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Abstract

The objective of this work is to present a principle that has recently played a
fundamental role in axiomatic analysis, and a converse of this principle, which
has also played an important role. They are now most commonly known un-
der the names of consistency and converse consistency. We survey
the applications of the principles to a variety of problems in game theory,
economics, and political science. They are bargaining problems, coalitional
form games, both with and without transferable utility, and strategic games;
bankruptcy and taxation problems, quasi-linear cost allocation problems,
and pricing problems; fair division in classical economies, in economies with
indivisible goods, and in economies with single-peaked preferences; appor-
tionment problems, and finally matching problems. We also present related
issues and sketch directions for further research.
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Part 1

CONSISTENCY AND ITS
CONVERSE

1.1 INTRODUCTION.

The primary objective of this monograph is to describe the role played by
a fundamental principle in the comparative study of solutions to decision
problems; we will refer to it as the consistency principle. This principle
unifies important developments that have taken place recently in diverse
areas, ranging from abstract models of game theory to concrete models of
fair allocation, taxation, apportionment, and others. A secondary objective
is to present a converse of this principle, which we will simply name the
converse consistency principle.

Although most of the literature reviewed here appeared in the last few
years, the consistency principle itself is very old. In fact, it is likely at the
root of a 2000 year-old solution to the problem of adjudicating conflicting
claims.

A deciston problem is given by a list of agents together with a set
of alternatives available to them, and their preferences defined over this
set. These preferences conflict. A solution associates with every decision
problem D in some admisstble domain D an outcome z in the feasible
set of that problem; z is called the solution outcome of D. Depending
upon the context, the solution may be seen normatively, as providing the
recommendation that an impartial arbitrator could make on how the problem



should be solved, or it may be meant to describe or predict how the problem
would be solved by the agents on their own. Bargaining problems and
bargaining solutions on the one hand, resource allocation problems
and allocation rules on the other, are canonical examples illustrating these
general notions.

Two main methodologies have been adopted in the study of solutions.
One is aziomatic. Appealing properties of solutions are formulated as ax-
toms, and the existence of solutions satisfying the axioms is investigated.
Such studies often result in “characterization” theorems, that is, theorems
identifying a particular solution, or a class of solutions, as being the only
solution, or the only class, to satisfy a given list of axioms. According to this
methodology, the primary concepts are the properties of solutions; properties
are used as building blocks in the construction of solutions. The literature
on bargaining that makes use of this methodology is extensive.

The other methodology proceeds in the opposite direction. It starts with
solutions, which are chosen on the basis of the intuitive appeal of their defini-
tions or as formal representations of schemes encountered in actual practice.
Of course, it is usually asked whether each particular solution satisfies basic
properties of interest, but the focus is not on properties. As a whole, the
study of resource allocation in economic environments has been conducted
in this manner.

However, the last few years have seen a considerable expansion of the uses
of the axiomatic method. Significant progress has been made in the study
of models to which it had been traditionally applied, and a variety of new
classes of models for which it was discovered to be equally powerful have been
identified, and techniques for their analysis developed. Our aim is to review
the role played in these developments by the consistency principle and its
converse. Therefore, contrary to most axiomatic studies, in which a specific
class of problems is first chosen and the restrictions forced on solutions by
various combinations of axioms are identified, we examine here a wide range
of models, and we present results unified by the application of these two
principles.! Naturally, other axioms will be involved, but consistency and its

In most cases, the two principles appear under other names than the ones we use,
names that we will indicate as we proceed. It is only recently that the terminology seems
to have generally settled on the terms “consistency” and “converse consistency”, but other
expressions still appear on occasions.



converse will always be the central ones.

This survey is organized as follows. In Part 1, we give a general statement
of the consistency principle and of its converse, and we discuss several natural
variants.

In Part 2, we turn to the examination of specific models. They exhibit
a wide variety. Four are from game theory: bargaining problems, games in
coalitional form with transferable utility, and then without transferable util-
ity, and non-cooperative games. Four are from public economics: bankruptcy
and taxation problems, quasi-linear cost allocation problems, general cost al-
location problems, and finally pricing problems. Three are from welfare eco-
nomics: resource allocation problems in private good economies with classical
preferences, with single-peaked preferences in the one-commodity case, and
with indivisible goods. Of the remaining models, one is from political science
— it concerns apportionment — and the final model pertains to matching.
We show how the consistency principle and its converse have been adapted
to each of these models, how in some cases the principles have yielded char-
acterizations of known solutions, and how in others they have led to the
discovery and the characterization of new solutions.

In Part 3 we discuss a number of issues related to consistency and its
converse, with an emphasis on what we perceive to be promising directions
for further research. We first examine models with a large number of agents
modelled as a continuum; such models have so far been the object of little
attention with respect to our two principles. We formulate the notion of the
minimal consistent extension of a solution, and that of its maximal consistent
subsolution. We explore possible formulations of consistency for private good
economies with individual endowments, and for economies with public goods.
Finally, we discuss the computational implications of converse consistency,
and the problem of intertemporal allocation.

An earlier survey of this literature is Thomson (1990a). The applications
of the consistency principle and of its converse have multiplied to such an
extent that updating this relatively recent work already seemed useful. We
hope that this revised survey will be out of date as quickly as the first one!
Another survey, limited however to coalitional form games, is Driessen (1991).



1.2 GENERAL CONCEPTS

We start with a very general statement of the two principles, and we discuss
several useful variants.

Let Z be an infinite set of “potential” agents. Unless otherwise indi-
cated, we take 7 to be the set of natural numbers N. Let A be the collection
of all finite subsets of Z, with generic elements N, N’, and so on. For each
group N € N, there is a space of alternatives, X", from which the al-
ternatives made available to the group N are taken.? Let DV be the domain
of problems that the members of N could conceivably face. Each element
of DV is given by a feasible set, a certain subset of XV satisfying some
regularity conditions, together with data concerning the environment, typ-
ically including the preferences of the members of N over this feasible set.
How rich is the domain of admissible problems is a modelling choice whose
importance should be quite clear by the end of this review.

Given a group N € N and a problem D € DV, we would like to identify
which feasible alternative of D the agents in N will select as a compromise,
or depending upon the interpretation, which feasible alternative of D an im-
partial arbitrator will recommend to them. However, instead of considering
each problem separately, we will be more ambitious and look for a general
rule that could be applied to any admissible problem that any admissible
group could face. Therefore, let D = Uyeny PV and X = Unyen XV.

We are now in a position to define our first main concept.

Definition. A solution on D is a function ¢: D — X that associates with
every N € N and every D € DV an alternative in the feasible set of D. This
alternative, denoted by (D), is the solution outcome of D; we also say
that it is p-optimal for D.

1.3 CONSISTENCY: THE FUNDAMEN-
TAL DEFINITION.

In most of social choice theory, game theory, and economic theory, the num-
ber of agents is assumed to be some fixed number. This number is usually

2Later on, the exponent N will denote a cartesian product. It should be clear from the
context which is intended.



arbitrary, but it is not allowed to vary. Solutions are rarely subjected to the
test of a variable population.® Here, we explicitly require solutions to be
defined over a domain of problems involving groups of arbitrary cardinali-
ties. When a solution is so defined, the need arises to relate its components
relative to different groups, and in particular groups of different sizes. To
see this, let ! and (p? be two such solutions. The solutions can be used to
construct a third one, ¢?, as follows: let ¢3(D) = ¢!(D) if D involves an
odd number of agents and ¢*(D) = ?(D) if D involves an even number of
agents. Nothing a priori prevents such constructions. But the two solutions
¢! and ? may be motivated by quite different considerations and as a result
the solution ¢® might appear strange. So we ask: how should the compo-
nents of solutions be linked across cardinalities? Consistency will help us in
answering this question, as it will typically disqualify hybrid solutions such as
©3. But it will actually say much more, since choosing the recommendations
made by ! for all cardinalities, or those made by ¢? for all cardinalities, will
not necessarily produce a consistent solution.*

We start with an informal description of the principle: a solution is con-
ststent if for any admissible problem faced by some group N, whenever it
recommends some outcome z as its solution outcome, then for any subgroup
N’ of N, it recommends the restriction of z to N’ as the solution outcome
of the “reduced problem” faced by N': this is the problem derived from the
original one by attributing to the members of the complementary subgroup
“their components of z.” Note that for this operation to be meaningful, out-
comes should be “decomposable” in a way that indeed makes it possible to
speak of an agent’s “component” of an outcome. This issue will be discussed
in detail below but at this point we prefer being somewhat vague.

Once the problem D € DV has been solved by applying the solution
¢, how does the situation appear to the members of N'? What are their
opportunities? Let z denote the alternative selected by ¢ for D. In answer
to these questions, we assume that it is understood that the members of
the complementary subgroup N\N' should indeed receive the payoffs zy\n
assigned to them by ¢. From their viewpoint, all alternatives in D yielding

3In some models, bargaining being an example, investigators have often limited them-
selves to the case of two agents.

4The test of consistency is not the only variable population test that one could con-
sider. Certain invariance conditions with respect to replications of problems, and tests of
population-monotonicity have also been formulated and investigated in the literature.



these payoffs are equivalent. Therefore, from the perspective of the members
of N', this set of alternatives, if it constitutes a well-defined problem, is now
the problem that has to be solved. Does solving it produce the payoffs z -
initially assigned to them? The solution is consistent if the answer is always
yes. This sort of internal coherence will greatly help in ensuring that the
initial decision will not be questionned.

For a formal statement of the principle, we first need to define the notion
of a reduced problem:

Definition. Given two groups N, N' € N with N’ C N, a problem D € DV,
and finally an alternative z in the feasible set of D, the reduced problem
of D relative to N' and x is the problem comprising all the alternatives
of D at which the members of the complementary subgroup N\N' receive
their components of z. We denote it by %, (D).

Note that r%,(D) may or may not satisfy all of the properties that are
required of the members of D', although in many of the applications that we
will consider, these properties are automatically satisfied: then we say that
the “domain is closed under the reduction operation”. In some situations
the reduced problem belongs to the domain for any z chosen by a particular
solution, which is in fact all that we need to discuss the consistency of that
solution (See Subsection 1.4.6 for a discussion): the domain is then “closed
under the reduction operation for the solution”. We are now ready to
formally define consistency.

THE FUNDAMENTAL DEFINITION. The solution ¢: D — X satis-
fies consistency if for all groups N, N’ € N with N’ C N and all problems
D € DV, if z denotes the solution outcome of D, then the restriction of z to
N’ is the solution outcome of the reduced problem of D relative to N’ and
z, provided this reduced problem belongs to DV': for all N,N’ € N with
N' CN,all D e DN and all z € D, if z = (D) and r%,(D) € DV', then
o = $(rE(D)).

The agreement on certain payoffs being paid to the departing agents can
be understood in two ways. The most general interpretation is simply that
agents are promised specific welfare levels, without the alternative through
which these welfare levels will be reached being given. The other interpreta-
tion, which makes sense only in situations where the space of alternatives is
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appropriately decomposable in the sense alluded to earlier, is that the agents
who leave do so with their components of the chosen alternative. In some
cases, both interpretations are possible. For instance, in exchange economies,
agents may leave the scene either with bundles of goods, or with the promise
that whatever allocation is finally chosen, they will end up on a certain in-
difference curve (see Section 1.4.8 for further discussion).

Consider the not uncommon situation in which the alternatives among
which a selection has to be performed result from contributions made by
agents in a particular temporal sequence. Then, the agents who are done
first might want to receive their payoffs and depart. For a consistent solution
this departure does not create the need to reevaluate the alternative initially
selected.®

Note that in the above discussion, we considered groups of “named” in-
dividuals. This is because in general, two groups may be composed of the
same number of individuals with the same characteristics, and yet be dealt
with differently. The assumption is made in most of the literature reviewed
here that all agents are fundamentally “equal” and accordingly, solutions are
minimally required to treat identical agents identically: in fact they are often
specified so as to be invariant under exchanges of the “names” of agents (this
is the familiar condition of anonymity). However our formalism is chosen so
as to accommodate the possibility of treating agents differently even though
they have identical characteristics. This will provide us with useful flexi-
bility. For example, in some voting bodies, certain voters have more power
than others, (e.g., the permanent members of the Security Council of the
United Nations). Similarly, in bankruptcy court, certain classes of claims
have higher priority than others.

1.4 VARIANTS OF THE FUNDAMENTAL
DEFINITION.

At various points in the preceding definition of the reduced game and in the
statement of the Fundamental Definition, we could have made other choices.

®This motivation is due to Lensberg (1985). If the ordering is really fixed however, the
reformulation of consistency obtained by considering only subgroups of consecutive agents,

starting with the first agent, is natural. Such a formulation is discussed below (Subsection
1.4.3).



We discuss next the nature of these choices. They are illustrated by means of
examples of domains and solutions with which most readers will be familiar.
Therefore, formal definitions are relegated to the section on applications.

1.4.1 Permitting multi-valued solutions.

We required solutions to associate with every admissible problem a unique
outcome (“the solution outcome of D...”). Whether a solution is meant
to offer predictions or recommendations, uniqueness of the solution outcome
is of course greatly desirable. Fortunately, there are interesting domains of
problems for which a large number of appealing single-valued solutions can
be defined; then, it is natural to limit our search to such solutions. The
axiomatic theory of bargaining was developed under the almost universal re-
quirement of single-valuedness for that reason. However, in many branches
of economics and game theory, single-valuedness is virtually impossible to
obtain or comes at a very high price. For instance, most of the solutions dis-
cussed in economic models of exchange and production are multi-valued; this
is certainly the case for the two central ones, the Walrasian solution and the
core. Domain restrictions occasionally exist that guarantee single-valuedness
(gross substitutability guarantees single-valuedness of the Walrasian solu-
tion), but they are often too strong to be of much use.

To permit multi-valued solutions, rewrite the Fundamental Definition as
follows: “For all N,N' € N with N’ C N, all D € DV, and all = € ¢(D), if
r%.(D) € DV, then 2y € (r%.(D))”.

Note our choice of quantifiers; we require that starting from any outcome
z among the ones recommended for the initial problem D involving the group
N, and given any subgroup N’ of N, the restriction zy of z to N’ be
a solution outcome of the associated reduced problem r%.(D). We could
consider the weaker requirement that there should be at least one outcome
recommended for the initial problem that passes the test for each of the
subgroups. A weaker requirement still would be obtained by permitting this
outcome to depend on the selected subgroup: given any subgroup N’ of
N, there is at least one outcome z recommended for D whose restriction
to the subgroup is recommended for the associated reduced problem. The
usefulness of these weaker definitions remains to be explored. In the latter
case, we should of course not go so far as requiring that if a further reduction



is carried out relative to an even smaller group of agents N C N’ and that
restricted outcome zpr, the distinguished outcome y € ¢(r§(D)) for which
ynn € @(riu(r%(D))) be precisely zy:. Indeed, this would simply amount
to saying that the solution contains a consistent (in the sense we first gave
to that term) selection.

In the case of multi-valued solutions, it is worth noting at this point that
an arbitrary intersection of consistent solutions, if non-empty, is a consistent
solution. The same can be said of arbitrary unions of consistent solutions.
These facts are exploited in Section 3.2 where we formulate procedures to
approximate non-consistent solutions by solutions satisfying the property.

1.4.2 Imposing restrictions on the number of potential
agents.

We have assumed the set of potential agents Z to be countably infinite. In
a number of applications, it is more appealing to draw agents from a finite
list. Alternatively, modelling the set of potential agents as a continuum, say
the real numbers, may have mathematical advantages. For some models,
these alternative choices for Z have significant implications for the theorems.
Indeed, the proofs of some of the results that we will present require that there
be a fair amount of flexibility in the specification of the class of admissible
groups; for instance, one may need to have access to groups of arbitrarily
large cardinalities. For other models, a limited class of groups suffices; in
some cases, it is enough to include all groups of cardinality up to three.

To illustrate these possibilities, instead of writing “Z = N” in the Funda-
mental Definition, we would write “Z C N with |Z| < 00” or “Z = R”.®

1.4.3 Imposing restrictions on the subgroups relative
to which the reduced game is calculated.

Starting from some group N € N, and having solved at z some problem
D that it faces, the Fundamental Definition asks us to investigate how the
reduced problem r%,(D) faced by each subgroup N’ of NN would be solved.
However, in some situations, it may be natural to impose restrictions on the
admissible subgroups. We explore several possibilities.

SR is the set of real numbers.



Imposing restrictions on the size of the subgroups

First, we could limit our attention to subgroups of small cardinality. In
particular, when the principle is meant to express the robustness of a com-
promise under “challenges” by subgroups, it makes sense to consider only
small subgroups since coordinated action may be difficult for large groups.
In fact, consistency is sometimes written with the restriction that only sub-
groups of cardinality two can form. This weaker version is called bilateral
consistency. Usually, but not always, excluding subgroups of cardinality
greater than two weakens the axiom in a minor way, and characterization
proofs still go through, although with some extra work.

In some contexts, it is sensible to exclude degenerate subgroups of car-
dinality one, and in others to insist that they be permitted. For instance,
when consistency is applied to bargaining, the property is intended to link
compromises across cardinalities. Degenerate problems with only one person
are of course not conflict situations at all, and there is no reason to expect
that the way they are solved has any bearing on the resolution of actual
conflicts. On the other hand, when consistency is applied to non-cooperative
games, part of the objective may precisely be to connect the way an isolated
individual solves one-person decision problems to the way he handles deci-
sion problems affected by the presence of other agents similarly attempting
to solve their own decision problems. Then, allowing one-person problems
may be necessary.

Endowing the set of agents with a graph structure

The size of the subgroups is not the only relevant consideration however.
The set of agents may be equipped with additional structure, and which
subgroups are admissible should be specified so as to reflect this structure.
For instance, if the situation under study is intertemporal allocation, agents
are indexed by time; then, considering only subgroups consisting of successive
generations is quite natural. When agents live for several periods, requiring
subgroups to be such that the union of the life spans of the agents it comprises
is an interval, makes intuitive sense (Section 3.6).

More generally, the set of agents may have a graph structure representing
some relevant aspect of social organization, such as channels of communi-
cation, hierarchies, business or family connections, racial or ethnic member-
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ships, language groups, historical links, or geographical areas. If agents are
interpreted as countries, only countries with a common boundary, or coun-
tries between which a trade agreement exists, would be directly connected.
In any of these cases, only connected components of the graph should be
considered admissible subgroups.

Particulary interesting examples of graphs are (i) complete graphs, when
each agent is directly connected to each other agent, (ii) circular graphs,
when agents can be arranged in a circle in such a way that each agent is
directly connected to, and only to, his two neighbors, (iii) linear graphs, when
agents can be ordered in such a way that each agent is directly connected to,
and only to, the preceding agent, if there is one, and the following agent, if
there is one, (iv) hub-and-spoke graphs, when a particular agent is directly
connected to all others, no two other agents being directly connected, and
(v) trees, when the graph has a tree structure.

In general, let a: A/ — A be a correspondence associating with every N €
N alist a(N) of admissible subgroups of N. Then, adjust the Fundamental
Definition by replacing “for all N, N’ € N with N' ¢ N” by “for all N,
N' € N with N’ € o(N).”

In principle, the values of the correspondence « for two different sets of
agents N and N € N need not be related, but given its intended interpreta-
tion, it is natural to require “agreement” between overlapping groups in the
sense that if N’ C NN N, then N’ € a(N) if and only if N’ € o N). In that
case, there is a graph on the entire set of potential agents whose restriction to
each N € N gives the graph on N. At this point, we will note however that
connectedness of a graph, a property that will be important in our discus-
sion of converse consistency, is not preserved under the reduction operation,
so that there are disadvantages to deriving the graph on each group from a
single graph on the whole set of players.

When we return to the issue, we will denote by G = (GV)nen a family
of graphs, GV being a graph on N.

Deriving endogenous restrictions on the permissible subgroups

In some situations, the application of a solution to a problem generates a
meaningful order on the set of agents, and it may be useful only to consider
agents who leave in that order. Formally, for each N € N, let 7V be a
function defined on XV which specifies for every z € XV which member

11



of N will be first, second, and so on. Now, given D € DV, we only allow
subgroups of N consisting of initial segments of the set of agents as reordered
by 7.

An application of this idea is when z is a point in a Euclidean “payoff”
space, and 7V is a function that orders agents by increasing payoffs. Then,
the operation would consist in paying agents with low payoffs first.

This sort of restriction on the formation of subgroups was considered
by Blackorby, Bossert, and Donaldson (1994) in the context of bargaining
(Subsection 2.2.1) and by Moulin and Shenker (1992) and Kolpin (1994) in

studies of cost allocation (Subsection 2.3.3).

1.4.4 Allowing the reduced problem to depend on the
solution.

Describing how the original problem appears to the subgroup N’ after the
members of the complementary group N\ N’ have received their components
of the outcome is not always straightforward. In some cases — the domain of
games in coalitional form (Subsection 2.3.2) is the most prominent example
— several specifications make sense. The crucial point however is the depen-
dence of the reduced problem on the original problem and the outcome that
is being evaluated. The notion of a reduced problem discussed here should
therefore be contrasted with often encountered notions of “subproblems” (or
“subeconomies”, or “subgames”) that depend only on the original problem
(or economy, or game). For instance, a subgame of a game in coalitional form
v relative to a particular subset of the set of players is defined by setting the
worth of each coalition equal to what it was in v. This amounts to taking
the restriction of the vector defining v to the subspace corresponding to all
coalitions that are subsets of the subgroup. By contrast, the specification of
a reduced game involves a proposed compromise for v.

There is an important domain however, where the notions of reduced
game and subgame coincide. It pertains to the matching of individuals to
individuals, also known as the “marriage problem” (Subsection 2.5.2). This is
because agents’ “payoffs” are their mates and imagining some agents to leave
with their payoffs is simply calculating a subgame. But note that which
subgames are considered in expressing the requirement of consistency
depends on the matching that is being selected by the solution for the initial

12



problem.

The reduced problem could alternatively be made to depend on the so-
lution itself (Hart and Mas-Colell, 1988,1989). This specification has proved
useful too, and its implications have been described in detail for coalitional
form games (Subsection 2.2.2).

To allow for the dependence of the reduced problem on the solution, in
the Fundamental Definition, replace r%,(D) by r%.(D), where the superscript
¢ has been substituted for the superscript z.

1.4.5 Allowing other relations between the solution
outcome of the original problem and of its re-
duced problems.

The Fundamental Definition requires coincidence of the restriction to the
subgroup of the initial compromise with the solution outcome of the reduced
problem faced by this subgroup. More generally, we could request that a
certain relation between the two outcomes holds. We present below two
possibilities.

(i) Domination of (a) the restriction of the solution outcome of the
initial problem to a subgroup, by (b) the solution outcome of the
associated reduced problem this subgroup faces

For instance, the weaker requirement of Pareto-domination of one outcome
by the other has been convenient in bargaining theory (Subsection 2.2.1).

