00
p-y .88 -3.67 .89 -3.53 .02 .26 - .26 - .44
Ap .87 -2.19 .85 -2.10 .02 .54 - .05 - .51
A% 14 652 -1.42 —6.48 - .00 -.79 03 .23
Ry 95 ~2.25 8 -3.73 .06 2.02 .04 .59
R 94 -2.33 .84 -3.85 .06 2.36 .04 .52
R 99 -1.34 94 -2.13 .07 2.15 .05 .99
Ms- A1 —4.90 .10 —4.90 - .00 -~ .24 .01 .20
Anp, .08 —4.95 .08 —4.94 -.00 - .17 .00 .06
ARPI .27 —4.85 .26 —4.87 - .00 - .69 -.00 -.11
C. Spreads and Real Interest, 1964:1-1988:4

2 . . . . - -. . .

p-%' B1 —4.78 49 4.8 00 98 00 o1
m‘”-np1 .78 —4.45 T4 487 .01 1.49 .00 .02
l‘.-Ap .88  -1.82 .80 -2.30 .03  1.49 - .00 -~ .04
lw-Ap 84 -2.01 76  -2.61 03 1.7 -.00 <~ .14
lpl-Ap .90 ~1.69 81 -2.82 05  1.04 -.00 -.03




Notes to Table 1.

2The variables y, ¢, i, m, and p are in logarithms. The interest rates
are on a quarterly decimal basis.

By is an estimate of tread growth (at annual rates) formed from a

Tegression of the level of the series onto a constant, 8 time trend, and §
lags of the series, and ty is the t-test for By 0 from this regression. Ko

is an alternative estimate of the tremd growth (at an annual rates) in the
series; it is the sample mean of the first difference of the series, and tz

is the t~test that the true mean is zerc comstructed using By vith the

asymptotic variance (the spectral density of the first difference at
frequency zero) estimated by a time—domain average of the first §
autocovariances.

bUnit Root Tests: Folloving Dickey and Fuller [1979), the largest root
can be estimated vith or without a simultaneous estimation of a deterministic
trend. In the columns marked "w/o deterministi¢ trend,” we report the

former. In these columns, p is the sum of autoregressive coefficients from a
regression of level of the series on a constant and 5 lags of the series. DF
"t" is the appropriate Dickey-Fuller t-test for p = 1. We report the
alternative estimate in the columns marked "with deterministic trend.” In

these columms, p is the sum of autoregressive coefficients from a regression
of level of the series on a constant, a time trend, and § lags of the series.
DF "t" is the appropriate t-test for p = 1.

Critical values for the Dickey-Fuller "t tests" differ across the two
sets of tests. Without the deterministic trend, the critical values are:
10%, -2.57, 6%, -2.86. With estimation of a2 deterministic trend, the
critical values are: 104, -=3.12, 5%, =3.41.



Table 2

Cointegration Statistics:
Incoms, Consuzption, Investment (y, ¢, 1), 1949:1 - 1988:4

4. Results from Unrestricted Levels Vector Autoregreassions

lLargest Eigenvalues of Estimated Companion Matrix

VAR(S) with Constant VAR(E) with Constant and Tremd
Real Imaginary Nodulus Real Imaginary Kodulus
1.00 .00 1.00 .96 .00 .96

~ L .20 .79 .76 .20 .78

N -.20 79 .76 -.20 .79

e .00 N .m .00 77
-.47 ~.44 .65 -.47 -.44 .85
-.47 .44 .65 ~.47 44 .65

=== e =

B. Multivariate Unit Root Tests

Statistic Value P-Value (¥ull/Alternative)

3.(0 35.0 .14 (3 unit roots/at most 2 unit roots)
q£(3.2) ~25.9 .31 (3 unit roots/at most 2 unit roots)
(3,1 -28.3 .01 (3 unit roots/at most 1 wnit root)

C. Estimated Cointegrating Vectors

¥ull BEypothesis ME
Variable a.1 02 01 a2
y 1 1 -1.06 ~1.00
(.02) (.03)
© -1 o 1.00% 0.00%
i 0 -1 0.00" 1.00%

Likelihood Ratio test:

LR statistic' = 3.42, af = 2, p-walue = 18%
===
Notes: All statistics were computed using § lags in the relevant vector
sutoregressions. The MLE's of the cointegrating regressions (pansl C) wvere
computed using the algorithm givez in Stock and Vatson (1989). t-statistics
constructed using the indicated values in parentheses balov the point
estimates have a large—sample normal distribution. The likelihood ratio
statistic is computed using the algorithm given in Johansen (1988).

