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1. Introduction

Much work has been done to modify Dickey and Fuller (1979, 1981) tests
for unit roots to allow for general distributions and serial correlation of
the disturbance term and various order of. deterministic trends (see, e.g.,
Said and Dickey (1984), Phillips (1987), Phillips and Perron (1988),
Ouliaris, Park, and Phillips (1988)). Dejong, Nankervis, Savin, and
Whiteman (1988) study small sample properties of Said-Dickey and
Phillips-Perron tests and conclude that these tests are practically useless
against trend stationary alternatives which are plausible for annual,
quarterly, and monthly macroeconomic time series. The problem of these
tests is that they are not powerful when the autoregressive root is close to
one and the sample size is small. Rather than modifying Dickey-Fuller
tests, we develop a Xz test for a unit root that has greater power than
Dickey-Fuller tests when the autoregressive root is close to one and the
sample size is small. Though it is beyond the scope of the present paper to
develop tests that are practically useful in the sense of DeJong et al, it
is important to investigate alternative tests to Dickey-Fuller tests given
that modified versions of Dickey-Fuller tests do not have high power in
small samples.

Our test does not rely on a functional central limit theorem as most of
the other existing tests do, but on a general central limit theorem. Though
functional central limit theorems apply under general conditions (see, e.g.,
McLeish (1975)), central 1limit theorems apply under even more general
conditions. For example, we can allow for deterministic seasonal
fluctuations in the time series to be tested while Dickey-Fuller tests do

not. This is useful because seasonally unadjusted data are of interest in



most applications. We exploit some discontinuities when autoregressive root
test with a null of stationarity utilizing these discontinuities.

The null of stationarity is much more attractive than the null of unit
roots in many cases as emphasized by Hatanaka and Fukushige (1989) among
others. This is especially true in the context of cointegration theory.
However, most tests for unit roots employ the null of unit roots, and hence
most tests for cointegration take the null of no cointegration against
cointegration or the null of a smaller number of cointegrating vectors

against a larger number of cointegrating vectors.
2. Regression Properties

Consider a stochastic process {xt:tzl} generated in discrete time

according to

(L) X = ax + u (te=1,2,...)

where {ut} is a sequence of random variables with mean zero. We are
interested in the following two hypotheses:
HU: o=1,
and
HS: |a|<1.
The initial value, X is allowed to be any random variable.

To motivate the tests we develop, let us consider the regression

(2) Xt=ﬁAxt+et.



First, let us consider the case where hypothesis HS is true. For now,
assume that X is covariance stationary. In this case the best linear

predictor of X given Axt is O.SAXt. To see this, define

2 2
(3) nt=Axt[xt-0.5 Axt] = O.S(Xt-x ).

Then E(nt)=0 as long as X is covariance stationary so that E(xi)=E(xi_l).

Thus ,BAXt satisfies the orthogonality condition E{Axt[xt-,BAxt]}=O at p=0.5.
This result is convenient to treat a composite null hypothesis of Ja|<l
because the true value of f does not depend on the value of a.

Second, let us consider the case where hypothesis HU is true. For now,

assume that u is serially uncorrelated and that X has a finite second

moment, so that the least square prediction theory is applicable. 1In this
case E(nt);éO because E(xi)#E(xi_l) . Hence B=0.5, In fact,

2 2 . .
E(xtAxt)/E[(Axt) ] = E(Xtut)/E[(ut) ] = 1 if E(xout)——O for t=1. In this

sense, fB=1 when a=1. This discontinuity of B as a approaches one motivates

our tests.
3. Asymptotic properties of OLS Estimators

In this section, properties of the OLS estimator of B in equation (5)

is studied. Let bT be the OLS estimator:

T
(Axt)z]-l[z x A% ]
1 t=1

) b =
t

it ™11

. T 2 2
Since Zt=1nt— 0.5(x, -x_ ),



T
(5) (b,-0.5) = ) (Axt)z]_lO.S T"l(xi ~x§ ).
t=1
The key requirement for our test, when the null is that of a unit root
(hypothesis HU), is that a central limit theorem applies to the partial sum

of u . To be precise, let
t
(6) P=), Y,

be the partial sum. We require that (l/T)llzPT converges in distribution to

N(O,az), where
2 .., -1,.2
(7 a'=11mT+wE(T PT)>O

as the sample size T approaches « (all the limits in this paper 1is taken as
T-»o), This requirement is satisfied under very general conditions. 1In the
following, we assume that u is stationary and ergodic with finite second

moments, and apply Gordin’s Theorem (see, e.g., Hansen [1985]) so that

L
®  oflim Y [(-|rD/AE@u ).t
Lo 7=-1

Alternatively, we can use a central limit theorem for weakly dependent

random variables (see, e.g., Serfling [1968] and White and Domowitz [1984}).