Formally, in the Fundamental Definition, replace “then zn+ = ¢(r%.(D))”
by “then zn' < @(r%.(D)).””

(i1) Coincidence between (a) the solution outcome of the initial
problem and (b) the average of the solution outcomes of the asso-
ciated reduced problems

Consider a single-valued solution and suppose that it is not consistent. Then,
the recommendation the solution makes for at least one problem — let us call
this recommendation # — does not agree with the recommendation it makes

"Vector inequalities: ¢ >y, z >y, £ > y.
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for at least one of the reduced problems associated with x: this means that
in that reduced problem at least one agent, say agent ¢, does not get what
he should according to that recommendation, namely z;.® It may be true of
course that agent ¢ does not get what he should in other reduced problems.
Now, suppose that on average, when the reduced problems associated with
x and all the subgroups containing agent ¢ are considered, this agent does get
z;, and suppose that on average every agent gets his component of z in the
reduced problems associated with z and the subgroups to which he belongs.
Then, one might be satisfied with z after all. This is the test of average
consistency proposed by Maschler and Owen (1989) in the context of coali-
tional form games (Subsection 2.2.2), and also considered by Dagan and Volij
(1994) for taxation problems (Subsection 2.3.1). Obviously, for the test to be
applicable, outcomes should be decomposable into individuals components,
and these components should belong to spaces in which averaging operations
are meaningful.

Formally, the proposal here is to require in the Fundamental Definition the
equality of z; and m YNtNteN N @i(TRe (D)) (as in Dagan and Volij).
When the reduced game depends on the solution itself, and using the notation
of Subsection 1.4.4, we require z; = U—ﬁll—_l)' SoNtNeNNai Pi(Th (D)) (this is
this formulation that Maschler and Owen suggest).

Variants of the property are obtained by limiting the averaging to sub-
groups of size 2, or to subgroups of size k for some fixed & < |N|, or to
subgroups of size at most k.

1.4.6 Requiring admissibility of the reduced problem.

The Fundamental Definition applies only if the reduced problem is in the
admissible domain. A stronger version results from adding the require-
ment that this membership holds. (Recall our discussion of closedness
of domains under the reduction operation that preceded the statement of
the Fundamental Definition.) In some applications, the reduced problem is
automatically admissible; such is the case for example for the problem of
fair allocation in classical economies (Section 2.4). In fact, for some models,
admissibility holds even if the outcome with respect to which the reduction

8Under efficiency, there is at least one agent who gets less than he should and one agent
who gets more than he should.

14



takes place is an arbitrary feasible outcome of the initial problem, instead of
being an outcome selected by the solution for the problem. For other models
this is far from being the case; examples here include certain domains of
coalitional form games (Subsections 2.2.2-3).

To so strengthen the Fundamental Definition, replace “¢f = = ¢(D) and
r%.,(D) € DV, then zn+ = (r%,(D))” by “if = = (D), thenr%, (D) € DV’
and TN = (,D(T?{,-,(D)).”

1.4.7 Reducing preference relations.

In some situations, the departure of some of the agents can be accompanied
by a natural “reduction” of the consumption spaces of the remaining agents,
and a corresponding “reduction” of their preference relations. For instance,
when the problem is the allocation of indivisible goods, one may want to
restrict the preferences of the remaining agents to the set of remaining goods
(Subsection 2.3.4). For the marriage problem (Subsection 2.5.2), after the
departure of some matched pairs, restricting the preferences of the remaining
agents to the set of remaining possible partners is quite appealing. This
specification strengthens the independence content of the condition. It may
be quite appropriate in models in which the requirement of “independence
of infeasible alternatives” is imposed: this says that the choice depends only
on the restrictions of preferences to the set of feasible alternatives.® But
of course, one may not want to go that far, and instead allow the solution
outcome of any problem to depend on the whole preference relations; in the
two examples just mentioned, these would be preferences over the whole set of
“potential objects”, and preferences over the whole set of “potential partners”
respectively. We will omit formal statements of these various formulations,
as they would require more notation than is justified for this section.

In exchange economies, this condition is violated by the Walrasian rule, but not by
the constrained Walrasian solution (Hurwicz, Maskin, and Postlewaite, 1979).
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1.4.8 Consistency in concrete models: requiring co-
incidence of outcomes or coincidence of welfare
levels?

The Fundamental Definition, which we formulated so as to cover situations as
general as possible, can be understood as requiring that for the reduced prob-
lem, an alternative be chosen that provides each departing agent the welfare
level initially assigned for him. In concrete models, a narrower definition of
consistency is often natural since solutions do not usually prescribe welfare
levels, but rather physical alternatives. Moreover, the space of alternatives
may be decomposable in a way that makes it meaningful to imagine the de-
parting agents to leave with physical components of the selected outcome.
Then the choice for the remaining agents in the reduced problem can be lim-
ited to these alternatives whose components assigned to the departing agents
are the ones initially chosen. Alternatives that give them the same welfare
levels through different components would not be admissible. For an
illustration of the distinction and of its implications for the way in which the
domain of definition of solutions should be specified, see our discussion of
fair allocation (Section 2.4).

1.4.9 What consistency does not say.

We conclude this section with a warning. It is important to avoid the tempt-
ing analogy of consistency with the fact that if a function of several variables
is maximized over some constraint set at some point, then it is maximized
at the same point over the subset of the constraint set obtained by giving
some of the variables their optimal values. To illustrate the possible confu-
sion, let f:R™ — R and S C R™ be a set over which f is maximized. Let
z be a maximizer and let 'S’ be the subset of S of points whose last n — m
coordinates are fixed at z,,41,...,%,. Then consider the function ¢g:R™ — R
defined by ¢(y) = f(y, Tmi1,-..,2,) for all y € R™. This function is obvi-
ously maximized over S” at (z1,...,2,,). This simple fact seems very much
like a consistency property as we defined it. To see that it is not, however,
note that the function ¢ depends on (z,,41,...,2,), whereas consistency re-
quires that the method of “solving” subsets of R™ be specified separately.
Of course if the function g happens not to depend on (41, ..., Zx), then it
can serve as the component of the solution pertaining to subsets of R™ and
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consistency will obtain in the passage from R™ to R™. We will see in our
discussion of bargaining problems, which are indeed specified as subsets of
some Euclidean space, that the implications of consistency go much beyond
the requirement that the solution be described in terms of a list of functions
indexed by the groups of agents, with each component of the solution be-
ing obtained by maximizing for each problem the function in the list that
pertains to that group: additive separability will be required too.®

1.5 CONVERSE CONSISTENCY: THE
DEFINITION.

If consistency allows us to deduce, from the desirability of an outcome for
some problem, the desirability of its restrictions to all subgroups for the
associated reduced problems they face, converse consistency permits a
“dual” operation: to deduce the desirability of an outcome for some problem
from the desirability of its restrictions to all subgroups of cardinality two for
the associated reduced problems these subgroups face.

DEFINITION: The solution ¢: D — X satisfies converse consistency
if for all groups N € N, all problems D € DV, and all feasible outcomes
z of D, if the restriction zn/ of z to all subgroups N’ of cardinality two is
the solution outcome of the reduced problem r%.(D) obtained from D by
assigning to all agents not in N’ their components of z, then z is the solution
outcome of D: for all N € N, all D € DV, and all z feasible for D, if for
all N' C N such that |[N'| = 2, r%,(D) € DV, and zn: = @(r%,(D)), then
z = (D).

Converse consistency can be seen as a condition of two-agent “decen-
tralizability”. If an alternative is acceptable in all of its associated reduced
two-person problems, then it should be acceptable for the whole group.

Consider a motion on the floor of a political convention, and imagine
the following process to decide on its adoption. First, delegates gather in
committees of size two and each committee determines whether the motion
provides a good compromise between the desires of its two members. If the

10However, a domain of problems for which the analogy is appropriate is the domain of
games in strategic form (Subsection 2.2.3).

17



motion successfully passes this stage, it is then examined by committees of
size three ... The process is repeated until the motion is either rejected at
some stage by some committee, or finally accepted by the whole convention in
plenary session. Now, if the way in which the acceptability of a compromise is
decided upon satisfies converse consistency, acceptance by all committees of
size two will guarantee acceptance at the plenary session, and the formation
of the committees of size greater than two will be unnecessary.

1.6 VARIANTS OF CONVERSE CONSIS-
TENCY

We will not discuss the possible variants of converse consistency. Most of
the points raised earlier that led us to formulating variants of consistency
remain valid here, and it is straightforward to see how to accommodate them.
However, a number of additional issues specific to converse consistency arise.
They are discussed next.

1.6.1 Requiring Pareto-optimality of the alternative
that is evaluated

An important variant of converse consistency is obtained by requiring that
the alternative that is being evaluated be undominated in the initial problem,
namely that it be Pareto-optimal.l! It is indeed often the case that without
this restriction, the condition is unreasonably restrictive. Since in most cases,
we are interested in solutions satisfying Pareto-optimality, there is not much
loss of generality in so proceeding.

1.6.2 Writing the hypothesis of converse consistency
for all subgroups of the original group

A weaker condition than converse consistency is obtained by strengthening
the hypothesis to the requirement that the restriction zy: of z to any proper
subgroup N’ of N (not just to any subgroup of cardinality two) be the so-
lution outcome of the reduced problem r%,(D). In many applications, this

1Pprecise definitions are given below for several models.
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weaker condition is in fact equivalent to the one stated above. Indeed, given
N’ € N of cardinality greater than two, and assuming the hypothesis of that
condition, we can deduce zn' = @(r§,(D)) for all N' C N with |[N'| = 3
(this is because proper subgroups of N have at most cardinality two). Then
we obtain zy» = @(r%,(D)) for all N ¢ N with |[N'| £ 3, and in turn
ey = @(r% (D)) for all N' C N with [N’|<4...

The equivalence of the two formulations of converse consistency holds for
any model in which the following transitivity of the reduction operation
holds: given N, N', N" € N with N” ¢ N' C N, given D € DV and
z feasible for D, we have r3%/(r%.(e)) = r%u(e). Transitivity holds, for
example, for the models of fair division (Section 2.4). It does not hold for
coalitional form games (Subsection 2.2.2).

1.6.3 Converse consistency with respect to a graph.

In our main definition of converse consistency, the p-optimality of the al-
ternative under consideration for all of its associated two-person reduced
problems has to hold in order for the alternative to be declared p-optimal.
However, stronger versions of the condition can be obtained by requiring
the hypothesis to hold only for selected subgroups, similar to the way in
which we suggested earlier to weaken consistency by allowing only reductions
of initial problems relative to certain subgroups (Subsection 1.4.3). One way
to achieve this is to specify a graph on N, for each N € N, and simply to
require that the hypothesis zn: € (r§,(D)) holds for all groups N’ of two
agents that are directly connected in the graph:

Converse consistency with respect to a graph: Let G = (GV)yen be
a graph. For all N € MV, all D € DV, and all z € X(D), if [for all N' C N
with |N'| = 2 such that the members of N’ are directly connected in GV,
r%,(D) € DV and znr = o(r%.(D))], then z = ¢(D).

Note that if G C G’ (by this notation, we mean that for all N € A, any
link in GV is a link in G'V), converse consistency with respect to G implies
converse consistency with respect to G'. If a solution is conversely consistent
with respect to G but not with respect to any proper subgraph of G, we will
say that G' is minimal.
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The property of converse consistency is most interesting when formulated
with respect to minimal graphs. In most applications, minimality implies
that every agent is, directly or indirectly, connected to every other agent.

Peleg (1986) argues that converse consistency is an even more desirable
property than consistency because it allows to identify desired outcomes for
problems with a large number of participants if we know how to check the
desirability of outcomes for problems with small numbers of participants:

This fact [that a solution satisfied consistency], may be of
high theoretical interest ... However, usually it is more difficult
to compute solutions of large (but finite) games than to carry out
similar computations for smaller games. Thus, from a practical
point of view, the [consistency] property is of limited significance.

The practical interest of converse consistency is all the greater in situa-
tions where the technical tools needed to solve two-person problems are of
lesser sophistication than those needed to solve n-person problems.

1.6.4 Computational implications of converse consis-
tency.

The discussion above can be summarized by saying that converse consistency
simplifies the task of checking whether a proposed outcome should be the
solution outcome of some problem. But what about the more demanding
objective of finding a solution outcome? Does converse consistency have
useful implications regarding this issue?

In this section, which is based on Thomson (1992a), we will show how the
property can be used for the construction of simple algorithms that might
provide a positive answer.

Consider a solution ¢ satisfying converse consistency with respect to G.
This fact suggests the computational algorithm for finding w-optimal alter-
natives defined as follows: .

Given N € N, let (N',..., N*¥) be a sequence of links in GV such that
each link of GV appears at least once. We call such a sequence a cover of
G . We say that a cover in which each link in GV appears exactly once is
a minimal cover of GV.
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Let (N',...,N*) be an arbitrary cover of G¥. Now given D € DV,
we consider any sequence {z¥}ren such that: z° € D, z! € gq(r}”\?l(D)),

22 € (1%, (D)), ..., z* € 90_(_7“}”\:,:1), o zF e p(re ), aF € (rEi (D)), ..,
k being computed modulo & (this means that all the links in the graph are
visited in successive rounds). For the sequence to be well-defined, we need
r]m\;k_l(D) € DV* for all k € N. In the next paragraphs, we assume this to be
the case. We also assume that the spaces XV are endowed with topological
structures. Then, we say that the solution is decentralizable with respect
to G if convergence of {z*} always occurs and the limit point is ¢p—optimal
for D.

In this definition, the cover of GV is arbitrary; so are the initial outcome
2% € D and for each k > 1, the p-optimal alternative z* chosen for the
reduced problem r}’\f,: (D). In applications however, it is conceivable that
particular restrictions help convergence. For example, when the graph GV
is connected, the cover of GV can be chosen to be a sequence of connected
links. Should it be? On the other hand, it is tempting to use minimal covers
of the chosen graph. Should the temptation be resisted? The extent to
which these choices matter, individually and together, that is, how they affect
convergence, and, when convergence occurs, its speed, surely will depend
on the model at hand. In our examples in Part 2, we start from minimal
graphs (they are connected graphs), and we consider minimal covers (they
are paths).

Decentralizability with respect to a graph: Let G = (GV)yey be

a graph. For all N € W, all D € DV, all covers {N',...,N*} of

GV, all sequences {z*} in D such that 2° € D, z! € (,o(r}"\fl(D)),...,
k-1

z* € p(rgy (D))..., with N¥ = N*¥ whenever k' — k = nk for some n € N,
there exists € ¢(D) such that z* — =.

Note that the definition is meaningful whether or not ¢ is conversely con-
sistent with respect to G. However, under appropriate continuity assumptions
on @, if ¢ is decentralizable with respect to G, then it is conversely consistent
with respect to (.

We now return to the possibility that for some k € N, r]””\f,:l(D) ¢ DN*.
If this happens, we set ¥ = z*~1 and we continue as before. In principle,
nothing prevents z° to be such that 7%,(D) ¢ DV* for all k € {1,...,T} for
some T € N, in which case convergence of {z*} trivially occurs, but of course
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the limit point will typically not be in ¢(D). For some models, r,(D) € DV’
for all z € D and all N C N and this possibility does not arise. An example
is the domain of allocation problems (Section 2.4). For some other models,
for each z° € D, ‘rg,k; "(D) € DN* if k is sufficiently large. An example
here is the domain of bargaining problems for some commonly used solutions
(Subsection 2.2.1). Finally, simple restrictions on z° may guarantee that
rf\;k(D) € D' for all k > 1. Again, consider the domain of bargaining
problems. For the Nash solution, by choosing z° > 0, we obtain a sequence
of problems that are always well-defined.

In order to accommodate these differences, the specific form of decentral-
izability that is used should be tailored to whatever model is being considered.

Although other notions of decentralizability have been proposed in the
theory of economic planning, the above definitions seem to capture some im-
portant features of what is understood by this term in common language:
the social optimum is not directly calculated by a central planner, or “cen-
ter”. Instead, calculations are parceled out to subunits, and carried out in
successive steps. At each step, each subunit solves a problem that depends
on parameters received from the center. Adjustments are carried out by the
center in the parameters sent to the subunits from step to step. These ad-
justments are made on the basis of information received from the subunits
at the previous step.

Features that differentiate the notion of decentralizability proposed here
from notions discussed in the theory of planning, however, are that (i) in
the latter, the subunits are individual agents (firms, consumers), and (ii)
at each round computations are carried out simultaneously by all subunits,
whereas here the subunits are pairs of agents (in the applications that we
will consider, consumers or players), and pairs compute sequentially. Another
difference is that (iii) for the best-known planning procedures, feasibility of
the tentative proposal is not guaranteed at each step, whereas here it is.
Feasibility is a particularly desirable feature in situations where computations
have to be interrupted after finitely many steps, the typical case.

If converse consistency of a solution ¢ allows us to verify that an out-
come is p-optimal for some problem by solving a finite number of two-person
reduced problems associated with it, the decentralizability property we for-
mulated above allows us to find a socially desirable outcome, or at least to
approximate one, by solving a sequence of two-person reduced problems, the
reduction taking place with respect to groups reappearing in cycles and out-
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comes that are repeatedly recomputed. Note however that decentralizability
does not solve the problem of finding all p-optimal outcomes. For each
given model, it would be interesting to know the range of limit points that
result by varying the initial conditions and the choices made at each step.

1.7 SEVERAL TECHNICAL ISSUES OF
GENERAL INTEREST

In this section, we list of number of technical points of general validity per-
taining to consistency, its converse, we discuss possible logical relations be-
tween them, and we present some useful lemmas.

1.7.1 Flexibility.

In the definition of consistency, the departing agents play a “passive” role.
Suppose now that when the original group is divided into two subgroups,
each of these subgroups is allowed to make adjustments in what its members
receive provided these adjustments are obtained by operating the solution:
for each subgroup, only an alternative that is p-optimal for the associated
reduced problem it faces is admissible. Then, these separate choices, when
put together, may or may not constitute a ¢-optimal alternative for the
original problem. If they do however, the partial autonomy given to the
subgroups does not get in the way of the overall social objective embodied
in the solution. We will say that a solution is flexible if it permits this sort
of readjustments by subgroups.!? '

Flexibility: The solution ¢: D — X is flexible if for all N, N' € N with
N C N,all D € DV, all ¢ € ¢(D), and all y € o(r%,(D)), we have

(y7 wN\N’) € SO(D)

12This concept appears in Balinsky and Young (1982) in their study of apportionment
problems. It is a component of the condition they call “uniformity”. It is also used
by Shimomura (1992), from whom we borrow the term of flexibility, and by Blackorby,
Bossert, and Donaldson (1994) in bargaining theory.
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1.7.2 Two useful lemmas

As we noted earlier, the models for which the implications of consistency
and converse consistency have been investigated differ considerably in their
mathematical structures. An unfortunate consequence of this diversity is
that most of the results that we will present were obtained in the context
of a specific model, and do not have immediate counterparts for other mod-
els. However, two lemmas occur frequently, whose elementary proofs can be
stated in a “model-free” fashion. They both pertain to solution correspon-
dences.

The first one essentially states that if a consistent solution is contained in
a conversely consistent solution on the subdomain of two-person problems,
then the inclusion holds for all cardinalities. Its proof consists in moving
from problems involving an arbitrary number of agents to problems involv-
ing two agents by means of consistency, and moving back up again by means
of converse consistency. Using the image of a building whose floors would be
indexed by the cardinalities of problems, we refer to this lemma as the “Ele-
vator Lemma”: consistency is the “Down” button and converse consistency
the “Up” button.

Lemma 1 (The “Elevator Lemma”) Let ¢ and ¢’ be two solutions defined
on a domain D that is closed under the reduction operation for the solution
w. If o C ¢’ on the subdomain of two-person problems, ¢ is consistent, and
¢ is conversely consistent, then ¢ C ¢’ on the whole domain D.

Proof: Let N € N, D € DV and z € ¢(D). Since ¢ is consistent, then for
all N' C N with |[N'| =2, zn+ € ¢(r%,(D)). Since ¢ C ¢’ on the subdomain
of two-person problems, then for all N' C N with |[N'| = 2, zn+ € ¢'(r%.(D)).
Since ¢’ is conversely consistent, z € ¢'(D). Q.E.D.

This lemma is of interest because several interesting examples exist for
which some special relation holds between two solutions only for the two-
person case. Incidentally, note that bilateral consistency would suffice in
Lemma 1.

We now turn to the second lemma. A number of the results that we
will present identify a particular solution that any consistent solution sat-
isfying certain conditions has to contain. The conditions often include the
requirement that the solution should be a subsolution of some basic solution
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of interest. A corollary of such a result is that the particular solution is
the “minimal” solution satisfying the conditions. The second lemma, whose
completely straightforward proof we omit, is the critical step in the proofs of
all of these results.

Let ¢ be a consistent solution and suppose that it is contained in some
solution @. Given some problem in the domain and some alternative z that
is @g-optimal for it, we note that z will in general not be the only @-optimal
one; we may have some degrees of freedom. However, suppose that addi-
tional agents can be introduced and the problem extended to the enlarged
set of agents, in such a way that (i) only one alternative is @-optimal in
the augmented problem, (ii) the restriction of that alternative to the initial
group is precisely , and (iii) the reduction of the augmented problem with
respect to the initial group of agents and that alternative yields the initial
problem. Then, since ¢ C @, the conclusion will follow that the augmented
alternative is the only -optimal alternative for the augmented problem, and
by consistency of ¢, that z is p-optimal for the initial problem.

Here too, a physical metaphor might be useful: a bookshelf lacking a
back panel wobbles. To eliminate this instability, we brace it by means of
a board nailed diagonally in the back. More generally, and depending upon
the complexity of the structure that we may want to stabilize, one, two, or
more such “braces” might be needed (these are the additional agents).

Lemma 2 (The “Bracing Lemma”) Let ¢ be a consistent subsolution of
some solution ¢. Suppose that @ is such that for all N € N, all D € DV,
and all z € @(D), there are N' D N, D' € DV', and &’ in the feasible set of
D', such that {z'} = @(D'), =y = z, and D = r%(D'). Then ¢ = .

Let ¢* be a subsolution of @. If the “extension to uniqueness” just de-
scribed holds only for all x € ¢*(D), then ¢ D ¢*. Therefore, if ¢* is
consistent, it is the smallest consistent subsolution of .

To take an example to which we will shortly return, and once again
with apologies for not formally introducing the definitions needed to make
its discussion self-contained to all readers, consider the domain of games in
coalition form having a non-empty core, let ¢ be the core, and let us require
that ¢ be a subsolution of the core. Now, given a game and a point z in
the core of the game, some of the no-blocking constraints may be met as
equalities at z and some may be met strictly. Depending upon the specific
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configuration of binding and non-binding constraints, it may be that some
reallocation of payoffs can be carried out between agents without leaving
the core. Now, suppose that additional players can be introduced and the
game extended to the newly created coalitions — these are the braces — in
such a way that the augmented game admits only one core payoff =/, whose
restriction to the initial set of players is x and such that its reduction with
respect to the initial set of players and z’ is the initial game. Then the
structure has been stabilized. From the requirement on ¢ that it selects
only core payoffs, this construction lead us to the conclusion that in fact all
core payoffs have to be included in the p-optimal set.

