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ABSTRACT

It is not uncommon to find economists testing hypotheses in models where a
nuisance parameter is not identified under the null hypotheses. This paper studies the
asymptotic distribution theory for such problems. The asymptotic distributions of test
statistics are found to be functionals of chi—square processes. In general, the
distributions depend upon a large number of unknown parameters. A simulation
method is proposed which can calculate the asymptotic distribution. The testing
method is applied to the threshold autoregressive model for GNP growth rates
proposed by Potter (1991). We present formal statistical tests which (marginally)
support Potter’s claim that there is a statistically significant threshold effect in a

univariate autoregression for U.S. GNP growth rates.






1. INTRODUCTION

This paper studies the problem of inference in the presence of nuisance
parameters which are not identified under the null hypothesis. The asymptotic
distributions of Wald, likelihood ratio (LR) and Lagrange multiplier—like (LM-like)
statistics are obtained for parametric econometric estimators under quite general
assumptions, allowing for simultaneous equations, stochastic regressors, heterogeneity,
and weak dependence. The asymptotic distributions are shown to be represented by
the supremum of a chi—square process, a stochastic process which is a quadratic form
in a vector Gaussian process indexed by the nuisance parameter. This generalizes the
results of Davies (1977, 1987). Unfortunately, these distributions appear to depend, in
general, upon the covariance function of the chi square process, which may depend in
complicated ways upon the model and data, precluding tabulation. As a proposed
remedy, we develop a simulation method which approximates the asymptotic null
distribution. 'This approximation is an improvement over the bounds of Davies (1977,
1987), whose approximation error increases with sample size in many cases of interest.

This paper is organized as follows. Section 2 gives several examples of
non—identified nuisance parameters. Section 3 introduces a distinction between global
estimates (where the structural and nuisance parameters are estimated jointly) and
pointwise estimates (where the structural parameters are estimated for fixed nuisance
parameters).  Conditions for consistent pointwise estimation of the structural
parameters, uniformly in the nuisance parameter, are given. Section 4 develops a
theory for testing structural hypotheses when the nuisance parameter is not identified
under the null hypothesis. Likelihood ratio, Wald, Lagrange multiplier (LM), and
maximal pointwise Wald and LM tests statistics are examined. Section 5 develops an
asymptotic distribution theory for the test statistics. This distributions are represented

as functionals of chi—square processes, which are quadratic forms in mean—zero



Gaussian processes. In the absence of heteroskedasticity and serial correlation, these
test statistics have the same asymptotic distribution. A new finding is that only the
maximal pointwise Wald and LM statistics have asymptotic distributions which are
robust to the presence of heteroskedasticity and serial correlation. The standard LR
and Wald statistics, for example, are not robust. Section 6 develops a simulation
method which can approximate the null asymptotic distribution. Section 7 extends the
results to t—statistics. Section 8 shows how to apply the theory and techniques to
threshold models, and reports an application to a threshold autoregressive model of
GNP. All proofs are left to the appendix.

Throughout the paper "=" is used to denote weak convergence of probability
measures with respect to the uniform metric, and ||-|| denotes the Euclidean metric.

Sample size is n .



2. EXAMPLES

It may not be commonly understood how pervasive is the problem of
unidentified nuisance parameters. I list below a few examples taken from the recent
literature. In most of the following examples, the model has been parameterized so

that the null and alternative hypotheses are

H0:0=0 le

640
and the nuisance parameter < 1is not identified under H o

In this situation, an error commonly made in applied research is the unqualified
reporting of t—statistics to measure the "significance" of the parameter estimate of 6 .
Since the t—statistic is testing the hypothesis that @ = 0 , under which <« is not
identified, the normal approximation is not valid and inferences made from a

conventional interpretation of the t—statistic may be misguided.

In the following examples, Vi 0 X4 o and e, are real—valued.
1. Additive non-linearity. Gallant, (1987) p. 139.
v, = g(x;,0) + Oh(x,7) + e .
A simple example of this is
v = oy + agx, + fexp(rx) + e .
2. Box—Cox Transformation. Box and Cox (1964).
y;“ -1 x1? —1

= a+ 02
T 72

+ € -

Originally introduced as a transformation of the dependent variable, the Box—Cox
transformation has been used by some authors, such as Heckman and Polachek (1974),
separately for each independent variable as well. In the above specification, neither

Y mOr 7 is identified when @ = 0.



3. Structural Change of Unknown Timing. Quandt (1960).

vy, = ox, + Lt/n> )x, + e .
Here and elsewhere, 1(-) is the indicator function. Under the hypothesis of no
structural change (# = 0) , the time of structural change (7) is undefined. A

distributional theory for this test has been developed recently by Andrews (1990b),
Chu (1989) and Hansen (1990, 1991a).

4, Threshold models in Cross—Section regression.
vy, = ox + 1(xt > 'y)OXt + e -

This model is useful as a simple model of non—linear relationships. Under the null
hypothesis of a linear relationship (6 = 0) , the threshold () is undefined. Kim and
Siegmund (1989) present a partial distributional theory for a one—regressor model.

It is also possible to test for multiple thresholds, in which case there would be

several nuisance parameters undefined under the null hypothesis.

5. Threshold models in Time Series Regression. Tong (1983).

yt = a(L)yt + 1(yt—d < 7)0(L)yt + et )
where
- 2 - p
oL) = oL + al” + + apL
= 2 - q
L) = 01L + 02L + + 0qL

and (d,p,q) are known positive integers. This model is known as the self—exciting
threshold autoregressive model, and is a simple way to capture non-linearities in a
stationary process. The null hypothesis of linearity implies 01 = eee = 0q =0, in
which case the threshold + is undefined. The distribution theory of the LR statistic
is studied in Chan (1990) and €Chan and Tong (1991).



6. Two—State Markov Trend Model. Hamilton (1989).

Ayt = o+ 95t + e
s, = {0, 1}
P{s; =1s, ; =1} = 7

P{s, = 0|s, ;, =0} = 17,.
The test of the two—state model against the standard one—state model takes the null
hypothesis 6 = 0 . Under this model, the transition probabilities 7 = (fyl,'yz) are
undefined. Note that the nuisance parameter +y is two—dimensional. Hansen (1991b)

develops a method to test the null hypothesis.