Noting that the seasonal dummy can be artificially viewed as
stationary and ergodic stochastic process (see, e.g., footnote 1 on page 26
of Ogaki (1988)), analysis in frequency domain by Hansen (1985) shows
Gordin's Theorem is applicable to stochastic processes with deterministic
seasonal fluctuations.



let (Q,F,P) be the underlying probability space. Let S denote a
measurable transformation mapping O into itself. Then an arbitrary random
variable, say ho’ and S together generates a time series via the relation
ht(w)=ho(St(w)). We assume that S is constructed so that ut(w)=u0(St(w)).
Let B0 be a subsigma algebra of F and Bt={bt in F: bt={w:St(w) is in bo} for
some bo in Bo}' Define the set G={g: g is a random variable that is
measurable with respect to B, has a finite second moment, and E(g|B_T)=O for

. 1 T
some nonnegative 7}, and the notation P’r(ho)=2t—1ht

Assumption 1: The transformation S 1is stationary and ergodic, ug is

measurable with respect to Bo’ u, has a finite second moment, inf lim sup
I g€G T+

E[T_l{PT(g-uO)}Z]=O, and o’=lim ¥ £(€-|T|)/E]E(utut_1_)>0.
L0 7=-

Assumption 1 allows us to apply Gordin’s theorem.
The next result shows that bT does not converge in probability, but
converges in distribution to a nondegenerate random variable under hypothesis

HU. Let o = E(uz).
u t

Theorem 1: Suppose that assumption 1 is satisfied and hypothesis HU is true.
Then {bT-O.S:Tzl} converges in distribution to 0.5(02/02))(?, where xi is a
u

random variable with the Chi-square distribution with one degree of freedom.

-1 - . . .
Proof: Set PD=O. Then xt=x0+Pt, and T PT converges to zero in distribution
1/2 -1 . . . . . .
(L/T) 125 PT converges in distribution to a normally distributed random
. . ; . 2 2 2 -1
variable with mean zero and variance one. Since xT-x0=PT+x0T PT, by (5)

-1 2

T
_ -1y 2 (-1 2,.,1/2 ) -1
(9) b -0.5 = (T Zut ) 70.5{¢"(T "o "P) x (T P))

t=1



Thus bT-O.S converges in distribution to O.S(az/ai)xi. Q.E.D.

It should be noted that the term which involves X, in (9) 1is negligible
asymptotically but may have a strong impact on the small sample properties
of b_.

T

The mnext theorem shows that bT is a consistent estimator of B under

hypothesis HS.

Theorem 2: Suppose that assumption 1 is satisfied and that hypothesis HS is
true. Then {Te(bT-O.S):Tzl) converges to zero 1in probability for any

e<1.

T
Proof: In equation  (5), T z (Axt)z converges almost surely to E[(Axt)z],
t=1

and Trf(xi-xi) converges in probability to zero. The conclusion follows

immediately from equation (5). Q.E.D.

There are two types of discontinuity when a approaches one from below
which we exploit in this paper. First, bT converges in probability to 0.5
when |a|<1l, while bT has mean O.5(1+02/ai) when a=1. Second, bT-O.S is of
order T ' in probability if |a|<1l, while bT-O.S is of order 1 in probability

if o=1.

4. A Consistent Test for a Unit Root
Theorem 1 and 2 suggest a simple xz test based on the OLS estimator bT
with the null of a unit root (hypothesis HU). Under the null of a unit
root,2(ai/az)(bT-O.5) converges in distribution to xlz. Since the ratio
ai/az is an unknown parameter in general, we need to estimate this parameter

to construct a test statistic.



Suppose that siT and si are consistent estimators for ai and ¢° under
the null hypothesis HU. We also require that siT/si converges in
probability to a positive real number under the alternative hypothesis HS.
These requirements are met by the following estimators. Let a, be the OLS

estimator of a in equation (1) and

T
2 -1 2
(10) S = T Z (xt-aTxt_l)
t=1
(1) T
(11) s2= 1Y -1t AMIY [(x-ax Y(x__-ax )]
T t T t-17 T t-7 T t-i-T
r=-L(1) t=1
where &(T) is the lag truncation number that satisfies E(T)=O(T1“). The

test statistic we propose is

2 2
(12) 3, = 2(s. /s (b -0.5).