Now, the issue is whether this augmentation will be possible, and this
will depend on the solution and the richness of the domain of problems under
consideration. To return to our analogy, we may not have available a board
that is long enough to be nailed diagonally to the back of the bookshelf.
Here is an economic example that will make this point obvious. Consider
exchange economies and the solution that associates with each economy its
set of Pareto-optimal allocations. Starting from an arbitrary Pareto-optimal
allocation, there is in general no way to introduce new agents and additional
resources so that in the augmented economy, there is a unique Pareto-optimal
allocation, let alone only one whose restriction to the initial set of agents is
the allocation taken as point of departure.

In some cases, the bracing may not be possible for all p-optimal alterna-
tives but only for some distinguished ones. If these distinguished alternatives
exist for all problems, they constitute a well-defined solution — this is the
solution ¢* of the Bracing Lemma — and we will be able to conclude that
any solution satisfying the required conditions has to contain it.

In several of the economic examples that we will consider, the ¢*-optimal
set is often not a singleton. A useful variant of the lemma in such situations
involves the requirement that the solution also satisfies Pareto-indifference,
which says that if  and 2’ are feasible outcomes of D such that z is chosen for
D and z’ is Pareto-indifferent to =/, then z’ should also be chosen for D. This
requirement, which seems innocuous enough, is not always met however.!3
Nevertheless, if we impose it on ¢, and if ¢* satisfies it, the inclusion ¢ D ¢*
is obtained by a slight modification of Lemma 2.

13For instance, for the problem of fair division, the so-called no-envy solution violates
it (Thomson, 1983).
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1.7.3 Logical relation between consistency and its con-
verse.

Inspection of our two main definitions does not suggest a logical relation
between them but the question is often asked whether such relations exist,
especially for single-valued solutions, and it may be worthwhile addressing it
explicitly.

The answer is that indeed no logical relation exists, even in the presence
of single-valuedness. We refer to our Section on bargaining, where we discuss
two single-valued solutions, one of which is consistent but not conversely
consistent, whereas the opposite holds for the other.

In general, and returning to the image of the recommendations made by a
solution being stacked up as the floors of the building, with low cardinalities
at the bottom, consistency implies that the solution be more and more “ta-
pered” as cardinalities increase, whereas converse consistency implies greater
permissiveness for greater cardinalities. If a solution satisfies both properties,
we can think of it as having a “cylinder” shape. If the solution is single-valued
for the 2-person case, then single-valuedness will extend to all cardinalities.

Let us consider an economic example, again without introducing any for-
mal notation: we will see that for the problem of fair division and under
somewhat stronger assumptions on preferences than are standard (smooth-
ness is required), both the no-envy solution (which selects for each economy
its set of allocations such that each agent prefers his assigned bundle to
the bundle assigned to anyone else) and the Walrasian solution from equal
division are consistent and that the latter is a subsolution of the former.
Therefore, the solution that coincides with the no-envy solution up to some
fixed cardinality £ and with the Walrasian solution for all cardinalities greater
than k is consistent, and the solution that makes the opposite selections is
conversely consistent. If a subsolution of the no-envy solution satisfies both
properties and coincides with the no-envy solution for cardinality 2, then by
the “cylinder” analogy, it coincides with the no-envy solution for all cardinal-
ities (technically, it is a consequence of the elevator lemma applied twice). If
it coincides with the Walrasian solution for cardinality 2, the cylinder shape
is obtained only if it coincides with it for all cardinalities (again, apply the
elevator lemma twice).

We add the obvious fact that in the presence of single-valuedness, con-
sistency and flexibility are equivalent. In fact, if a solution satisfies essential
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single-valuedness (for any problem, if it selects several outcomes, then all
agents are indifferent between them) and Pareto-indifference (for any prob-
lem, if it selects some outcome, then it selects any other outcome that is
Pareto-indifferent to it), then the solution is consistent if and only if it is

flexible.

1.7.4 Transfer of properties across cardinalities

As we will see, consistency and its converse are almost never studied by
themselves. Instead, it is the implications of these requirements together
with other properties that we will consider. In most cases, these other prop-
erties will be “fixed population” properties, such as efficiency or symmetry
properties. Although these properties are usually required for problems of
all cardinalities, it is worth noting that consistency often has the effect of
“transferring” them across cardinalities, and it may suffice to impose them
for two-agent problems. It is often just as natural to impose the properties
for all cardinalities, but for the sake of generality, we will note here that this
may not be needed. In stating the results in Part II, we have not attempted
to identify the minimal assumptions that would guarantee their conclusions.
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Part 2
APPLICATIONS

2.1 ABSTRACT VERSUS CONCRETE
MODELS.

We now turn to applications. Together, the models described below cover a,
very broad range of problems commonly studied. At one extreme is our first
canonical example, the class of bargaining problems; bargaining problems
are specified in utility space, no information about the physical features of
the alternatives among which a choice has to be made being retained. At
the other extreme is our second canonical example, the class of resource
allocation problems, which are specified in commodity space.

It is useful to distinguish between models on the basis of their informa-
tional content. Indeed, the amount of information available (i) is relevant to
the way conflicts are resolved in practice, and (ii) has clear normative signifi-
cance. The first point is strongly supported by anecdotal evidence and formal
surveys: for instance, Yaari and Bar-Hillel (1984) confronted a group of sub-
jects with several problems involving different sets of physical alternatives
having a common representation in utility space. They found systematic
differences in the way the problems were solved, depending on the interpre-

. tation given to these alternatives. The position that only utility information
is relevant to the comparison of alternatives is termed “welfarism” by Sen
(1979). Welfarism, intended as a descriptive theory, is in clear violation of
these survey results.

The second point, that from a normative perspective, welfarism is inade-
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quate as well, is being argued in a literature that is expanding fast. Roemer
(1986a) refers to the position that a precise description of the concrete fea-
tures of the alternatives available is necessary to their evaluation, as “resour-
cist”. When such information is available, it can be used to enrich the class
of admissible solutions, as illustrated by exchange economies; there, the set
of available physical choices has a special structure (it is a convex, compact
subset of a vector space); preferences can be required to satisfy properties
that would not be meaningful otherwise (such as monotonicity, smoothness,
convexity); finally, allocation rules can be constructed that make use of this
special structure and would not be well-defined without it (an example is the
Walrasian solution).

Although we recognize the usefulness of resourcist formulations, we would
nevertheless like to advocate a flexible position on the issue of the relative
merits of concrete and abstract models. Indeed, the advantage of abstract
formulations is their wide applicability. To take just one example, the Shap-
ley value, a solution originally defined for the abstract domain of games in
coalitional form, has been very successfully applied to a whole gamut of con-
crete problems, from the computation of power indices in voting bodies, to
cost allocation and the distribution of goods.

The great variety in the models that we will consider illustrates the wide
relevance of consistency and converse consistency. These classes fall into the
following broad categories.

Game theory

Bargaining

Games in coalitional form with transferable utility
Games in coalitional form without transferable utility
Games in strategic form

Public economics and cost allocation

Bankruptcy and taxation

Quasi-linear cost allocation

General cost allocation

Pricing

Fair allocation

Fair division in classical private good economies

Fair division in economies with single-peaked preferences
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Fair allocation in economies with indivisible goods

Other models
Apportionment
Matching

For each of these classes, we restate the definitions of consistency and
of its converse when applied to the class, and we present central results
that have been based on the principles. We chose these results to be as
representative as possible of the state of knowledge, without attempting to
be uniform in the amount of detail with which we describe them. For each
model, we present several results with some detail, specifying in particular the
auxiliary conditions that they involve. We only give informal descriptions of
other results, and we limit ourselves to references to the relevant literature for
the remaining results. Inevitably, these choices of which results to emphasize
reflect this author’s personal tastes as well as his greater familiarity with
some branches of the literature.

In order for our presentation to be as uncluttered as possible, we only give
precise statements, with all the quantifications, of consistency and converse
consistency. For the other properties, variables should be understood to be
chosen arbitrarily in their respective domains.

We use the following notational conventions throughout. Given a group
of agents N € N, we use notation such as DV, EV . .. for domains of problems
that they may face. However, we also use N as a superscript to denote cross-
products: for instance, RV is our notation for the cross-product of |N|
copies of R indexed by the members of N. Similarly, in exchange economies,
if £ € N is the number of goods, RN designates the cross-product of |N|
copies of the commodity space Rﬂ_ indexed by the members of N. We hope
that no confusion will result from this dual use of the superscript N. Given
a list of objects (A;)ien, and ¢ € N, we denote by A_; the list obtained
from A by deleting its ¢ component. Finally, we recall that ¢ is our generic
notation for a solution.

2.2 GAME THEORY.

The first models of game theory that we examine, bargaining problems and
coalitional form games, with and without transferable utility (Subsections

31



2.2.1-3), can be qualified as “abstract” since their specification only requires
sets of feasible utility vectors. Later on, we consider the more “concrete”
class of games in strategic form (Subsection 2.2.4). The description of these
games includes information about how utility vectors result from profiles of
individual choices.

2.2.1 Bargaining problems.

A typical bargaining problem, involving a group of three agents, N =
{1,2,3}, is represented in Figure 2.1a: there is a feasible set T', which is
a subset of the three-dimensional utility space, and a disagreement point, d,
which we normalize to be 0. The points of T represent the choices available
to the agents. What compromise will they reach? Nash (1950) suggested the
point  maximizing over T the product of their utility gains from d. Now, let
us imagine that agent 3 leaves the scene with a promise of a utility level of z3
and let us now consider the subset of T' comprising all points where his util-
ity is x3, namely the “slice” of T' through z parallel to the {1,2} coordinate
subspace. This set, denoted by 5, can be meaningfully understood as the
set of options open to agents 1 and 2 if indeed agent 3 is to receive z3. Now,
we note that (z1,z2) is the maximizer of the product of their utility gains
in S (gains from (dy,d;) = (0,0)). This equality of the payoffs chosen for
agents 1 and 2 in the initial problem and in the associated reduced problem
illustrates the fact that the Nash solution is consistent.

Another solution was introduced by Kalai and Smorodinsky (1975): it
selects the maximal feasible point proportional to the tdeal point, the point
whose * coordinate is equal to the maximal feasible utility for agent i €
N. For the problem T represented in Figure 2.1b, which is the convex hull
of the points (0,0,0),(1,0,0),(1,1/2,0),(0,1,0),(0,1/2,0) and (0,0,1), the
outcome this solution selects is the point # = (1/2,1/2,1/2). Imagining
agent 3 to leave the scene with his payoff of z; produces the two-person
problem S involving the group N’ = {1,2}. It is the convex hull of the
points (0,0),(1/2,0),(1/2,1/2) and (0,3/4). Since its Kalai-Smorodinsky
outcome, K(S) = (3/7,9/14), does not coincide with zn» = (1/2,1/2), the

Kalai-Smorodinsky solution is not consistent!

We now turn to the general definitions. A bargaining problem is a pair
S,d) € RY RN a roup of agents N € A can attain any of the points
g g y P
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Figure 2.1: Consistency in bargaining theory. (a) The Nash solution
N is consistent: N (T) is the Nash outcome of the three-person problem
T. The Nash outcome of the two-person problem S , which is the slice of
T through N(T) parallel to the coordinate subspace relative to the group
{1,2}, coincides with the restriction of N (T) to that group. (b) The Kalai-
Smorodinsky solution K is not consistent, since the first two coordinates of
K(T') do not give the Kalai-Smorodinsky outcome of the slice of T through
K(T) parallel to the coordinate subspace relative to the group {1,2}.
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of S, the feasible set, a subset of their utility space RV, by unanimously
agreeing on it. If they fail to reach an agreement, they end up at d, the
disagreement point. We assume that S is convex and compact, and that
there exists at least one point of S that strictly dominates d (this is a non-
degeneracy assumption). We also require S to be d-comprehensive, (if a point
z is feasible, then any point y such that d £ y < z is also feasible). This is
a natural assmption that guarantees that the solutions that we will want to
consider always select outcomes that are at least weakly Pareto-optimal (see
below for a formal statement of this property). Finally, and to simplify the
exposition, we assume d = 0 and we write S instead of (5, 0). Let BN be the
class of problems satisfying all of the above assumptions, B = Uyex BY, and
X5 =Unen Rf. A solution is a function that associates with every N € A/
and every S € BY, a unique point of 5.1

Consistency for bargaining problems: The solution p: B — Xj is con-
sistent if for all N, N' € N with N' C N, all T € BN, and all z € T,
if z = p(T) and r%,(T) € BY', where r%,(T) = {2’ € RV:3y € T with
yn\wv' = en\n and ynr = z'}, then an = o(r§:(T)).

Geometrically, r%,(T') is simply the slice of T' through z parallel to the
coordinate subspace RV’

Among the bargaining solutions commonly studied, only two are con-
sistent. They are the Nash solution, which, given N € A and S € BY,
selects the maximizer of the product [[y z; for z € S, and the lezicographic
egalitarian solution, which selects the point of S that is maximal in the
lexicographic order.? Now, consider a list of functions f = (f;)ier, where
fi:Ry — R is strictly monotone increasing, continuous, and such that for
all N € N, the function f¥:RY — R defined by fN(z) = Ty fi(zi) for
all z € Hf is strictly quasi-concave. Then, given N € N and S € BV,
let /(S) = argmaz{fN¥(z):z € S}. The separable additive solution
@7 so defined (Lensberg, 1987) also satisfies consistency.> The egalitarian

1For a survey of the literature on the bargaining problem, see Thomson (1990b).

2Given z and z' € R", let # and # be obtained from z and &’ by rewriting their
coordinates in increasing order. We say that z is lezicographically greater than z' if
either Z; > &), or [&1 = &} and &; > Z%]..., or for some k € {1,...,n— 1}, [#; = &} for
all i <k and gy > ﬁ;c-l-l]'

3The Nash solution is the member of this family obtained by choosing f; = log for all
tel.
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solution (Kalai, 1977), which selects the maximal point of S of equal coordi-
nates, is not consistent but it satisfies the slightly weaker condition obtained
by requiring the inequality “cx' < @(r§(T'))” instead of “cnr = @ (r¥(T)).”
We will call this condition weak consistency. On domains of problems
for which the egalitarian outcome is always Pareto-optimal (see below), the
solution does satisfy consistency.

The egalitarian solution and its lexicographic extension are conversely
consistent. The Nash solution and the separable additive solutions are not,
but if the domain is restricted to smooth problems, they are. The Kalai-
Smorodinsky solution is not.*

In bargaining theory, consistency was first used by Harsanyi (1959).°
Harsanyi felt that the Nash solution was the appropriate solution for two-
person problems and he asked whether we could deduce in some natural way
how n-person problems should be solved. He showed that if a solution is con-
sistent and coincides with the Nash solution for two-person problems, then
it coincides with the Nash solution for all cardinalities. Lensberg (1985),
who rediscovered the condition, is the author of the most general theorems
involving it. In particular, he showed that Harsanyi’s restrictive hypothesis
for two-person problems could be replaced by elementary axioms, as now
detailed. To present the results, we need to formulate a few other proper-
ties of solutions. The first one is that all gains from cooperation should be
exhausted: '

Pareto-optimality: If z > ¢(5), then z ¢ S.

A slightly weaker condition is that there should not be a feasible outcome
that all agents prefer to the solution outcome:

Weak Pareto-optimality: If z > ¢(S5), then z ¢ S.

The solution should be invariant under exchanges of the names of the
agents. Given two groups N, N € N of equal cardinalities, let 7 be a

“These examples provide an answer to a question raised in Section 1.7.3 and that is often
asked: in the presence of single-valuedness, is there a logical relation between consistency
and converse consistency? The answer is no since on the domain B the Nash solution
is consistent but not conversely consistent, whereas the egalitarian solution is conversely
consistent but not consisteni. Both are single-valued.

SUnder the name of the “bilateral equilibrium condition”.
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bijection from N to N. Given z € RV, we slightly abuse notation and write
7(z) to denote the point (zxq),...,Zxr(m)) € RY, and we write 7(5) to denote
the set {# € RV:% = n(z) for some z € S}. ‘

Anonymity: If [N| = |[N| and 7: N — N is a bijection, then ¢(7(5)) =
(p(S))-

A positive linear rescaling, defined independently agent by agent, of their
utilities, should be accompanied by a similar rescaling of the solution out-
come. The function \:RY — R¥ is such a rescaling if there exists a list
(ai)ien € RY, such that for all z € RN, A(z) = (@;z:)ien.

Scale invariance: p(A(S)) = A(¢(S)), where \: RN — R¥ is any positive
linear rescaling, defined independently agent by agent, of their utilities.

An expansion of the feasible set that is favorable to agent 7, in the sense
that the range of feasible utility vectors attainable by the others is unaf-
fected but for each such vector the maximal utility attainable by agent i
increases, should benefit him (notation: given S € BY and N’ C N, Sy is
the projection of S on RV'):

Individual monotonicity: If S’ O S and S}V\{i} = Sn\{i}, then ;(S") 2
@i(.5).

Small changes in problems (evaluated in the Hausdorff topology) should
not produce large changes in solution outcomes:

Continuity: If {S”} is a sequence of elements of B such that S¥ — S € BV,
then ¢(S”) — ¢(9).

The burden of supporting additional agents, when their arrival is not
accompanied by an expansion of opportunities, should be borne by all agents
initially present:

Population-monotonicity: If N' ¢ N, T € BN, S € BN, and Ty» = S,
then C,DNI(T) g QD(S)

~We are now ready to state the results. They are characterizations of the
solutions that have played the major role in the literature:
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Theorem 1 (Lensberg, 1988) The Nash solution is the only solution satis-
tying Pareto-optimality, anonymity, scale invariance, and consistency.

The following refinement of Theorem 1 is due to Lensberg and Thomson
(1988): it says that Pareto-optimality can “almost” be dispensed with. In-
deed, if a solution satisfies the remaining axioms, then either (i) or (ii) below

hold:
(i) it is the Nash solution

(i1) there exists A € [0,1] such that for all N € N, and all S € BY, the
solution outcome x of S has the property that for all ¢+ € IV, the ratio
of z; to the ** coordinate of the maximal point of S, y, such that
y_; = T_;, 1s equal to \.6

There is always at least one point with these properties but there may be
several unless A = 0.7 Also, and except in that special case, no consistent se-
lection can be made from the correspondence N* they define. Consequently,
case (ii) is in fact possible only if A = 0, in which case the disagreement
solution — this is the solution that always selects the disagreement point
— results. By excluding this degenerate solution, a characterization of the
Nash solution obtains.

Another refinement of Theorem 1 is offered by Lensberg (1987), who
shows that its conclusion can be reached in a model in which the number of
agents is bounded above (of course there should be at least three agents), pro-
vided continuity is added to the list of requirements imposed on the solution.
Thomson (1985) argues against the simultaneous use of consistency and con-
tinuity, since the latter ignores slices (a sequence of problems may converge
in the Hausdorff topology, without slices parallel to a given coordinate sub-
space through a given point converging), whereas slices are essential in the
former. However, the characterization extends when continuity is weakened
to a condition that recognizes slices in defining convergence.®

Next we have:

6Recall that by the notation z_;, we mean the vector  from which the ¢*» coordinate
has been deleted. .

"Uniqueness is guaranteed however for bargaining problems obtained as the image in
utility space of one-commodity resource allocation problems.

8Convergence requires that slices through points that are converging to each other also
converge to each other.
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Theorem 2 (Lensberg, 1985) The lexicographic egalitarian solution is the
only solution satisfying Pareto-optimality, anonymity, individual monotonic-
ity, and consistency.

Theorem 3 (Thomson, 1984) The egalitarian solution is the only solu-
tion satisfying weak Pareto-optimality, anonymity,® continuity, population-
monotonicity, and weak consistency.

Theorem 4 (Lensberg, 1987) The separable additive solutions are the only
solutions satisfying Pareto-optimality, continuity, and consistency.

A result related to Theorem 4 appears in Young (1988b). He considers a
model in which agents can be replicated and obtains a characterization in a
more direct way.

Bibliographic note. Most of the results just quoted are pre-
sented in detail in Thomson and Lensberg (1989).

A characterization of the Kalai-Smorodinsky solution is obtained by Pe-
ters, Tijs, and Zarzuelo (1994) on the basis of the following form of con-
sistency: the reduced problem of T' € BN with respect to N’ C N and
z € T is defined to be AT/, where T+ is the intersection of T with the
coordinate subspace pertaining to N’, and A € R, is chosen so that zp/ is
weakly Pareto-optimal for ATy/; the requirement is that if z = (T and
AT+ is non-degenerate, then zn: = @(ATn+).1° A similar argument leads
to a family of solutions (also found in Thomson 1990b) that includes the
Kalai-Smorodinsky and egalitarian solutions. Lahiri (1994) proposes a char-
acterization of the egalitarian solution along the same lines.

Although the study of bargaining has been conducted almost entirely
under the assumption of single-valuedness of solutions, it is natural to won-
der how much a relaxation of this requirement would enlarge the class of

9The requirement of symmetry would suffice: if a problem is invariant under all ex-
changes of the agents, then the solution selects a point of equal coordinates.

10The Kalai-Smorodinsky obviously also satisfies the weakening of consistency obtained
by adding the hypothesis that the ideal point of the reduced problem (as we originally
defined it) be proportional to the projection of the ideal point of the original problem onto
the subspace pertaining to the remaining agents.
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admissible solutions. Blackorby, Bossert, and Donaldson (1994) address the
consistency question within this more general framework, and identify a fam-
ily of solutions as being the only ones to satisfy the following conditions:
Pareto-optimality, anonymity, homogeneity (the weakening of scale invari-
ance obtained by making all the multiplicative coeflicients equal), versions
of continuity and contraction independence formulated for multi-valued
solutions (contraction independence says that if z is the solution outcome
of some problem, and z remains feasible when the problem contracts, then
it should still be the solution outcome), connectedness (the requirement
that the set of recommendations be a connected set), a weak additivity con-
dition, the special form of consistency obtained by requiring that only the
agents with the smallest payoffs be permitted to leave (Subsection 1.4.3),
and finally flezibility (Subsection 1.7.1).1

The solutions they characterize are the single-series Gini solutions
(Weymark, 1981), defined as follows: given a sequence of increasing weights
(a;)iez in Ry, N € N, and S € B", select any point z of S such that the
vector & obtained by rewriting its coordinates in decreasing order maximizes
the expression Yy a;Z; over S. By adding a requirement of replication-
invariance (the requirement that the solution outcome of a replicated prob-
lem be obtained by replicating the solution outcome of the problem that is
replicated), the single-parameter Gini solutions, which are such that
foralli € 7, a; = ¢* — (: — 1) for § € [1, co[ (Donaldson and Weymark, 1980;
Bossert, 1990) become the only acceptable ones.

