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Abstract

We consider the problem of fair allocation in economies with indivisible
goods. Our primary concept is that of an envy-free allocation, that is, an
allocation such that no agent would prefer anyone else’s bundle to his own.
Since there typically is a large set (a continuum) of such allocations, the need
arises to identify well-behaved selections from the no-envy solution. First,
we establish the non-existence of “population monotonic” selections. Then
we propose a variety of selections motivated by intuitive considerations of
fairness.

Journal of Economic Literature Classification numbers: D30, D51, D60,
D61, D63, DT1.

Keywords: Fair allocation. Indivisible goods. Population-monotonicity.
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1 Introduction

We consider the problem of allocating a finite number of indivisible “ob-
jects” and a single infinitely divisible good, thought of as money, among a
group of agents with equal rights on these resources. An example is the
allocation of jobs among workers together with the determination of their
salaries. Another example is the distribution of the various indivisible parts
of an estate (paintings, silverware), and of the divisible part (cash, securi-
ties) among a group of heirs. A solution is a systematic method of solving
all such problems: a solution associates with each problem of fair allocation
a set of feasible allocations, seen as recommendations for that problem. A
fundamental example is the no-envy solution, which selects the set of al-
locations at each of which no agent prefers the bundle of any other agent to
his own.

The no-envy notion is quite appealing intuitively!. Under our assump-
tions, 1t is even fully compatible with efficiency since an envy-free allocation
is necessarily efficient. However, the set of envy-free allocations is often large,
and in such situations the no-envy requirement is insufficient. Our objective
is to identify desirable, and preferably “small”, subsolutions of the no-envy
solution.

In previous work (Tadenuma and Thomson, 1991), we followed the ax-
iomatic approach, focusing on a certain property of consistency?. We showed
that, although the no-envy solution is consistent, essentially no proper selec-
tion is. Here, we will look for solutions satisfying the following monotonicity
property with respect to the number of agents: when new agents come in,
while resources remain the same, all agents initially present are affected in
the same direction; they all lose or they all gain. Our first main result is that
this approach results in an impossibility too.

We then propose selections, directly based on intuitive considerations of
fairness. We introduce two ways of measuring how well each agent is treated
in relation to each other agent at an envy-free allocation. First, given the
total resources received by the pair {, 7}, we identify the extreme points of

1The fast-growing literature on the no-envy concept and related concepts is reviewed
in Thomson (1994b).

2A solution is comnsistent if the recommendation it makes for an economy is never
contradicted by the recommendation it makes for “reduced” economies obtained from it
by imagining the departure of some of the agents with their alloted bundles.



the set of envy-free allocations in the two-person economy consisting of these
two agents and these resources. The distance between the two extreme points
can be seen as a measure of the “equity surplus” available to the two agents.
We then compute the percentage of the equity surplus that is received by
each agent.

Alternatively, given a pair of agents {¢,7}, we determine the amount of
money necessary to add to agent j’s bundle so that agent 7 be indifferent
between his bundle and agent j’s revised bundle. We propose to use this
“compensation” as a measure of how well agent 7 is treated in relation to
agent 7.

Equipped with these two measures, we then construct solutions that treat
agents as equally as possible.

2 The model

Let Q be an infinite set of agents, with members denoted by 4, 7,..., and A
an infinite set of objects, with members denoted by «, 3, .... Each agent
can consume at most one of these objects. There is also a single infinitely
divisible good called money. An economyisalist e = (Q, A, M, Rg) where
() is a finite set of agents drawn from Q, A is a finite set of objects drawn
from A, and M € R is an amount of money. We assume that the number of
agents, |@], is greater than or equal to the number of objects, |A|. If there
are more agents than objects, some of the agents receive no object. In this
case we say that these agents receive “the null object,” denoted by 0.

Each agent i € @) is equipped with a preference relation on {A U 0} x R,
denoted by R;, P; denoting the strict preference relation associated with R;
and I; the indifference relation. The symbol Rg denotes the list (R;)icq-
A typical consumption for an agent is a pair («,mo) composed of object
a € {AU 0} and mg units of money. As in most of the recent literature
on the subject, we let mg be positive or negative; we might want mg to
be negative when, for example, the cost of providing the objects has to be
covered by the agents®. Each preference relation R; is assumed to be reflexive,

3Moreover we allow mg to be unbounded below. Under this assmption on the consump-
tion set together with the assumptions on preferences, we can guarantee the existence of
envy-free allocations, as established by Alkan, Demange and Gale (1991). Note, however,
that our selection methods can be defined on other classes of economies in which envy-free



transitive and complete, and such that:

(a.1) for all @ € {AU 0}, and for all m;, m; € R, if m; > m!, then
(v, mi) Py, m)

(a.2) for all o, B € {AUD}, and for all m; € R, there is m! € R such that
(a, ) 1i( B, m).
4

Let &€ be the class of all economies®.