Under the null of a unit root, JT converges in distribution to xi in the
light of theorem 1. This test rejects the null of a unit root when JT is
smaller than some critical wvalue.

Now let us consider the asymptotic property of JT under the alternative
hypothesis HS. Theorem 2 implies that JT is Op(Tﬂ) in this case. Hence

this test is consistent.

5. A Consistent Test for Stationarity
In this section, we develop a consistent test with the null of

stationarity. We need a much stronger assumption for this purpose:



Assumption 2: {ut:tzl) is a sequence of independent normal random variables

. . 2 . 2
with mean zero and variance o (i.e., u, NID(O, o7)).
u u

For hypothesis HS, we require that the process {xt:tZO} is stationary. Thus
if hypothesis HS is true, then |a|<l and the initialization, X is a random
variable with the unique stationary distribution, N[O, ai/(l-az)]. When a=1
as in hypothesis HU, X is allowed to be any random variable.

The next theorem shows that‘bT is a consistent estimator of B under

hypothesis HS and gives asymptotic distribution of bT under HS.

Theorem 3: Suppose that assumption 2 is satisfied and that hypothesis HS is
true. Then {TebT:TZl} converges to zero in probability for any e<1l, and
{T(bT—O.S):Tzl} converges 1in distribution to (l/[4(l-a)]}(y1-y2) where v,

and y, are independent Chi-square variates with one degree of freedom.

-1

Proof: In equation (5) T (Axt)2 converges almost surely to

1

[

t

E[(Axt)z]=[2/(l+a)]az, and X, converges in distribution to a random variable
u
with the stationary distribution, N[O, 02/(l-a2)] that is independent of X,
u
Hence (xi-xz)/[az/(Laz)] converges in distribution to y,"Y,- The
u

conclusion follows immediately from equation (5). Q.E.D.

Theorem 3 shows that 4(1-a)T(bT-0.5) converges in distribution to the
difference of two independent Chi-square variates with one degree of

freedom, whose density function was derived in Miller (1964, Corollary 3 on

p.65). Since « is unknown, we replace a by the OLS estimator of a in
equation (1), which we denote by a. However, a  may not satisfy the
condition |aT]<1. Hence we choose a constant . depending on the sample

size that is smaller than one in absolute value, and we replace a by c,



instead of a if |aT|>cT. When we make e, approach one at a slow enough
rate, we obtain a consistent test. Specifically, we choose a sequence of
real numbers {cT:Tzl} that satisfies the following two conditions: (i)

-(1-&» 1-6+€

|cT|<1, and (ii) 1-cT = 0(T ) and llmT_mT (l-cT)=°o for any €>0.

Define a sequence of functions

a if -l<a<cT
(13) ¢T<a>={

cT otherwise.

for any real number a. The test statistic we propose is
(14) KT = 4{1-¢T(aT)}T(bT-O.5).

If |a|<1l, then {KT:Tzl} converges in distribution to a random variable
that is the difference between two independent chi-square variates with one
degree of freedom. This follows from the fact that ¢T(aT) converges in
probability to a because asymptotically l‘:‘zT|<cT and hence ¢T(aT)=aT.

Next, consider the case where a=1 to show that the KT test is

consistent against the alternative of a=1. In this case r  converges to
one, and aT—1=O (T'l). Since a  converges to one faster than . does,
P
. _ _ -(1-6)
asymptotically cT<aT and ¢T(aT)—cT. Thus 1 ¢T(aT)—Op(T ) and
T(l-quT(aT)) diverges. Since bT-O.S converges 1in distribution as shown in

Theorem 1, K'r=0 (T6) and KT diverges 1f a=1. Thus the test based on KT is
P
consistent against the alternative of a unit root.

We have shown the following result.

Theorem 4: Under hypothesis HS, KT converges in distribution to y,7Y, where

Yy, and y, are independent Chi-square variates with one degree of freedom.



