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Abstract

This paper considers an environment which possesses nonconvexities
and shows that under relatively mild additional assumptions the standard
results of recursive competitive equilibrium theory for convex economies
continue to hold. The nonconvexity arises from the fact that workers
can only supply labour in one sector in any given period although they
are free to move among sectors. In an example it is demonstrated that
this environment may prove useful in examining cyclical and secular
adjustments in the labour market.
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SECTION 1

INTRODUCTION

Two common features of many microeconomic models used to address
aggregate prhenomena are convex environments and homogeneous agents.
One of the advantages of this approach is the fact that equilibrium
allocations can be characterized by studying properties of a concave
programming problem rather than trying to establish properties of a
solution to a general fixed point problem. One of the drawbacks to
this approach is that the equilibrium allocations have the property
that all agents receive identical bundles of commodities. In some
cases this is problematic even at the aggregate level. The example
which is focussed on here is that of aggregate movements in employment
and hours/work. This is not the only instance where problems arise:
the same problem exists when one considers aggregate data for invest-
ment and bankruptcies.

One way to overcome this difficulty is to introduce heterogeneity
of agents' characteristics. An alternative approach is to introduce
non-convexities into the environment. This is the approach taken
here. The paper provides two main types of results. First, it
demonstrates sufficient conditions for results in the homogeneous
agent, convex environment theory of recursive competitive equilibrium
(see Prescott and Mehra [5]) to hold in a certain class of non-convex

2



3
economies. It is seen that some conditions must (apparently) be
added in the dynamic case even though none are required in the static
case. The second type of result concerns the implications of the model
described for the dynamic behaviour of employment, hours/worker
and real wages at the sectoral level. In the context of an example
it is demonstrated that the model is consistent with the fact that
changes in hours/worker 1ead.changes in employment, employment displays
some persistence, and hours/worker are more highly correlated with
real wages than is employment (see Rogerson [6]).

As pointed out earlier, the model presented here is essentially
an alternative to considering convex environments with heterogeneous
agents. This raises an important question which is not dealt with in
this paper. Another potential drawback of representative agent models
appears to be their (possible) inability to.produce fluctuations of
the same magnitude as observed in time series for actual economies.
Certainly this issue has not been resolved yet, however, recent work
by Kydland [1], for example, demonstrates how heterogeneity can
result in increased fluctuations in certain variables. This leaves
open the question of whether or not non-convex economies with homogeneous
agents can also produce such phenomena. The kind of model studied in
this paper seems to suggest that the answer to this question is yes,
however this is a question which needs to be posed in a careful
manner and studied more explicitly. The model studied is both an
infinite horizon version of Rogerson [6] and a version of Lucas and
Prescott [3] which allows for sectoral changes and aggregate fluctua-

tions to be analyzed simu]taneous1y, a topic which has recently



received some attention by Lilien [2].

The model presented here is set up in a way which emphasizes
its application to studying labour markets, however, the methods used
here will probably be useful in studying other problems of a similar
nature, e.qg. flows of capital between sectors or countries, and flows

of resources between divisions of a cornoration.



SECTION 2
THE ENVIRONMENT

The economy consists of a continuum of identical infinitely
Tived agents. There are three commodities: labour, capital and
output. There are two sectors where production can take place and
the production technology is subject to a single aggregate shock. Let
fj(K,H,s(: Ry, x R, x Ry » R, be the production function specifying
output in sector j when K units of capital and H man-hours of labour
are used as inputs, and the state of nature is s. It will be assumed that
fj(-,-,-) is homogeneous of degree one and weakly concave in (K,H), strictly
increasing and strictly concave in K,H separately, and fj(0,0,s) =0
for all s and j. It will be assumed that s follows a stationary first

order Markov process taking values in S @ R_. The process for s is

specified by F: SxS - [0,1] where
F(s',s) = Prob[st <s'lsy = s]

Capital is sector specific. There is an initial endowment of
capital of each type and it cannot be accumulated, or transformed
and it does not depreciate.

There is a continuum of workers,uniformly distributed along
[0,1]. Each worker is endowed with one unit of sector one capital,
one unit of sector two capital and one unit of time. Any fraction

5



6

of the unit of time may be supplied as labour with the following
restrictions:

(i) Tabour cannot be supplied in both sectors simultaneously.

(ii)  if labour is supplied in different sectors in periods t

and t+1 then a psychic cost is incurred in period t+l.