Starting from an economy (Q, A, M,Rg) € &, we will have occasions
to consider economies involving some subgroup ) of (), some subset A’
of A, and some amount M’ of money. Then the notation (@), A’, M’, Rg)
designates this economy in which the preference relations of the members of
()’ are restricted to the domain {A’U 0} x R.

Let e = (Q, A, M, Rg) € € be given. A feasible allocation for e is a
pair z = (o,m) where 0 : @ — {A U0} is a mapping such that |c~(a)] = 1
for all @ € A, and m is a vector in R? satisfying >iegmi = M. Mapping o
assigns objects to agents so that |Q)|—|A| agents receive the “null object”, and
each of the other agents receives exactly one object in A. Agent 4’s bundle is
denoted by z; = (o(2), m;) for all 7 € @), and we also write a feasible allocation
z as z = (2)ieq = ((¢(¢),m:))icq When no confusion may arise. Let Z(e) be
the set of feasible allocations for e.

We would like to be able to make recommendations for all problems in the
class just described. A solution ¢ is a correspondence that associates with
each economy e € £ a nonempty subset ¢(e) of Z(e). A solution provides
for each economy a set of feasible allocations regarded as desirable for the
economy. A familiar example is the following:

The Pareto solution, P: For all e = (Q,A4,M,Rq) € &, Ple) = {z €
Z(e) | Bz' € Z(e) such that Vi € Q, z[R;z;, and Tt € Q, 2/ Pz}

allocations exist, e.g., a class of economies in which the consumption of money is bounded
below and there is “sufficiently large” amount of money (Maskin, 1987, Alkan, Demange
and Gale, 1991, and Aragones, 1992).

*This model was examined by Svensson (1983), Maskin (1987), Alkan, Demange and
Gale (1991), Tadenuma and Thomson (1991), Alkan (1989), Moulin (1992), and Aragones
(1992). Luce and Raiffa (1957), Kolm (1972), Crawford and Heller (1979), van Damme
(1987), Tadenuma and Thomson (1993a, b), and Moulin (1990) studied versions of this
model.



We are interested in solutions satisfying the following fundamental notion
of equity: simply, no agent prefers the bundle of any other agent to his own

(Foley, 1967).

The no-envy solution, F: For all e = (Q, A, M,Rg) € €, F(e) = {2 €
Z(e) |\V/Z,] € Q,ZiRiZj}.

In classical economies, that is, economies where all goods are infinitely
divisible, the set of envy-free allocations and the set of Pareto-efficient al-
locations are not usually related by inclusion. In the class of economies
considered here, any envy-free allocation is efficient, as shown by Svensson
(1983).

Although the no-envy concept is very attractive intuitively, the set of
envy-free allocations may be quite large, and in these situations the no-envy
solution does not make a precise enough recommendation. This is what
motivates the search for well-behaved selections from the no-envy solution.
We will attack this problem on two fronts, by first examining the existence
of selections satisfying a property of population-monotonicity; this approach
resulting in an impossibility result, we will then define selections based on
simple considerations of fairness.

3 Population-monotonicity

When the number of agents with equally valid claims on some fixed resources
increases, it seems quite natural to require that all of the agents initially
present should lose. This property, which was examined by Thomson (1983)
in the context of bargaining theory, was shown by Alkan (1989) to be violated
by all selections from the no-envy solution in the present context (see also
Moulin, 1990).

However, consider the following variant of this property, first studied by
Chun (1986) in the context of quasi-linear choice problems: if new agents
comein, all of the old agents gain, or they all lose. This version is particularly
useful when there are public goods or externalities, and in such contexts it
can sometimes be met when the stronger version cannot. Should we expect
a possibility result here too? Our first result is that unfortunately there are
no selections from the no-envy solution satisfying this property. In fact, an
impossibility holds even if we allow solution correspondences and only require

4



that there be two allocations, one among the allocations the solution would
select in the initial economy, and one among the allocations it would select
in the enlarged economy, such that all agents in the initial economy prefer
one to the other®.