Syormalized




Table 3
Cointegration Statistics:
Inflation and Interest Rates (Ap, r__, I <), 1954:1 —~ 1988:4
g’ “ps’’pl
A. Results from Unrestricted Vector Adutoregression
VAR(S) with Constant
lLargest Eigenvalues of Companjon Matrix:

Real Imaginary Modulus
00

.96 .96
.92 .00 .92
-.03 .81 .81
-.03 -.81 .81
.72 -.32 )
.72 .32 .79
.19 .T2 .78
.
B. Multivariate Unit Root (Cointegration) Tests
Statistic Value P~Value (Null/Alternative)
J_(0) 61.4 <.01 (4 unit roots/at most 3 unit roots)
T
q£(4.3) -65.6 <.01 (4 unit roots/at most 3 unit roots)
q:(4,2) -65.5 <.01 (4 unit root/at most 2 unit roots)
q:“.l) -15.1 .01 (4 unit roots/at most 1 unit root)

—=

C. Estimated Cointegrating Vectors: Interest Rates and Inflation

. Full Hypotheses MLE

Vanab;. cx1 a.J 03 01 02 03
Ap 1 0 0 1.00* 0.00"* 0.00*
R, -1 1 0 -.60 -1.02 -1.08
€ (.08) (.01) (.04)
T 0 -1 1 0.00* 1.00° 0.00%
ps

& a a
T 0 0 -1 0.00 0.00 1.00

LR statistic “’1’“2'“3) = 10.6, &f = 3, p—valve = 1.4%
LR statistic (02.33) = 4.42, &f = 2, p—value = 11}

e — —
Hotes: See the notes to Table 2. No deterministic trend is included in
panel A, Lk(al,az,aa) tests the joint hypothesis that a,, a,, and

ay equal their value. LR(a,,a,) tests the hypothesis that a, and a,
equal their mmnll value.
Sgormlized




Table 4

Further Estimated Cointegrating Vectors®

|==-

Estimated Relation -~ Cointegration Tests

4. Money Demand, 1954:1-1988:4

>4
1. mp=1.18y - 4.72 R (3,2) = -22.3  J_(0) = 43.8
(.05)" (1.25) &% i (.46) (.02)

Test of Velocity Restrictionb:

x2- 7.61

(.005)

B. Real Ratios and Real Interest, 1954:1-1988:4

1. c-y =1.16 (R _-Op) q(21)=—631 J.(0) = 19.6

(.54) B° o (<.01) (.03)
2. i-y = -.55 (R__-Ap) <2 1) =-62.0 J (0) = 22.1
(.35) &% (<.01) (.01)

— R ——
— == —_—

Hotes: 2See notes to Table 2. p~values for the test statistics are reported

in parentheses. bThe x2 statistic tests the joint hypothesis that the

coefficients on y and RSS are respectively 1 and 0.




Table b
Cointegration Statistics:
Teo Six-Variable Nixed Resl and Nominal Systems, 1964:1 — 1988:4

4. Real Quantities, Real Balances, Treasury Bill Rate and Inflatiom

Cointegrating Yector MLE'e

Coefficient Estimate
(Standard Errors)

¥ald Tests of Cointegrating Vectors

ay a, ey Bull Mypotheses Statistic (p value)
Variable ¥y -1.12 -1.12 -1.16 (y<), (i-<), (ap)—e y-¢gk : ku o §.1 (.528)
(.02) (.068) (.09 ¥y Rgs 7
c 1.00° 0.00*  0.00" (). (1), (wp-ey-R . B -Op: xg 7.6 (.288)
1 0.00* 1.00°  0.00" (y<)-¢, (R (-8p), (1<)-4y (R -Op), (mp)—e ycuhe, Xg = 4.5 (.400)
»p 0.00° .08  1.00° (1<)-#y (A -Bp), (i-c)-$, (R -Op), (m-p)-y X} * 14.4 (.046)
R 1.62 0.98 3.61
e (.38) (1.13) (.54)
Ap 1.68 2.52 0.62
(.41) (1.42) (.64) .