The nature of the above restrictions is such that it will be useful to
distinguish formally between labour and capital supplied in sector
one and labour and capital supplied to sector two. In any given
period there will be five commodities and the following indexing
system will be used:

commodity 1

output

commodity 2 = labour in sector one

commodity 3 = labour in sector two

fl

commodity 4 = capital in sector one

commodity 5 = capital in sector two

The one period consumption set of a worker is then given by:

5

X = {(X]""’XS) € R™: Xy >0, x5 > 0, -1 <%, <0, -1 < x3¢ 0,

Xg > =1, Xg > =1, X5-xg = 0}

Define U(x,2): X x {1,2} > R by:

X + V(X2+X3) if either g=1, x3=0, or 2=2, x2=0
U(x,e) =

X + v(x2+x3)-m if either g=2, x,#0 or 2=1, x37#0
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If {xt} is a stochastic process where Xy € X with probability one for

all t, and % € {1,2} then the worker receives utility given by:
N /
E {tz 13 U(xys 2 1)}

where 0< g < 1 is a discount factor, L ¢ is the locationof the worker

in period t and is given by:

1 if X4 #0
Ly = 2 if Xt3 0

%41 if x4p = 0and x,3 =20

t3

E is the expectation operator and U is the one period utility
function. Here m is the psychic cost associated with changing the
sector of employment and v: R » R is the disutility associated with
working. It is assumed that v(:) is strictly increasing, strictly
concave and bounded on the interval [-1,0].

Using the same indexing system it is possible to define a
technology set Y(s) corresponding to the production functions

specified earlier. For each s € S let
¥Y(s) = {(yq5¥5s---5¥5) € R°: ¥120, ¥,50, y3<0, y4<0, yg<0,
Y1 2 Fi(yp0-ygss) + Fol-ygs-yg,s) .
The economy described above is completely specified by the

following list:

£ = (Y(s),v,B,m,F,X)



SECTION 3
RECURSIVE COMPETITIVE EQUILIBRIUM

In this section we define the notion of a recursive competitive
equilibrium for £. In order to do this we need to define a state
variable. The state variable for the economy £ will be given by the
pair (x,s) € [0,1] x S, where X is the fraction of workers who were in
sector one at the end of last period and s is the current realization
of the aggregate shock. A state variable for an individual will be
the triple (A,s,2) € [0,1] x S x {1,2} where A,s are as above and
2 is the location of the individual at the end of last period. We now

have the following definition:

Definition: A recursive competitive equilibrium (RCE) for E is a
list
(P(Ays),A(N,8),V{N,8,2), x(X,5,8,t), ¥(X,s))
where
(i) p: [0,1] xS » 55 is continuous almost everywhere
(i1)  A: [0,1] x S » [0,1] is continuous almost everywhere
(ii1) Vv: [0,1] x S x {1,2} » R is continuous, bounded and

satisfies: V{(A,s,2) = max {U(x,2) + BEV(A(Xr,s),s',2")]}.
X, 0"

subject to x € X

p(A,s)-x <0



1 if Xo 0
' = 2 if X3 #0

Lo Xy = xg = 0

For all t € [0,x], all (A,s) € [0,1] x S

x(A,s,1,t) € argmax{U{x,1) + BEV(A(X,s),s',2")}

Xy 2"
subject to
x € X
p(r,s)-x <0
1 if Xo £ 0

2t =42 if x, # 0

1 if x, = x3 = 0

For a1l t € (a,1), a1t {(x,s) € [0,1] x S

x(1,5,2,t) € argmax{U(x,2) + BEV(A(X,S),5',2')}
subject to x € X

p()\,S)'X < 0

f .
1 if X5 #0
' = !l2 if X3 0

{2 if Xy, = Xg = 0

(v) For all {(x,s) € [0,1] x S,y(x,s) is a solution to:

max p(x,s)-y
y

subject to y € Y(s)
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A 1
(vi) J x(A,s,1,t)dt + j x(0,5,2,£)dt = y(3,s)

0
0]

for all A,s € [0,1]xS

(vii) For all (X,s) € [0,1]xS
A(X,s) = meas{t € [0,)]: x3(A,s,1,t) = 0}

+ meas{t € (A,1]: xz(A,s,1,t) # 0}

The interpretation is as follows. p(x,s) is a pricing function,
A(x,s) is the law of motion for A, V(A,s,%) is the value function
for an individual, x(X,s,%,t) specifies the consumption bundies
taken by workers, and y(A,s) is the production decision. Condition
(iii) is the functional equation which V satisfies, condition (iv)
states that current period consumption decisions are optimal, condition
(v) states that firms maximize profits, condition (vi) says that
markets clear, and condition (vii) states that expectations concerning

the law of motion for X are fulfilled.



SECTION 4
AN ALTERNATIVE FORMULATION OF THE ENVIRONMENT

In the economy g non-convexities were present in the consumption
set X. This meant that in equilibrium, if there is any switching of
workers between sectors that identical agents will be choosing different
consumption bundles. As will be seen later, this feature makes it
somewhat awkward to utilize the relation between optimal allocations
and equilibrium allocations. In this section we present an alterna-
tive formulation of £ which consists simply of adding certain kinds
of lotteries to the consumption set. The advantage of doing this
is that it will then be possible to generate equilibrium in which
all agents choose the same allocation (ex ante) even though they
end up consuming different bundles. We now present the changes to

be made to the environment as specified in Section 1.