Weak population-monotonicity: For all e = (Q, A, M, Rg) € € and ¢/ =
(Q, A, M',Rp,), if Q@ C Q" and (A, M, Rg) = (A", M, Ry,), then there are
z € p(e) and 2’ € p(e') such that either z;R;z} for all i € Q or 2/R;2; for all
1€ Q.

Theorem 1 There is no weakly population-monotonic subsolution of the
no-envy solution®.

Proof: Let e = (Q,A,M,Rg) € & be such that Q = {1,2}, A =
{a, 8}, M = 0, and for all mg € R, (o, mo)1(8,mo)I1(0,mo + 1) and
(e mo) (8, mo) a0, g+ 10). Then F(e) = {((@,0), (8, 0)),((8,0), (e, 0))}.
Let ¢ = (Q', A, M, Rg:) be such that Q' = {1,2,3,4} and or all mo € R,
(o, mo)I3(B,mo)I3(0, mo + 4), and Rs = Ry.

We claim that if z € F(e) and 2’ € F(¢€), then 2] P1z; and 25 P25, Indeed,

at 2/,

(1) Since 2’ € P(€'), agent 2 receives one of the two objects.

(ii) Since 2’ € P(¢’), either agent 3 or agent 4 receives the remaining object.
Because they have identical preferences, in order for envy not to exist
between them, the one who does not receive an object should receive 4
more units of money than the other.

(iii) For envy not to exist between the two agents receiving the objects, they
receive the same amount of money. The same holds for the two agents
who receive the null object.

Thus, z; = (0,2) and 25 = (o, —2) or (8, —2), and therefore, 2} Pz and
z9 Pz, Q.E.D.

SAlkan (1989) examines other monotonicity properties. For a survey of the various
notions of population-monotonicity and of their applications, see Thomson (1994a).
6Theorem 1 was conjectured by H. Moulin.



4 Refinements based on intuitive considera-
tions of fairness

In order to achieve some refinement of the set of envy-free allocations, we
now introduce two alternative measures of how well each agent is treated
in relation to each other agent. Omne is based on the notion of an “equity
surplus” (Section 4.1), the other is based on the notion of a “compensation”
(Section 4.2). These measures are then used to define selections from the
no-envy solution (Section 4.3).

One of our objectives in formulating these definitions was to remain within
the ordinal framework to which the no-envy concept owes much of its success.
Just like the no-envy concept, our selections require only information about
agents’ preferences. This is not because we feel that cardinal information
about agents’ “intensities” of preferences are irrelevant to the problem of fair
allocation, but rather because we do believe that it is important to see how
far an ordinal approach can take us.

4.1 Equity surplus

Our first proposal is based on the observation that with each two-person
economy ({z,7},{e, B}, Mo, {R;, R;}) can be associated a number measuring
the “size” of its set of envy-free allocations. Indeed, for any such economy,
the assignment of objects is the same at all envy-free allocations except for
a degenerate case (Proposition 1). Then, we determine, for either one of
the two agents, the difference in the amounts of money he holds at his least
preferred and most preferred allocations in the set. This difference, which we
refer to as the “equity surplus” for the two-person economy, indicates how
much freedom we have in solving the distribution problem without generating
envy. Finally, we compute the share of that surplus received by each of the
two agents.

Proposition 1 for all e = (Q), A, M, Rg) € € with Q = {i,5}

(i) if there is 2 = {%;, %;} € Z(e) such that Z;1;z; and %;1;Z;, then F(e) =
{%,%'} where 2' = (%;,%2;); '
(ii) otherwise, for all z = (o,m), 2z = (¢/,m') € F(e), o =o',



Proof: Part (i). Clearly, 2,2’ € F(e). Let 2 = (5,7) and 7 = ((7’ m').
Let z = (o,m) € ( ) be such that 2 # Z,2". Then, either (1) 0 = & and
m # i, or (2) o = &' and m # ', If (1) holds, then for one agent in Q,
say agent i, m; < m;. By feasﬂnhty, m; > ;. Then, z; = (0(j),m;) =
(5(3), ) PG ), i) (3 0), ) Pi(5(), i) = (o)) = . Henee, = ¢
F(e). By the same argument, if (2) holds, then z ¢ F(e). Thus, F(e) =
{2,2'}.