7. Common ARMA Roots.

Vo= Wi = e~ (rfe
A frequent test of interest in ARMA models is whether there are canceling AR and

MA roots. Under the above parameterization, this hypothesis is 6 = 0 . Note that

the common root, 74 , is not identified under this hypothesis.

8. Non—Expected Utility. Epstein and Zin (1989), Giovannini and Jorion (1989).

The representative agent has the utility function

6 = [+ amuO.

Here, v > 0 is the measure of relative risk aversion, and p =1 — 8 > 0 is the
inverse of the elasticity of intertemporal substitution. When & = 0 , intertempbral
substitution is unit elastic and < is undefined. Thus conventional hypothesis testing

methods cannot test the unit elastic restriction.



9. Representative Agent Models.
This example is taken from Eichenbaum, Hansen, and Singleton (1988). The

representative agent’s utility function (I use their notation) is

o
ES g [(cﬁql—’f)” - 1]
=0

g = A(l),
I} = B(L)

where ¢, is consumption and 1, is leisure, and A(L) and B(L) are polynomials

in the lag operator. Further, B(L) is specified as
B(L) = 1 - §1-nL)"L .

This model has two potential problems. First, to test if leisure enters the utility
function, the relevant null is 7 = 1, in which case the parameters (é,7) are not
identified. (Eichenbaum, et. al., do not not ask this question, however.) Second, to
test if lagged leisure is significant, the relevant hypothesis is 6 = 0 . As the authors

point out, in this case # is not identified. In fact, we can rewrite the equation as
(1— i} = (1 - (oL,

so we see that the problem is exactly that of canceling ARMA roots. Since there is
an unidentified nuisance parameter under the null hypothesis, the authors err in using

conventional asymptotic theory to assess whether or not § = 0 .

10. Nonlinear ARCH. Higgins and Bera (1989).

- 2 t 1
el , = N0, 1) , L S . S—

The hypothesis of no ARCH effect (§ = 0) renders the parameter <+ unidentified.
Bera and Higgins (1990) develop an appropriate test using Davies (1987).



11. GARCH and GARCH-M. Bollerslev (1986), Engle, Lilien, and Robins (1987).
2

2 2
by = a + Yohi+ 0(yt_1 - - 'yht__l) .
Under the null hypothesis of no ARCH effect (§ = 0) , the risk premium parameter

M and the GARCH parameter 7o are mot identified. Thus conventional

asymptotic distribution theory cannot be invoked to test the hypothesis of no ARCH.

12.  Testing Stability Against AR(1) Alternative. Watson and Engle (1985).
vy = xja + ztﬂt + g
By = » + Wy + Oy

Under the null hypothesis of no random parameter variation (6 = 0) the AR

parameter < is unidentified.

13.  Consistent Tests of Functional Form. Bierens (1990).

v = flx, , 8) + BexP('y'xt) + &
To test if ’1'(xt , B) is the correct conditional mean, then one can test the hypothesis

6 = 0, under which 4 is not identified.

14. Neural Network Tests. White (1989), Stinchcombe and White (1991), and Lee,

White, and Granger (1989).

m

i < f(xtaﬁ) + 0.21¢(7ixt) + et
1=

where ¢(-) is the logistic function. To test if f(x, , f) is the correct conditional

mean, then one can test the hypothesis 6 = 0 , under which v is not identified.



3. CONSISTENCY

The econometric model is assumed to be described by the parameters (0, 7) .

We will call 6 € 8 ¢ RS

the structural parameter vector. We will call v € I' the
nuisance parameter vector, where I' is some metric space with metric p(+). There
is some sequence of random criterion functions Q 11(0,7) : §xIT" = R. One

estimation strategy is to find the global maximum of Qn(0,fy) over & x I'.

Def. The Global Estimates are (6, 7) = Argmax Q_(6,7) .
feB el

It will be useful in the sequel to define estimates of 6 obtained from

maximization of Qn(0,'y) over 0 € 8 , while holding v fixed.

Def. The Pointwise Estimate for given v € T is §(7) = Argmax Qn( 6,7) .
fed

One useful fact relating these estimates is that 8 = 4(7) .

Assumption 1.

(i) 8 and T are compact ;

(ii) Q(8,y) = Illim EQ n(ﬂ,'y) is continuous in (6,79) uniformly over B8xI" ;
—m

(iii) Qu(6m) —, Q(67) for all (6,7) € BT ;

(iv) Q,(8,7) — Q(6,7) is stochastically equicontinuous in (6,7) over B8xT ;

(v) For all ye ', Q(f,7) is uniquely maximized over # € 8 at 0

0"

Theorem 1. Under assumption 1,
(i) (%) — 0, uniformly in v €T ;

(ii) 8 —_ 0
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The assumption that [' is compact is critical, while the assumption that 8
is compact is made for convenience. It could be relaxed as in, say, Richardson and
Bhattacharyya (1990). Assumption 1 (iii) is a statement of pointwise weak
convergence. Suppose Q a takes the form

(1) Q07 = =

Q( 0: '7)xi) °
1

l taB
[wy

If {xi} is o—mixing and q( 0,7,xi) is uniformly integrable for all (4,7) , then the
weak large of large numbers due to Andrews (1988) gives assumption 1 (iii).

The concept of stochastic equicontinuity is used here and in the sequel to obtain
uniform convergence, and therefore warrants some discussion. Stochastic equicontinuity!
is essentially a smoothness condition. If Q = takes form (1), then Andrews (1990a,
Lemma 2) has shown that a sufficient condition for assumptions 1 (ii) and (iv) is the
Lipschitz condition

Forall §>0, |a(0,7,x) —a(67x)| ¢ B(x)h(§) for all [6-0| < 6

and p(v,7') < 6 , where }511(1)1 h(f) = 0 and sup 31 11)JHEB( ) <o

The most unusual assumption is 1 (v). It states that at the global maximum,

the limiting criterion function does not depend upon <« . This is equivalent to the

statement that the nuisance parameter is not asymptotically identified.

t {G(A)} is stochastically equicontinuous on A ifforall e>0and 5> 0 there

exists some & > 0 such that lim P[sup sup |G, (A7) = G,(M)] > e] <7,
AeA p(M, A7 )<6
where p(-,-) denotes the distance metric de ned on A.
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4. Hypothesis Testing

41 Null Hypothesis

The econometrician is interested in testing the following hypothesis concerning

the structural parameters:

H,: h(f) =0

where h: 8 — RY is continuously differentiable. Set h(6) = oh(6)/0¢" , and
hy = hy6). Assume that rank(h P = a.