Define Y& = {x€X: x5 = 0}, Yé = {xeX: x5 = 0}

and

X = Y-l X 7(_2 X [0,]] b [0,1]
Define - U: X x [0,1] by

U(x',x%,q",0%,p) = [pq' + (1-p)(1-0%)u(x',1)
+ [(1-p)(a®) + p(1-q")u(x%,2)
- [(1-q")p + (1-¢%)(1-p)Im
1"
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The interpretation is as follows: p is the probability that
the worker finds himself in sector one. He then chooses a con-
tingency plan. q] is the probability that he remains in sector

one contingent upon being in sector one and q2

is the probability
that he remains in sector two conditional upon being in sector two.
Finally, xj is the consumption bundle if the worker remains in or
moves into sector j. Note that the worker will receive x] with

probability pq]

+ (]-p)(1-q2) and x2 with probability (1—p)q2'+p(1-q1).
Also expected psychic cost associated with moving is
mlp(1-q") + (1-p)(1-¢)] since p(1-q') + (1-p)(1-q°) is the
probability of moving.

Now suppose {}i} js a stochastic process with x, € X with

t
probability one for all t, and Py € [0,1] is given. Then the

consumer receives utility

(L BYU(X,,Py_1))
t=

where Py follows the path:

_ =1 -2
pt - qtpt_] + (]'pt_])(]'qt)-

Note that if xt € X then we will write x = (x ,xt,al,ai)
We now consider the economy E completely specified by the
following list:
£ = (Y(s),v,B,m,F,X)

where all objects are as defined above or in previous sections.



SECTION 5
SYMMETRIC RECURSIVE COMPETITIVE EQUILIBRIUM WITH LOTTERIES

In this section we defire a notion of RCE for £ in which all
agents receive identical allocations. The state variable for the
aggregate economy is still written as (x,s) but now ) is interpreted
as the expected number of agents in sector one at the end of last
period. The state variable for an individual will be the triple
(x,s,0) where p ¢ [0,1] is the probability that the individual was

in section one at the end of last period Formally we now have:

Definition: A symmetric recursive competitive equilibrium with

lotteries (SRCEL) for £ is a list

(p(x,8)an(X,s),V(x,s,p)s x{X,s,p), ¥(X,s))

where:

(1) p: [0,1] xS = 55 is continuous almost everywhere
(i1)  A: [0;1] x S x [0,1] is continuous almost everywhere
(i1i) v: [0,1] x S x [0,1] R is continuous, bounded and

satisfies: V(x,s,p) = max {U(x,p) + BEV(A(r,s),s',p")}
- x,pl

subject to: x € X
p(x,s)'x] <0
p(A,s)-x2 <0
p' = pg' + (1-p)(1-°)
13
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(iv)  For all (A,s,p) € [0,1] x S x [0,1]

x(X,s,p) € argmax{U(x,p) + BEV(A(A,s),s',p")}
X,p'
subject to x € X

1o

p(A,s)-x
p(x,s)-xz_g 0

' 1 2
p' = pqg + (1-p)(1-9°)

(v) For all (A,s) € [0,1] x S y(X,s) solves:

max p(A,s)-y
y

subject to y € Y(s)

(vi) For all (r,s) € [0,1] x S

x{A,5,A) = y{A,s)
(vii) For all (A,s) € [0,71] x S

A,s) = Aq (A,s,3) + (1-2) (1-02(3,5,0))

The interpretation is similar to that given before. Note

that conditions (vi) and (vii) imply that all agents are receiving
identical allocations. Also note that in conditions (iii) and (iv)
nothing would change if the condition p(x,s)-xj <0 j=1,2

were replaced by

2 <0

[pg’ + (1-p) (1-2)Ip(ss) x| + [(1-p)qZ+p(1-q" ) Ip(X,s)-x

This follows easily from the fact that utility is linear in
consumption of output.

Formally, looking for a SRCEL for £ is equivalent to looking

for an equilibrium in the following single agent economy: There
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is a single agent endowed with one unit of time. Each period the
agent must decide what fraction of the period to spend in sector
one and what fraction of the period to spend in sector two. In
addition, the agent must decide what fraction of his or her time
spent in sector one should be spent working and what fraction of
his or her time spent in sector two should be spent working. What
makes the problem interesting dynamically is that it is costly for
the individual to alter from one period to the next the fraction
of total time spent in each of the two sectors (although not relative
time spent working as compared to resting in a given sector).
Observe that the concavity of v(-) implies that the individual
would prefer to spend the entire period in a given sector working a
given number of total hours rather than divide the hours between
two sectors.

This interpretation is essentially what will make it easier
later on to connect optimal allocations with allocations generated
by SRCEL rather than with those generated by RCE. In the next
section we show that RCE for E and SRCEL for E are equivaient in a

certain sense.



SECTION 6

EQUIVALENCE OF RCE AND SRCEL

In this section we prove the following proposition:

Proposition 1: (p,A,V,X,y)is a RCE for g iff there exists a

SRCEL for g of the form (p,A,V,X,Y)

Proof: Let (p,AV,x,y) be a RCE for f.

Define V(r,s,p) = pVix,s,1) + (1-p)V(xr,s,2).
By definition of RCE

V(x,s,1) = max{U(x,1) + BEV(A,s',2)}
subject to x € X
p(x,s)-x < 0
1 if x3=0

2 if x5 # 0

Define B(),s) to be the set of pairs (x,2) satisfying the above

constraints.