Part (ii). Assume that there is no z € Z(e) such that zlz; and 21,2,
Let z = (o,m),2' = (¢/,m) € F(e). Then, at least one of the agents strictly
prefers his own bundle to the other at z. Let us assume z;P;z;. Suppose
o # o'. Then, o(i) = o'(5), and o(j) = o'(s). If m; 2 m;, then m} <
iy and 2 = (7)) = (0(0) m)Ri(o0), mi) o3, m) B o 3), m)
(0'(i),m}) = 2. Hence, 2’ ¢ I'(e). If m} < m;, then m, > m;, and 2|
(o (0)sd) = (0(7), ) By(o (), mg) By(o (i), me) P (i), mt) = (o), m) =
2. Thus, we have 2’ ¢ F(e), which is a contradiction. Q.E.D.

Hl

In order better to understand the significance of Proposition 1, it is worth
noting that if || > 2 the assignment of objects need not be the same at all
envy-free allocations, as shown next.

Proposition 2 There exists e = (Q, A, M, Rg) € £ with |Q| > 2 such that
(1) there is no z € Z(e) with %,1;z; for all i,j € Q, and
(ii) there are z = (o,m), 2’ = (¢',m’) € F(e) with o # o'.

Proof: Let e = (Q, A, M, Rg) € € be such that @ = {1,2,3}, A = {«, 8,7},
M =6, and (o, 1)11(8,2) (7, 4), (e, 4)11(8,3)11(7,5), (e, 2)[2(8,1) I2(7, 4),
(@, 3)1,(8,4)I5(7,5), and («,3)I5(8,3)I5(7,0). Let z = ((a,1),(8,1), (7,4))
and 2’ = ((8,3),(«,3),(7,0)). Then 2,2’ € F(e). Since 2| P 2y, there is no
Z € Z(e) such that %[;Z; for all 1,7 € Q. (By the same argument as in the
proof of part (i) in Proposition 1, if there is such Z, then for all z € F(e) and
all 1 € @, z;1;Z; must hold.) Yet we have o # o', Q.E.D.

Similarly, the assignment of objects need not be the same at all efficient

allocations, even in two-person economies’.

"However, in an economy with “quasi-linear” preferences (as defined in section 4.2),
the assignment of objects is the same at all efficient allocations except for the degenerate
case (i) in Proposition 1.



Proposition 3 There exists e = (Q, A, M,Rq) € & with Q = {i,5} such
that
(1) there is no z € Z(e) with 2 1,Z; and %;1;%;, and
(ii) there are z = (o,m), 2’ = (o,m’) € P(e) with
o %o

Proof: Let e = (Q,A, M,Rg) € € be such that Q@ = {1,2}, A = {a, 8},
M = 6. Let («,3)11(8,4), (,6)1(8,5), (a,1)15(8,2), and (e, 4)12(B,3).
Let z = ((e,3),(8,3)) and 2’ = ((B, ) (e, 1)). We claim that z,2’' € P(e).
Indeed, z € P(e) since z € F(e) and F(e) C P(e). Now if 2’ is Pareto-
dominated by some allocation z”, then 2" = ((a,m1),(B,mf%)) for some

1> 6 and m% > 2. But since M = 6, we have 2" ¢ Z(e). Q.E.D.

Givene = (Q,A,M,Rq) € €,z = (0,m) € F(e),and 1, j € Q withi # j,
let m;;(z) € R and mj;(z) € R be the amounts of money such that
(i) mi;(2) + mji(z) = mi + m; and
(i) (0(0), mes (N (o (5), ().

By assumptions (a.1) and (a.2) on preferences, m;;(z) and mj;(z) exist and
are unique. Symmetrically m; {(#) € R and m;;(z) € R are defined.

By Proposition 1, the two allocations ((o(z), m;;(2)), (¢(5), mji(2))) and
((o(z),mij(2)), (0(j), m;;(2))) are indeed the “end-points” of the segment of
envy-free allocations for the economy ({7, 7}, {o(¢), o(j)}, mi+m;, { R, R; })3.
The former allocation is the worst for agent 7 and the best for agent 5 in this
set, and the latter the opposite. Obviously, m;;(z) — m;;(2) = myi(z) —
m;i(z)°. Let sy ;3(2) denote this difference. The number sgi,;3(#) is the
equity surplus for {,7} at =

Now, we quantify how fairly agent ¢ is treated at z relative to agent j
by the proportion of the equity surplus that agent ¢ receives in the economy
([, 71 {0(0), 00V i + 5y LRe, Ry }). Lt pi(2) = (mi — miy () 55053(2)
if s3(2) # 0, and pij(2) = if sg;3(2) = 0. Note that 0 £ p;;(2) £ 1,
0 < pji(z) £ 1 and p;;(z) + pji(2) = 1. The number p;;(2) is agent i’s
share of the equity surplus for {,7} at =

8They are also the two egalitarian-equivalent and efficient allocations (Pazner and
Schmeidler, 1978) for this economy.

