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Abstract

We consider the problem of choosing the level of a public good when agents have single-peaked
preferences. We search for solutions satisfying Pareto-efficiency and population-monotonicity
(Thomson, 1983), the requirement that upon the arrival of additional agents, all agents initially
present be made weakly worse-off, or alternatively, that upon the departure of some of the
agents, all remaining agents be made weakly better-off. We characterize the class of solutions
satisfying these requirements. It is a subclass of the class of generalized Condorcet-winner
solutions (Moulin, 1980, 1984).

Keywords: Population-monotonicity, single-peaked preferences, generalized Condorcet-
winner solutions



1 Introduction

We consider the problem, first analyzed by Moulin (1980), of choosing the level of a public good
when agents have “single-peaked” preferences. We search for desirable methods, or solutions,
of associating a level of the public good with each economy, this level being interpreted as the
recommendation for that economy. We consider the model in a variable population environment and
investigate the existence of solutions satisfying “Pareto-efficiency” and “population-monotonicity.”
Population-monotonicity (Thomson, 1983) requires that upon the arrival of additional agents,
all agents initially present be made weakly worse-off, or equivalently, that upon the departure of
some of the agents, all remaining agents be made weakly better-off.

Such solutions do exist and our main result is a characterization of the class they constitute.
Each member of this class can be described in terms of a “target” level: If that level is efficient,
then it is chosen; otherwise the efficient level the closest to it is chosen. This is a subclass of

the class of generalized Condorcet-winner solutions characterized by Moulin (1980) on the basis of

1

“strategy-proofness.”! The fixed-population counterparts of these solutions are characterized by

Thomson (1993) on the basis of a certain property of “replacement-domination.”?

2 The Model and the Result

We consider the problem of choosing the level of a public good in an interval [0, M ].2 Our focus is
on situations in which the number of agents may vary, situations also considered in this context by
Moulin (1984). The formal model is as follows. There is an infinite number of “potential agents,”
indexed by the positive integers IN. Each agent 7 € IN is equipped with a continuous and “single-
peaked” preference relation R; defined over [0, M]. Let P; be the strict relation associated with R;,
and I; the indifference relation. The preference relation R; is single-peaked: There is a number
p(R;) € [0, M] such that for all 2,y € [0, M],if y < z < p(R;) or p(R;) < z <y, then zFy. Let

TR be the class of all such preference relations. A preference relation R; € R can be described in

!The requirement that for every agent, revealing her true preferences be a dominant strategy in the direct revelation
game associated with the solution.

2The requirement that when the preferences of one agent change, all other agents be affected in the same direction.

3We use a closed interval for technical convenience. Our result remains true if an open interval is used instead.



terms of the function r; : [O, M]|—[O, M] defined as follows: For all z € [0,p(R;)], ri(z) = ¥
where y € [p(R;), M) satisfies yI;z if such y exists, and r;(z) = M otherwise; for all z € [p(R;), M],
ri(z) = y where y € [0, p(R;)] satisfies yL;z if such y exists, and r;(z) = 0 otherwise. Let Q be
the collection of all finite subsets of IN. Given Q € Q, we designate the preference profile {R;};e0
by Rg. Given @ € Q, let R be the class of possible preference profiles for the group @. Given
Rg € R, let p(Rg) = minicq{p(R;)} and P(Rq) = max;cq{p(R;)}. Since the interval of possible
levels of the public good is fixed, an economy is simply denoted by Rg € R?, for Q € Q.

A solution is a function that associates a point in the interval [0, M| with each economy.

Definition. A solution is a function ¢ : UgegR¥—[0, M].

A level of the public good is (Pareto)-efficient for an economy if there is no other level that is
preferred by all agents and strictly preferred by at least one agent. Given @ € Q and Rg € R9,
let P(Rg) be the set of efficient levels for Rg:

P(Rg)={z € [0, M]] By € [0, M]s.t. Vie Q,yR;z, and i € Q,yPiz}.
The efficient set can be described in the following handy way:

P(Rq) = [p(Rq),P(Rq)].