16
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Hence pV(A,s,1) = ma X {pU(x,1} + pBEV(A,s',2)}
(x,2)eB(x,s)

max {pq][U(x1,1) + BEV(A,s',1)
x],XZ’q]

i

+ p(1-gN)[U(xZ,1) + BEV(A,s',2)])

subject to x] € E](A,s)
x2 € B2(A,s)

0<q

<1

where Ej(x,s) = {xei&: p(X,s)-x<0}

Similarly

(1-pWV(r,s,2) = max  {(1-p)(1-q2)[U(x>,2) + BEV(A,s',1)

x3,x4,q2

+ (1-p)a2u(x*,2) + BEV(A,s ', 1) T}

3

subject to x” € EJ(A,S)

X2 € Ez(x,s)
0<q’ <1

Clearly
pV(X,s,1) + (1-p)V(r,s,2) =
max  pq [U(x',1) +BEV(A,s',1)]+p(1-q )[U(xZ,1) +BEV(A,s"',2)]
4

1727+ (1-p)(192)[U(x3,2) +BEV(A,s',1)]
+ (1-p)q2ru(x*,2) + BEV(A,s',1)]
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subject to: x' € Eq(k,s)
<1,0<q? <2

The form of the objective function and constraints implies that

the above can be written as

= max {[pq + (1-p)(1- )1[U(x 1) +BEV(A,s',1)]
1 1 2
x ,X ,q ’q
+ [(1-p)a® + p(1-02) JLU(x2,2) + BEV(A,s',2) ]
- Ip(1-q") + (1-p) (1-q%) Im)
subject to: x! € B1(x,s)
x% € B2(x,s)
0 < q] <1, 0« q2 <1
= max {U(x,p) + BEV(A,S',DQ] + (1-p)(1-q2)}
X1,X2’q1,q2

subject to: x! € B (%)

0<q' <1, 0<q? <1

This shows that V(X,s,p) satisfies condition (iii) of equilibrium.

Now assume that A(x,s) < A. Then it follows that



Define q (Xss,p)

If

and

(4)
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Max {U(x,1) + BEV(A,s',1)} = Max{U{x,1) + BEV(A,s',2)}
X X

subject to x € §1(A,s) subject to x € EQ(A,S)

Max {U(x,2) + BEV(A,s',2)} > Max{U(x,2) + BEV(A,s',1)}
X X

2

s.t. x € B7(x,s) s.t. x € §](A,s)

3 min{],éi&ii)}

P

F(h,s,p) = 1

iq(k,s,p) argmax U(x,1) s.t. x € El(k,s)
X

argmax U(x,2) s.t. x € EQ(A,S)
X

YZ(A,s,p)

AlX,s) > X if follows that

Max {U(x,1) + BEV(A,s',1)} > Max {U(s,1) + BEV(A,s',2)}
X X

s.t. x € Bl(A,s) s.t. x € B2(),s)

Max {U(x,2) + BEV(A,s',1)} = Max {U(x,2) + BEV(A,s',2)}
X X

s.t. X € §J(A,s) s.t. x € F](A,s)
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=1

Define q (X’S)p) =]
ahs,p) = min{],l:%ééiil}
—1 -2

X o X~ as above

The definition of V and conditions (1) - (4) imply that
(psA,V,x,y) is a SRCEL for E.

This proves half of the proposition. We now prove the other
half.

Let (p,A,V,x,y) be a SRCEL for £. By definition of equilibrium

V satisfies

Vous,p) = max  ([pq+(1-p) (1-g2) U(x",1)+[(1-p)a®+p(1-02) Ju(x%,2)
x] ’X ’q !q
- Ip(1-q") + (1-p)(1-g%)Im

+ BEV(A,x'.pq] + (1-p)(1-q2)}

s.t. x! € §1(x,s)

x? € B2(»,s)

0<q <1, 0<q? <.

We first show that for x,s fixed V,is linear in p. Define an
operator T mapping the set of bounded continuous functions on

[0,7] x S x [0,1] into itself by

(5) TF(us,p) = max {[pq"+(1-p)(1-a2)u(x',1)
X ,Xzaq] ,q2

+ [(1-p)q® + p(1-92)JU(x%,2)
- Ip(1-q') + (1-p) (1-62) Im
+ BEf(A,s'.pq]+(1-p)(1-q2))}



2]

s.t. x' € §](A,s) x2 € g2

1

(X,s)

0<g <1 0<qf <

Claim: If for any given pair (X,s) f is Tinear in its third variable

then so is Tf.

1 2

Proof of Claim: The maximization with respect to x and x

1 and q2. Let Y1(A,s) and iz(x,s) correspond

is independent of p,q
to optimal values of these variables. Note that the resulting
expression is linear in q] and q2 and moreover that the signs of

the coefficients on q] and q2 are independent of p. Hence optimal

1 2 can be written as E](A,s) and Ez(x,s).

choices of q' and q
Substituting these into equation (5) we see that Tf is linear in
p for any given (X,s). This completes the proof of the claim.
Since V can be obtained by repeatedly applying T to a given
bounded continuous function, and the limit of a sequence of linear
functions is also Tinear, this shows that V is Tinear in p for any
given values of ),s.
It follows that V()\s,p) is completely specified by V(\,s,0)

and V(\,s,1) with
Vl,s,p) = pV(x,s,1) + (1-p)V(x,s,0).