We assumed in section 3 that the nuisance parameters are not identified
asymptotically. We now assume that < is not identified even in finite samples for
any 0 which satisfies the null hypothesis. This is true of all the examples listed in

section 2.

Assumption 2. For eB ={0€8: h(f) =0}, Q,(6,7) does not depend

upon 7 .
We can define a criterion function restricted to satisfy H, , and an estimate

obtained by maximizing this function.

Def The Restricted Estimate of 6 is 8§ = Argmax Q,(f) , where Q_(6) =
e 8 o
Qn(0,7) for 6 ¢ BO .

A standard argument gives the consistency of § .

Theorem 2. Under assumption 1 and Ho , 0 ~ 00 .

42  Alternative Hypotheses

The alternative hypothesis of interest is
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H, : h(d)#0 , ~y€T.

1 .
Since v is not identified under the null hypothesis in the sequel it will be

convenient to specify as well the set of pointwise alternative hypotheses:
H/(y): h(6) #0 , v given .

Testing H_ against Hl('y) for any particular 4 does not lead to any particular
difficulties, for the nuisance parameter is effectively eliminated by fixing it at a
predetermined value. In the structural change application, for example, Hl('y)’ would
be the hypothesis of a single structural change of known timing, while H, specifies

the timing as unknown.
4.3 Likelihood Ratio Tests

If Qn(ﬂ,'y) is the log-likelihood function, then appropriate statistics for the
tests of H, against H; and H_ against H,(7) are given by
IR, = =[Q(07) - Q)]
and
IR,(1) = 2[Qn) - Q)]
respectively. The connection between the statistics may be seen in the following

result.

Theorem 3. LR, = sup LR (7).
7€l

44 Wald Tests

Define the random functions
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S.(01) = 35 Q6

M (67) = - 33‘?2;7;— Q.67

Q (67 = Mn(ﬂ,"r)_an(9,7)Mn(9,7)"1,

where V_(0,7) is some estimate of var(vo S_(6,7) -

The pointwise Wald statistics for testing H against Hl('y are
N - - - =1, ¢4
Wy = n B[] [b AR AN AAD) ) TR
The standard Wald statistic for the test of H o against H, is given by
- " N I n I,
W, = W/(3) = nh(b) [ha(G)Qn(ﬂ,fy)hg(ﬁ)'] n(d) .
A reasonable alternative statistic is the largest pointwise Wald statistic:

SupW_ = sup W_(1) .
n b

45 Lagrange Multiplier Tests

The Lagrange multiplier (LM) statistic for the test of H  against H, is not
defined, for + 1is not identified under the null. The sequence of pointwise LM

statistics for the test of H_ against H1(7) , however, are well defined and given by

3 R T ney (7 w1 e (7 a=le (7
IM(7) = 1 S (0) My(B) h (D) (b D0, (BbgD) | Th (DM (B0) S, (B -
We can consider two LM-like statistics which generate feasible tests of H o

against H,. The first uses the estimate of v obtained under global maximization:
IM, = LM(),
while the second takes the largest pointwise LM statistic:

SupLM_, = sup LM_(7) -
~vel
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5. DISTRIBUTIONAL THEORY

The key to unlocking a valid distributional theory for the test statistics of HO

against H1 is the fact that the test statistics can be written as supremum over the

stochastic processes LR (%), W_(7), and LM (7), for which we can find functional

distributions via empirical process theory. We will be using the following concepts.

Def.

G()\) is a mean zero vector Gaussian process in e A ,ifforall Ae A,
E[G(A\)] = 0, and all the finite dimensional distributions of G(-) are
multivariate normal. The covariance function of G(X) is given by

K(A Ay = E[G(AI)G(AZ)’] .
7()\) is a chi-square process in A € A of order ¢, if Z(-) can be
represented as  Z(A) = G(A)'K(A,A)—IG()\) , where G()) is a mean zero

g—vector Gaussian process with covariance function K(-,") .

Mean—zero Gaussian processes and chi—square processes are completely described

by their covariance functions.

Let 8, be some neighborhood of 00 ,and 4 = 8 . r.

Assumption 3.

(1)

M(f,7) = lim EMn(B,'y) and V(6,7) = limn E Sn((),'y)Sn(B,'y)’ are

Lol n-w

continuous in (6,7) uniformly over 4

(M (8, V(0] —p [M(o2), V()] forall (6) € 4

M, (6,7) — M(6,y) and V_(6,7) - V(0,7) are stochastically

equicontinuous in (6,7) over J;



(iv)
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M(q) = M(ﬂo,'ﬁ and V() = V(0O, ) are positive definite uniformly

over 7€l

Vo Sn(0o,'y) = S(7) on vy €T, where S(-) is a mean zero

Gaussian process with the covariance function

K(77) = lim nE[Sn(0o,71)Sn(0o,72)']

-

Let S(7) be a mean zero Gaussian process with the covariance function

- -1 -1

and let C(7) be a chi-square process with covariance function K(-,-) .

Theorem 4.

(2)
(b)
(c)
(d)

Under assumptions 1, 2, and 3,

Va(d(7) - ) = M(7)7'S(7) on 7yeT;
Wi() = C(r) on 7el ;
LM (7) = C(7) on 7€T ;

IRy (1) = C*(1) = S5 [bMThy| () on yeT

Assumption 3 is standard for central limit theory, except that all the results are

assumed uniformly over 7 € I' . The pointwise laws of large numbers and stochastic

equicontinuity assumptions may be verified as discussed after assumption 2.