Multivariate Unit Root Test:

a(6.3) = -20.4 (p-valua = .068)

B. Real Quantities, Public and Private Interest Rates, and Inflatioa

Coi log Vec E
Coetticieat Estimate

Vald Tests of Cointegrating Vectors
(Standard Errors)

a ay ay Null Hypotheses Statistic (p value)
2
Variabl -1.12 -1. 0.000 - -Ap). - -ap), - 31.8 (.
arisble y L1z -z 0000 (-<)-#y (R -8p). (1-<)-4, (R -0p), B A, X3 = 11.8 (.130)
c 1.00° 0.00*  0.00" (-0, (=), R R Xj = 11.8 (.220)
a a a 2
i 0.00 1.00 0.00 (y—<), (i-<c), -n-..bvn. unﬂbv xg = 13.7 (.080)
R, 1.62 098  -1.01
¢ ¢ .39 (1.13) (.04)
ap .01 - .04 .00
(.00) (.00) (.00)

Multivariate Unit Root Test:

q7(6,3) « -20.2 (p~value = .076)




NHotes to Table B.: See motes to Table 2. The Wald statistics, testing
vhether the true cointegrating subspace is spanned by the hypothesized
cointegrating vectors, have a chi-squared distribution vith the indicated
degrees of freedom. (The reduced degrees of freedom for some statistics
allows for the estimation of elasticities under the null.) When the subspace
hypothesis concerns r cointegrating vectors, it is maintained that there are
o-r unit roots in the system. For all test statistics, p-values follov in

parentheses. Estimates of ‘y’ R ¢1, and ¢2 (used in specifying the

constrained cointegrating vectors) were taken from Table 4.
B¥ormalized.



Table €
Forecast Error Variance Decompositions:
3-variable real model (y, c, i), 49:1 -~ 88:4

—— —— — —_—

Fraction of the forecast error variance
attributable to the real permanent shock

Borizon ¥y c i

1. .54 .75 .09
(.24) (.26) (.13)

4. .61 .78 .26
(.22) (.23) (.18)

8. .68 .69 .33
(.18) (.22) .17

12. .70 .69 .33
(.16) (.21) (.17

16. .74 .73 .35
(.15) (.19) (.16)

20. .76 .78 .37
(.14) (.16) (.16)

24. .79 81 .39

(.13) (.14) (.16)
00 1.00 1.00 1.00

Note: Approximate standard errors are shovn in parentheses.



Table 7

Forecast Error Variance Decomposition:

6 — Variable Model b54:1 - 88:4

T

|

Fraction of Forecast Error Variance

Attridbutable to Permanent Component Xg

Horizon y c i P Rss Ap

1 .63 .33 .68 .84 .80 .70
(.16) (.25) (.17 (.18) (.17 (.20)

4 .80 .34 .82 .86 .88 .66
(.14) (.23) (.17) (.15) (.14) (.14)

8 .79 .42 .73 .91 .92 .11
(.12) (.21) (.13) (.12) (.12) (.12)

12 .83 .60 17 .94 .92 .76
(.11) (.17) (.12) (.10) (.11) (.13)

16 .87 .69 .80 .95 .93 .78
(.11) (.14) (.11) (.09) (.10) (.13)

20 .88 75 .78 .84 .94 .80
(.10) (.11) (.11) (.07 (.09) (.14)

24 .88 .79 77 .94 .94 .81
(.09) (.09) (.11) (.07) (.09) (.14)

o0 1.00 1.00 1.00 1.00 1.00 1.00

=

Note:

Approximate standard errors in parentheses.