®In the degenerate case (i) in Proposition 1, rij (2) — my;(z) = m;i(z) —mys(2) = 0 for
all z € F(e).



When sy ;3(z) = 0, each of the two agents is indifferent between his
bundle and the other’s at z, and in that sense, both agents are treated equally.
This is the reason why we define p;j(z) = 1 if s;;;3(2) = 0. However, no
matter what value we assign to p;;(z) when sy ;3(2) = 0, there arises a
problem: discontinuity of the share function p;; (with respect to the second
argument) at z where s;;1(2) = 0. We describe in Appendix A an example
in which p;; is not continuous'®. Continuity is a natural requirement for a
good measure: Small perturbations of a money distribution should not lead
to drastically different values of the measure. In order to obtain this property,
we replace p;; with the following continuous approximation.

Given § > 0, define a function ° : Ry — [0,1] by #¥(z) = 0 if 2 > 6,
and t%(z) = 1 — £if 0 £ 2 < 6. Then define §;;(z) = %t5(3{i,j}(z)) +[1 —
t*(s4i3(2))lpij(2). Note that we can set § arbitrarily close to 0, and that for
all z € F(e) such that s;;;1(2) = 6, pij(z) = pij(z). That is, p;;(2) is the
same as p;;(z) except where the equity surplus sg; ;3(2) is “very small”.

When the equity surplus is sufficiently small, and as it approaches zero,
the importance of how the surplus be divided is decreasing. Thus we put
less and less weight on the exact share of the surplus when we evaluate the
allocation. And at the limit we judge that the two agents are treated equally.

4.2 Compensations

The second measure we propose is the distance that agent i is from
envying agent j at z, that is, the maximal amount of money that can be
added to the bundle of agent j without causing agent ¢ to envy him. We
quantify how well agent ¢ is treated in relation to agent j by this number.
Let d;;(2) = max{mo € R|zR;(c(j),m; + mo)}.

Alternatively, we could take the maximal amount of money that can be
subtracted from the bundle of agent ¢ without causing him to envy agent
J. From a conceptual viewpoint, we do not feel that there is much of a
difference between the two approaches. However, it should be noted that the
two selection methods based on them will in general give different answers.
A special case where they would not is when preferences are “quasi-linear”:
agent ¢’s preferences are quasi-linear if for all (e, m;), (8, m}) € {AUD} xR,

10The discontinuity problem does not arise for the second measure, d;;, proposed in the
next subsection.



for all t € R, if (o, m;);(8, m}), then (o, m; + ) L(8, m} + ).

4.3 Selections

Now, given an economy e = (@, A, M, Ry) and an allocation z € F(e), we
keep the complete record of how well each agent is treated in relation to
each other agent. This record contains |@)| X (|@] — 1) such numbers.
Let p(2) = (pij(2))ijeqz; € RIS tand d(z) = (dij(2))ijeqizi €
RIQIx(Q1-1) By taking the average of the numbers pertaining to a given
agent, we obtain a measure of how well this agent is treated on awver-
age in relation to all the other agents. Let pi(z) = m%lZJ'EQ,#iﬁii(z)v
and df(2) = i Djeqizidis(2). Let 5°(2) = (p#(2))ieq € R%, and
d*(z) = (d}(2))icq € RY.

We have four distinct records on the basis of which we can evaluate the
allocation. Using each of these records, we propose to treat agents as equally
as possible. A most natural way to do this is perhaps to choose allocations
whose associated record has maximal minimum coordinate !,

The equal-share solution, S: For all e = (Q, A, M, Rg) € €, S(e) ={z €
Z(6)| minmec”# ﬁ,‘j(z) z minm’EQﬂ'#j ﬁ,-j(z’) for all 2’ € Z(e)}

The equal-average-share solution, S%: For all e = (Q,A, M, Rg) € €,
S*(e) = {z € Z(e)| minyeq pf(2) 2 mineg pi(7) for all 2/ € Z(e)}.