2.2.2 Games in coalitional form with transferable util-
ity

Two domains of coalitional form games are traditionally considered and we

discuss them in turn. First, we assume that utility is transferable; then, we

dispense with the assumption. For both domains, a number of alternative

notions of consistency have been proposed. Indeed, the reduced games can

be given a variety of forms, and to each of them corresponds such a condition.

Our main results are characterizations of four solutions, the core, the
nucleolus, the prekernel, and the Shapley value, as well as characterizations

"They also use individual rationality (the condition that the solution outcome dominate
the disagreement point), a condition that is automatically satisfied on our domain.
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of extensions and variants of these solutions. The prenucleolus, introduced
in 1969, had never been axiomatized before. Similarly, the characterizations
of the core and of the prekernel presented here were the first ones for these
solutions. As noted by the author of these latter results, the definition of
the core is so intuitive that the need for a characterization may not have
been pressing. However, by comparing the characterizations of these various
solutions, we gain considerable insights into what really distinguishes all of
them.

Consider a group N of differently skilled agents. The productivities of the
group and each subgroup S C N depend on the complementarities between
the skills of the agents composing it. They are given as the numbers denoted
by v(N), and v(S) for S C N. This may be the output that they can jointly
produce, or the value of this output at some given prices. We would like to
reward agents as a function of what they can contribute to the whole group
and to the various subgroups.

(i) Complement consistency. Let v be the list of all these numbers given
in Table 2.1 for an example where N = {1,2,3}. A well-known method of
calculating rewards is the core: pick a payoff vector ¢ = (x4, z2, z3) satisfying
>nzi = v(N) that cannot be “improved upon” by any subgroup, that is,
such that for all S C {1,2,3}, v(S) £ Ygz;. The vector z = (10, 10, 30)
is in the core. Now, assuming agent 3 to have accepted z3 = 30, how does
the situation appear to the group N’ = {1,2} of remaining agents. We
will assume that the right of a coalition to break-off in the reduced game
is conditional upon its involving the departing agents and giving them their
promised payoffs. Therefore, if agent 1, say, were to break-off, he would get
together with agent 3 and pay him his payoff of 30; this would leave him
a surplus of v({1,3}) — z3 = 30 — 30 = 0. Similary, agent 2 secures the
cooperation of agent 3 by paying him 30, for a surplus of v({2,3}) — z3 =
40 — 30 = 10. Finally, agents 1 and 2 together can divide among themselves
the amount v(/N) — z3 = 50 — 30 = 20. Now, it is easy to see that the vector
(z1,22) = (10,10) belongs to the core of the reduced game so defined.

On the other hand, consider the solution due to Shapley (1953),!2 for
which the computations are also given in Table 1. Shapley recommends

12The solution is defined below. It does satisfy consistency properties for other defini-
tions of the reduced game, in particular for a definition involving the solution itself. This
will be explained in Section 2.2.(iv).
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the payoff vector y = (70/6, 100/6, 130/6) for v, and (55/6, 115/6) for the
reduced game associated with the subgroup N’ = {2,3} and y: it calls for
adjustments in players 1 and 2’s payoffs after the departure of agent 3.

We now state the general definitions. A transferable utility, or TU,
game in coalitional form is a vector v € R?™ ~1 : there is a group N € N/
of agents whose members can gather in coalitions.!> What each coalition
can achieve on its own, its worth, is given as one of the coordinates of v.
Restrictions may be imposed on v making the game (for instance) monotonic
(if S O T, then v(S) 2 v(T)), or super-additive (v(S) > S rex v(Sk) for any
partition (Sk)rex of S). Let GV be a domain of admissible games for the
group N, G = Unen GV, and X5 = Unen RY. A solution is a correspon-
dence that associates with every N € A and every v € GV a non-empty set
of vectors € RY such that Yy z; £ v(N). The 3t coordinate of such a
vector represents one of the possible payments to agent i for being involved
in the game, or an amount that he can “expect” from the game. Note that
already in this model, we allow for multi-valuedness. Although some inter-
esting single-valued solutions exist, many others are multi-valued, and it is
desirable that they not be eliminated from consideration outright.

For all N € N and all v € GV, the core selects all the payoff vec-
tors z € RV satisfying the Pareto-optimality condition Yy z; = v(N) and
such that for all S C N, Ygz; > v(S). The prenucleolus (Schmeidler,
1969) picks the efficient vector = € RY whose associated vector of “excesses”
e(z) € R2™-1 where for all S C N, es(z) = v(S) — Y gz, is lexicographi-
cally minimal among all excess vectors associated with Pareto-optimal payoff
vectors (see Subsection 2.2.1 for a definition of lexicographic orderings). On
the domain of games admitting payoff vectors that are individually ratio-
nal, a property defined below, the nucleolus is defined in a similar way but
so as to achieve this property. For the Shapley value (Shapley, 1953),
5 = Ss.scnsai bs[o(S) — o(S\[i})], where ks = [(|S]— 1)(|N] [ S]]/ N]!
The vector x € RY belongs to the prekernel (Davis and Maschler, 1965), if
for all 7, j € N, maxgs.scn,ssij¢s{es(r)} = maxg.scn,ssjigs{es(z)}. Finally,
let ¢;(v) = v(N)—v(N\{i}) be player :’s “principal contribution in v”. Then,
let m;(v) = ¢i(v) + (1/|N|)[v(N) — = n ¢j(v)]. This solution is known as the
equal allocation of non-separable benefits solution.'t ’

13A coalition is a non-empty subset of N.
14Gee Peleg (1991) for a comprehensive treatment of the modern theory of games in
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Reduced The Reduced The
The | game of | core of The game of | ghapley
core of | 4, with the Shapley | ? with | yajue of
Game vcon- | regpect | reduced | oo e | respect the
tains to BaMe | sy = to reduced
T = {1,2} con- {1,2} game
and z tains and y
v({1})=0 10 0 10 70/6 50/6 55/6
v({2})=0 10 10 10 100/6 | 110/6 | 115/6
v({3})=0 30 130/6
v({1,2})=20 20 170/6
o({1,3})=30
o({2,3})=40
o({1,2,3})=50

Table 2.1: Complement consistency for coalitional form games. Ex-
ample of a three-person game illustrating the fact that the core is complement
consistent and showing that the Shapley value is not.
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For our first definition of a reduced game, given N € M, v € GV, z € ¢(v),
and finally N’ C N, we imagine that each coalition S C N’ is required to
tnvolve all the members of N\N' and to pay them according to
®. Then, what is left for S is the amount v(S U (N\N')) — Zn\nrz:. We
define this difference to be its revised worth. The resulting reduced game
and the corresponding consistency condition appear in Moulin (1985a). This
notion corresponds quite closely to the idea expressed in the Fundamental
Definition and to the conditions that have been analyzed on other domains,
namely that all departing agents should receive their agreed upon payoffs.
We will name this property “complement” consistency in order to distinguish
it from the definitions presented below,!® and to help ourselves remember that
in evaluating the worth of a coalition, the whole complement of the remaining
players has to be given satisfaction.!®

We should note however that the definition that has been the object of
the most attention is the one due to Davis and Maschler, to which we will
turn next. For a comparative evaluation of these formulations as well as
the numerous others that have been offered for coalition form games, and
which we will also list, we should keep in mind the possible applications. For
some, a particular reduced game might be appropriate but for others, it is a
different reduced game that might be more natural. To be most convincing,
the choice of the reduced game should be made with the context in mind.
Here, we will limit ourselves to abstract models, and admittedly, at this level
of generality, it is not easy to decide on the best formulation.

Complement consistency for TU coalitional form games: The solution
0:G — Xg is complement consistent if for all N, N' € N with N’ C N,

coalitional form.

15For readers already familiar with the existing terminology, our decision to introduce
new terms may be confusing. Nevertheless, given that one of our objectives here is to
help others discover a new literature, and in the face of the multitude of definitions that
have been proposed for coalitional form games, we thought that terms suggestive of the
operations that are performed in calculating the reduced game might be more useful.

16We may feel uneasy about the fact that in order to evaluate the worth of a coalition,
we imagine it to cooperate with N\N’, and that we will calculate the worths of all other
(competing) coalitions under the very same assumption. It may be helpful to think of
objecting coalitions as having to take the initiative. In order to upset a proposed payoff
vector, the onus is on a coalition to ensure that the agents that are leaving are paid the
amounts they were promised.
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all v € GV, and all = € p(v), we have r%,(v) € GV and zn € (1%, (v)),
where r%.:(v), the “complement reduced game of v relative to N’ and z,” is
defined!” by

ra(v)(S) =v(SU(N\N'))— > z;forall SC N’
N\N'

To present the results, we will need the following additional properties of
solutions. First, payoffs should add up to the worth of the grand coalition:

Pareto-optimality: Y"n ¢;(v) = v(N).
Each agent should be awarded at least what he can achieve on his own:
Individual rationality: ¢;(v) 2 v({i}).

Obviously, the core selects Pareto-optimal and individually rational payoff
vectors. It also satisfies complement consistency. The characterization stated
next is mainly based on this property.

Theorem 5 (Tadenuma, 1992) On the domain of games whose core is non-
empty, the core is the only solution satisfying individual rationality and com-
plement consistency.'®

It is worth noting that the core does not satisfy the natural converse of
complement consistency (Tadenuma, 1992), but that if (i) the payoff vector
that is being evaluated is Pareto-optimal and individually rational for the
original game, and (ii) its restrictions to all proper subsets of the players

1"Moulin actually defines r%,(v)(N’) = Y. s ;. In the presence of Pareto-optimality,
stated below, this is equivalent to our definition.

181t may appear strange at first that the theorem makes no use of Pareto-optimalily.
This is because individual rationalily can be seen as a “one-person” optimality condition.
This property is transferred by the solution from one-person games (which are in the
domain), to games of higher cardinalities by means of complement consistency. A simi-
lar phenomenon occurs with some of the alternative definitions of consistency discussed
later. This transfer is an example of the phenomenon described in Section 1.7.3. Other
properties of solutions are often transferred from low to high cardinalities by means of
consistency. Then, theorems can be stated with certain properties being required only for
low cardinalities (typically one-person or two-person problems).
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are in the cores of the associated reduced games, then indeed it is in the
core of the original game. The fact that the core satisfies this weakening
of complement converse consistency plays an important role in the proof of
Theorem 5.

To present the next result, we need to introduce two more conditions. The
first one says that if two agents contribute equal amounts to all coalitions,
they should be awarded equal payoffs:

Sy(m)metry: Ifo(SU{:}) =v(SU{j}) for all S C N\{7,;}, then p;(v) =
i(v).

A strengthening of this condition says that the solution should be invari-
ant under exchanges of the names of the agents: let v and ¥ be two games
involving the groups N and N respectively.

Anonymity: If [N| = |N| and 7: N — N is a one-to-one function such that
v(S) =0 ({n(z):¢ € S}) for all S C N, then v;(v) = pn(;)(?) for all ¢ € N.

We will also use the axiom of independence of the choice of origin for the
utilities:

Zero independence: If v; and v, € GV are such that for some b € RV, we
have that for all S C N, v1(S) = v2(S) + X n+ bs, then @(v1) = p(v2) + .

Theorem 6 (Moulin, 1985a) The equal allocation of non-separable benefits
solution is the only solution satisfying Pareto-optimality, anonymity, zero-
independence, and complement consistency.

(ii) Max consistency. We now turn to a different definition of the reduced
game, proposed by Davis and Maschler (1965). As we noted earlier, it is this
definition that has been the object of the greatest attention. In the reduction
of a game v € GV relativeto N' C Nand z € RY, the worth of a coalition S C
N is calculated under the assumption that S can choose the best group
of partners in N\NN' (instead of being forced to get together with all the
members of N\N' and pay them according to z). In the numerical example
discussed above, agent 1 on his own can obtain 0; by cooperating with agent
3 and paying him z3, he can obtain v({1,3}) — 3 = 30 — 30 = 0. In either
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case, he obtains 0. A similar computation for agent 2 involves comparing 0
and 10 (this is the difference v({2,3}) — z3 = 40 — 30), for a maximum of 10.
Finally, agents 1 and 2 together can obtain v({1,2,3}) — z3 = 50 — 30 = 20.
Is (z1,z3) in the core of the 2-person game so defined? The answer is yes.
We will name this property maz consistency, in reference to the fact that it
is based on a maximization exercise.

The Shapley value selects the payoff vector y = (70/6, 100/6, 130/6) for v,
and (55/6, 115/6) for the reduced game relative to the subgroup N’ = {2,3}
associated with y in a similar way, by solving the corresponding elementary
maximization exercises. Therefore, the solution is not maz consistent.!®

The general definition of the Davis-Maschler reduced game is illustrated
in Figure 2. Given a proposed payoff vector z € RV, the worth of the coalition
S in the reduced game of v relative to N' C N and x is computed
under the assumption that S can secure the cooperation of any subgroup
S’ of N not overlapping with N’, provided each member of S’ receives his
component of z. After these payments are made, what remains for S is the
difference v(S U S’) — Y g ;. Maximizing behavior on the part of S involves
finding S’ C N\ N’ for which this difference is maximal. Note that under this
scenario, the worths of two distinct coalitions S7 and S; may be achieved by
means of cooperation with two overlapping subgroups S; and S} of N\N'.%°

Max consistency for TU coalitional form games: The solution p: G —
Xg is maz consistent if for all N, N' € N with N' C N, all v € GV, and
all z € ¢(v), we have r%,(v) € GV and zn € p(r%.(v)), where r¥,(v), the
“max reduced game of v relative to N’ and z,” is defined by

rin (V) = v(N)= > @

N\N'
ra(v)(S) = max{v(SUS)=> 2:5 C N\N'}forall S C N’
SI

19For our particular game, these are actually the same numbers as for complement
consistency.

20This may create a difficulty of interpretation, but the standard way of deriving a
coalitional form game from a strategic form game is subject to the same difficulty. At
least, the worth of each coalition in the reduced game is overestimated in a “uniform”
way.

46



* ﬁfL(vISU(N\N, )
T )
" Pe(vlsumr

. Spi(l{lSu({y\Nl))

(a) (b) (c)

Figure 2.2: Reductions of a coalitional form game. We start from
the game involving the group N, v € GV. (a) Complement consistency:
to define the worth of a coalition $ in the reduced game of v relative
to N' C N and € R, we require S to get together with all the
members of N\ N’ and pay them their coordinates of z. This leaves a surplus
of v(S U (N\N')) — Sy zi. (b) Max consistency: alternatively, we
let S’ cooperate with any subgroup S’ of N\N', provided that once again
it pays the members of S their coordinates of z. This leaves the surplus
v(SU S") — Y s zi. The coalition S is allowed to look for the best coalition
S" with which to cooperate: this is the one for which the surplus is the
greatest. (c) Self-consistency: a third formulation is to require S to get
- together with the whole group N\ N’, but this time to pay each of its members
what the solution would recommend for them in the subproblem faced by
the group S U (N\N'). Here, the surplus left for S is v(S U (N\N')) —

L Pi(vsuvivy)- .
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We also have the following natural converse of maz consistency.

Max converse consistency for TU coalitional form games: The so-
lution ¢:G — Xg is maz conversely consistent if for all N € N, all
v € GV, and all z € RY such that Yy z; = v(N), and [for all N' C N with
IN'| =2, r%.(v) € GV and znv € @(r%:(v))], we have z € @(v).

The maz consistency of the pseudokernel is established by Davis and
Maschler (1965). Other early studies of the property are due to Maschler
and Peleg (1967), Maschler, Peleg, and Shapley (1972), Aumann and Dreze
(1974), and Sobolev (1975).2! It is satisfied by the core, the prenucleolus,
and the prekernel.?? The maz converse consistency of the pseudokernel is
established by Davis and Maschler (1965). The property is further studied
by Peleg (1985, 1986, 1989),2% who shows that it is satisfied by the core and

the prekernel.?*

(a) The prenucleolus. We will start by presenting a characterization of
the prenucleolus. It involves one auxiliary condition not introduced yet.
Consider situations where the worth of a coalition is obtained by adding up
the utilities of its members at one of its available undominated alternatives.
The condition says that the choice of utility scales within a certain class
should be irrelevant. Specifically, the multiplication by a common positive

21These authors use the phrase “reduced game property”.

?2These facts are established by Aumann and Dréze (1974). Other solutions, which we
will not define, are maz consistent: the pseudokernel, the pseudonucleolus, the pseudo-
bargaining set. On the other hand, the von-Neumann-Morgenstern solution is not maz
consistent, as shown by Chang (1988) and contrary to a claim made by Aumann and
Dréze (1974). Chang and Kan (1992) provides additional results on the issue. Dutta, Ray,
Sengupta, and Vohra (1989) propose a definition of the bargaining set under the name
of “consistent” bargaining set, but they use the term in a different sense. As they show,
their solution does not satisfy the consistency property studied here. Nor does it satisfy
any of the other notions defined below.

ZUnder the name of “converse reduced game property.”

241t is useful to note that the worth of a coalition in the complement reduced game is
never greater than its worth in the max reduced game. Therefore, if a payoff vector meets
the no-blocking conditions in the complement reduced game, it automatically meets the
no-blocking conditions in the max reduced game. Conversely of course, the hypotheses of
maz converse consistency are harder to satisfy than the hypotheses of complement converse
consistency.
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constant of all the utilities and the addition of arbitrary constants to each of
the utilities affect the payoffs in the same way:?°

Homogeneity: If there exist « € Ry, and 8 € R" such that for all S C N,
w(S) = av(S) + Ts fi, then p(w) = ap(v) + 4.

Theorem 7 (Sobolev, 1975) The prenucleolus is the only single-valued
solution satisfying Pareto-optimality, anonymity, homogeneity, and maz
consistency.?®

The follow-up literature has been considerable and we limit ourselves to
a short summary. First, we note that if an upper bound greater than 3 is
placed on the number of potential agents, solutions other than the nucleolus
satisfy the properties of Theorem 7, as demonstrated by Gurvich, Menshikov,
and Menshikova (1992). On the other hand, by working with a special class
of games, and imposing the requirement that the solution be a subsolution
of the solution known as the “least core”, Maschler, Potters, and Tijs (1992)
obtain a characterization of the nucleolus in a considerably more direct way
than Sobolev.

A characterization of the nucleolus itself on the basis of a weakening
of max consistency is provided by Potters (1991) on the domain of games
for which there are eflicient vectors meeting the individual rationality con-
straints. He applies the condition only to a pair of a payoff vector and a
subgroup of players such that the restriction of that payoff vector to that
subgroup is individually rational in the associated max reduced game. He
proves that on the domain he considers, if a solution satisfies this weak maz
consistency, in addition to Pareto-optimality, individual rationality, single-
valuedness, anonymity, homogeneity, and a certain “limit” condition which is
somewhat too technical to describe here, then it coincides with the nucleolus
on the subclass of games for which the prenucleolus happens to be individ-
ually rational. This subclass contains all games with a non-empty core and

Z5This condition is often referred to as “strategic equivalence” or “relative invariance
under strategic equivalence” (RISE). Hart and Mas-Colell (1989) call it “TU-equivalence”.
We have chosen the term that is used in the theory of bargaining.

26Sobolev does not have an optimality condition as he uses a slightly different definition
of the reduced game.

49



all games whose 0-normalization is weakly monotonic.%”

The alternative weakening of maz consistency obtained by restricting its
application to subgroups consisting of agents for whom the payoff vector
under evaluation meets strictly the individual rationality constraints of the
original game, is also satisfied by the nucleolus.

Another characterization of the nucleolus, based on a slight redefinition of
the reduced game, is offered by Snijders (1991): indeed, individual rationality
can be recovered simply by changing, in the Davis-Maschler definition of the
reduced game relative to a payoff vector z, the worth of each one-player
“coalition” to the minimum of two numbers, (i) the payoff to the player at z
and (ii) what this worth would be according to the original definition. This
weakens the individual rationality constraints in the reduced game in such a
way that given any individual rational and Pareto-optimal payoff vector, the -
set of payoff vectors having these properties in any reduced game associated
with it is non-empty (using the language of Section 1.3, we can say that
the domain of games is closed under Snijders’ reduction operation for the
individual rational and Pareto solution, whereas the domain is not closed
under the Davis-Maschler reduction operation for the nucleolus). The other
properties are as in Sobolev’s paper (Theorem 7).

Sobolev (1995) considers a more general domain of problems consisting of
a pair of a game and a set of individual rationality constraints. He imposes
axioms on solutions defined on such extended games. In addition to the stan-
dard requirements of anonymity, homogeneity, and a maz consistency-type
condition, he imposes a boundedness condition relative to the individual
constraints, which says that the solution outcome should be bounded be-
low by the vector of individual constraints, and bounded above by the vector
whose i* coordinate is the difference between the worth of the grand coalition
and the sum of the other agents’ individual constraints; an independence
condition with respect to tightening of the individual constraints,
which says that if the individual constraints increase but remain below the
solution outcome of some initial game, then the solution outcome should be
unchanged; and an independence condition with respect to a mazi-
mum operation performed on games and the individual constraints. He

27A 0-normalized game is one for which the worths of one-player coalitions are equal to
0. A weakly monotonic game is a game v such that for any pair of coalitions S, 7" with

SCT,v(S) + s v(d) = v(T).
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establishes the uniqueness of a solution satisfying all of these conditions. This
solution coincides with the prenucleolus when the individual constraints are
set equal to —oo and with the nucleolus when they are set equal to the worths
of the one-person coalitions.

Sudholter (1993) proposes an alternative definition of the nucleolus, under
the name of “modified nucleolus”. This definition is based on a lexicographic
minimization of the vector of differences, for pairs of coalitions, of their ex-
cesses. He then formulates a corresponding notion of maz consistency that is
satisfied by the solution, and bases a characterization of it on this definition.

(b) The core. Another important theorem involving maz consistency is
stated next. It involves the requirement that the set of recommended payoff
vectors of the sum of two games should contain all the sums of recommended
payoft vectors of each of the games:

Super-additivity: ¢(vi + v2) 2 ¢(v1) + ¢(va).

Theorem 8 (Peleg, 1986a) On the domain of games whose core is non-
empty, the core is the only solution satisfying individual rationality, super-
additivity, and maz consistency.