Define V(x,s,1)

V(r.s,1)
V(X,s,2)

~

V(x,s,0).

fi

By definition of equilibrium
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Vix,s,1) = max {q]U(x],l) +(1-q])U(x2,2)- (1-q])m
1.1 .2
Q ,X X 1— 1.—
+ BEq V(A,s',1) + BE(1-q")V(A,s',0)}
1 . =1

The expression in parentheses is linear in q1, hence
V(r,s,1) =

max{max{U(x,1) + BEV(A,s',1)}, max{U(x,1)-m+BEV(A,s',2)}}
X X

=]

s.t. x€B 52

(X,s) s.t. x € B°(A,s)

= max {U(x,1) + BEV(A,s',2)}
(x,2)

s.t. (x,2) € B(x,s)

Hence V(X,s,1) satisfies condition (iii) of RCE. A similar argument
works for V(A,s,2). From here the proof is essentially identical
to that used to establish the first half the proposition, so it is

not repeated. This completes the proof.



SECTION 7
PARETO OPTIMALITY

In this section we define an equal weight Pareto optimum for

-

£ and E. There will be no need to distinguish between E and E

formally since at the aggregate level there is no distinction between

fractions and probabilities.

Definition: An (equal weight) recursive Pareto optimum (RPO) is a

Tist (W(x,s), X (hss)s x2(x,8)s q (A.s), q2(A,s)) such that
(i) W(x,s): [0,1] x S =+ R is continuous, bounded and satisfies

WOLs) = max (D +(1-0)(1-¢2) u(x),1)
X],Xzaq]sq
+ Ta1-gM)+(1-2)q%7u(x%,2)
- [ (1-q")+(1-2) (1-62) Im

+ BEW(xq]+(1-A)(]—q2),S')}

subject to: x] € 7&, x2 € Yé

[Aq]+(1-x)(l-q2)]x1*-[A(l-q1)+(1-x)q2]xzev(s)
0 f_q] <1

0£¥

23
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(i1) WOLs) = [ag'(ns) + (1-0) (1-62(2,8) JU(x (A,s),1)

F A (1-" (0,8))+(1-0)q%(2,5) U (x8(2,5),2)
- IA(1-q (1,8))+(1-1) (1-g% (2,8 ))Im

+ BEW(AG' (A,5)+(1-2)(1-g2(X,s)),s")

and

[Aq' (0,8)+(1-1) (1-02(1,8)) 1% (A,8)

£ IA(1-1) (A,8)) + (1-0)02(1,8)Ix2(x,s) € ¥(s)

It is relatively straightforward to show the existence of a
RPO. However, this is not enough for our purposes as later we
will want to connect RPO allocations with SRCEL allocation.
To do this we will want W(X,s) to be concave in A. This however
is at first glance not very likely due to the fact that in the
functional equation determining W the objective is not concave and
the constraint set is not convex. However, it turns out that the
nature of the problem is such that with some additional restrict}ons
the result can still be obtained. To see this we first write the

problem in the following equivalent form:

W(r,s) = max {f](l,-Ah'|

1

is) + Fo(1,-(1-1)h2,s) + av(n')
h ,h2,A

+ (1-0)v(h?) -|A-A[m + BEW(A,5'))
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subject to -1 <hl <0

Note that if A is given the resulting problem is a strictly concave
programming problem in h] and h2. Let h](A,s) and hz(A,s) be the
unique solutions to this problem [Note: if A =1 then take

h2 =0 and if A = 0 take h' = 0]. Now consider the following

equivalent problem:

(6) W(A,s) = max _ {(Fy(1,-An1(A,8),5) + F,(1,-(1-2) h? (A,5),5)
Ae[0,1]
+ Av(ht(A,s)) + (1-A)v(n®(A,s))
~ |A-A|m + BEW(A,s'))

It is relatively straightforward to show that if h1(A,s) is
decreasing and concave in A and h2(A,s) is increasing and concave in
A, and W is concave in X that the above problem is a (strictly)
concave programming problem. For the remainder of this section we
will assume that these conditions are met. In a later section we
will consider sufficient conditions to guarantee these conditions.
Under these conditions it is possible to show that (6) has a unique
bounded continuous solution and that W{x,s) is strictly concave in
A. It follows that there is a unique RPO. It remains true that

W(x,s) satisfies
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W(X,s) = max {c+Av(-h])+(1-A)v(-h2)-[A—A]m+BEw(A,s')}
c,h],hz,H],HZ
Ak K2
subject to ¢ §_f1(K],H1,s) + fZ(KZ,HZ,s)
0< k<t 0 5_K2 <1

0<hl <1 0<hi<

A

0 <H <an' 0<HE < (1-n)h?