One important condition is 3 (iv). If M(y) or V(7) is singular for some

values of v, then the theory developed here will break down. This possibility will

depend upon the particular application. In this event, we will need to redefine T +to

exclude singular values from consideration. One example where this arises is in

structural change problems. If the timing of structural change is considered to be
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some fraction of the sample size, then this fraction has to be bounded away from zero
and one. See Andrews (1990b) on this point.

Assumption 3 (v) may appear unconventional. It is simply the function space
generalization of the statement that for each y e I', n Sn(ﬂo,'y) converges in
distribution to a normal random vector. Sufficient conditions are given, for example,
in Andrews (1990c). If Q_ takes form (1), {8/60 q(6,,7, x;)} needs to be
uniformly Lr-—integrable for some r > 2, be near epoch dependent of size —1 on
some series which is strong mixing of size —2r/(r—2), and satisfy some form of
smoothness condition with respect to 7 .

The absence of serial correlation and heteroskedasticity frequently implies
V(v) = M('y)_l, in which case the processes C*(y) and C(7) are identical, and
the LR, Wald, and LM processes have the same asymptotic probability measures.
This is analogous to conventional theory. In this case all the test statistics are

asymptotically similar, as shown in the following theorem.

Theorem 5. Under assumptions 1, 2, and 8, and if V(7) = M('y)_l, then

(a) y —y Argmax C(7) ;
vel
(b) LR , W, Suan , LM_, SuplM =~ — d SupC = Sup C(9)

vel'

Note that the parameter estimate 'y fails to converge in probability. Instead,
it converges in distribution to a random variable, as is common among unidentified
parameter estimates.

In general, however, the equivalence between the LR, Wald and LM tests does
not hold. The following theorem gives the asymptotic distribution theory allowing for

heteroskedasticity and serial correlation.
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Theorem 6. Under assumptions 1, 2, and 8,

-

(a) v —4 Argmax C*(v) ;
vel
(b) LR —,; Sup C*(7) ;
n d el
(c) W, LM —,; C(Argmax C*(y)) ;
7€l
(d) SupW_ , SupLM_; —; SupC .

It is not surprising to find that the likelihood ratio statistic is not robust to
heteroskedasticity or serial correlation, since this occurs in standard models. What is
surprising, however, is that the Wald statistic is not robust as well, even though a
robust covariance matrix estimate is used. The problem is due to the unidentified
nuisance parameter, which is not consistent under the null hypothesis. The only test
statistics with distributions robust to heteroskedasticity and serial correlation are the
maximal Wald and Lagrange multiplier statistics. It is interesting to note that these
are the statistics studied in most of the earlier theoretical literature, such as Davies
(1977, 1987), Chan (1990), Andrews (1990b), and Hansen (1990, 1991a). In contrast,
the most commonly reported test statistics in applications are LR statistics and
t—statistics (which are signed square roots of Wald statistics), which do not share this

robustness property, as shown in the next section.
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6. T—TESTS

The theory developed in sections 4 and 5 apply to two—sided hypothesis tests.
Often, the hypothesis test only concerns one element of @ and the alternative

hypothesis is one—sided, i.e.

1:e’0>0

where e = (100 --- 0)’ . In this case, it is desirable to develop one-sided
versions of the test statistics and asymptotic distributions.

We can define the sequence of pointwise t—statistics
e’ 0(7)

e (8(7),7e

The standard t—statistic is the pointwise t—statistic evaluated at the global estimate 7

t (1) =

t, = t,(0).
We can also define the maximal pointwise t—statistic:

SupT, = sup t (7).
n pon

We can also define a one—sided version of the LM test. The sequence of

pointwise one—sided LM statistics are

ta(n) = ;
giving the test statistics
X t¥(A
tr = t7(7)

and



SupT* = sup t¥*(v) .
n el B

Similar arguments as those of the previous section unable us to obtain the

following result. The proofs are quite similar and omitted.

Theorem 7. Under assumptions 1, 2, and 3,

(a) t(M s () = (1)
(b) t. ,t¥ —.  t(Argmax C*(v))
n’™n d ~yeT
(¢) SupT_ , SupT* — sup t(7)
n n d ~el

where t(7) 1is a Gaussian process with covariance function

e M(7) K (7,75 M(1) e

19

Blt(n)tg)] =

[ MO MV OrMEr )2 ferMOrg) IV (rpM(y) e

1/2
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7. OBTAINING THE DISTRIBUTION SupC

7.1 Previous Literature

The process C(7) is completely described by its covariance function K(-,-) ,
s0 the asymptotic distribution of the test statistics, SupC , is fully described by the
pair (K,I') . Unfortunately, the function K is context—dependent, precluding
tabulation.

In some cases, the distribution simplifies. In the structural change applications
with weakly dependent data, Andrews (1990b), Chu (1989) and Hansen (1990) found
that the covariance function is that of a vector Brownian bridge. If the regressors are
trended, Hansen (1991a) found that the covariance function is different, but dependent
upon only a small number of parameters. In the one—dimensional threshold model, a
Brownian bridge result was obtained by Chan (1990) and Kim and Siegmund (1989)
under different assumptions. If there is more than one regressor, however, Chan and
Tong (1991) find that the covariance function is more complicated.

It is possible to construct simple examples, however, which show that the

covariance function need not be particularly simple. Take, for example, the model
. 2
Yi ¢ exp('yxt) + € » € iid (0,0%) ,

where X, is stationary, independent of {et}. The test statistics have the

asymptotic distribution sup C(7) , where C(7) is a chi—square process with
vl

covariance function

K(17) = Blemlintpx]] = wn+1) -
The function ¢(-) is the moment generating function of x, . In this simple
example, the covariance function depends upon the entire distribution of the regressor!

Davies (1977, 1987) attempts to circumvent this problem by finding a bound for
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the asymptotic distribution of the test statistic. His bound, however, depends upon
the assumption that C(7) has a continuous derivative except possibly for a finite
number of jumps. This is critical to his approach since his bound utilizes the total
variation of the process C(7). Unfortunately, in some of the examples in section 2,
the chi—square process C(9) may be nowhere differentiable, and thus have infinite
total variation. Although the number of jumps may be finite for any given sample
size, this number will tend to infinity as the sample size increases, so this

approximation may become arbitrarily poor in large samples.