We will impose two axioms on solutions. The first axiom requires that the chosen level be
efficient.

Efficiency. For all @ € Q, and for all Rg € R?, ¢(Rg) € P(Rg).

The second axiom requires that upon the arrival of new agents, all agents initially present be
made weakly worse-off, or equivalently as we noted earlier, that upon the departure of some of the
agents, all remaining agents be made weakly better-off. See Thomson (1992) for a survey of the
various applications of this condition and of related conditions.

Population-monotonicity. For all Q,Q’ € Q such that QCQ’, for all Ry, € R?' and for all
i €Q, p(Rq)Rip(Rqg)-*

*A weaker version of population-monotonicity is obtained by adding the hypothesis that Q' = Q U {:} for some
12 € . Our result remains true even for this weaker condition.




Thomson (1983) considers situations where the arrival of new agents is not accompanied by
an expansion of the opportunities available to the agents initially present and proposes the re-
quirement on solutions that all agents be made weakly worse-off by such arrivals. This is also the
“right” population-monotonicity condition for the current model since the feasible set is unchanged
when additional agents come in. In situations where the arrival of additional agents may entail a
restriction or an expansion of the opportunities available to the agents initially present, the nat-
ural generalization of this requirement is that all agents initially present be affected in the same
direction, as proposed by Chun (1986). One could argue, and the point is developed in Thomson
(1992), that in order to maintain the conceptual distinction between efficiency and the normative
condition of monotonicity, one should really use in general the condition that all agents initially
present be affected in the same direction when new agents come in. In the present model, together
with efficiency, such a condition would imply that the arrival of new agents makes all of the agents
initially present weakly worse-off, the condition that we have adopted above for simplicity.

Our main result is a characterization of the following one-parameter class of solutions,

& = {¢%la € [0, M]} : Given Q € Q and Rg € R€,

p(Rg) ifa<p(Rq)
goa(RQ) = a ifa e P(RQ)
P(Rq) ifB(Rq) < a.

Theorem 1. A solution satisfies efficiency and population-monotonicity if and only if it belongs
to the class .

Proof. Let ¢ be a solution satisfying efficiency and population-monotonicity. Let @* ¢ Q be
such that |Q*| = 2. Let Rg» € R?" be such that the preferred level of one agent is 0 and that of
the other agent M. Let a = p(Rg+). Let @ € Q be such that @* N Q = § and Rg € R?. Starting
from Rg+, consider now the arrival of the group Q. Then p(Rg-ug) = a; otherwise, the two agents
in @* would be affected differently, in contradiction with population-monotonicity. We proceed by
distinguishing between the {ollowing two cases:

Case 1: a € P(Rg). By efficiency, ¢(Rg) € P(Rg). Suppose, without loss of generality, that
p(Rq) < B(Rq). Let i € Q with p(R;) = p(Rg) and j € @ with p(R;) = p(Rg). Starting from

Rg+ug, consider now the departure of the group @*. Then ¢(Rg) = a; otherwise, agents ¢ and j



would be affected differently, in contradiction with population-monotonicity.

Case 2: a € P(Rg). Suppose, without loss of generality, that ¢ < p(Rg) and, by contradic-
tion, that ¢(Rq) # p(Rq). By efficiency, p(Rg) < ¢(Ro) < P(Rg). Let agent k ¢ Q* U Q be such
that p(Ry) € P(Rg) and aPrp(Rg). It can be shown by an argument similar to the one made
above that ¢(Ro-uquiry) = ¥(Rerug) and ¢(Rquiry) = ¢(Rq). Let j € Q with p(R;) = B(Rq).
Starting from Rgsygu{r}, consider now the departure of the group @*. Then, agents k and j are
affected differently, in contradiction with population-monotonicity.

We omit the proof that, conversely, any solution in ¢ satisfies the two axioms. G.E.D.