The equal-compensation solution, C: For all e = (Q, A, M, Rg) € €&,
Cle) = {z € Z(e)|min; jeq,ix; dij(z) 2 min; jeq.z; dij(2') for all 2’ € Z(e)}.

The equal-average-compensation solution, C?%: For all e =
(Q,A,M,Rg) € €, C%e) ={z € Z(e)| minyeg d?(z) = minjeg d?(z’) for all
z' € Z(e)}.

1Diamantaras and Thomson (1990), following Chaudhuri (1986), measured the distance
that an agent is from envying another agent in classical economies by the maximal rate
of proportional expansion of that agent’s bundle compatible with no-envy, and proposed
the subsolution of the no-envy solution defined by maximizing the minimum coordinate
of the list of such distances for all pairs of agents.

10



A further refinement can be obtained by using the lexicographic order:
For any two vectors x, y € R", say that ¢ ts lexicographically greater
than y if 21 > yy, or [z1 =y and 2 > ys), ..., oF [T1 = Y1, ey Tnet = Yno1,
and z, > y,|. First, rearrange the coordinates of the record associated
with each allocation in increasing order. Then, select the allocations whose
reordered records are lexicographically maximal. In social choice and game
theory, maximization (or minimization) in the lexicographic ordering is a
standard procedure to perform selections!?.

Note that none of the solutions proposed above depends on utility repre-
sentations, and for two-person economies, each solution chooses the allocation
at which the two agents are treated equally according to the corresponding
measure!s,

Other proposals of refinements were made by Alkan, Demange, and Gale
(1991), who consider the general case, and Aragones (1992), who considers
the quasi-linear case. These refinements are mainly based on the maximin
criteria.

The next theorem establishes the existence of allocations satisfying our
definitions.

Theorem 2 The equal-share solution, the equal-average-share solution, the
equal-compensation solution, and the equal-average-compensation solution

are all well-defined: For alle € £, 5(e), 5%(e), C(e) and C*(e) are non-empty.

The proof of Theorem 2 is standard. It relies on the following lemmata,
‘the proofs of which are relegated to Appendix B.

Let e = (Q, A, M,Rq) € € be given. Define £ (e) = {0 : Q — {AU
0} | (o,m) € F(e) for some m € R?}. Let o € XF(e) be given. Then define
F?(e) = {m € R? [ (o,m) € F'(e)}.

Lemma 1 For all e € £ and all 0 € X (e), Fo(e) is compact.

Given e = (Q, A, M, Rg) € £, 0 € XF(e), and 1,5 € Q with ¢ # 5, define
the function p : F'7(e) — R by p%(m) = pi;(o,m).

12See the lexicographic maximin social choice rule (Sen, 1970) and the nucleolus (Schmei-
dler, 1969).

Tadenuma (1989) establishes the single-valuedness of the equal-average-compensation
solution.

11



Lemma 2 For all e = (Q,A,M,Rg) € €, all 0 € £ (e), and all 1,5 € Q

with 1 # j, the function pf; is continuous on F'7(e).

Proof of Theorem 2: Let e = (Q,A,M,Rg) € & be given. By Lemma
2, for all 0 € LF(e), min; jeq iz PY; is a continuous function on F7(e). It
follows from Lemma 1 that for all ¢ € £ (e), there exists m(c) € F7(e)
such that for all m' € F7(e), min; jeqizj p7;(m (o)) 2 min; jeq iz; p7(m).
Since Y7(e) is a finite set, there exists o* € % (e) such that for all
o € XF(e), minijeqiz; 7 (m(c*)) 2 min;jeqiz; 5 (m(o)). Clearly, for
all (o,m) € F(e), min;jeq,ix;j Pij(0™,m(0”)) 2 minyjeq,iz; Pij(o,m). Hence

(o*,m(c*)) € S(e).
The proofs of the non-emptiness of 5%(e), C'(e) and C*(e) are analogous.
Q.E.D.