7.2  Distribution Theory Under Uncorrelated Errors

We now place more structure on the problem. Assume that Qn takes the

form
1 n
(2) Q. (67) = -ﬁizlqi(ﬂ, 75 %) -

Set qi(0,'y) = qi(e» 7 xi)’ and Si(ﬂ,'y) = '5‘3 qi(g)')’) . si('Y) = Si(b('f);’)’) :

Assumption 5. E[si(0o,'y)sj(00,'y)'] = 0 , forall i4j, yv€eT

This rules out serial correlation, but not heteroskedasticity. In this context we can

use the following estimator of V(7) :

V) = § B s

To simplify the notation, set
Sl(")/) = Sl( 3(7)’7) )

(1) = Q(Bn7) = M () V (B M ()
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and
hyn) = by 8(7)
Define & = o(x; , ... , x,) - Now imagine the following experiment. Draw
n iid standard normal random variables {u;} and comstruct the gq x 1 process
5.0 = b M0 [ L 5 g
7" = 0(7 n\7 ni=1i7i'
Conditional on &, ¢n én('y) is a mean—zero Gaussian process with covariance

function

K (7:79) = hgn) Mn('rl)_l[il;i

Il 48

55 (7)° ] My () (1)

Now construct the process

- ~ _14
Cu(m = 8, () [Bynay(Mhgn) |80 -
Conditional on ¥, Cn('y) is a chi—square process with covariance function K(-,-).

Thus as n - o ,

~

C,(m = C,

Suan = Sup Cn('y) = SupC
~el’

Now repeat the experiment with another n independent draws {ui} .
Conditional on &, the Sup(“Jn are mutually independent, and as n - o , their
empirical distribution approaches SupC. Since this distribution is independent of &,
the dependence upon the data is eliminated in large samples. Thus the upper tail of
the empirical distribution of the SupC 1 will provide an asymptotically valid method
to determine critical values.

This method easily generates p—values. Suppose the test statistic calculated
from the data is Tn , which has the asymptotic null distribution SupC . Generate

{u;} and construct the statistics Sup(‘)n and
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p = 1(Sup(‘3n >T) .

If n is large, the variables P will be approximately iid Bernouli draws whose
expectation is the p—value of the test statistic T . With a relatively small number
of replications, p—value estimation is quite precise. For example, using 500 replications
and the null of a p—value of 5%, the standard error is approximately 1%.

This simulation method does not require numerical optimization of the
non-linear model. The parameter values and first order conditions are held fixed at
the global estimates. It is mot a trivial calculation, however, since the maximal value

of the function Cn('y) may have to be found by a grid search.
7.3  Distributional Theory Under Homoskedasticity

In some cases it is possible to simplify a few of the calculations and improve
the approximation of the simulation method in small samples. Consider the example

of additive non—linearity discussed in section 2, additionally assuming homoskedastic

€rrorIs:
yl = th(xlfy) + g(xlaez) + €i
E(glx) = 0
2 2
E(ejlx) = ¢

H, : e’ = 0 , e=(10---0).

If the model is estimated by non-linear least squares we have
2% . .
Sn(077) = - 5121 h(xi)’Y)Ei ) Ei = yl - g(xi’a) - Hh(XI"Y)

The process \/ﬁSn(@,'y) converges weakly to a process S(7) with covariance function
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2. 1%
K(7,7) = 40°lim E_EIE[h(xi,"rl)h(xi,vz)’] :

n-4w 1=
Therefore, a good approximation to the limit process C(7) can be found in this
context by the following simplified version of the simulation method outlined in section

6.2. Draw iid standard normal random variables {u;} and construct

‘§ ’ —1 1 th
S} 7)) = eM/(n) " § _Elh(xi,"r)ui :
1=

which, conditional upon &, is a Gaussian process with covariance function
K_( ) = e'M( )_1 1 g h(x.,7, )h(x:,7,)” | M_( )_le
o\ M%) = AU SR S U 2 e N

Therefore the process

Caln) = 83(1) [erMy(ne] 831/

where &2 = n—lzlll%?, has the asymptotic distribution of C(7) . Replication of

Sup,yC;l('y) should provide asymptotically valid draws from the null distribution.
The construction of section 7.2 is similar in many respects to the
heteroskedasticity—consistent covariance matrix estimate of White (1980). It is
frequently found in simulations that this estimator requires large samples for the
asymptotic theory to provide a good approximation to the finite sample distributions.
One would expect similar behavior for the statistics reported here. It seems
reasonable, therefore, to use methods such as that outlined in this section, when

homoskedasticity is not too wild an assumption.
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7.4  Distributional Theory Under Autocorrelation

If Q. (6,7) is a correctly specified likelihood, the scores {s;(¢,,7)} should be
a martingale difference sequence and hence uncorrelated. In some applications (such as
GMM), this may not be part of the maintained hypothesis. It is known in this event
that conventional standard error estimates are invalid and some correction needs to be
made. A similar problem arises in the current context.

We again assume that the criterion function takes the form (2), but allow for
serial correlation in the scores ;. In this context we have

n n

1 ,
Kp) = 3 5 ) B[s0mlsllen)] -
k=—1m i=1

A natural sample estimate of this function is

m

K (1,%) = )  w(k/m)2

k=-m i

1

Il &~ 8

where w(k/m) is a weight function, such as the Bartlett kernel w(x) = 1—|x|, and
m is a bandwidth parameter.
We perform an experiment similar to that of section 7.2. Draw a sample of iid
standard normal random variables {u;} and construct the process
n
§,M = hinM (7" 12 S-('r)[w L TEOR EEER ¥ ]
n n n 1 1 -1 i-m| °

i=1
It is a straightforward calculation to show that, conditional upon the data, S o(7) is a

Gaussian process with covariance function

. -1 -1
K (rp19) = hg{m)Mp(m) = K (79,79) My(717) "hylm)’
where the sample function K (-,-) is computed using the Bartlett kernel. So long

as K (-,+) is consistent for K(-,-), Qn('y) is asymptotically distributed as S(7).
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It similarly follows that conditional on &, the process

- -~ _la
Cy(n = 0 8, [bna (Db ] -
is a chi-square process with covariance function K(-,-). Under these assumptions we

find
C(m = <,

SupéIl = Sup Cn('y) = SupC
yel

As before, repeated draws from Supén allow for the calculation of critical values and

p—values.
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8. TESTING FOR THRESHOLDS

8.1 Threshold Models

A fairly general formulation for linear threshold models may be given as
v, = 0%y + Ogxpllxgy > )+ oo
E(ey|x pXpXgy) = 0
where 1(-) is the indicator function. In most models, the x, is a sub—vector of
X140 and Xg4 is a scalar element of X4 This is a simple way to capture

non-linear regression effects.