3 Concluding Remarks

3.1 Independence of the Axioms

(i) It is easy to construct solutions not in the class ® that satisfy efficiency but not population-
monotonicity. (i) The members of the following class ¥ satisfy the form of population-monotonicity
(discussed before the statement of Theorem 1), according to which, upon the arrival of new agents,
all agents initially present should be affected in the same direction. Note that these solutions also
satisfy “continuity” with respect to preferences, formulated by Sprumont (1991). Given @ € Q and
Rg € R9, let a € [0, M] and

[0,p(Rq)]  if a < p(Rq)
P(Rq) €  {a} if a € P(Rq)
[p(Rq), M] i B(Rq) < a,

where 1 is continuous.
3.2 Adding a Neutrality Condition

The model discussed here can be seen as the reduced model of an underlying two-dimensional pure
public good economy in which agents, with strictly convex and monotonic preferences, choose from
a constraint set with & boundary which is concave toward the origin. When the boundary is linear,
it is natural to require that the two goods be treated “neutrally,” a requirement which for the

reduced model, implies that the solutions be symmetric with respect to the mid-point.



GivenQ € Q,i € Q, and R; € R, let RT be defined by for all z € [0, M], 7 (z) = M —ri(M —z)
and R% = (R )icq-

Neutrality. For all @ € Q and for all Rg € R, if Rg = R, then p(Rq) = %‘5

Corollary 1. The solution goTI € @ is the only solution that satisfies neutrality, efficiency,

and population-monotonicity.
3.3 Siting a Public Facility

Theorem 1 can be extended to provide a solution to the more general problem of choosing an
alternative on a graph with a tree structure. An axiomatic analysis of this problem was carried out
by Holtzman (1990). An economy here consists of a finite number of agents equipped with single-
peaked preferences over the points of a tree. An application is when the tree represents a road
network, and the problem is that of siting a facility on that network. Think of neighboring towns
deciding on where to locate a facility, e.g., hospital, library, etc., that they will all use. In order to
use the facility, agents have to travel to it. In this context, the assumption of single-peakedness is
quite natural.

Now, consider the family of solutions defined as follows. Let a be a fixed point on the tree.
Given a profile Rg of preferences, let ¢(Rg) = a if a is efficient for Rq, and let p(Rg) be the
efficient point the closest to a otherwise (there is a unique such point). A simple adaptation of the
proof of Theorem 1 reveals that the solutions so defined are the only solutions satisfying efficiency
and population-monotonicity.

To prove this, start from a profile consisting of a number of agents equal to the number of
endpoints of the tree and specify their preferences so that for each endpoint there be an agent
whose preferred level is that endpoint. Let a be the choice for that profile. Now, the proof proceeds

as in Theorem 1.
3.4 Related Literature

The class of solutions & characterized in Theorem 1 is a subclass of the class of “generalized
Condorcet-winner solutions” introduced by Moulin (1980, 1984). To define that class, we first

define the median of (2¢ — 1) numbers, for ¢ > 1. Given X = {z1,...,229-1}, med X is the

[



point z* € X such that #{z; € X|z; < 2*} > ¢ and #{z; € X|z* < z;} > ¢. Each generalized

Condorcet-winner solution for the group @ € Q is obtained by taking the median of the

preferred levels of the members of ¢ and ¢ — 1 parameters. Given @ € Q and Rg € RY,

Jag,..-,0Q,q-1 € [0, M] s.t. C(Rg) = med{p(R1),...,p(Rq),a0,1,---,80Q,q-1}

In the variable population context, the number of parameters has to vary with the number of
voters and their values are in principle allowed to change. Accordingly, the first subscript of the
number ag; indicates that ag; depends on the group Q.

Moulin (1980, 1984) characterizes the class of generalized Condorcet-winner solutions mainly by

”5 efficiency, and strategy-proofness. Barbera and Jackson (1991) generalize

means of “anonymity,
Moulin’s result to the multi-dimensional case. Ching (1992) shows that strategy-proofness is solely
responsible for the median formula. His result can also be used to fully separate out the implications
of the different axioms in the earlier characterizations. Our approach leads to a more restricted

class of solutions in which the ¢ — 1 parameters are equal to a given number that is independent of

the cardinality.

®The one-man-one-vote requirement.
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