0 <A<

The programming probiem on the right hand side of the above
expression has a unique solution. Let (c*,A*,h1*,hz*,H]*,HZ*,K]*,KZ*)
be the unique solution for a given (A,s). It follows that there exist

constants yy,...,ug (depending upon (X,s)) such that
(c*,a%,h V%, 1x2 1l 2% kTx k2%) solves:

(7) max {c+Av(-h])+(1-A)v(~h2)-(A-A(m+BEW(A,s')
c,h! ,h2 K1 K2 - 2 |
K],Kz, + U‘l[f‘l(K sH ,S) + fz(K ;H ,S)—C] + Uz[]‘K ]

# ugl1=K2T + g [1-n'T + 1ag[1-hZT + ugfan! -]
# gL (-1)R2 KD + gl1-1]

Now assume that'f](K,H,s) and f2(K,H,s) are both continuously
differentiable in K and H, K,H > 0. By the assumptions in section

one we have that fTK’f]H’fZK’ and f2H are all strictly positive.

Also assume that 1lim fj(K,H,s) = +o for all K,s. It is easy to see
H+0
that these conditions imply that c¢* > 0, K]* = Kz* =1, H]* >0

and H2* > 0 for all {x,s). It then follows that the following

conditions hold:
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Hy = 1

]*

95) = UZ
2% _

Ho 2K(1’H s) = uy

U]f‘lH(]’H ) = U6
(

Hy oy 1,H »S) = Wy

It follows that HysHpsligsligsliy are all strictly positive and unique.

. . ‘I* 2* ‘]* 2* .
Moreover, since the choices of H' ,H™ ,K' ,K® vary continuously

with (A,s) HysHoslgaleshy also vary continuously with (X,s).

These functions will be used to generate an equilibrium pricing function.

Note that problem (7) implies:

(K]*,KZ*,H]*,HZ*) satisfies
maximize w [Fy (K, H,s) + F,(KE,H2,8)] - uzK]-u3K2-u6H1-u7H2
1,2 41,2
K',K",H ,H
s.t. kK'>0 K>0 H >0 H >0
and
(c*, h]*,hz*,A*) satisfies
maximize {c+Av(- h! Y+(1-A)v(-h®)-|A-A|m+BEW(A,s")

subject to: wjc §_u2+u3+u4Ah]+u5(1-A)h
0<hy <1 0<hy<l 0<A<]



SECTION 8
THE FUNCTIONS h'(A,s) AND h(A,s)

In this section we consider the following problem:

Max  g(xh) - av(h)
he[0,1]

where A € [0,1] is given. We want to establish properties of the

solution h(x). We prove the following proposition.

Proposition 2: 1f h(r) € (0,1), g€ ¢, ve cd, g’ >0, g" < 0,
g" > 0, v' > 0, v'" 5> 0, v" <0 thenh"(X) > O.

Proof: The first order necessary condition is
(9) g'(xh) = v'(h)

This defines a function h(A). By the assumptions on g and v, h

will be twice differentiable. Differentiating both sides of (9) gives:

(10) g"(Ah)Lh+xh'] =-v"(h)h'

hl - 1] )\h)h
ileh§-Ag"IAh5l

Note that h' < 0, h + Ah' > 0. Differentiating both sides of

or

(10) with respect to X gives:

28
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g™ (AnYh[h+ah'] + g"(Ah)[h*+xh"+h'] = v (h)h'h' + v"(h)h"

Hence

bv = " (h)h[h+ah J+g" (An)[22h* 1-v™ (h)(h')°

v'(h) - g"(xh)

Note that g" > 0, v* < 0 imply h" > 0, which completes the proof.

The importance of this result is that it establishes sufficient
conditions under which h1(x,s) and hz(x,s) have the properties
assumed in thelast section. Essentially the result says that the
marginal product of labour must decrease at an increasing rate
and that the marginal disutility of work should increase at a decreasing
rate. Note that any Cobb-Douglas type function or quadratic
function used as a production function or utility function satisfies

these conditions.



SECTION 9

EQUILIBRIUM AND OPTIMALITY

In this section we present results connecting SRCEL and RPO.
Connections between RCE and RPO follow from the equivalence result
of section 6. The proofs are not included in this section as they
are identical to those of Prescott and Mehra (5) in section 7

of their paper. (See also Prescott and Lucas (4)).)

Proposition 3: If (p(A,s),A(A,s),V(X,s,p),x(Xs,p),y(2,s8)) s a

SRCEL then (W(X,s),x (A,s),x2(%,5),q'(X,5),q2(A,s)) is a RPQ where
W(A,s) = T(A,s,}),

x (A,s) = x (A,s,A)
xz(A,s) = iz(k,s,k)
a'(A,5) = 3 (A,s,1)
¢ (h,s) = o(h,s.0)

Proposition 4:” If (W (A,s),x'(A,s),x2(X,s),q' (A,8),q%(X,s))

is a RPO then there is aSRCEL (p(X,s),K(A,s)V(X,s,p),x(},s,p),y(A,s))

where: p(A,s)
A(A,s)
V(A,s,2)

x(A,5,})

4(]'1] (Aas)9“2()‘95)su3(>"s)ous(kss)il‘l?(x’s))
Ax(A,s) -

W(X,s)
e (0,8),x2(0,5),0" (A,5),62(0,8)).
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The importance of these propositions are that they establish
the result that if there is a unique RPQ then there is also a unique
SRCEL. In section 7 we established conditions which are sufficient

for there to be a unique RPO.