The null hypothesis of frequent interest is linearity:

HO: 02

=0

under which the threshold parameter 7 is not identified. This model was a primary
motivation for the work of Davies (1977, 1987) and special cases have been studied by
Kim and Seigmund (1989), Chan (1990) and Chan and Tong (1991).

It is fairly straightforward to apply the tests developed in this paper to the
threshold model. For any given « , the model is linear and can be estimated by
ordinary least squares (OLS). A practical issue is the selection of T'. Since the
function 9(7) and the associated test statistics will be discontinuous functions, with
jumps at the values 7 = Xg,, it makes sense to select ' to comsist of (at most)
the sample values of {x3t}. Further, to exclude the possibility of near—singularities,
it is necessary to select I' to exclude values of {x3t} too far in the tails of its
empirical distribution. Following the advice of Andrews (1990b) in the context of
testing for structural change, I suggest the informal rule of using the values of {x3t}

between the 15th and 85th percentile of its empirical distribution.
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8.2 Monte Carlo Experiment

Take the simple threshold model

V, = let + & if x <7
Vi = 02xt + € if X, > 7
x, = N(0,1) , ¢ = N(O,1).

I used Monte Carlo methods to evaluate the small sample distribution of the test
statistics for the hypothesis H o 01 = 02. Sample size was set to 100 and 1000
replications were made.

For each replication, a new sample {yt,xt} was drawn. The region I' was
chosen as suggested in the previous subsection, taking the 15th to 85th percentile of
the empirical distribution of X, The Suan and SupLMn statistics were calculated,
both under the assumption of homoskedasticity and allowing for heteroskedasticity as
in White (1980) (thus generating four statistics). The p—values were calculated as
discussed in section 7. The statistics calculated using the standard covariance matrices
used the method of section 7.3 which assumes homoskedastic errors, while the statistics
calculated with the White heteroskedastic—consistent covariance matrices used the
method of section 7.2. A statistic was considered "significant" at the 10% (5%) level
if the calculated p—value were less than .10 (.05).

First, the model was evaluated under the null hypothesis, setting 01 = 02 = 1.
Table 1 reports the estimates of the upper tails (10% and 5%) of the distributions of
the four test statistics. For comparison, the tail values from the chi—square
distribution with one degree of freedom is also given. The chi—square values (which
we could call the naive critical values) are noticeably lower than the Monte Carlo
values. This is not surprising, given our theory, but reinforces the argument tha’p

unidentified parameters may have important effects upon the correct sampling theory.



Table 1
Upper Tails of Test Statistics Under Null

10% 5%
Standard
SupW 5.3 6.8
SupLM 5.0 6.3
Hetero Consistent
SupW 5.7 7.5
SupLM 5.0 6.3
% 2.7 3.8
Table 2
Rejection Frequencies Under Null
10% 5%
Standard
SupW 122 .058
SupLM .108 .054
Hetero Consistent
SupW 149 .075
SupLM 105 .051
Table 3

Rejection Frequencies Under Alternative

10% 5%
Standard
SupW 774 .673
SupLM 157 .638

Hetero Consistent
SupW 792 .689
SupLM .750 .602
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Table 2 presents the frequency at which the p—values rejected the null
hypothesis. This is often called the "nominal size" of the test, since it is the true
size of the test when asymptotic critical values are used. The results are quite
favorable. Both LM tests have nominal sizes very close to their asymptotic value.
The Wald tests are somewhat liberal (reject too often), especially the
heteroskedasticity—corrected Wald test.

Next, the power of the test was examined. For these calculations, I set
01 = 1, 02 = 1.3, and 7 = 0. The same testing methods were employed as under
the null model. Rejection frequencies are presented in table 3. All tests are easily
able to reject the null in favor of the alternative. No size adjustment was performed,
but casual inspection of the rejection frequencies suggests that the tests have very

similar power in this example.

8.3  Self-Exciting Threshold Autoregressive Models

The self-exciting threshold autoregressive model (or SETAR) is a special case of
the general threshold model which has received considerable attention recently in the

non-linear time—series literature. The model may be written as

(3) v = # + o)y, + ¢ iy 4 <7

Yt o + ool)yy, y + e iy 4 > 7

where the error e, is assumed to be a martingale difference with respect to the past

1
history of the scalar process {yt}. The lag polynomials o;(L) and a,(L) are of
order p. The delay parameter d is an integer satisfying 1 < d < p. The relevant

null is linearity:

Ho: b= by, al(L) = 0‘2(1‘)

under which the threshold + is not identified. If we consider the delay parameter
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d also as a parameter to be estimated, then it is also not identified under the null
hypothesis.

The likelihood ratio test for this model (under the assumption of Gaussian
errors) has been studied by Chan (1990) and Chan and Tong (1991). This test is
equivalent in this context to the SupW q test, when calculated using the standard
covariance matrix. Chan (1990) obtains the asymptotic distribution in a form similar
to Theorem 5 above, and Chan and Tong (1991) present some special cases. They
show that when there is only one regressor (i.e., there is no intercept, and p = q =
1), then the relevant Gaussian process is a Brownian bridge. When p > 1, however,
they find that the covariance function is more complicated, precluding tabulation.
Instead, they give some informal rules in a couple special cases which they obtained
from simulation evidence. Our testing method, on the other hand, requires no ad hoc
rule, and is easy to apply in this context.