This result should be compared to that stated as Theorem 5. In partic-
ular, note that super-additivity is not used there.?®

A characterization of the core of “market games” along the lines of Theo-
rem 8 appears in Peleg (1989, 1992). A “market game” is a game whose core
is non-empty and all of whose subgames also have non-empty cores (Shapley
and Shubik, 1969). The phrase is motivated by the fact that games associated
with exchange economies in a natural way have that property. The games
are also known as “totally balanced” games. It turns out that the domain of
market games is not closed under the reduction operation, and as a result,
the core is not maz consistent on that domain. However, when the reduction
1s to two-person groups, total balancedness amounts to balancedness and the
difficulty disappears. Let us call unilateral and bilateral maz consistency the
weakening of maz consistency obtained by requiring the subgroups to have
either one member or two members. This property, which is satisfied by
the core on the domain of market games, retains enough strength to allow

Z8Moreover, it holds as soon as the number of potential agents is 3 or more.
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another characterization of the solution, provided two additional properties
are brought in: the first one is weak symmetry, which says that for a two-
person game in which the worths of the one-person coalitions are equal, the
set of solution outcomes should be globally symmetric, and the second one
is max converse consistency:

Theorem 9 (Peleg, 1989, 1992) On the domain of market games, the core
is the only solution satisfying individual rationality, weak symmetry, super-
additivity, unilateral and bilateral maz consistency, and maz converse
consistency.?®

Peleg shows that in Theorem 9, super-additivity can be replaced by the
requirement that the solution coincides with the core for the two-person case.

Bibliographic note. Results related to Theorem 5 appear in
Tadenuma (1989), and results related to Theorem 7 in Suematsu
(1988). Peleg (1986a) proves a counterpart of Theorem 8 for
games with a coalition structure. Shimomura (1994) offers a
characterization of the e-core (obtained by requiring that the no-
blocking conditions defining the core be met up to an €). The
characterization is based on a version of maz consistency relative
only to two-person subgroups and a converse relative to connected
graphs (Subsection 1.6.3). Aumann and Dréze (1974) prove that
the core is flexible with respect to the max reduced game (Sub-
section 1.7.1): for all v € GV, all z € C(v), all N’ C N, and all
y € C(r§(v)), we have (y, zy\n7) € C(v).

(c) The prekernel. The following result is the only existing characterization
of the prekernel:

Theorem 10 (Peleg, 1986a) The prekernel is the only solution satisfying
Pareto-optimality, homogeneity, symmetry, maz consistency, and maz con-
verse consistency.

?°The original theorem in Peleg (1989) does not have weak symmetry and it is not known
whether this axiom is independent of the others.
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Does the kernel itself satisfy an interesting version of consistency? Here,
the problem is far from being completely understood but Potters (1991)
establishes the following facts concerning the issue: on the domain of games
whose 0-normalization is monotonic, the kernel satisfies Pareto-optimality,
individual rationality, symmetry, maz converse consistency, the two variants
of maz consistency presented earlier in connection with his characterization
of the nucleolus (see the paragraphs following Theorem 7) and the limit
property that he also uses in that characterization; these properties might
eventually provide the basis for a complete characterization. We also note
that the kernel satisfies Snijders (1991)’s version of maz consistency.

Peleg (1989) gives an axiomatization of the intersection of the core and
the prekernel along the lines of Theorem 9 by strengthening weak symmetry
to symmetry, and imposing homogeneity instead of super-additivity.

Sudhélter (1993) offers a characterization of a notion of “modified ker-
nel”; analogous to his “modified nucleolus”. This characterization uses his
notion of mazx consistency as well as a similarly defined condition of converse
consistency (again, see the discussion following Theorem 7). The axioms he
uses are otherwise as in Theorem 10.

(iii) Other reduced games that do not depend on the solution. Note
that in each of the definitions of the reduced games examined up to now, the
solution itself does not appear. Before turning to a proposal for which the
solution does appear, we list the remaining definitions that are independent
of the solution.

In the first definition, proposed by Ruiz, Valenciano, and Zarzuelo (1996),
the worth of a coalition S in the reduced game of v relative to z and
N' C N is the stmple average (instead of the maximum) of the surpluses
v(SUS") — Y z; when S’ ranges over the subsets of N\N’. They show
that there exists a unique single-valued solution satisfying Pareto-optimality,
symmetry, homogeneity, and this condition. It is the solution that selects
the minimizer over the set of efficient vectors of the variance of excesses.°
This solution is also obtained as follows. First, define a “power index” to be
a function that associates with every game v € YV a vector in RV whose it
coordinate is interpreted as the “power” of player i: for the Banzhaf index

30They refer to it as the least-square prenucleolus. Note that it is not based on a
lexicographic operation as the prenucleolus is.
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(Banzhaf, 1965; Owen, 1982), the power of a player is the simple average
of his contributions to all coalitions not containing him.?! The coordinates
of the Banzhaf vector need not add to the worth of the grand coalition. To
obtain Pareto-optimality, and therefore a well-defined solution as we under-
stand this term, Hammer and Holzman (1987) suggest adding a common
constant to each agent’s coordinate of the Banzhaf index. This is the solu-
tion to which Ruiz, Valenciano, and Zarzuelo arrive. These authors (1995)
also define a family of solutions, under the name of “least square values”,
generalizing their earlier proposal by means of weights assigned to the var-
ious coalitions. They formulate a notion of consistency involving weighted
averages of contributions, and derive a characterization of a subfamily (a cer-
tain “consistency” property of the weights has to hold) in the spirit of their
earlier theorem. Dragan (1996) proposes another characterization in which
the solution that is applied to the reduced game may differ from the solution
used for the initial game. Then consistency is a property of the pair.

In the second contribution, due to Nagahisa and Yamato (1992), the op-
tions open to the remaining agents are even more limited than they were
according to the earlier definitions. When the members of N\ N’ leave, no
cooperation with them is possible anymore but the commitment to their
payoffs has to be honored by the grand coalition N’ in the reduced game:
its worth is changed to the maximum of its original value v(N’) and the
difference of the worth of the grand coalition in the original game and the
sum of the payoffs promised to the agents who left, namely v(N) — Zn\ s 23
the worth of each proper subcoalition is what it was in the original game.
Because the reduced game is almost a subgame, we will designate it by the
perhaps awkward phrase of “projected” reduced game, and to the condition
as projection consistency. This definition is analyzed by Nagahisa and Yam-
ato, who base on it yet another characterization of the core: on the domain
of games whose core is non-empty, the core is the only solution satisfying
Pareto-optimality and projection consistency.

If the set of potential players is finite, a characterization of the core is
obtained by adding either one of the following two conditions. One of them
is a converse of the projection consistency, which we will name weak pro-
jection converse consistency: if a payoff vector is Pareto-optimal for
some game and its restriction to each proper subset of the players (not just

31Recall that the Shapley value is obtained as a weighted average of contributions.
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subsets of size two) is a solution outcome of the associated projected reduced
game, then it is one of the payoff vectors recommended by the solution for
the original game. The other is anti-monotonicity (Keiding, 1986): if the
worth of every coalition, except that of the grand coalition, increases, the
set of solution payoff vectors should not enlarge. The results are that on the
domain of games whose core is non-empty, the core is the only solution satis-
fying Pareto-optimality, projection consistency, and weak projection converse
consistency. Also, it is the only solution defined on that domain satisfying
Pareto-optimality, projection consistency, and anti-monotonicity. Nagahisa
and Yamato also provide a detailed study of the logical relations between
their conditions and the conditions used by Peleg in his characterization of
the core based on maz consistency (Theorem 8).

Projection consistency can be understood as a particular case of a general
notion formulated by Maschler, Potters and Tijs (1992). These authors pro-
pose a definition in which different coalitions may be made to play different
roles and base on it a characterization of the nucleolus. One of their main
axioms is the important restriction that the solution be a subsolution of the
least core. :

In the light of the various characterizations of the core based on some
notion of consistency, it is natural to ask whether they can all be obtained
as special cases of a general theorem. Funaki and Yamato (1994) provide
a positive answer. They propose a class of reduced games, show that the
core satisfies each of the corresponding consistency notions, and establish a
number of uniqueness results based on their general definition and standard
auxiliary conditions. Theorems 5 and 8 are special cases of their general
characterization.

Driessen and Funaki (1993) consider a family of solutions obtained by
first defining the notion of “an agent’s individual contribution”, and then
distributing evenly among all players the surplus over the sum of their in-
dividual contributions. For each of four possible specifications of individual
contributions, they state a form of the reduced game such that the impli-
cations of the resulting consistency condition can be completely described,
when imposed together with standard conditions.

Sobolev (1977) and Driessen (1991) formulate definitions of the reduced
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game with respect to which the Shapley value is consistent.?? Sobolev shows
that the Shapley value is the only solution satisfying his consistency condition
together with Pareto-optimality, symmetry, and invariance. R. Lee (1992b)
characterizes the Shapley value on the basis of Driessen’s proposal: it is the
only solution to satisfy it together with symmetry and homogeneity.

Driessen (1992) characterizes a value proposed by Tijs (1981) by means
of yet a different consistency condition.

Funaki (1995) characterizes solutions to dual games with the help of duals
of the standard axioms and of consistency conditions.

Bibliographic note. Peleg (1990, 1992) reviews the characteri-
zations of the core developed up to 1989.

(iv) Self-consistency. A notion of consistency quite different from any of
the ones examined until now was introduced by Hart and Mas-Colell (1988,
1989). The scenario underlying their definition of the reduced game is as
follows. Let ¢ be a single-valued solution and v € GV be given. In order to
compute the worth of a coalition S C N’ in the reduced game of v relative to
N'" C N and the solution, we require S to cooperate with the complement
of N’. This cooperation is assumed to be feasible provided the members of
N\N' are paid what ¢ would recommend for them in the subgame of v faced
by the group S U(N\N').?® That is, we imagine the disappearance pure and
simple of the group N'\\S and we ask: what should S receive in total in the
subgame vsyv\n7)? The suggested answer is the difference v(S U (N\N')) —
v\ Pi(v|suavian ). Note that for this calculation to be meaningful, we
have limited ourselves to single-valued solutions. Multi-valued solutions could

320nly reduced games obtained by imagining the departure of a single agent are con-
sidered: given N € N, v € GV, i € N, and z € RV, let N’ = N\{i}. Sobolev defines
the reduced game of v relative to N’ and z by setting the worth of a coalition S C N’
equal to (|N|— 1)7|S|(v(S U {i}) — =) + (|N| — |S] = 1) — 1)v(S)}, whereas Driessen
sets the worth of the grand coalition N’ equal to v(N) — z;, and the worth of any other
coalition S C N’ equal to (|N| — 1) [(|N| = |S| = D)(v(S) — v(N\S)) — |S|=;]. Note that,
in contrast with the Hart-Mas-Colell definition, neither one of the reduced games involves
the solution itself.

33Note the conceptual difference between a subgame and a reduced game. A subgame
of a game v relative to a subset N’/ of N is simply the restriction of the vector v to all of
the subsets of N’.
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be accommodated, but at the price of some arbitrariness: among the possible
values of the sum Y n\ns2; when z is chosen in ¢(v|suw\nv)), which one
should we take? (Dutta (1990) discusses this issue.) Also, we emphasize
that ¢ itself is used in specifying the reduced game. This dependence is
what motivates our term of “self”-consistency to designate the property3*
and our notation ry,(v) for the reduced game (Figure 2.2).

Once the reduced game is defined, the requirement of consistency is as
before, namely ¢(r%,(v)) = @ns(v): the members of the subgroup N’ receive
the same payoffs in the original game as they do in the reduced game.

Self-consistency for TU coalitional form games: The single-valued so-
lution ¢: G — Xg is self-consistent if for all N, N' € N with N’ C N, and
all v € GV, we have zx = p(r§:(v)), where r%.(v), the “self-reduced game
of v relative to N’ and ¢,” is defined by

r(v)(S) = v(S U (N\N)) — Z @i(v]suviwn) for all S C N'.
N\N/

In conjunction with several elementary conditions already stated, self-
consistency leads to the Shapley value and to nothing else:

Theorem 11 (Hart and Mas-Colell, 1989) The Shapley value is the only
solution satisfying Pareto-optimality, symmetry, homogeneity, and self-
consistency.>®

We emphasize that in defining the worth of a coalition S C N’ in a
reduced game, all members of N\N' are involved.

The members of S do not have the option of looking for the best subset of
N\N' to cooperate with (this is in contrast with the Davis-Maschler reduced
game). Hart and Mas-Colell also consider a formulation of the reduced game

34 Aumann and Maschler (1985) use this expression in the sense of what we call consis-
tency in this survey.

35Tt is sufficient to impose the first three properties for two-person games. The result
actually holds for a solution defined on a domain consisting of a single game and all of
its subgames. By dropping symmetry, and imposing instead the requirement that the
solution be monotonic with respect to the worth of the grand coalition (see below our
formulation for the non- transferable utility case), Hart and Mas-Colell also characterize
weighted generalizations of the Shapley value.

57



in which each group S C N’ is allowed to search for a best group of partners
S’, the members of S’ being paid the amounts they would get by applying
the solution ¢ to the subgame relative to S U S’. This alternative reduced
game w is defined by:

w(8) = v(N) — 2N\N wi(v) ifS=N'
maxgc(n\N)[0(S U S") — Cg wi(v|sus)] if S C N’

However, as they show, there is no solution satisfying consistency with
respect to this reduced game together with Pareto-optimality, symmetry, and
homogeneity.

Bibliographic note. Driessen (1991) compares a number of the
results based on the properties of consistency for coalitional form
games just discussed (see also Maschler , 1990).

The two contributions described next concern models in which the role
of coalitions is described in richer detail. Winter (1992) considers games
with a coalition structure, that is, games where a partition of the players
is given a priori. The two principal solutions for this class of games are a
generalization of the Shapley value due to Aumann and Dreze (1974), and a
solution introduced by Owen (1977). The main difference between them has
to do with the way Pareto-optimality is specified: in the first case, it says that
for each coalition in the partition, the members of that coalition together
receive its worth; in the second case, it says that the worth of the grand
coalition is divided among all the players. Winter defines two self-reduced
games relative to the partition and shows that the resulting self-consistency
conditions can help distinguish between the two solutions. He patterns his
characterization of the Aumann-Dréze value after the Hart-Mas-Colell
characterization of the Shapley value (Theorem 11). The characterization of
the Owen value that he offers also relies on an axiom that essentially says
that the computation of payoffs can be carried out in two stages: in the first
stage, coalitions in the partition behave as players, and in a second stage the
members of each of these coalitions divide what the coalition has received.

In the second contribution, due to Derks and Peters (1993), certain coali-
tions are made to play a special role, which is reflected in the formulation of
the axioms: a coalition S s effective for a solution ¢ if given any two
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games that differ only in the worth of S, the solution chooses two different
payoff vectors. The coalition is ineffective for ¢ if under the same as-
sumption the resulting payoff vectors are always the same. They impose two
conditions on the class of effective coalitions; that each coalition be either
effective or ineffective, and that the class be closed under unions. The opti-
mality requirement takes the form that the sum of the payoffs be equal to the
worth of a maximally effective coalition. Finally, they formulate counterparts
for elementary games of the Pareto-optimality and symmetry requirements
that take into account the effectiveness structure. They search for solutions
that satisfy the weakening of self-consistency obtained by applying it only to
reduced games relative to effective coalitions. Their main result is a charac-
terization of a family of extensions of the Shapley value that differ from it
in that the contributions of the players are calculated in terms of maximal
effective coalitions.

Joosten, Peters and Thuijsman (1994) introduce a family of solutions
designed to provide certain payoff lower and upper bounds that are to be
respected independently of their actual contributions,*® and they define a
version of self-consistency that their solutions satisfy. The solutions are con-
vex combinations of the Shapley value and the solution that divides the
worth of the grand coalition equally among all players. They also offer a
charaterization of the family on the basis of this condition.

Dragan (1995) obtains a characterization of the Banzhaf index (see above)
by means of a consistency property relative to a self-type reduced game. The
other axioms are the ones used by Hart and Mas-Colell. In the version of
self-consistency formulated by Ruiz (1995), the worth of each coalition in the
reduced game is calculated as if it were a single player. He too obtains a
characterization of the Banzhaf index along the lines of Theorem 11.

Finally, Evans (1996) characterizes the Shapley value by means of a con-
sistency notion based on applying the standard solution (see below) to all
two-person subgames in which the two “players” are (i) an arbitrary coalition
and (ii) its complement.

Bibliographic note. McLean and Sharkey (1993) use self-

consistency in a study of pricing mechanisms. We will come back

36The solutions do not satisfy the “dummy condition”, which says that any agent whose
contributions to all coalitions is zero receives a zero payoff.
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to their contribution later as it pertains to a different model (see
Subsection 2.3.4.)

(v) Compatibility of maz consistency and self-consistency. A
natural question concerns the compatibility of maz-consistency and self-
consistency. Are there solutions satisfying both properties? An answer is
given by Dutta (1990). On the domain of “convex games”, (that is, games
for which a player contributes more to each coalition S than to any subcoali-
tion that S contains), he identifies a solution that has both properties. It is
the solution, introduced by Dutta and Ray (1989), that selects the Lorenz
maximal element in the core. For the two-person case, it picks, among the
Pareto-optimal points meeting the individual rationality constraints, the one
whose coordinates are the closest to being equal, the constrained egalitar-
tan solution outcome. Note that the solution does not satisfy homogeneity
(see the definition preceding Theorem 7) although it satisfies the weaker re-
quirement obtained by requiring equality of all the “translation” coefficients
B; appearing in this definition. The solution is the only one to always select
that point in the two-person case and to satisfy either one of the consistency
conditions. It is also maz conversely consistent, but this property is not
imposed as one of the axioms in either characterization.

Theorem 12 (Dutta, 1990) On the domain of convex games, the solution
defined by selecting for every game the Lorenz-maximal element of the core
is the only solution to coincide with the constrained egalitarian solution in
the two-person case, and to satisfy maz consistency. The same conclusion
holds if maz consistency is replaced by self-consistency.

Supppose now that for the two-person case we require that the solution
coincides instead with the standard solution: this is the two-person so-
lution defined by dividing equally among both agents the surplus above the
individual rationality levels. Then, even on the domain of convex games, the
two consistency conditions cannot be met jointly. In fact, on that domain, no
solution satisfies strictly monotonicity with respect to the individual
rationality levels in the two-person case, weak homogeneity, and the two
consistency notions.
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2.2.3 Games in coalitional form without transferable
utility

We now turn to a richer model in which what each coalition S can achieve is
given as a subset V(9) of its utility space R, V(.S) being required to satisfy
certain regularity properties. These games are called NT U (non-transferable
utility) games, as opposed to the TU (transferable utility) games described
earlier. Let H" be a class of admissible NTU games involving the group N,
H = UnensHY, and Xy = UneaRY. A solution on H associates with every
N € N and every V € HY a non-empty subset of V(N).

Most of the definitions of reduced games and the associated consistency
conditions presented in the previous section have been extended to the NTU
case.

(i) Complement consistency. We start with the extension of the definition
based on requiring that when a group of players leave, and in evaluating the
worth of a coalition in the resulting reduced game, the coalition be obliged
to get together with the coalition consisting of all of the departing players,
and to pay each of them his promised payoff:

Complement consistency for NTU coalitional form games: The so-
lution p: H — Xy is complement consistent if for all N, N' € N with
N' C N, allV € HN, and all z € ¢(V), we have v%,(V) € HY' and
ey € p(r§(V)), where r%,(V) is the game defined by

r%(V)(S) = {y € R®: (y,zmn1) € V(S U(N\N'))} for all § C N’

The following result is an exact counterpart of Theorem 5. It extends to
the class of NTU games with a non-empty core the characterization of the
core given as Theorem 5 for the TU case.

Theorem 13 (Tadenuma, 1992) On the domain of NTU games with a non-
empty core, the core is the only solution satisfying individual rationality and
complement consistency.

Extensions of Theorem 13 to games with coalition structures appear in Tade-
numa (1989). A class of games “dual” to the class of games with a non-empty
core is the class of games for which there exists an efficient payoff vector at
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which each coalition gets no more than its worth. The set of payoff vectors
with that property is the anticore of the game. On the class of games with
a non-empty anti-core, Tadenuma (1992) proposes a characterization of the
anticore dual to his characterization of the core.

(ii) Max consistency. The next definition extends the Davis-Maschler

proposal for the TU case based on a maximization operation. The axiom
was first used by Greenberg (1985).

Max consistency for NTU coalitional form games: The solution ¢ :
H — X3 is maz consistent if for all N, N' € N with N' C N,all V € HV,
and all z € ¢(V), we have 1%, (V) € HY' and zy: € o(r%,(V)), where r%,(V)
is the game defined by

re(VI(V') = {y € RV': (y,an\w) € V(N)}
i (V)(S) = Usiemne{y € R®: (y,zs) € V(S U S} for all S ¢ N’

We have the following characterization of the core. Note that, in contrast
with the TU case, the auxiliary axiom it involves is the same as in the
characterization based on complement consistency (Theorem 13).

Theorem 14 (Peleg, 1985) On the domain of strictly comprehensive NTU
games with a non-empty core, the core is the only solution satisfying indi-
vidual rationality and maz consistency.3”

Bibliographic note. Moldovanu (1989) considers a flexibility
notion (Subsection 1.7.1) based on the max reduced game. He
shows that on the domain of NTU games whose core is non-
empty, the core is not what can therefore be called maz flexible
(in contrast to the TU case). However, he identifies a weakening
of the property that is satisfied by the core.

Moldovanu and Winter (1990) offer a slightly different definition of maz
consistency and use it to characterize a solution®® introduced by Albers

370n the class of games involving at most k players, where k > 3, a characterization of
the core is obtained if maz converse consistency is added.

38The term is used in a different sense here, as feasibility is not required of the payoff
vectors. ’
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(1979), Bennett (1983), and Bennett and Zame (1988), and which also ap-
pears in a non-cooperative model studied by Selten (1981). The “stable
demand correspondence” is defined as follows. Given N € N, and a game
V € HY, the vector z € RV is semi-stable if (i) for every player i € N,
there is a coalition S to which agent ¢ belongs and such that “S can af-
ford z,” in the sense that the restriction of z to RS, zs, belongs to V(5),
and (ii) for no coalition S C N, zg belongs to the interior of V(S). The
number z; is interpreted as a demand made by player ¢ for his participa-
tion. The first condition says that each player is part of a coalition that
can meet the demands of all of its members, and the second condition states
that demands are maximal. The payoff vector is stable if it is semi-stable
and in addition, for any pair of players ¢, € N, it is not the case that the
set of coalitions containing ¢ that can afford z is a proper subset of the set
of coalitions containing j that can afford . The solutions associating with
every game (i) its set of stable demand vectors on the one hand, and (ii) its
set of semi-stable demand vectors on the other, satisfy both definitions of
consistency and converse consistency formulated by Moldovanu and Winter.
Their characterization of the stable demand solution involves in addition the
requirement that in the two-player case, the solution coincides with the core
if the core is not-empty, and the vector of individual rational levels other-
wise. For the semi-stable solution, this last requirement is changed to the
requirement that the solution coincides with the interior of the core if this
set is non-empty. These results extend earlier work by Winter (1989) for the
TU case.