5 Conclusion

We have considered the problem of defining selections from the no-envy solu-
tion in economies with indivisible goods. The need for such selections arises
because economies often admit large sets of envy-free allocations. We have
proposed solutions based on intuitive considerations of fairness. The reason
for such a direct approach is that the axiomatic approach followed in an ear-
lier paper (Tadenuma and Thomson, 1991), and in section 2 has led to a dead
end. Indeed, we had shown there that there is no proper subsolution of the
no-envy solution satisfying a certain consistency property, stating that no
recommendation made by a solution is ever contradicted by any recommen-
dation it would make for the problem of distributing among any subgroup
the resources they have collectively received under that initial recommenda-
tion, and we show in section 2 of the present paper that there is no weakly
population-monotonic selection from the no-envy solution. These results in-
dicate that it will be impossible to define subsolutions of the no-envy solution
that are well-behaved in all respects. Nevertheless, intuitive considerations
of fairness do allow for the definition of appealing solutions.

We have considered economies in which the number of agents is at least
as great as the number of objects. If there are more objects than agents,
then the set of envy-free allocations is not in general included in the set
of efficient allocations. If we enlarge the class of economies to allow this

12



case, then we should also look for selections from the intersection of the no-
envy solution and the Pareto solution. Since the no-envy solution coincides
with the intersection of the no-envy and the Pareto solutions on the class of
economies considered in the paper, and Theorem 1 is an impossibility result,
it still holds true on this enlarged class of economies. On this enlarged
class, we can still define selections from the intersection of the no-envy and
the Pareto solutions in the same manner. We can also establish the non-

emptiness of each of these solutions'%.

14Alkan, Demange and Gale (1991) showed that the intersection of the set of envy-
free and efficient allocations is non-empty. Thus, all we need to show is that given e =
(Q,A4, M,Rg) and o : Q — {AUD}, the set P7(e) = {m € R?|(c,m) € P(e)} is closed in
R
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Appendices

A An example in which the share function is not con-
tinuous

Let ¢ = (Q,A,M,Rq) € £ be such that @ = {1,2,3}, A = {a, 5,7},
M = 15; and

(i) for all v € {1,2}, (o, 5)1:(B,5)Li(v, 10),

(ii) for all € >0, (e, 5 — €)11(8,5 — €)[1(7y,10 — €), and
(a75 - %G)IZ(ﬂa 5 — 6)12(77 10 — 6)7

(111) (Oz, 10)]3(67 10)]3<77 5)

Let 0 : @ — A be such that o(1) = «,0(2) = 8, and o(3) = 7. Let
m = (3,5,5). Then, (o,m) € F(e) and s(19,(c,m) = 0,. Let {¢"} be a
sequence such that 0 < € < 1 for all n € N, and lim,,_.o €* = 0. For each
n €N, let m" = (5—¢",5—¢",542¢"). Then, for all n € N, (o,m") € F(e),
and lim, . m" = m. Now for all n € N, sg (0, m") = %e”, Mgy —
myy(o,m™) =0, and p1a(o, m™) = 0. Hence, lim,—,o p12(c,m") = 0. Thus, if
p12(0,m) # 0, the function py5 is not continuous with respect to the second
argument at (o, m).

Let p1a(o,m) = 0. Consider the sequence {m'™} such that for each n € N,
m'™ = (5 — 2" 5 — "5 + 3¢"). Then, for all n € N, (o,m™) € F(e),
limy, 0o m™ = m, and lim, o p12(o, m™) = 1 # pra(o,m).

Therefore, no matter what value we assign to pi2(o, m), the function p;o
is not continuous with respect to the second argument at (o, m).

B Proofs of Lemmata
Lemma 1 For all e € € and all o € X (e), F°(e) is compact.
Proof: Let ¢ = (Q,A,M,Rg) € € and o € %F(e) be given. First, we

show that the complement of F7(e), (F7(e))° is an open set in R?. Let
m € (F7(e))°. Then, there are ¢, € Q such that (o(5), m;) P; (o(¢),m;). Let
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mj € R be such that (o ( ),m;)Li(0 (i), m;). By assumptions (a.1) and (a.2),
m; is well-defined and m; < m;. Let m; = (m; + m;)/2 and let m; € R
be such that (o(z),m;)I;(0(j),™m;). Again by (a.1) and (a.2), 7, exists and
m; > m;. Observe that (o(j5), m;)Pi(o(7),m;);(0(i), M) Pi(o(z), m;).