In addition, our method allows the delay parameter, d, to enter the specification
in a consistent and rigorous manner. We can estimate d in the same way we
estimate 7, by choosing the model with the lowest sum of squared errors. Being
explicit about the way we choose d means that we have to treat it as an
unidentified parameter under the null hypothesis. The fact that d takes only a
finite (and small) number of possible values does not invalidate the asymptotic theory
in this context.

Another variant of the SETAR model is the smooth transition threshold
autoregressive model (STAR) of Chan and Tong (1985). This model generalizes the
SETAR model by replacing the indicator function by a smooth transition function.
This introduces a smoothing parameter which is also not identified under the null

hypothesis of linearity.
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84 GNP Growth Rates

We now apply this testing methodology to a real-world problem. The goal is
to obtain a useful characterization of U.S. GNP growth rates, considered as a
univariate process. Many macroeconomists have been satisfied with a low—order
autoregressive model, but other possibilities have been suggested. Nefti (1984) found
evidence for asymmetries in the business cycle. Stock (1987) found evidence for
time—deformation nonlinearities. Hamilton (1989) suggested a Markov switching model.
Although using distinct models, each of these researchers presented evidence that GNP
growth rates are more than just a simple autoregressive process.

Potter (1991) fit a SETAR model to postwar quarterly GNP growth rates. To
select the threshold and delay parameters, Potter did not directly minimize the sum of
squared errors, but instead used informal graphical methods. Still, these (unidentified)
parameters are selected conditional upon the data (rather than from a prior: theory),
and therefore conventional asymptotic theory cannot properly assess the significance of
the nonlinear specification. Our methods, however, allow us to directly assess the
statistical significance of his SETAR vis—a—vis a linear model.

I used the real GNP series (seasonally adjusted) from Citibase for the period
1947-1990. The data were transformed into annualized quarterly growth rates. (That
is, Ay, = 400(lnY, — InY, ,), where Y, is real GNP in period t). Potter (1991)
suggested that this series is fit well by a SETAR with lagged first, second and fifth

differences. My estimates for the associated autoregressive model with no threshold is

Ay, = 199 + 0324y, , + 0134y, , — 0094y, o + e
(0.57)  (0.09) (0.08) (0.06)

t

RZ = 0.16.
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(Heteroskedastic—consistent standard errors in parenthesis.)

To fit a TAR model, it is necessary to choose the region TI' over which to let
the unidentified parameters vary (in this case, v and d). As before, I let v vary
from the 15th to the 85th percentile of the empirical distribution of Ayt. For the
delay parameter, d, I let it take on the values 1 , 2 and 5.

Maximizing the sum of squared errors, the estimates for the threshold
parameters are d =2 and 7 = 0.27. This is surprisingly close to the values d =
2 and v = 0 chosen by Potter’s informal identification methods. With these

parameters, we find the following estimates for the TAR model

Regime 1 (Ay, o, < 0.266)

Ay, = -321 + 051Ay, , — 093 Ay, 5 + 0384y, 5 + e .
(1.78)  (0.19) (0.26) (0.20)

Regime 2 (Ay, o > 0.266)

Ayt = 214 + 0.30 Ayt__1 + 0.18 Ayt_2 — 0.16 Ayt_5 + e
(0.73)  (0.10) (0.09) (0.07)

R® = 0.26 .

The SupW and SupLM tests for the null hypothesis of linearity, with and without
heteroskedasticity corrections, are reported in Table 4. If no correction is made for
heteroskedasticity, both the SupW and SupLM tests reject linearity at the 5% level.
When corrected for heteroskedasticity, however, the SupLM test ceases to be
statistically significant. This is difficult to explain since the innovations do not appear

to be heteroskedastic.



34

Table 4.
Tests of a SETAR vs a TAR
Statistic P—value

Standard

SupW 21.0 0.02

SupLM 18.7 0.04
Hetero Consistent

SupW 18.0 0.06

SupLM 14.1 0.21

Figure 1 displays a plot of the Wald test statistics for d = 2 and the
sequence of possible values of 7 . The plot shows that the value 'y ~ 0 1is clearly
chosen by the data. The figure also displays the 10%, 5% and 1% critical values
obtained from the simulated distribution for the test statistic. Note that these critical
values are substantially higher than those from a conventional chi-square table. To
make this point clear, figure 2 displays plots of three probability densities: the x2(4),
the x2(8) and the density estimated for SupW for this data set. The latter was
estimated from the simulated empirical distribution using a normal kernel. The x2(4)
would be the appropriate asymptotic distribution if the parameters d and 7 were
known a priori, and are implicitly those used in common practice. The x2(8) is also
displayed to counter any illusion that an appropriate rule—of thumb might be to
double the degrees of freedom. The estimated density function is substantially to the
right of the x2(8). This figure makes plain the fact that unidentified nuisance
parameters should not be ignored when making inferences. The distributions are
non—standard, and may be dramatically so.

This empirical exercise has uncovered the following surprising results. First, the
threshold parameters chosen by Potter (1991) for this series using informal methods are
essential the same as those chosen by a classic least squares criterion. Second, even

after the selection of this potentially unidentified parameters is taken into account, the
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linear model can be (marginally) rejected in favor of a SETAR alternative. This lends
considerable support to the view that non-linearities are important in properly

specified conditional expectations for macroeconomic time series.
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APPENDIX
We will frequently use the following result due to Andrews (1990a).

Lemma A. If A is compact, G (A) — G(}) is stochastically equicontinuous and for
all
Aed, G (N) =5 G(}) , then sup, ,[IG (A) — G(A)] -, 0.

Proof of Theorem 1.