(iii) Other reduced games that do not depend on the solution.
Nagahisa and Yamato (1992) extend their notion of consistency to the class
of NTU games and prove exact counterparts of their results for the TU case:
in particular, on the domain of NTU games with a non-empty core, the core
is the only Pareto-optimal and projection consistent solution.>®

(iv) Self-consistency. The notion of a reduced game proposed by Hart and
Mas-Colell can also be extended to the NTU case:*® given N, N’ € N with

39 Also, if the number of potential players is finite, the core is the only solution satisfying
either Pareto-optimalily, projection consistency, and weak projection converse consistency,
or Pareto-optimalily, projection consistency, and anti-monotonicity, these conditions being
the straightforward extensions of the conditions Nagahisa and Yamato use for the TU case.

“®Hart and Mas-Colell credit Owen and Maschler for the definition.
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N' C N, and V € HY, we define the “self-reduced game of v relative to N’
and ¢” by setting for every S C N/,

W(S) = {z € R®: (2, (0i(V|sum\vn) iemnr) € V(S U (N\N))}

To present the next result, we need to introduce an additional solution.
Given a list (w;);ez of positive weights, the Kalai-Samet w-egalitarian
solution is defined by successive distributions of dividends as follows: given
N € N and V € HV, each agent ¢ € N starts with an initial dividend equal
to max{z;:z; € V({:})}. Given a coalition S C N and ¢ € 9, the dividend
d;s received by agent 7 from his membership in the coalition S is obtained
by distributing among all members of S the surplus over and above the
vector of accumulated dividends of all subcoalitions, the distribution being
effected proportionally to their weights (w;);cs. Precisely, d;s = w;t, where
t = maz{t' (Lsnss,55i dist)ies + t'w € V(S)}.

We will also need one more property of solutions. It says that an enlarge-
ment of the feasible set relative to the grand coalition, the other components
of the game being kept fixed, benefits everyone:

Grand coalition monotonicity: (Meggido, 1974) If W(N) 2 V(N) and
W(S) = V(S) for all S # N, then (W) > (V).

The next result pertains to the class of “strictly comprehensive games”
(games V such that for all coalitions S and for all z, y € V(S), if z > y,
then there exists z € V(S) such that z > y).

Theorem 15 (Hart and Mas-Colell, 1989) On the domain of strictly com-
prehensive NTU games, a solution satisfies Pareto-optimality, homogeneity,
grand coalition monotonicity, and self-consistency if and only if there are
positive weights (w;);ez such that it is the w—egalitarian solution.*!

Maschler and Owen (1989) note — it is a consequence of their main results
discussed below in (v) — that the axioms shown by Sobolev (Theorem 7) to
characterize the nucleolus on the class of TU games, with maz consistency

“IThe uniqueness part of this theorem still holds if the first three axioms are only
imposed for two-person games.
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replaced by self-consistency and homogeneity replaced by scale invariance,?
are incompatible on the class of NTU games.

(v) Average self-consistency. Here, we consider an application of the idea
of average consistency informally discussed in Subsection 1.4.5. A solution
is only required to be such that for each game v € H" and for each player
¢ € N, his payoff z; be equal to the average of his payoffs in all of the reduced
games associated with z and all of the subgroups of the initial set of players
containing him. Note that such a requirement is most meaningful for single-
valued solutions. A special case of it is obtained by limiting the averaging
operation to groups of two agents.

Maschler and Owen (1989) focus on the class Hyyper C H of “hyperplane
games”, that is, games in which for each S, V(S5) is a half-space.*® Note
that their formulation is based on the self-reduced games (as in Hart and

Mas-Colell, 1989).

Average self-consistency: The single-valued solution ¢: Hpyper — Xy is
average self-consistent* if for all N € N, all V € H}, .., and all i €
N, we have ; = s Lnnien i @i(ris(V)), where ri, (V) is the self-
reduced game of V relative to N’ and ¢ (Section (iv)).*®

Maschler and Owen propose a solution for hyperplane games, and show
that this solution is average self-consistent. It is defined by an averaging of
marginal contributions similar to that defining the Shapley value (and indeed
in the TU case, it just gives the Shapley value payoffs): specifically, given
an ordering of the players, pay the first player the most that he could get on
his own; pay the second player the most that he could get in the coalition
consisting of the first two players subject to the condition that the first player
receives his payoff as just calculated ... Proceed in this way until the last
player. Finally, define the Maschler-Owen payoff of a player to be the

42This is the requirement, already encountered in our discussion of bargaining problems,
that the solution be invariant with respect to linear transformations, independent agent
by agent, of their utilities.

43A TU game can be represented as a hyperplane game in which all the hyperplanes are
normal to vectors of ones: given v € GV and S C N, set V(S) = {z e RV: Yy z; = v(S)}.

“4Maschler and Owen use the term consistency and refer to the property that we have
designated by that name as sirong consistency.

“SNote that the self- reduced games are hyperplane games.
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average of his payoffs so calculated when all orders are equally likely. The
average of these vectors of marginal contributions is Pareto-optimal because
the feasible set for the grand coalition is a hyperplane.

In fact, the Maschler-Owen solution satisfies the stronger version of av-
erage self-consistency obtained by averaging over all coalitions of a given
size, no matter what that size is. Given & € N, let us call k-average
self-consistency the version of the property obtained by averaging only
over coalitions of size k (when meaningful, that is, for games with at least
k players): using this terminology, the Maschler-Owen solution is k-average
self-consistent for any k. We also have the following characterization:

Theorem 16 (Maschler and Owen, 1989) On the domain of hyperplane
games, the Maschler-Owen solution is the only single-valued solution sat-
isfying Pareto-optimality, symmetry, scale invariance, and 2-average self-
consistency.*®

One may wonder whether the use of average self-consistency itself would
allow other solutions. The answer is no. Indeed, Orshan (1992) shows that
the axioms of Theorem 16 with average self-consistency substituted for 2-
average self-consistency still characterize the Maschler-Owen solution.

In a second step, Maschler and Owen extend their solution to general NTU

games.”” However, this extension is not 2-average self-consistent (Owen,

1992).

For each problem, starting from an arbitrary Pareto-optimal payoff vec-
tor, adjust its coordinates in the direction of the 2-averages given in the
definition of 2-average consistency. The Maschler-Owen outcome can be
understood as the rest point of this dynamic adjustment process, and it is
natural to wonder under what conditions such a process converges. Maschler

450wen (1992) states that the result also holds with 2-average self-consistency replaced
by k-average self-consistency for any k.

4"We will denote it by M O*: given N € N and V € HV, let « = (25)scn be a payoff
configuration for v, that is, zs is a point in V(S) for each S C N. For each S C N,
let Hs be a hyperplane of support of V(5) at g. Then, consider the hyperplane game
H = (Hs)scn, and calculate (MO(Hs))scn. If zs = MO(Hs) for all S C N, then
¢ € MO*(V). The non-emptiness of the set MO*(V) is established for a large class of
games by means of a fixed point theorem. Owen (1992) refers to it as the “inductive”
value, and Maschler and Owen as the “consistent” value, a name that we prefer avoiding,
given Owen (1992).
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and Owen identify an adjustment factor such that geometric convergence
takes place towards the payoff vector chosen by their solution, starting from
any Pareto-optimal payoff vector. Orshan (1992) shows that convergence also
takes place, of course to the same outcome, when the adjustments are made
on the basis of the averages over coalitions of all sizes, as in the definition of
average self-consistency.

2.2.4 Games in strategic form

The consistency principle has mainly been investigated in what can be called
“cooperative” models, as opposed to “strategic” models, these terms being
used to differentiate between (i) models in which only the opportunities col-
lectively available to groups of agents are specified (the cooperative models),
and (ii) models in which a set of possible actions is specified for each agent,
together with a payoff function mapping from profiles of actions into payoff
space; the issue there is to identify what is the best action, or “strategy”,
an agent should take (the strategic models). An interesting question con-
cerns the extent to which the two models, when applied to the same basic
situation, yield the same results. Since in the formulation of consistency, we
imagine agents leaving the scene with their payoffs, it is natural to attempt
to establish a link by considering strategic models in which it is an agent’s
option actually to also leave the scene. Here, agents leave the scene after
playing their components of the strategy profile under consideration.

Consider the following three-player game below. Player 1 is the row
player, player 2 is the column player and player 3 is the matrix player. We
allow mixed strategies. The Nash equilibrium solution chooses the strat-
egy profiles such that each player’s strategy is a best response to the strategies
chosen by the other two players.

Left Right Left Right

Up 1,1,1 1,0,1 Up 0,1,0 0,0,0

Down 1,1,1 0,0,1 Down 1,1,0 0,0,0
L R

Consider such a strategy profile and imagine some of the players leaving
with a commitment to play their components of the profile. In the game
faced by the remaining players, their strategy spaces are unchanged but the
payoff function is derived from the original one by fixing at the chosen values
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the strategies of the players who left. Now, we ask whether the players who
stay will still play their own components of the profile. It is trivial to check
that the Nash equilibrium solution satisfies this definition.

The perfect equilibrium solution chooses the strategy profiles sat-
isfying the following condition: given € > 0, say that a strategy profile is
an e-equilibrium if it assigns positive weights to all pure strategies, but
is assigns a weight smaller than € to any pure strategy that is not a best
response to the strategies chosen by the other players. A perfect equilib-
rium is a limit of such e-equilibria as € goes to 0. Note that for the example,
s = (D, L, L) is a perfect equilibrium but (D, L) is not a perfect equilibrium
of the game derived from it by fixing player 3’s strategy at L: therefore, the
perfect equilibrium solution is not consistent.

We now turn to the formal definitions. A strategic form gameis a pair
(S,h) where N € NV is a set of players, S = IInS; is the cartesian product of
their strategy spaces, and h: S — R" is the payoff function: given s € S
and ¢ € N, the coordinate h;(s) of A(s) is interpreted as the payoff received
by player : when the profile of strategies is s. Let SN be the domain of games
in which the group N may be involved, § = Uyepy SV, and Xs = Uyen RY.
A solution is a correspondence that associates with every N € N and every
game (S, h) € SV a (possibly empty)* subset of S. The Nash equilibrium
solution and the perfect equilibrium solution are examples of solutions. The
strong Nash equilibrium solution (Aumann, 1959) is another: it selects
the strategy profiles such that there is no group whose members can all
strictly benefit by jointly switching to other strategies, assuming that the
members of the complementary group do not switch.

Most of the consistency and converse consistency concepts of this section,
and the results, are due to Peleg and Tijs (1996).%°

We start with a formal definition of consistency. Let N € A and (S, k) €
SN be a game. Given N’ C N and s € S, the reduced game of (S, h)
relative to N' and s is the game (Sn+, %) where Al = (hf);en' and
h: Sy — RN is defined by hi(s') = hi(s',sp\wr) for all s € Syi. Let

#8This is in contrast with the other models reviewed in this survey, but as we will see, for
some of the solutions that have been characterized, very little is known about existence.

49 A very brief discussion of the issue appears in Aumann (1986), and ideas of consistency
are an important ingredient of the notion of a coalition-proof equilibrium (Bernheim, Peleg
and Whinston, 1987).
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r3(S, k) = (Swr, hi).

Consistency for games in strategic form: The solution ¢: S — X is
consistent if for all N, N' € N with N' C N, all (S,k) € SV, and all
s € (S, h), we have sy € @(ry (S, h)), where r3,(S, k) = (Snv, h1).

As far as converse consistency is concerned, several interesting alterna-
tives are possible. We start with the formulation that is the closest to the
one used in other models.

Converse consistency for games in strategic form: The solution ¢: S —
Xs is conversely consistent if for all N € N, all (S,h) € SV, and all
s € S, if [for all N' C N, sy € o(r3:(S, h))], then s € ¢(S, h).

As noted above, the Nash equilibrium solution is consistent. The exam-
ple used above to show that the perfect equilibrium solution is not consistent
also shows that the proper equilibrium solution and the stable equilibrium
solution are not either. The Nash equilibrium solution is conversely consis-
tent. In fact, our first result is that it is the only solution to satisfy both
conditions as well as the following requirement, which pertains to one-person
decision problems.

One-player payoff maximization: For a one-player game, the solution
should select the set of strategies maximizing the player’s payoff function.

Theorem 17 (Peleg and Tijs, 1996) The Nash equilibrium solution is the
only solution satisfying one-player payoff mazimization, consistency, and con-
verse consistency.

Consider the following additional properties, whose interpretation is
straightforward:

Independence of irrelevant strategies: If a strategy profile is selected by
the solution for some game and it remains feasible in the subgame obtained
by deleting some of the strategies of each player, then it is selected by the
solution in the subgame.®°

0This condition bears a certain resemblance to Nash’s (1950) condition of contraction
independence (Section 2.2.1).
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Dummy property: If a player has only one strategy, he can be deleted from
the game without affecting the strategy profiles selected by the solution for
the other players.

Given that independence of irrelevant strategies and the dummy prop-
erty together imply consistency, a corollary of Theorem 17 is that the Nash
equilibrium solution is the only solution satisfying one-player payoff maxi-
mization, converse consistency, independence of irrelevant strategies, and the
dummy property.

Here is an alternative formulation of converse consistency. We qualify
it of “conditional” because we impose on the strategy profile that is being
considered the requirement that it lead to a payoff vector that is weakly
Pareto-optimal among all payoff vectors resulting from some strategy profile:
given a game (S, h), let WPO(S, k) be the subset of S of strategy profiles
whose associated payoff profiles are not strongly Pareto-dominated by any
payoff profile. The set PO(S, k) is defined in a similar way, replacing strong
Pareto-domination by Pareto-domination.

WPO-conditional converse consistency for games in strategic form:
The solution ¢: S — Xs is WPO-conditional conversely consistent if
for all N € N, all (S,h) € SV, and all s € S, if s € WPO(S, k) and [for all
N'C N, syt € @(rj(S, h))], then & € (S, k).

Theorem 18 (Peleg and Tijs, 1996) The strong Nash equilibrium solution
is the only solution satisfying one-person payoff mazimization, weak Pareto-
optimality, consistency, and WPO-conditional converse consistency.

The subsolution of the strong Nash equilibrium solution defined by requir-
ing that no group of players be able to make all of its members better-off and
at least one of them strictly better-off by jointly switching to other strate-
gies, can be characterized along the lines of Theorem 18 by simply chang-
ing the conditional statement in WPO-conditional converse consistency from
s € WPO(S,h) tos € PO(S, k). It could be referred to as PO-conditional

converse consistency.

The next result is a characterization of a relatively recent solution. To

define it, and given N € NV, (S,h) € SN, s € S, and N' C N, s’ € Sy is
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an tnternally coherent’™ improvement of N' over s if the following
holds: if [N'| =1, that is, if N' = {4} for some ¢ € N, hi(s}, sy\qi3) > hi((s);
if |N'| > 1, hi(s},snm\nr) > hi(s) for all £ € N’, and no N” C N’ has an
internally coherent improvement over (syv, sy\n). Finally, s is a coalition-
proof equilibrium if no N’ C N has an internally coherent improvement
over s (Berheim, Peleg, and Whinston, 1987).

The characterization of the solution stated next involves the requirement
of weak two-person Pareto-optimality, which says that for any game
(S,h) € SN with |S| = 2, if s is chosen by the solution, then there is no
t € S such that for all N' C N, tnr € o(rii(S, k), hi(t) > hi(z) for all: € N.

It also involves the following weakening of converse consistency.

Weak converse consistency for games in strategic form: The solution
©: S — Xs is weakly conversely consistent if for all N € NV, all (S,h) €
8%, and all s € S such that [for all N’ C N, sy € o(Snr, b)), and there is
no t € S such that [for all N' C N, txr € p(rh.(S, h))] and hi(t) > hi(s) for
all £ € N, then s € (S, h).

Theorem 19 (Peleg and Tijs, 1996) The coalition-proof Nash equilibrium
solution is the only solution satisfying one-player payoff mazimization, weak
two-person Pareto-optimality, restricted Pareto-optimality, consistency, and
weak converse consistency.

Other results in the spirit of Theorems 17, 18, and 19 are offered by
Peleg and Tijs. In particular, they characterize the correspondence associ-
ating with each game its set of profiles of dominant strategies. They also
consider applications to Bayesian games and to sequential games, and of-
fer a characterization of the Bayesian Nash solution. This latter theorem
is an exact counterpart of their characterization of the Nash solution (The-
orem 17). Van Heumen, Peleg, Tijs, and Borm (1996) provide a detailed
study of Bayesian games, and offer characterizations of the Bayesian, strong
Bayesian, and coalitional-proof Bayesian equilibrium solutions. For extensive
form games, Peleg and Tijs (1996) derive an almost identical result to their
Theorem 17; the only difference is that one-player payoff mazimization is

51We use the term “coherent” instead of the term “consistent” which is commonly used,
in order to avoid a possible confusion.
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strengthened to “perfect” one-player payoff mazimization, a condi-
tion which is equivalent to the principle of backward induction for one-person
decision problems.

Norde, Potters, Reijnierse, and Vermeulen (1993) focus on two classes of
games, (i) the class of mixed extensions of finite games, and (ii) the class of
games with compact and convex strategy spaces and continuous and concave
payoff functions. They show that in either case the Nash equilibrium solution
is the only solution to satisfy non-emptiness, weak one-player payoff maxi-
mization, obtained from one-player payoff mazimization by requiring that for
a one-person game, the solution selects a subset of the set of strategies max-
imization the player’s payoff function, and consistency. Peleg, Potters, and
Tijs (1993) identify general graph-theoretic conditions for a class of games
to be such that on the class, the Nash solution is the only well-defined solu-
tion to satisfy these axioms. They show that the conditions are met by the
class of finite games having at least one Nash equilibrium, but not by several
interesting classes of potential games.

Peleg and Sudolter (1994) consider abstract economies in the sense of
Debreu (1952). Such an economy consists of a list of agents, and for each
agent, a strategy space, a payoff function defined on the cross-product of the
strategy spaces, and finally a feasibility correspondence: agent ¢’s feasibil-
ity correspondence specifies, for each list of strategies chosen by the other
agents, a subset of his strategy space from which he can actually choose. The
assumptions are that for each agent, (i) his strategy space is a non-empty
convex, and compact subset of a Euclidean space, (ii) his feasibility corre-
spondence is continuous and takes non-empty, closed, and convex values,
(iii) his payoff function is continuous on the graph of his feasibility corre-
. spondence, and (iv) for each list of strategies chosen by the other agents, his
payoff function is quasi-concave with respect to his strategy over the set of al-
lowable strategies for him, as specified by his feasibility correspondence. The
theorem is that the Nash equilibrium solution is the only solution satisfying
one-player payoff mazimization and consistency appropriately rewritten for
this class of situations (in a reduction, the payoff functions and the feasi-
bility correspondences have to be respecified so as to take into account the
strategy choices made by the departing agents).

A counterpart of the Peleg-Sudholter characterization for the class of
games with (1) convex and weakly compact strategy spaces in infinite dimen-
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sional Banach spaces, (ii) weakly continuous and convex-valued feasibility
correspondences, and (iii) weakly continuous and quasi-concave payoff func-
tions, has been proved by Shinotsuka (1994b). This formulation covers in
particular the class of games in which strategy spaces are probability distri-
butions over compact intervals.

We close this section by noting that the idea of consistency has greatly
helped in the understanding of a number of non-cooperative models of bar-
gaining. Contributions in point are due to Krishna and Serrano (1996), who
consider a model of sequential bargaining, and Sonn (1992, 1993) who stud-
ies a class of bankruptcy problems (Subsection 2.3.2) as well as an NTU
formulation of the Rubinstein’s (1982) game of alternative offers. In each of
these papers, the Nash solution outcome emerges as the limit of equilibrium
outcomes when a critical parameter (discount rate in most models) tends to
its extreme value. It turns out that the system of equations satisfied by the
equilibria is the same as the system of equations defining the one-parameter
family of Nash-like solutions of Lensberg and Thomson (1988) (See the dis-
cussion following Theorem 1). These solutions had been obtained entirely
from axiomatic considerations, with consistency playing the main role.

In a series of contributions, Serrano has shown that certain strategic form
games could be analyzed by drawing on the consistency and converse con-
sistency properties of their equilibrium correspondences.

Serrano (1993a) suggests associating with each three-person super-
additive TU game in coalitional form v an infinite alternating-offer bar-
gaining game with exit and outside options, and proves that if the order
in which players are allowed to make offers corresponds to an intuitive no-
tion of “power”, as reflected by the coalition form, the non-cooperative game
has a unique Markov perfect equilibrium outcome, which is the nucleolus of
v.%2 Serrano (1994) defines, for every convex TU game, a sequential game
whose set of subgame perfect equilibrium outcomes coincides with the core
of the game. Serrano (1995a) associates with each bankruptcy problem (see
Subsection 2.3.1 for a formal definition) a sequential game and shows that
there is a unique subgame perfect equilibrium with payoff vector equal to the
nucleolus of the TU coalition form associated with the bankruptcy problem,
and he obtains a similar result for surplus-sharing problems. Finally, Serrano
(1995b) derives the kernel of a class of TU games in coalitional form as well as

52As he notes, the result does not extend to the case of more than 3 players.
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the Nash bargaining solution of bargaining problems and an extension of the
kernel to a class of NTU games in coalitional form, as equilibria of a certain
sequential game. These results rely crucially on the converse consistency of
these solutions on the domains under consideration.

Moldovanu (1990b) invokes the idea of consistency in his analysis of a
strategic market game in economies with indivisibilities.

The investigation of the implications of consistency for other strategic
models appears to be one of the most promising directions for future research.

2.3 PUBLIC FINANCE

In this section, we present results pertaining to several models of public
finance. We begin with bankruptcy and taxation models, continue with two
models of cost allocation, and we close with pricing problems.

2.3.1 Bankruptcy and taxation problems

We start with two problems discussed in the Talmud.

The contested garment problem: two men disagree over the owner-
ship of a garment, worth 100. The first man claims half of it (50) and the
other claims it all (100). Assuming both claims to be made in good faith,
how should the worth of the garment be divided among the two men? The
Talmud recommends 25 for the first one and 75 for the second (Baba Metzia,
Babylonian Talmud).

The estate division problem: a man has three wives whose marriage
contracts specify that in case of his death they should receive 100, 200, and
300 respectively. The man dies and his estate is found to be worth only
100. How should this amount be divided among the wives? The Talmud
recommends equal division. If the estate is worth 300, the Talmud recom-
mends proportional division, but if it is worth 200, it recommends (50, 75,
75)! (Ketuboth 93a, Babylonian Talmud)

To clarify the mystery posed by the numbers given as resolutions of these
problems, we should first of all find a general and natural formula that gen-
erates them. Consider the following method to divide the value of the estate
among n claimants. The method, proposed by Aumann and Maschler (1985),
is illustrated in Figure 2.3 for the two problems in the Talmud: the first units
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of the estate are divided equally until each claimant has received an amount
equal to half of the smallest claim; then the claimant with the smallest claim
does not receive anything for a while; instead, any additional amount is di-
vided equally among all others until each of them has received an amount
equal to half of the second smallest claim; then the two claimants with the
smallest claims do not receive anything for a while. . .; the algorithm proceeds
in this way until a value of the estate equal to 3" ¢;/2; at that point, each
claimant has received half of her claim; for values of the estate greater than
> ¢i/2, awards are computed in a symmetric way, by successively equating
incremental losses instead of incremental gains, and starting from a value of
the estate equal to the sum of the claims, and for which each claimant is
fully compensated. It is a simple matter to check that when this method is
applied to the two Talmudic problems, it yields the numbers given by the
Talmud. Henceforth, we will call it the Talmudic solution.