Let € = min{(m; — m;),(m; — m;)} > 0. For all m' € HQ, if
d(m',m) < e where d(m’,m) is the Euclidean distance between m’ and
m, then m; > mjme 2 m; and m! < m; + ¢ < 7, and hence
(o13), 1) P 7)) (i) ) i (3), ). Thus 7! € (F*(e))e. There.
fore (F”( ))¢ is open in R?, and F“(e) is closed in R%.

Next we show that F7(e) is bounded in RY. Let i € @ be given.
For each j € @, if (o(z), M)R;(0(5),0), then let m;(R;) =
it (o(4),0)P;(o(2), M), then let m;(R;) € R be such that (a()
mi(R;))1;(0(j), —mi(R;)). By assumptions (a.1) and (a.2), m;(R;) is Weﬂ—
defined and nonnegative. Note that (o(i), M + m(R;)) R; (6(7), —mi(R;))
always holds. Let M; = M + 3, mi(R;).

We claim that for all m € F(e), and for all i € Q, m; < M,.
To establish the claim, suppose, on the contrary, that for some ¢ €&
Q, m; > M, By feasibility, Yieomj = M. Hence, Y ,,,m; =
M —-m; < M- M, = —34mi(R;). Thus, there is j # i such
that m; < —m;(R;). It follows that (o(2),m;)P;(o(i), Mi)R;(o(i), M +
mi(R;))R;(0(7), —mi(R;))P;i(o(j), m;), and we have m ¢ F(e), a contra-
diction. Hence we also have that for all « € @, m; = M — 3", .,m; =

and

M — 3 M;
We have shown that F7(e) is closed and bounded in R?, and hence it is
compact. Q.E.D.

Lemma 2 For all e = (Q,A,M,Rq) € &, all 0 € ©F(e), and all 4,5 € Q

with 1 # j, the function pZ; is continuous on F(e).

Proof: Let e = (Q,A,M,Rq) € €, 0 € ©F(e), and 4,5 € Q with i # j be
given. Let m € F7(e). We distinguish two cases.
Case 1: sy ;(0,m) > 0.

Let {m"} be a sequence such that m™ € F7(e) for all n € N and
lim,— 0o Mm"™ = m.

Let n € Nbe given. Recall that (o(z), m;; (o, m"™))I;(0(5), mji(c,m™)) and
(o(2), m;;(o,m))(c(5), mji(o,m)). It follows from assumption (a.1) that the
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sign of (m;;(0, m"™) — my;(o,m)) is also the sign of (mji(o,m™) — mi(o,m)).
Hence,
mi; (o, m") — my;(o, m)|

|

(m;(o,m") — my;(o,m)) + (Mji(o,m™) — (o, m))|
= |(mi;(0,m") + mji(o,m")) — (my;(o,m) + mji(o,m))

= |(m} +m]) — (mi + my)|

From the above inequality, we have lim, . [m;; (0, m") — my;:(o,m)| <
limy oo [(Mmf + m}) — (m; + my)| = 0. Hence, lim,_ e my(o,m") =
m;;(o,m). By the same argument, lim,_., mi;j(o, m™) = m;;(o0,m). There-
fore, lim, . 53ij1(0,m™) = sg (0, m) and lim, oo (m? — m;;(o,m")) =
m; — m;; (o, m). Since sy; j3(z) # 0, we have

m; _mij(aa m)

sgy(o,m)

dim pi;(o,m") = = pij(o,m)

Because the function % : Ry — [0,1] is continuous,

Jim 57 (m") = lim pij(o,m")

1
= 5 lim (s y(o,m™) + [1 = lim (s, m"™)] lim pij(o,m")
1

= 3t (s(0m)) + [1 = (sg3,13 (0, m))lpig(o, m) = §;(m)

Thus the function pf; is continuous at m.
Case 2: sy jy(o,m) =0.

Let {m"} be a sequence such that m™ € F7(e) for all n € N and
limy o m™ = m. As in Case 1, lim,_, 54; (0, m") = s;3(0,m) = 0. Be-
cause the function ° : Ry — [0,1] is continuous, lim,_,e t*(sg (0, m™)) =
(s p(o,m)) = 1. Since 0 < pi(o,m™) < 1 for all n € N, we have
limyoo[1 — (5451 (0, m™))]pij(o, m™) = 0. Hence,

ot m 1., n : n n
Jim 75 (m") = 5 lim (s (0,m™) + lim [1—#(sg;,53 (0, m™))pij (o, m™)
1 ~T
= 5 = pij(m)
Thus the function pf; is continuous at m. Q.E.D.
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