Tadle 8
Forecast Exror Yariance Decompositions:
6 - Variable model (5.1), 54:1 ~ 88:4

A. Fraction of the forecast error variance
attridbutable to pearmanent sbock 81

Rorizon y c i »p l" ap
1. 00 02 .14 76 14 .3
(.16) (.09) (.18 (.32) (.20) (.16)
4. 04 .14 .05 78 13 .23
(.16) (.13) (.13) (.29) (.21) (.08)
8. 21 31 .13 72 12 .21
(.12) (.18) (.11 (.28) (.23) (.07
12. 4“4 49 .27 T4 111 .17
(.14) (.23) (.16) (.28) (.23) (.06)
16. 85 89 .32 76 11 .16
(.17 (.23) €.17) (.27) (.24) (.om
20. 69 .64 .32 T6 12 .16
(.17 (.22) (.16) (.28) (.26) (.08)
24. 63 .67 .32 78 13 .14
.17 (.20) (.15) (.25) (.26) (.09)
oo 1.00 94 .99 80 21 .04
B. Fraction of the forecast errcr variance
attributable to permanent shock 82
Horizon y c i P R" Ap
1. .01 03 07 .02 03 .38
(.15) (.12) (.18) (.15) (.16) (.20)
4. .03 .01 .21 .06 04 .34
(.17 (.12) (.19) (.14) (.18) (.14)
8. .03 .01 .20 .02 02 .34
(.15) (.14) (.15) (.16) (.20) (.12)
12. .02 .00 .12 .01 02 44
(.14) (.186) (.14) (.16) (.19) (.15)
18. .02 .01 .10 .01 03 49
(.14) (.15) {.14) (.16) (.19} (.17)
20. .02 .02 .11 .01 03 .83
{.13) (.14) (.13) (.18) (.19) (.19
24. .02 .03 .10 .01 02 .58
(.13) (.14) (.13 (.15) (.18) (.20)
- ] 00 02 .00 00 01 .96
C. Fraction of the forecast error variance
attributable to permanmut shock 83
Borizen y c i p l" Ap
1. .82 .7 .47 07 .83 .01
(.29) (.21) (.28 (.16) (.31) (.13)
4. .72 .18 .88 04 .T2 .10
(.32) (.18) (.28) (.18) (.34 (.08)
8. .54 .11 40 17 .n .16
(.23 (.10) (.20) (.17 (.368) (.08)
12. .87 .11 .38 .19 .79 .14
(.16) (.10) (.17 (.18 .37 (.08)
16. .30 .08 .37 .18 .79 .13
(.12) (.10) (.18) .17 (.38) (.07
20. .26 .08 .35 .18 .79 .12
(.11) (.09 (.16) (.16) (.38) (.07)
4. .24 .09 .34 .16 .79 .11
(.10) (.08) (.18) (.18) (.38) (.07
-] .00 .06 .01 .20 .7 .00
S = =R ===

+a evandard arrors ars given in parentheses.



Notes to table 9:

Models with Real Balances

Model B.2. is identical to the main model in the text, except that the
coafficients ¢1 and ¢2 are set to zero, i.e., cointegration of shares and the

real interest rate is dropped.

Model B.3. is a two stochastic trend model, obtained by assuming that the
real interest rate is stationary, i.e., dropping the third columm of the
factor loading (A) matrix reported in the main text.

Model B.4. is a two stochastic trend model, obtained by assuming that the
inflation rate is stationary, i.e., dropping the second column of the factor
loading (4) matrix reported in the main text.

Model B.5. is a two stochastic trend model for a five variable system (y,c,i
mp and R), i.e., dropping the second colwm and sixth row of the factor
loading (A) matrix reported in the main text. Hence, this model contains a
balanced grovth and nominal interest rate stochastic trends.

Model B.6 is identical to model B.5. except that the ordering of stochastic
trend innovations is reversed.

Model B. 7 is identical to model B.1. except that the stochastic trend
innovations are reordered to place the inflation shock first, the real
interest rate shock second and the balanced growth trend third.

Model B. 8 is identical to model B.1. except that stationary velocity is
imposed, i.e., ve impose the parameter restrictions (y = 1 and €= 0.

Models with Two Interest Rates

Model C.1 is a six variable system with variables ordered y, c, i, r s rps
and 6 Ve require that the spread Rp - RB is stationary. This delivers the
tollovlng factor loading matrix analogous to A& in the main text. The first
column is {1 1 1 0 0 0)', which derives from the balanced growth restriction
on the effects of the first stochastic trend. The second column is
(00011 1], which derives from the uniform effect of trend inflation on
the tvo nominal interest rates. The third columm is [0 ¢1 ¢2 11 0)', which

derives from (i) cointegration of shares and the real interest rate; and (ii)
stationarity of the interest rate spread.