Now, for an estate of 200 in the 3-person case, the amounts awarded to
claimants 1 and 2 are 50 and 75 respectively, for a total of 125. Applying the
Talmudic solution to divide an estate of 125 between the first two claimants
returns the same numbers 50 and 75! In fact, given any value of the estate,
if  denotes the solution outcome of the 3-person problem, applying the
solution to the division of an estate of 2; + z; between any pair {,;} yields
the settlement (z;,z;). This coincidence always occurs. It is because the
Talmudic solution is consistent!

Here are the general definitions: a bankruptcy problem is a pair
(c,E) € RY x Ry with Yy ¢; > E: N € N is a group of claimants on the
net worth E of a bankrupt firm, ¢; being the claim of claimant : € N.>3

A different interpretation of pairs in RY x R, gives us the class of tax
collection problems, and in what follows we will mainly focus on that in-
terpretation: a tax collection problem is a pair (w,T) € RY x Ry with
Svw; > T; N € N is a group of taxzpayers with incomes given by
the coordinates of w, and who among themselves must cover the cost T
of a project. Let 7V be the class of these problems, 7 = Uyenx 7", and
X7 = UnexRY. A solution is a function associating with every N € N

*3Bankruptcy problems have been considered by O’Neill (1982), Aumann and Maschler
(1985), Chun (1988), Chun and Thomson (1990), Serrano (1993), Landsburg (1993), Da-
gan and Volij (1993), Dagan, Serrano and Volij (1993), R. Lee (1992a) and and N-C. Lee
(1994). See Thomson (1995) for a survey.
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Figure 2.3: The consistency of the Talmudic solution to the es-
tate division problem. The value of the estate is measured horizon-
tally. The payments to the claimants are measured vertically. (a) Claims
are (c¢1,¢2,c3) = (100,200,300). If the estate is worth 200, the Talmudic
solution recommends (50,75,75). (b) Claimant 3 has received 75, which
leaves 200 — 75 = 125 for the other two claimants. Their claims are
(c1,¢2) = (100,200). The Talmudic solution recommends (50,75), which
is exactly what they had initially received.
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Taxpayers’ Proportional taxation Rank taxation
incomes applied to applied to
w (’U), 30) (wl, W2, 15) (U), 30) (U)l, w3, 20)
wy =10 5 5 5 20/3
wy =20 10 10 10
ws = 30 15 15 40/3

Table 2.2: Consistency of taxation methods. Proportional taxation is
consistent. “Rank taxation”, which assesses taxes proportionally to the rel-
ative ranks agents hold when they are ordered by incomes, is not consistent.
Indeed, relative ranks are disturbed when some of the agents leave. In the

example, N = {1,2,3}, w = (10, 20, 30), and T' = 30.

and every (w,T) € TV, a vector in RV whose coordinates add up to T'. Tax-
ation problems have been extensively investigated by Young (1986, 1987a,b,
1988a).

Interesting examples of solutions are: the proportional solution, which
gives the vector of taxes z as Aw, A being adjusted, as in the next three
examples, so that )~ z; = T; the leveling tax, where z; = max{w; — 1/},
0}; Stuart’s solution, where z; = max{0, w; — w!*}; finally, Cassel’s
solution, where z; = w?/(w; + 1/}).

Table 2 illustrates the fact that proportional taxation is consistent®*
whereas the following rank tazation method® is not: order the taxpay-
ers by increasing incomes. Then, assess them proportionally to their ranks
(for example, agent of rank 5 is assessed 5/3 times what agent of rank 3 is
assessed ).

Consider now the following class of solutions. Let f:Ry X [a,b] — Ry,
where [a, b] C [—o0, +00], be continuous, weakly monotone increasing in its
second argument and such that f(w;,a) = 0 and f(w;, b) = w; for all w; € Ry.
Then, given N € N and (w,T) € TV, let z = p(w,T) if "y z; = T and
for some A € [a,b], z; = f(w;, A) for all ¢ € N. Young (1987) calls any

4This is true for this model as it is for any model where proportionality is well-defined.
5% owe this example to P. Young.
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Figure 2.4: Parametric solutions are consistent. Given the three in-

comes (wy, wy, w3), the parameter A is chosen so that the amounts flwe, A),

f(ws, ), and f(ws, ) add up to what has to be collected, T'. Now, il the .
amount T' = T — f(ws, \) is to be collected from taxpayers 1 and 2, the

value X’ for which the amounts f(w;, ') and f(w2, ') add up to T” is of

course ' = A. After taxpayer 3 has paid f(ws, A), taxpayers 1 and 2 are still

assessed the same amounts. |

solution so defined parametric. It is straightforward to check that they are
all consistent.

Figure 2.4 depicts the graphs of such an f for three possible values of the
first argument. The choice of A = A; allows 4 + 10 + 12 to be collected, and
the choice of A = A, allows 74 18 + 17 to be collected. Note that the graph
corresponding to w; is not strictly monotone increasing whereas the other
graphs have that property, and that the graph corresponding to ws does
not lie entirely above that corresponding to ws, < ws. At this stage these
are indeed possibilities. It may be judged desirable that when the burden
imposed on some agent increases, then so does the burden imposed on any
other agent. To achieve this, require that the functions never be constant.6
When an agent’s income is greater than some other agent’s income, we may

find it appropriate for him never to pay less taxes. This is accomplished by
requiring that the functions be ordered by incomes. The proportional and
Talmudic solutions are parametric and Figures 2.5a and 2.5b give parametric
representations for them, the latter in the case in which an upper bound on

6They could of course be constant over the same intervals.
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Figure 2.5: Parametric representations of two solutions. (a) Propor-
tional solution: the schedules are straight lines through the origin, of slopes
equal to incomes. (b) Talmudic solution: The schedule relative to income w;
follows the 45° line up to the point (w;/2,w;/ 2), continues horizontally until
it meets the line of slope -1 emanating from (Wwmax,0), then again follows a
line of slope 1, until it reaches the point (W, wy).
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incomes exists, Wmax.> "

In the formulation of consistency, we go back to the requirement of single-
valuedness since all taxation methods discussed in the literature satisfy it.

Consistency for taxation problems: The solution ¢: 7 — X7 is consis-
tent if for all N, N’ € N with N' C N, all (w,T) € TV, and all z € RV if
z = p(w,T), then zn = p(r¥(w,T)), where r§,(w,T) = (wnr, Sy Ti)-

The first two of the requirements that we will impose in conjunction with
consistency are straightforward and they have wide appeal. The next three,
used in the subsequent theorem, have also been extensively discussed in the
literature, although they are perhaps slightly less compelling.

Taxpayers with identical incomes should be assessed identical taxes:
Equal treatment of equals: If w; = w;, then ¢;(w,T) = ¢;(w, T).

Small changes in the parameters of the problem should not produce large
changes in taxes. Let {(w”,T")} denote an arbitrary sequence of taxation
problems in T7:

Continuity: If (w”,T") — (w,T), then p(w’,T") — @(w,T).
We are now ready for the main theorem:

Theorem 20 (Young, 1987) The continuous parametric solutions are the
only solutions satisfying equal treatment of equals, continuity, and
consistency.>®

Subfamilies of the parametric family can be identified by imposing the
requirement that no group of agents should be able to benefit by consolidating
their incomes and being treated as a single taxpayer:

57This assumption restricts somewhat the scope of the solution but it permits a very
simple (piecewise linear) representation (Chun and Thomson, 1990). See Young (1987)
for a representation without the upper bound.

%8 Any such solution is also obtained by maximization of a symmetric, continuous, and
separable additive objective function y_ H(w;,t) over the constraint set {t € RV: 5 ¢; =
T,0 <t; <a;}, where H(.,.) is a strictly convex function of its second argument.
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Non-manipulability by merging: If i € N’ C N, then >y j(w,T) <
ei( X wj, wn\w, T).

Alternatively, non-manipulability by splitting says that no taxpayer
should be able to benefit by representing several taxpayers whose incomes add
up to his (this requirement is obtained from the one just stated by reversing
the inequality).

As a corollary of Theorem 20, we obtain that if a solution satisfies con-
tinuity, equal treatment of equals, and consistency, and in addition is non-
manipulable by merging, then it is a parametric solution relative to a function
that is concave with respect to its first argument. If instead, it is non-

mantpulable by splitting, then the function is convex in its first argument (De
Frutos, 1994).

Aumann and Maschler (1985) show that the Talmudic solution to the
bankruptcy problem is the only bilaterally consistent solution to coincide in
the two-person case with the solution to the contested garment problem.
They also show that, interestingly, this solution picks for every bankruptcy
problem the nucleolus (Subsection 2.2.2) of the TU coalitional form game
associated with the problem in the following way (O’Neill, 1982): define the
worth of a coalition to be the amount that is left over after all the members of
the complementary coalition have been given full satisfaction if that left-over
is non-negative, and 0 otherwise. R. Lee (1992a) gives a short proof of this
result.

Bibliographic note. Chun and Thomson (1990) define a par-
ticular member of the parametric family. It is inspired by a solu-
tion to the problem of fair division when preferences are single-
peaked known as the uniform rule (Subsection 2.4.3.) N-C. Lee
(1994) proposes a weighted generalization of the “constrained
equal award” solution to bankruptcy problems (the counterpart
of the leveling tax), and develops a characterization of it based
on consistency. This characterization exploits duality relations
between cores, anticores, and their reductions. We noted above
(Section 2.2.3) Sonn (1992, 1993)’s derivation of the equilibria of
games of alternating offers associated with bankruptcy problems;
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this derivation relies in an important way on consistency argu-
ments. Finally, as also mentioned there, we recall that Serrano
(1993) makes use of the consistency of the nucleolus, when ap-
plied to the TU game associated with a bankruptcy problem, in
order to construct a sequential game whose equilibrium outcome
is the payoff vector the nucleolus would select.

Within the class of parametric solutions, a narrow subclass of great in-
terest can be identified by imposing the following additional properties:

If incomes and cost are multiplied by the same positive number, so should
all taxes:

Homogeneity: ¢(aw,aT') = ap(w,T) for all o > 0.
Taxpayers with greater incomes should pay relatively more:

‘Pj(w)T)
wy C

Progressivity: If w; > w; > 0, then ""(;“i’T) >
Taxes can be assessed indifferently at one time or in installments:
Decomposability: o(w, T+ T") = ¢(w,T) + p(w — p(w, T), T").

Theorem 21 (Young, 1986) A parametric solution satisfies 'progressivz'ty,
homogeneity, and decomposability if and only if it can be represented in one
of the following ways:

flwi, A) = dwy; 0<A<1
fp(wi,)\) =wi—-wi/(1+)\wf)1/” 0<A<o00 p>0
foo(wi, A) = max{0,w; — 1/} 0< A<

Other interesting subclasses of the class of consistent solutions are iden-

tified by Young (1987, 1988a). Consider for instance the following family:

Equal-sacrifice solutions : Let u: Ry, — R be a continuous and strictly
increasing function. Then, given N € A and (w,T) € TV with ¢ > 0, the
equal-sacrifice solution relative to u selects the point 2 € RY such that
for some A > 0, and for all ¢ € N, we have u(¢;) — u(e; — z;) = A
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The next result involves the requirement of strict tax bill monotonic-
tty, which says that all assessments should strictly increase if the tax bill in-
creases, and strict order preservation, which says that if agent ¢’s income
is greater than agent j’s, he should be assessed a strictly greater amount.

Theorem 22 (Young, 1988) On the domain of problems for which incomes
are all positive, the equal-sacrifice solutions are the only solutions satisfying
continuity, equal treatment of equals, strict taz bill monotonicity, strict order
preservation, decomposability, and consistency. If in addition, homogeneity
is imposed, then the solution is an equal-sacrifice solution relative to u such
that either u(z) = In(z) or u(z) = —aP for p < 0. In the first case, the
solution is the flat tax; in the second case, it is a parametric method of
representation f(w;, A) = w; — [w; + AP]'/7.

Bibliographic note. Pan (1996) establishes a variant of Theo-
rem 22 in a model in which the labor-leisure trade-off is explicitly
described, but is the same for all agents.

A requirement related to consistency can be formulated for situations in
which one of the taxpayers has an income equal to zero: then, (i) he pays
nothing, and (ii) deleting him does not change the taxes assessed the others.
Part (i) corresponds to the condition known in the theory of coalitional form
games as the “dummy condition”. (It is used in that form in de Frutos,
1994). It is part (ii) that corresponds to consistency. Since its coverage is
not as wide as that of the condition that we used under that name, we will
refer to it as limited consistency. The condition amalgamating the two

parts appears in O’Neill (1982) and Chun (1988).
Dummy: If N' C N and wys = 0, then ¢pni(w,T) = 0.

Limited consistency for taxation problems: Under the hypotheses of
dummy, if x = p(w,T), then zx\n = @(wWn\ N7, LN\ Ti).

The next characterization also involves the requirement that taxpayers
not be able to benefit by redistributing incomes among subgroups. This
condition is particularly meaningful in the context of bankruptcy.

83



No-advantageous reallocations: If N C N and ¥ pw; = Y wl, then
EN’ QO,'(’U)/, T) = EN’ Qoi(wa T)

Theorem 23 (Chun, 1988) The proportional solution is the only solution
satisfying anonymity, continuity, no-advantageous reallocation, dummy, and
limited consistency.

Next, we present an alternative weakening of consistency, which is based
on the averaging operation discussed in Subsection 1.4.5. Consider a solution
that is not consistent. Then, for at least one problem — let the recommen-
dation made for it by the solution be denoted by z — there is at least one
subgroup and one taxpayer that belongs to it, say taxpayer 7, such that in the
reduced problem relative to that subgroup and z, he is assessed an amount
that is different from what he was initially assessed, z;. It may be the case
however, that on average, when all the reduced problems associated with
¢ relative to groups to which he belongs are considered, he is still assessed
z;. If this is always true, we may be satisfied with z after all. To the extent
that the formation of subgroups is a thought experiment anyway, this weaker
notion may be quite acceptable.

Average consistency: For all N € VN, all (w,T) € TV, and all i € N,
Ti = FNET LNLNICNN'3i Pi(WN1, TN 7).

This form of consistency is studied by Dagan and Volij (1994) who sug-
gest that the averaging be limited to coalitions of size two. They have in
mind situations in which a solution for the two-claimant case has been cho-
sen. Then the idea of average consistency can be exploited to provide an
extension of the solution to all cardinalities, as follows: given a problem
(w,T) € TV, select z € RY such that Yyz; = T and for all i € N,
T = ﬁ Yien\iiy @i(wi, wj, z; + x;). Two questions are whether such an z
exists, and if it does, whether it is unique. The following theorem states that
provided the two-person solution satisfies boundedness, which says that no
agent’s assessment should exceed his income, anonymaty, which says that
the rule should be invariant with respect to permutations of the names of
agents, and taz bill monotonicity, which says that no assessment should
decrease if the tax bill increases, both questions have positive answers:
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Theorem 24 (Dagan and Volij, 1994) For all two-person solution satisfying
boundedness, anonymity, and tazx bill monotonicity, p, all N € N, and all
(w,T) € TV, there is a unique z € RY such that (i) Y z; = T and (ii) for all
1t €N, z; = ﬁ ZjeN\{i} wi(wi, wi, T; + ;).

Problems closely related to taxation problems are surplus-sharing prob-
lems. Such a problem is a pair (w,S) € Rf X R4, where w; is the invest-
ment in a joint venture made by agent : € N, and S > 0 is the surplus
generated by this venture. Moulin (1985a)°° uses consistency together with
some other natural conditions and characterizes one-parameter families of
surplus-sharing methods that contain as particular cases both equal shar-
ing and proportional sharing. One of his auxiliary axioms is homogeneity
(see above). Pfingsten (1991) describes how the class of admissible solu-
tions enlarges when homogeneity is dropped. Herrero, Maschler, and Villar
(1995) study the implications of consistency in a model that includes both
bankruptcy and surplus-sharing as special cases.

2.3.2 Quasi-linear cost allocation problems

Three agents have the choice between two projects, a; and a,, costing
(c1,¢2) = (20,30). The benefits they derive from these projects are u; =
(70,50), us = (10,50), and us = (30,10). Monetary transfers can be ef-
fected among them. Which project should they select and how should its
cost be allocated? Consider the method consisting in first selecting the
project generating the highest surplus and then calculating contributions
so that all agents receive an equal share of this surplus. For the example,
the best project is a; since uy; + ugy + uz; — ¢ = 70 + 10 + 30 — 20 =
90 > ugp + ugy + uzz — ¢ = 50 + 50 + 10 — 30 = 80, and the resulting
utility levels are (90/3,90/3,90/3) = (30,30,30). To check whether the
method is consistent, we note that in order to guarantee agent 3 a util-
ity of 30, agents 1 and 2 should pay him 30 — 30 = 0 if they choose a4,
and 30 — 10 = 20 if they choose a,, leading to an “adjusted cost vector”
¢ = (20 + 0, 30 + 20) = (20,50). The project that produces the highest sur-

plus in the two-person economy that results from this adjustment is of course

59Interestingly, Moulin uses an axiom of separability which pertains to the fixed popula-
tion case, and shows that together with his auxiliary axioms, the separability of a solution
for each cardinality implies its consistency.
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Figure 2.6: Consistency for quasi-linear cost-allocation problems.
This figure illustrates the consistency of the “equal surplus sharing” solution
for a two-project example. When agents 1, 2, and 3 are present, project a; is
chosen and they achieve the final utilities (30,30,30). If agent 3 leaves with
his promised utility of 30, then agents 1 and 2 can still choose either one of
the two projects but they have to transfer money to agent 3 as a function
of which project they select so that his utility be indeed 30. This leads to
a revised cost vector for the reduced problem they face. When this reduced
problem is solved, agents 1 and 2 end up with the same utilities.

ay since uyy +ug —¢f = 70+10—20 = 60 > Uiz +uze—ch = 504+50—50 = 50.
Equal sharing of that surplus of 60 yields the utilities (60/2, 60/2) = (30, 30),
as initially determined. This is because the method is consistent.

The general definitions are as follows. Given a finite set A of public
projects, a quasi-linear cost allocation problem is a pair (u,C) €
RMIN » Ri4l, Here, C is interpreted as a cost vector. Each coordinate of C
is the cost of the corresponding project. In addition, there is a private good
called “money”. The preferences of agent i € N, defined over the product
A x R, admit a quasi-linear utility representation: given the project a € A
and given agent 7’s holdings of money m; € R, his utility is u;, +m;. Let MV
be the class of these problems, M = Uycy MY , and Xa = UyeaRY. A
solution is a function that associates with every N € A/ and every (u,C) €
MPN a vector z € RN such that 2N T S maXgea{uis — C,}.
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Moulin (1985a, 1985b) carries out an extensive analysis of this class of
problems, which generalizes the class of bankruptcy and taxation problems
of the previous section, as it is given in a space of higher dimensionality. He
defines a rich class of solutions which can be described as “egalitarian” since
they are based on equating utility gains. They differ from each other in the
specification of the reference point from which utility gains are measured.
The formal statement of consistency for this model is as follows:

Consistency for quasi-linear cost allocation problems: The solution
p: M — X is consistent® if for all N, N' € N with N’ C N and all
(u,C) € MV if 2 = p(u, C), we have zn = (r%,(u, C)), where r%,(u,C) =
(unr, (:’) with C, = C, + YT — uig) for all a € A.

We will consider solutions satisfying the following requirements. First,
the decision should maximize the net aggregate benefit:

Pareto-optimality: Y n pi(u, C) = maxsea{>n tia — Ca}.

The solution should be invariant under exchanges of the names of agents:
let N,N € N be such that |[N| = |N|, and let (u,C) € MY and (vi);c5 €
RMIV,

Anonymity: If |[N| = |[N|, 7: N — N is a bijection, and (vi)ien = (7(u)),
then (P((vi)iej\?’ C) = 7(p(u,C)).

The solution should be invariant under the addition of an arbitrary con-
stant to an agent’ utility vector:

Independence of the zero of the utility functions: If for some « € R,
v; = u; + ol,...,1), and v; = u; for all j € N\{¢}, then ¢;(v,C) =
©i(u,C) + a and ¢;(v,C) = p,(u,C) for all 3 € N\{i}.

An increase in the cost function that is uniform across all alternatives
should be distributed evenly among all agents:

Independence of the zero of the cost function: If C' = C+a(l,...,1),
then ¢;(u,C") = pi(u,C) — a/|N| for all 1 € N.

59Moulin uses the term “separable”.
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Theorem 25 (Moulin, 1985a) A solution ¢: M — X satisfies Pareto-
optimality, anonymity, the two independence axioms, and consistency if and
only if there is a function ¢: [R4]*> — R satisfying

(i) g(z + o(1,...,1),2) = g(z,2) + a for all 2, 2 € R4, and all o € R;

g(0,2) = 0 for all z € R4,

(ii) g(z,z + a(1,...,1)) = g(z, 2) for all z, z € R4, and all « € R,
and such that for all N € N, all (u,C) € MV and all : € N,
0i(,C) = (1/IN]) maxae{Sn ie — Ca} + (L/INA(IN] = gty Sy s —
C) = Ty 9(uj, Dy ui — C)

The class identified in this theorem is quite large. Interesting subclasses
result by imposing two further conditions.

The first condition is that an increase in the cost function should be borne
by all agents:

Cost monotonicity: If ' 2 C, then ¢(u,C") £ ¢(u,C).

The second condition is that no agent should be able to benefit by pre-
tending his utility to be smaller than what it really is:

Immunity to manipulation by disposal of utility: If u; < v; and u; = v;
for all j € N\{:i}, then ¢;(u,C) £ ¢i(v,C).

Theorem 26 (Moulin, 1985a) A solution of the form identified in Theo-
rem 25 satisfies cost monotonicity and is immune to manipulation through
disposal of utility if and only if g(z,2) = g§(z) for all z,z € R4, for some
monotone function §: R4 — R.