SECTION 10

EXTENSIONS TO INCLUDE UNEMPLOYMENT

The model which has been used to this point allows the ratio
of employment in the two sectors to fluctuate but it does not aliow
aggregate employment to fluctuate. Allowing for this feature is
quite simple. As was done in Rogerson [6], we need only specify a
search technology which requires that individuals transferring
from one sector to another spend some time unemployed. This
technology may be deterministic (e.g. it takes one period to transfer),
or random (e.g. it takes one period with probability one half and
two periods also with probability one half). It could also be
specified so that search intensity is determined endogenously.

[t is clear that the existence and optimality results obtained
earlier will continue to hold.

Some additional interpretations will be discussed in the

section where an example is presented.
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SECTION 11

SOME EXAMPLES

In this section we consider an example specified by the following:

S = {1,2,3}
0 1 0
- RO | - -
[Pij] = [Prob[st—J,st_]—uj] =2 o 1/2
0 1 0
[
2(H-%H2) s=1
f](],H,S) = 1(H_%_Hz) s=?
NH-%@)S%
(
583 H  s=]
fo(1,H,s) = {.514 H  s=2
.400 H s=3
2
v(h) = %
B = .950
m = .077

Assume that the initial state is (A,s) = (1,1).

Given the linear technology in sector two it is harmless to
assume a group of workers who are located in sector twd.who by
assumption cannot move into sector one. Assume that in all other
respects these workers are identical to the other workers and that

there is an equal number of them.
33
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We are primarily interested in certain implications of the model
and hence do not concentrate here on how an equlibrium is constructed.
This is covered in the appendix.
It turns out that the SRCEL for this economy given a starting
condition of (x,s) = (1,1) is such that the aggregate state will

only take on six values:
(xss) € {{1,1),(.9,1),(1,2),(.9,2),(.9,3),(1,3)}.
The variables of interest for us are the following:

Ax,s): A(T,1) =1

A(.9,1) =1
A(Y,2) =1
A(.9,2) = .9
A(.9,3) = .9
A(1,3) = .9

wOLs) = (W 0ns)y wol Ls)): w(1.1) = (.667,.583)
| w(.9,1) = (.667,.583)

w(1,2) = (.500,.514)
w(.9,2)
w(.9,3)

(.526,.514)

(.345,.400)

w(1.3) = (.345,.400)
h (x,s),h%(2,8)): h(X,s) = w(r,s)
(T OLs),H2(0,8) 1 HIALs) = (A(A,S)h! (h,8),(2-A(x,8))h2(A,s))

h{),s)
H(2,s)

If we concentrate on the dynamics of the adjustment process in

sector one we observe the following:
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(1) Hours/worker always decreases (increases) before employment
‘decreases (increases).

(2) Employment displays some "persistence".

The stationary distribution of (employment, hours/worker,

real wage) in sector one is given by:

(1,.667,.667) with probability 1/4
(1,.500,.500) with probability 1/4
(.9,.526,.526) with probability 1/4
(.9,.345,.345) with probability 1/4

Note that the correlation between wages and hours/worker is 1
but that the correlation between employment and wages is only .65.
The environment of this example displays two prominent features:
(i) Both sectors are affected in the same direction by the
aggregate shock, but sector one is relatively better
off when s=1 and sector two is relatively better off
when s=3 even though sector one is better "on average".
(ii)  When the economy starts to go down (or up) there is
some uncertainty as to whether this is going to continue

or only last for one period.

Intuitively, it seems clear that the characteristics of the results
generated by this example are directly caused by these features

in conjunction with the two other important features of the environment:
the nonconvexity and the fixed cost. At this point no formal result

is presented. However, note that if the fixed cost of moving is



36
zero then the equilibrium for the above example does not display
the properties highlighted above: Fluctuations in hours/worker
would not Tead fluctuations in employment, employment would not
display persistence and wages and employment would be perfectly
correlated.

The type of model which has been presented in this paper also
has implications for the impact of a secular trend in relative
productivities across sectors on the nature of cyclical fluctuations.
For example, if in the previous example we increase the marginal
product of labour in sector two for all states s, by a small
amount the change on the SRCEL will be that employment in sector 1
is unchanged when s=1 or s=2 but when s=3 employment will be less.
The reason for this is that when st=1 or s

=2 (and s, =1) the

t t-1
opportunity of working in sector two is irrelevant and hence increasing
the value of working there has no effect in these situations.

However, when s=3 this value is important and hence increasing it
changes the number of workers who switch. The relevance of this
intuition is that it suggests that a larger trend will conceivably
produce larger cyclical fluctuations. It may also produce a

permanent switch of some workers into sector two. The kind of

model studied in this paper suggests that this process will be most

intense in bad times.



SECTION 12

DISCUSSION

The example presented in the last section is a special case
of the model presented in earlier sections and is very similar to
the structure studied in the context of a two period model in some
earlier work. Its defects are thus similar and are not discussed
here.