Model C.2 is a six variable, two system obtained by imposing stationary of

the real interest rate, i.e., dropping the third colummn of the factor loading
matrix used in model C.1.

Model C. 3. is identical to model C.1. without cointegration of shares and
the real interest rate, i.e., imposing ¢1 = ¢2 = 0.

Model C.4. is identical to model C.1. with the balanced grovth traend
innovations ordered last.



Table 9

3-Year Ahead Forecast Error Variance Decompositions:
Summary of Results for Various Models

e ——

*The bhypothesized cointegrating vectors are the same as in model (B.1).

**The hypothesized cointegrating vectors are the same as in model (C.1).

LR test of Fraction of forecast error
cointegrating variance attributed to
Yectors the permanent real shock
{df, p-value) Y ¢ i mp B, fp By
4. Real Model |
4.1 (2, .120) .70 .69 .33 - - - -
1949:1 - 88:4 .
B. Monetary Models B.1 4.5 (5, .480) .44 49 .27 .74 .11 .17 -
B.2 6.1 (7, .528) .43 .54 .26 .72 .10 .17 -
1954:1 —~ 88:4 B.3 7.4 (6, .285) .35 .39 .14 .54 .01 .18 -
B.4 7.4 (6, .285) .37 .40 .15 .56 .01 .18 -
B.5 2.8 (4, .600) .43 .49 .25 .68 .08 - -
B.6 8.2 (4, .083) .68 .75 .41 .80 - .16 -
B.7 * .35 .29 .12 .30 .02 .18 -
B.8 14.4 (7, .045) .65 .68 .41 .87 .29 .21 -
C. Tvo Interest Rate Models c.1 11.2 (7, .130) .66 .43 .32 - .04 .06 .04
c.2 11.8 (9, .224) .61 .64 .26 - .01 .05 .01
1954:1 - 88:4 C.3 13.7 (8, .090) .61 .62 .27 - .01 .05 .02
C.4 L .63 .B3 .21 - .01 .03 .02
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Notes to Table 9:

The estimation period denotes the sample used to estimate the VECM. The
LR statistic and p-values test the hypothesis that the true cointegrating
subspace is orthogonal to the columms of the ‘O matrix. The VECM's in panel B

vere estimated using 8 lags, the VECN's in panels A and C with 5 lags.
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Figure /

Estimates of Annual Trend Output
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Benchinark Model



r_ ¥

50 54 58 62 86 70 74 78 B2 &%

30
— — — — Hall's Solow Residual
7 from the 6-—varicble Benchmark Mode!
Figure 8D
0
L J
5 4
1
r -
L J
- -
J N VRS R SR | [ A G | R ‘ : ) I R |
50 54 58 62 66 70 74 78 82 8& QO

— ~ =~ — Precott's Solow Residual

f from the 6-vgriable Benchmark Model



To order copies of the above papers complete the attached invoice and return to Christine
Massaro, W. Allen Wallis Institute of Political Economy, RCER, 109B Harkness Hall,
University of Rochester, Rochester, NY 14627. Three (3) papers per year will be
provided free of charge as requested below. Each additional paper will require a $5.00
service fee which must be enclosed with your order. For your convenience an invoice is
provided below in order that you may request payment from your institution as necessary.
Please make your check payable to the Rochester Center for Economic Research.
Checks must be drawn from a U.S. bank and in U.S. dollars.

W. Allen Wallis Institute for Political Economy

Rochester Center for Economic Research, Working Paper Series

OFFICIAL INVOICE

Requestor’s Name

Requestor's Address

Please send me the following papers free of charge (Limit: 3 free per year).
WPH# WP# WP#

l'understand there 15 a $5.00 fee for each additional paper. Enclosed is my check or

money order in the amount of § . Please send me the following papers.
WP# WP# WP#
WP# WPH# : WP#
WP# WP# WP#

WPH# WPH# WP#