Under the hypothesis HU, KT=O (TS), and this test is consistent.
p

6. Finite Sample Properties

We compare finite sample properties of the JT tests with those of
conventional Dickey-Fuller tests, using simulations based on 40,000
replications. Data were generated by the model (1) with the u independent
and identically distributed N(O,l).2 We. consider a situation in which an
econometrician knows that u is serially uncorrelated. Since az=ai in this
case, we define JT = 2(bT-O.5). Two versions of Dickey-Fuller tests used are
the test statistic T(aT-l), which we denote by a(l), and the t test for the
hypothesis o=1 in the regression (1), which we denote by t(l). In the
following, X is an N(O,l/(l-az)) random variable that is independent of the
u (t=1,...,T) when |a|<l, so that X, is stationary.

Table 1 reports finite sample powers when the five percent critical
values implied by asymptotic theories are used. The results are relevant
when the -econometrician does not know the true distributions and does not
correct for small sample size distortions. In this case, our KT test has
much greater power than the a(l) and t(l) tests when o is close to one and
the sample size is small. On the other hand, Dickey-Fuller tests have
higher power than the KT test when the sample size is 200 and o is 0.95.

Table 2 reports finite sample size calculations when the five percent
critical values implied by asymptotic theories are used. The initial value,
X, was either fixed to zero or a N(O,l/(l—pz)) random variable with p=0.95

or p=0.99. When the initial value is fixed to zero, there are little size

2We used the RNDN function of GAUSS to create normal (pseudo) random
variables.
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distortions for the KT and t(l) tests while the a(l) test is conservative
when the sample size is small. When the initial value is a N(O,l/(l-pz))
random variable, the KT test has significant size distortions and 1is very
liberal. The a(l) test is very conservative while the t(l) test has little
size distortions.

Table 3 reports size adjusted powers. The KT ﬁest has higher power
than Dickey-Fuller tests when «=0.99 and the sample size is 50 or 100. The
a(l) and t(l) tests have higher power then the KT test when a=0.95 for any

sample size and when a=0.99 and the sample size is 200.
7. Concluding Comments

The present paper developed a chi-square test for a unit root that has

higher power than Dickey-Fuller tests when the sample size is small and the

autoregressive root is close to one. Since this is exactly where unit root
tests have most difficulties, our test may have some merit. It also
developed a consistent test for the null of stationarity. Phillips and

Ouliaris (1988) discuss difficulties in testing the null of cointegration
against the alternative of no cointegration. Because of these difficulties,
we impose stringent assumptions’about distributions and serial correlations
of the disturbance term to develop a test for stationarity. This is in
contrast to our test for the null of a unit root, which requires only very
mild conditions.

Hatanaka and Fukushige (1989) developed a test with the null of stable
autoregressive roots against a unit or explosive root. Their test allow
more general serial correlation. However, the Hatanaka and Fukushige's test

does not take the whole region of stable roots as the null hypothesis and

11



leaves out of the null hypothesis roots close to one., Our test takes the

. : 3
entire region of a stable root as the null.

3Park, Quliaris, and Choi (1988), Park and Choi (1988), and Park (1988)
have independently developed different tests for the null of stationarity
and cointegration.
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TABLE 1

EMPIRICAL POWERS USING FIVE PERCENT NOMINAL CRITICAL VALUES

T a KT T(aT-l) t1

50 0.95 0.518 0.096 0.184
50 0.99 0.505 0.021 0.085
100 0.95 0.533 0.282 0.373
100 0.99 0.507 0.041 0.103
200 0.95 0.552 0.745 0.791
200 0.99 0.514 0.083 0.146

NOTE: Estimates obtained from 40,000 replications.
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TABLE 2

EMPIRICAL SIZES USING FIVE PERCENT NOMINAL VALUES

T KT T(aT—l) t
50 x0=0 0.049 0.042 0.051
50 p=0.95 0.241 0.028 0.051
50 p=0.99 0.356 0.01le 0.051
100 x0=0 0.051 0.045 0.050
100 p=0.95 0.193 0.038 0.051
100 p=0.99 0.308 0.024 0.051
200 x0=0 0.051 0.048 0.050
200 p=0.95 0.148 0.043 0.050
200 p=0.99 0.261 0.032 0.050

NOTE: Estimates obtained from 40,000 replications.

15



TABLE 3

SIZE ADJUSTED POWERS OF FIVE PERCENT TESTS

T o=p KT T(aT-l) tl

50 0.95 0.116 0.166 0.180
50 0.99 0.098 0.068 0.083
100 0.95 0.141 0.354 0.365
100 0.99 0.109 0.085 0.101
200 0.95 0.174 0.789 0.790
200 0.99 0.117 0;131 0.148

NOTE: Estimates obtained from 40,000 replications,
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