A few extensions or alternative interpretations are worth
noting. The programming problem which determines a Pareto optimum
is entirely consistent with m being interpreted as an adjustment
cost, i.e. it is costly for firms to adjust their number of employees
and costless to adjust the hours worked per worker. This is clearly
on extreme version of a model where it is costly to adjust both
quantitites but it is more costly to adjust the number of employees.

If one interprets m as a search cost and thinks of workers
leaving sector one during bad times and then being recalled during
good times it might be natural to consider the case where m is
encountered only when moving from sector one to sector two but not
vice versa. It seems clear that this assumption would not affect
the nature of the results.

The assumptions of the utility function being linear in
consumption is relatively strong. The results concerning Pareto
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optimal allocations is valid for the case where utility is concave
consumntion. Optimal allocations will have the property that all
agents have equal consumption in any given period. The problem
arises when trying to define an appropriate state variable for
individuals in the definition of equilibrium. Insuring that all
vorkers consume the same amount of output requires a fairly exten-
sive set of risk sharing opportunities in the presence of shocks
which are not independent and the nature of the non-convexity
present in the environment. Also, with utility concave in con-
sumption it will turn out that the introduction of lotteries into

the consumption space is essential in producing optimal allocations.



SECTION 13
COMPARISON WITH AN ALTERNATIVE MODEL

In an earlier paper the method of generating variations in
both employment and hours/worker used in this paper was contrasted
with that where a fixed time cost of going to work was used.
Essentially what was found was that in generating aggregate
movements in these two variables the approaches were similar in
results. The main difference was that the approach used here relies
on neterogeneity of shocks across firms whereas the other relies
on heterogeneity across consumers. The timing of changes in
hours/worker and employment produced in the example in this paper is
consistent with that observed in the data. However, any version of
the alternative model which is consistent with joint movements in
hours/worker and employment can explain that reductions in hours/worker
lead reductions in employment but not that increases in hours/worker
lead increases in employment. The reason for this is essentially
that in the fixed time cost model there is no penalty for switching

between working and not working.
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SECTION 14

CONCLUSION

The main results of this paper have been at an abstract Tevel.
It has been shown that with a few additional assumptions the results
of recursive competitive theory continue to hold in a certain class
of non-convex economies. Furthermore, it was demonstrated through
an example that the class of economies under consideration
apparently has a rich set of predictions concerning aggregate
behaviour of the labour market. A clear priority for future
research is a detailed investigation of the properties of the time

series the model can produce, similar to those discussed in section 11.
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(w r ) = _;?li_. 6
As’'s 1+Ae]s > T2s

For convenience we will assume that I)‘S = 0 for all A,s. Using
the approach in section 2,it follows that if we have an equilibrium

then the following conditions must be met:

(1) v(1,1,1) = ulwyy) + 8v(1,2,1)
(2) Vv(¢,1,1)

(3) V(¢,1,2)
(4) Vv(¢,2,1)
(5) V{(¢,2,2)
(6) v(1,2,1)
( )

u(wyp) + 8V(1,2,7)

it

U(W]]) -m+ BV(],Z,])

ulwy,) + 28IV(6,1,1) + V(6,3,1)]
u(ry) + 38LV(81,2) + V(6,3,2)]
= ulwyp) + HBIV(T,1,1) + V(1,3,1)

7) v(1,3,]

U(W13) + BV(¢929]) = r3 -m+ BV(¢,2s2)
U(W13) + BV ($,21)
u(rg) + 8V(¢,2,2)

(8) V(¢,3,1)
(9) Vv(#,3,2)

where u(.) is the one period indirect utility function. It is
straightforward to show that u(w) = w2/2.

It is also true that some inequalities must also hold but we
will come back to this later. One usually thinks of the economic
environment being taken as given and then solving for the equilibrium.
Here however, we reverse this slightly. We will take ¢ and the 85
as given and will treat m as endogenous. The reason for this is
that with this approach the wages are determined and the equations
are linear in the values of V and m. The system of equations listed
above can easily be solved, as it is triangular, and hence requires

only repeated substitution. In particular equations 4,6,7,8 imply that



APPENDIX

The objective of this appendix is to demonstrate how to construct
equilibria of the type displayed in the paper. An important feature
of the example was that the economy could only find itself in one

of the small number (six) of aggregate states:
()\,S) € {(]91)9(¢s1)9(¢$2)’(¢)’3)9(132)’(]’3)}5

where ¢ € [0,1]. Now éssuming that this is an equilibrium, we

can easily determine what the wage and rental price of capital must
be in each sector. This comes from simply fixing A and looking

at the static equilibrium for each sector. Since the technoliogy

in sector two is linear, the wage in that sector will not depend
upon the number of workers in that sgétb}. Let (wxs’rs) and Ixs
correspond to the wage vector and income from capital when a

- fraction ) of the workforce is in sector one and the state of
nature is s. (Note the difference between this and the state
variable (),s) where ) is the fraction of agents in sector one

at the end of last period). Now, if technologies are more generally

specified as:

f1(1,H,s) s € {1,2,3}

]
D
—

f

,(T,H,8) = 6, .H s € {1,2,3)
then it follows that
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