(i) PFix e > 0. By assumption 1(v), for all v € ', there exists some §(y) > 0
such that

inf (0,7 - Q)] = &
CARE

Note that the region {f: [[6-f|| > €} is compact under assumption 1(i). By the

maximum theorem, §(y) is continuous on I' , so {é(7) : ¥ € T} is compact, thus

§ = min 6(v) > 0,

2T

and

min iaf  [Q(0,”) - Q6] = 4.
YD (|60, > ¢

It therefore follows that {[Q(GO,'y) - Q(@(7),7)] < 8 implies {|%(7) — 6| < ¢} ,

and thus
P{suplli(n) - 6l < & > P{sup [Q(6,m) — QN < & .
7€l el
The result follows if

sup (200, - Q) —, 0.
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Indeed,

0 ¢ sup [Q(ﬂo,'r) - Q(?('r),'r)]

el

= sup [QUym = QAN + QAN — QAN
yel’

< sup [QU0,7) — Qulym + QQ(ENM — AU,

yel’

< sup 1Q(6,m — Q,(6,mM + sup 1QUB(M,) — Q87,7

< 2 sup sup |Q(6,7) — Q (67 —, 0,
~vel' Geb
by Lemma A.
.o “ _ — At _ < % -
() 0= 01 = 1U3) =G| < supldn) — 6] —p O
by part (i). o

Proof of Theorem 3.
IR, = 2[Q87) - QD)

= 2n[sup Qn(9(7),7) = Qn(@)]

vel'
= s m(Qnn) - M) = spIR).

Proof of Theorem 4 (a): Here and elsewhere superscripts will denote elements of
vectors and matrices. For example, Sz will denote the a’th element of the vector
S 1 and Mzb will denote the a—b’th element of the matrix M11 .

For each + € T, the first order conditions for f(7) are

0 = S (8.
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Expand each first order condition (for each value of v ) about 6,

(A1) 0 = SXU1 = S0, - MAFM. (B 6)
where 6*(y) is on a line segment joining ¢, and 8(7) . Now
(A2) sggle"(mm) - M?(g,7)]

Y

b b
¢ sup|ME(H(),7) — ME(B(n))| + sup|MPOBH(n)n) - ME(6,7)]

el 7€l

< s MEP0) - MPENL + o) < o 1)

(6,m)es

The second inequality exploits the assumed continuity of M(-,-) (assumption 3 (i))
and the fact that 6*(y) - 00 uniformly in 7 . The final inequality follows from
Lemma A. Stacking the row vectors Mz(ﬂ*('y),'y) into a matrix MZ(1), (A1), (A2),

assumption 3 (iv)(v) and the continuous mapping theorem (CMT) give

B - 6) = METMES(0,mM = M(7)7S(7) :

Proof of Theorem 4(b): Since #(7) - 6, uniformly in 7, and h «) is

continuous in @ o

(A3) hf¥(n) —, By8) = by,

uniformly in 7y . Similarly,

(A4) (B0, = M (A V(D) M8
— M7 V() M) = at)

uniformly in v € T

Expand each element of the vector h(#(y)) about 0, :

Jan¥(f(n) = Jan¥(6) + WG - 6,)
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= BY(F(NWa(B(7) - 6,) ,
Thus by (A3), part (a), and the CMT,
(A5) VER(B(7)) = h,(6)) M(7)'S() .

which when combined with (A4), yields the result. o

Proof of Theorem 4 (c): Expand each element of Sn(?,'y) about 00:
a7 _ R YL v
SII( 0: ')') - Sn( 00)7) Mn( 0*( 7))7)( 0_00)

where *(y) lies on a line segment between 6 and 6. Since @ -5 0, the

argument of (A2) allows us to rewrite this as

(A6) 5,067 = S.(6,,7) — Mp(m(6-4,)
where M*(7y) — M(y), uniformly in y € T .
Expand each element of h(#) about @

0 .
b8 = h*4) + hy(6)(8-6),
or, stacking equations, and using h(f) = h(g)) =0,
(A7) 0 = h’g (@—00) ,
where h’z =5 hy .
For n sufficiently large, there exists a Lagrange multiplier vector X which

satisfies
(A8) s.(By) = hyX

where flo = h9(79) . (A8), (A6), (A7), and assumption 3 (v) combine to yield,
—1s < 1
(A9) VA b ME() MY X = & ) MA(9)S (8)

= VA By ME)TIS,(0,7) - VA b (2-0)
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= M TNWES (6, = hM(7)7S(7) .
Therefore
(A10) VB S (B) = VEBy X = Bylny My TRy Ty MA)TIVA S,(05)

= hy[b M) by nM(n) ()

and

(A1) JEEM(B)7S,(B7) = hM(7)7S() = S() .

(A4) and (All) combined with the CMT complete the proof.

Proof of Theorem 4 (d). First note that by a second—order Taylor’s expansion of
Qn(~0) about #(7) , and the first order conditions for estimation of o(7),

(a12) IRy = 2[Q U - Q)]
= — 208 (U)M@ - 7)) + (8 - 8(n) M8 (MM — )
= va(d — B(7) ME(VR(F - 8(7)),

where M;"l('y) = Mn(ﬁ*('y),'y) -5 M(~) , uniformly in y € I .
Expanding each element of S (8,7) about f(7) and stacking we find

(A13) S (B7) = S (B(mm) — MH™(E(D - (7)) = — M™(y)a0 - i) ,
where  M*(7) —_ M(7), uniformly in 7 € T . (A13) and (A10) give
(A14)  JE(D - B(7) = - M()7S ()
= - M('r)_lh;;[hgl\/l('r)"lhb]"lth(‘/)"ls('r) :
(A12) and (A14) combine to yield

LRy(7) = S(0)'M(1) (b M0 hg) h (9 IS()

= §(7)’[th(7)_1h@]_1§('r) = C*(1) . o
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Proof of Theorem 4. A corollary to Theorem 3 is that 7y = Argmax LRn(fy) .
r

ve
Part (a) follows from LR (7) = C(y) and the CMT. Now
W, = W () = ClAgmax C(7)] = sup C(7),
7€l 7€l

and similarly for LMn . The results for Suan and LMIl follow directly from
Theorem 4 (b) (c¢) and the CMT. o

Proof of Theorem 6.

(a) v = Argmax LR (7) = Argmax C*(v) ;
vel veTl
(b) LR, = sup LR (7) = sup C¥(7) ;
7€l yel’
() W, = W,/ (7) = Cl[Argmax C¥(v)] ;
vel
LM, = LM (7) = C[Agmax C*(y)] ;
vel
(d) SupW_ = sup W (1) = sup C(1) ;
vyel’ vel’
(e) SupLM_, = sup LM (7) = sup C(y - o

vel’ el
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