A number of corollaries follow from Theorem 25, by imposing additional
requirements such as various lower or upper bounds on welfares. An example
is the self- explanatory individual rationality above some reference
lottery o. Another is participation, which says that an agent should not
be better off by withdrawing from the economy. A third is no free lunch,
which says that no agent should be better off than he would be by optimally
choosing the public decision under the constraint that its cost be divided
equally. A final condition is no advantageous reallocation, which says
that no coalition of agents should be able to make all of its members better

88



off by “transfers of utility” defined as follows: the problem is changed into
one in which the members of the coalition announce different utility vectors
but for each decision, the sum of the utilities of its members remains the
same. When these additional conditions are used in turn, characterizations
of various subfamilies of the family described in Theorem 25 obtained by
placing restrictions on the function ¢g are obtained. One of these corollaries
singles out utilitarianism.

The final result that we will state for this model is of particular interest
as it also pertains to possible changes in populations. It says that an increase
in the number of agents should affect all agents initially present in the same
direction.

Weak population-monotonicity: If N' C N, either ;(u,C) 2 pi(un, C)
for all ¢ € N', or ¢;(u,C) < ¢i(un,C) for all 7 € N'.
Theorem 27 (Chun, 1986) A solution of the form identified in Theorem 25
satisfies weak population-monotonicity if and only if there is a function
§:R4 — R satisfying

(1) §g(z + a(1,1,...,1)) = §(z) + a for all z € R* and all « € R

(i) 4(0) = 0
and such that for all N € NV, all (u,C) € MY, and alli € N,

0i(,C) = (1/IN|)maxaes{Sn wia — Ca) + (L/INDL(N] = 1)i(us) -
Yy 9(ui) b

A corollary of this result is that if in addition to the axioms of Theorem 27,
the solution is required to be immune to manipulation through disposal of
utility, then the function § identified in the theorem should be such that
for all z, y € R* with z < y, §(z) £ §(y). A final characterization, which
1s a consequence of this corollary, involves the further requirement that the
solution should guarantee to each agent a utility level that depends only on
his own utility vector and the per capita cost vector, but not on the size of
the society to which he belongs. The family that results is a subfamily of
the one just described, obtained by choosing § such that for some o € Al
g(z) = z.0 for all z € RA. All of these additional characterizations are due
to Chun (1986).
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2.3.3 General cost allocation problems

The models of bargaining theory and coalitional form games as well as the
cost allocation models examined earlier can be interpreted as “abstract” pro-
duction models in which the alternatives to choose from are the images in
utility space of production and distribution decisions, and as explained earlier
the results obtained for these abstract models can be used to define solutions
to concretely specified production problems. Such problems have not been
the object of much attention with regards to consistency. The exceptions
are Moulin and Shenker (1994) who study cost-sharing in a model with one
input and one output, and characterize a certain “serial” cost sharing rule,
and Kolpin (1994) who considers an extension of the model to the multicom-
modity case.

In a production model, it is not immediately obvious how consistency
should be defined. Indeed, the most natural reduction involves translating
the technology by the vector of goods allocated to the departing agents but
classical domains are not closed under such operations. For that reason,
Moulin and Shenker consider more general domains for which closedness is
ensured.

The formal model is as follows. A group of consumers N € N demand
the amounts d = (d;)ien € Hf of a good, d; being the demand of consumer
. The good is produced according to a technology described by a cost
function C:Ry — R,;. This cost function belongs to the domain F of
nondecreasing functions that can be expressed as the difference of two convex
functions taking the value 0 at 0.1 A cost allocation problem is a pair
(d,C) € RY x F. Let CV be the class of all such problems involving the
group N € N, C = Unen CV, and X¢ = Unen H]_I\_’. A solution is a function
that associates with every N € N and every (d,C) € CV a unique vector
z € RY such that Yy z; = C(Tn di).

Average cost sharing is one of the best-known methods. Simply di-
vide the cost of satisfying aggregate demand proportionally to individual
demands. Serial cost sharing is defined as follows. Suppose agents
are ordered by increasing demands. Then, agent 1 pays (1/n) of the cost
of producing nd;. Agent 2 pays 1/(n — 1) of the difference between the

81This domain contains all non-decreasing and twice differentiable functions taking the
value 0 at 0. It is dense in the domain of nondecreasing functions taking the value 0 at 0.
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Figure 2.7: Consistency for cost allocation. In the two examples de-
picted here, the cost function is piece-wise linear. In each case, we imagine
agent 1 leaving. His demand ¢; has to be satisfied and his payment z; is
taken into account in the calculation of the costs that are still to be covered
by agents 2 and 3. This amounts to translating the cost function by the
vector —(g1, 1) (the dashed line). (a) In this case, an adjustment is needed
so that the reduced cost function only takes non-negative values: set it equal
to 0 for every ¢ in the interval [0, §;]. (b) Here, no adjustment is needed.
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cost of producing di + (n — 1)d; and what agent 1 has paid ... In general,
agent k pays 1/(n — k + 1) of the difference between the cost of producing
di+ds+...+(n—k+1)di and what agents 1,...,k — 1 have paid.

Here is the form of consistency for this model:

Consistency for cost allocation problems: The solution ¢:C — X¢ is
consistent if for all N, N' € N with N' C N and all (d,C) € CV, if
z = ¢(d,C), we have zn' = ¢(dnr, r%:(C)), where r%,(C) is the cost function
defined by r%:(C)(y) = max{C(y + “mnr di) — Zw\wr i, 0} if y > 0, and
r%:(C)(0) = 0.

To present the results, we need the following additional properties of
solutions. First, two agents with the same demands should pay the same
amounts:

Equal treatment of equals: If d; = d;, then ¢;(d,C) = ¢;(d,C).

If the cost function is linear, individual payments should be proportional
to individual demands:

Proportionality for linear cost: If for some A € Ry and for all dy € Ry,
C(do) = Ady , then ;(d,C) = Ad;.

The payments associated with a cost function that is the sum of two
functions should be the sums of the payments associated with each of the
components:

Cost additivity: ¢(d,Cy + C2) = ¢(d,C1) + ¢(d, C).%?

Theorem 28 (Moulin and Shenker, 1994) Average cost sharing is the only
solution satisfying equal treatment of equals, proportionality for linear cost,
cost additivity, and consistency.

For the next result, we need two other fairness axioms and we also use a
weak form of consistency.

If agent 2’s demand is greater than agent j’s demand, he should pay more
than agent j.

62Note that the domain of cost functions is closed under addition.
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Order preservation: If d; > d;, then ¢;(d,C) > ¢;(d,C).

Next, imagine an agent whose demand is such that if every one else had
the same demand, the total cost of satisfying them all would be zero. Then,
the requirement is that the agent should bear no part of the actual total cost.

Free lunch for agents with small demands: Forall N, N' € N, all: € N,
and all (d,C) € CV,if N' = N\{i} and C(|N|d;) = 0, then ¢;(d,C) = 0.

The announced weakening of consistency is the requirement that in the
circumstances described in the previous axiom, the other agents should be
charged as they would be in the resulting reduced economy:

Limited consistency for cost allocation problems: Under the hypoth-
esis of free lunch for agents with small demands, if ¢ = ¢(d,C), we have

e = p(dnr, 50 (C)).

Theorem 29 (Moulin and Shenker, 1994) Serial cost sharing is the only so-
lution satisfying order preservation, proportionality for linear cost, cost ad-
ditivity, free lunch for agents with small demands, and limited consistency.

An investigation of the multi-commodity case was initiated by Kolpin
(1994), who offers characterizations of an extension of serial cost sharing
defined as follows: to each coalition of consumers is associated an implicit
“social burden”, which is the production cost that would result if the de-
mands of society at large “mirrored” those of the members of the coalition;
these reference burdens are used to calculate rights that coalitions have with
respect to protection from costs; rights are prioritized and the coalition with
the highest priority allocates in a uniform manner its burden among its mem-
bers; the residual cost is distributed among the remaining agents by repeated
application of the rule. Kolpin’s characterization is along the lines of The-
orem 29. Kolpin also shows that his solution satisfies a strenghtening of
limited consistency obtained by first identifying the minimal amount any
agent is paying, and imagining the departure of all agents paying this mini-
mal amount (see Subsection 1.4.3). For an alternative approach to the cost
allocation problem based on the concept of an expenditure function, and for
characterizations of expenditure functions inducing serial cost sharing, see

Kolpin (1995).
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2.3.4 Pricing problems

Here we turn to the problem of identifying well-behaved pricing formulas. A
feature of the consistency condition that has been considered in this context is
that it is the number of goods that is made to vary. The reduction operation
is the counterpart for this class of problems of the operation used by Hart
and Mas-Colell, and which they showed led to the Shapley value (Section
2.2.1.(iv). Perhaps not surprisingly then, we will obtain a characterization of
the pricing mechanism based on the Shapley value, and known as “Shapley
value pricing mechanism”. We will also offer a characterization of the so-
called Aumann-Shapley pricing formula. This section is based on McLean,
Pazgal, and Sharkey (1994).

The formal model is as follows. There is a set N € N of commodi-
ties. Given a € Hf , to be interpreted as a maximal output vector, there
is a cost function C:{z € RY:z < a} — R such that C(0) = 0. Given
z in its domain of definition, the number C(z) is interpreted as the cost of
producing the output vector z. Let Pr™ be the class of problems involv-
ing the set of commodities N, Pr = Uyey Pr”, and Xp, = Uyexy RY. A
pricing mechanism is a function ¢ that associates with each N € A and
each pricing problem (C,«) € PrV a vector P(C,a) € RY. Two exam-
ples of pricing mechanisms are the following: the Shapley value pricing

mechanism selects for each (C,«) the pricing vector whose 5t coordinate

is Sh¥(C, a) = Shi(v(c,q))/ i, where Sh is the Shapley value solution (Sub-
section 2.2.2), and v(g,q) is the cooperative game whose coordinate relative
to coalition S is C'(On\s, as). Now, consider the domain of pricing problems
for which the cost function is differentiable infinitely many times and such
that f; C(ta)dt exists. Given a problem (C,«) in that class, the Aumann-
Shapley pricing mechanism selects the vector whose :** coordinate is
i Ci(ta)dt, where C; indicates the ith partial derivative of .63

In the definition of a reduced pricing problem, one possibility is to consider
problems with fewer commodities.

Self-consistency for pricing problems: The solution ¢:Pr — Xp, is
self-consistent if for all NN’ € N with N' C N, all (C,a) € PrV, we
have ¢;(r%:(C),an) = ¢i(C,a) for all i € N’ such that o; > 0, where

63For a survey of the literature devoted to the analysis of this model, see Tauman (1988).
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ra(C), the “self-reduced cost function of C' relative to N’ and ¢,” is defined
by

7‘}{;/(0)(2’) — { g(za aN\N’) ZN\N’ aJ(pJ(O7 (Z’aN\N )) Ii z i g

Another possibility is to decrease some of the coordinates of z and make
the corresponding adjustments in the cost function by pricing those goods
whose coordinates have decreased by means of the prices chosen for the orig-
inal problem. Note that this reduction need not involve a decrease in the
dimension of the commodity space.

We will impose the requirement that the solution should produce Shapley
prices for the two-commodity case. This requirement is satisfied by many
pricing mechanisms, and for that reason we will say that the mechanism
is standard. In the second theorem, the term should be understood in a
similar sense: for the two-commodity case, the mechanism should coincide
with the Aumann-Shapley mechanism.

Theorem 30 (McLean, Pazgal, and Sharkey, 1994) The Shapley value
pricing mechanism is the only pricing mechanism to be standard and self-
consistent.

An exact counterpart of this result can be obtained for the domain of
infinitely differentiable cost functions.

Theorem 31 (McLean, Pazgal, and Sharkey, 1994) On the subdomain of
pricing problems where the cost function is differentiable infinitely many
times, the Aumann-Shapley pricing mechanism is the only pricing mecha-
nism to be standard and self-consistent.

McLean, Pazgal, and Sharkey (1994) also characterize the class of pricing
mechanisms that do not satisfy the symmetry condition.

2.4 FAIR ALLOCATION

In this section we turn to economic models of fair allocation. The first one
is the standard model: agents are equipped with classical preferences over
an {-dimensional commodity space. In the second model, there is only one
commodity and agents’ preferences are single-peaked. In the third model,
indivisible goods are present.
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2.4.1 Fair division in classical private good economies

The main model we consider pertains to problems of distribution, but we will
also examine a model with production in which agents’ abilities may differ.
Finally we will turn to a model in which it is the number of goods that is
allowed to vary.

(i) Distribution of an unproduced bundle. The fair allocation of a
“social endowment” of resources among agents with equal rights on them,
say a group of heirs, has to be determined. A solution is applied and each heir
is given his share of the social endowment. Now, we focus on a particular
subgroup, add up what the members of that subgroup have received, and
consider the problem of fairly allocating these resources among them. Should
each of them still receive what he had initially received? If the answer is
yes and if the answer would be yes independently of preferences, the social
endowment, the subgroup, and the allocation initially selected among those
chosen by the solution, then the solution is consistent.

For instance, suppose that resources are allocated by operating the Wal-
rasian solution from equal division, as illustrated in the two-good three-
person example of Figure 2.8a. When the social endowment is ), the solu-
tion leads to the allocation z = (21, 29, 23), with associated equilibrium prices
p. If the amount z; + 2, is to be distributed to the subgroup consisting of
the first two heirs, applying the same solution (now, each of them starts out
with 5%2), takes us to the allocation (z1,2;), the same prices serving as
equilibrium prices: they both end up with the same bundle. This simple
example illustrates the fact that the Walrasian solution operated from equal
division is consistent. Of course, there could be other equilibrium prices in
the two-person reduced economy that results by letting agent 3 leave with his
assigned bundle, but the initial equilibrium prices remain equilibrium prices.

On the other hand, consider the “§)-egalitarian-equivalent” method, de-
fined by selecting the allocation(s) at which each agent is indifferent between
his assigned consumption and a common multiple of the social endowment
2. Figure 2.8b shows that neither this solution nor its intersection with the
Pareto solution are consistent. Indeed, the allocation z = (2, 22, z3) satisfies
both criteria in the three-person economy this figure depicts, but agents 1
and 2’s indifference curves through z; and z; respectively do not intersect
on the ray passing through z; + 22, the social endowment of the reduced
economy associated with the group {1,2} and z.
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Figure 2.8: Consistency for fair division. (a) The Walrasian solution
operated from equal division is consistent. (b) The Q-egalitarian-equivalence
and Pareto solution is not consistent.

We now give the general definitions. There are £ goods and a group
N € N of agents. For each i € N, R; is agent i’s preference relation.
It is drawn from some class R of admissible preferences defined over RY.
We will often consider the class Ry of preference relations satisfying the
“classical” assumptions of continuity, convexity, and monotonicity. There is
~also a soctal endowment € Ri. A fair division problem is a pair
(R,©) € RYN x R%. This model is to be distinguished from the usual one
in which each agent starts out with a particular share of society’s resources,
his individual endowment, a formulation that is discussed in Section 3.3. For
now, we think of agents as being collectively entitled to the resources ). Let
EN be a class of admissible problems involving the group N, £ = Unen EV,
and Xe = Unen RiN . A solution is a correspondence that associates with
every N € N and every (R, (1) € £V a non-empty subset of the set of feasible
allocations of (R, (), namely {z € R{N: T z; < Q}.

Consistency for fair division problems: The solution ¢:& — X is
consistent® if for all N, N' € N with N' C N, all (R,Q) € &V, and all

%4Thomson (1988) uses the phrase “stability under arbitrary formation of subgroups”
and “stability under aggregation” for converse consistency defined below.
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z € p(R, ), we have zy/ € o(rk:(R,Q)), where r§.(R, Q) = (Rn1, SN 2i)-

It is important to understand how the form we give to consistency here
relies on the special structure of the feasible set. In the Fundamental Def-
inition, we required that in the reduced problem an alternative be chosen
that all departing agents find indifferent to the alternative initially selected.
Here, we imagine the departing agents to leave with the bundles of goods
assigned to them by the solution. The opportunities available to the remain-
ing agents are therefore defined as {(2})ien' € R{ : Ty 24 = Q — Y 2}
instead of Z’ = {(z})ien' € RYY': there exists (2});en\n satisfying 2Lz for
all © € N\N' and ¥y 2f = Q — Xy 2i}. The second definition is not
unreasonable but note that to apply it, we would actually need to respecify
the domain over which solutions are defined.®®

We stated the condition for solution correspondences. This is the most
natural formulation here since resource allocation rules are rarely single-
valued; we would not want to eliminate from consideration the Walrasian
solution operated from equal division, for instance, just because it does not
usually select a single allocation.

We noted earlier that this solution is consistent. However, other im-
portant solutions are too. The Pareto solution is among them; so are the
no-envy solution (Foley, 1967), which selects the set of feasible allocations z
such that for no pair {z,5} C N, z; P,z; — at an envy-free allocation no agent
would want to exchange bundles with anyone else — and the egalitarian-
equivalence solution (Pazner and Schmeidler, 1978), which selects the set
of feasible allocations z such that for some 25 € Hﬂ_ and all ¢ € N, z[;z;.
Various solutions designed to evaluate the relative welfares of groups are con-
sistent as well; the main example is the solution that selects the allocations
for which there is no pair of groups of agents of equal cardinalities such that
one group could make all of its members better off if they had access to the
resources allocated in total to the other group and could freely redistribute
these resources among themselves: this is the group no-envy solution.
However, none of the following solutions satisfy the condition: the equal di-
viston lower bound solution — this is the solution that selects the set of
feasible allocations that all agents prefer to equal division — its intersection

5%Indeed, there is in general no Q' € Ri such that the feasible set of (Ry+, ') is equal to
Z', and we initially specified economies to be pairs of a list of preference relations together
with a social endowment (see our discussion of closedness of domains in Subsection 1.4.8).
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with the Pareto solution, and the equal division core — this is the solution
that selects the set of allocations such that no group of agents could make all
of its members better-off if each of them had access to an equal share of the
social endowment and they could freely redistribute these resources among
themselves. As we noted earlier, the Q-egalitarian-equivalence solution is not
consistent either.

Turning now to converse consistency, we find that the Pareto solution sat-
isfies the property if appropriate domain restrictions, such as smoothness of
preferences, and interiority of the allocation that is being evaluated, are im-
posed. The issue whether, using modern terminology, the Pareto-optimality
of an allocation for some economy can be inferred from the Pareto-optimality
of its restrictions to all two-person associated reduced economies (or to all
associated reduced economies of cardinality at most ¢t for some ¢ € N), has
been the subject of a number of studies (Rader, 1968; Feldman, 1973; Mad-
den, 1976; Goldman and Starr, 1982; Lainé, 1987.) Figure 2.9 shows that
the Walrasian solution operated from equal division is not conversely con-
sistent when indifference curves are allowed to have kinks. However, if the
class of admissible preferences is restricted so as to guarantee uniqueness of
hyperplanes of support to the upper contour sets at every point, converse
consistency obtains for that solution. No such domain restriction makes the
equal division core, or the equal division lower bound solution, or the inter-
section of the latter with the Pareto solution, conversely consistent. On the
other hand, the no-envy solution is conversely consistent since it is precisely
based on pairwise comparisons.

Characterizations of the Walrasian solution operated from equal division
are obtained when consistency is imposed in conjunction with other related
requirements expressing certain forms of invariance of the solution under
deletion, or addition, of agents. A representative example is the next result,
which involves the requirement that if an allocation is chosen by the solution
for some economy, then for all £ € N, its k-times replica should be chosen
by the solution for the k-times replica of the economy: in the k-replica of
(R, ), there are k agents with preferences identical to those of each of the
agents in N and the social endowment is k.56

6 Note that it is a direct consequence of the Debreu and Scarf (1963) theorem on the
convergence of the core towards the set of Walrasian allocations that under their assump-
tions, if a subsolution of the equal division core satisfies replication invariance, then it is
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Figure 2.9: Converse consistency and the Walrasian solution oper-
ated from equal division. If kinks in indifference curves are permitted, the
Walrasian solution operated from equal division is not conversely consistent.
Indeed, in the example e = (R, ) € &) depicted here, where N = {1,2,3},
for each pair of agents {i,j} C N, we have (z;, z;) € Wea(R;, R;, z; + 2;); yet
z ¢ Wea(e).
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Replication invariance: If z € ¢(R, ), then k * z € p(k * R, kY), where
k * z is the k-replica of z and k * R is the k-replica of R.

Let &; be the subdomain of &, of economies where preferences have dif-
ferentiable numerical representations.

Theorem 32 (Thomson, 1988) On the domain &, if a subsolution of the
equal division lower bound and Pareto solution satisfies consistency and repli-
cation invariance, then it is a subsolution of the Walrasian solution operated
from equal division.

The following result involves an additional condition: any allocation that
is Pareto-indifferent to an allocation that the solution selects should also be
selected. This is the condition of Pareto-indifference, whose relevance to
the understanding of resource allocation problems was discussed by Thomson

(1983) and Gevers (1986).

Theorem 33 (Thomson, 1992) On the domain &, if a subsolution of the
equal division lower bound and Pareto solution satisfies Pareto-indifference,
anonymity, and converse consistency, then it is a subsolution of the Wal-
rasian solution operated from equal division for the two-person case. If co-
incidence actually holds for the two-person case, then the solution contains
the Walrasian solution operated from equal division for all cardinalities.

Conditions related to consistency and its converse can be found in Thom-
son (1988). For instance, separation independence says that if for an al-
location that is p-optimal for some economy, agents can be partitioned into
two groups such that each group on average receives the average endowment
of the whole economy, then the restriction of the allocation to each of the
two groups is @-optimal for the reduced economy relative to the group and
the allocation. A converse of this condition, juztaposition independence,
pertains to the juxtaposition of two allocations that are ¢-optimal for two
disjoint economies with the same endowment per capita. It says that if the
resulting allocation is Pareto-optimal for the combined economy, then it is
@-optimal for it. This condition is a strengthening of replication invariance.

a subsolution of the Walrasian solution operated from equal division.
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In Theorem 32, if juztaposition independence is used instead of replication
invariance, the distributional requirement can be considerably weakened,
to yield another characterization of the Walrasian solution operated from
equal division. Equal treatment of equals says that two agents with the
same preferences should receive bundles that lie on a common one of their
indifference surfaces. ’

Theorem 34 (Maniquet, 1996) On the domain &, if a subsolution of the
Pareto solution satisfies equal treatment of equals,®” Pareto-indifference, juz-
taposition independence, and consistency, then it is a subsolution of the Wal-
rasian solution operated from equal division.

If in Theorem 34, instead of equal treatment of equals we use the dis-
tributional requirement that when equal division is efficient, the rule only
selects allocations that are Pareto-indifferent to it, the conclusion this time
is that the solution contains the Walrasian solution operated from equal di-
vision (even if the solution is not required to be a subsolution of the Pareto
solution).

Young (1993) considers a formulation of the problem in which agents
may have different “rights”, formalized as non negative numbers. In this
richer framework, he shows that the Walrasian solution in which incomes are
proportional to these numbers is characterized by consistency and replica-
tion invariance, thereby generalizing Theorem 32 to situations where equal
treatment of equals may not be desirable, as when otherwise identical agents
actually represent entities of possibly different sizes, such as households or
countries.

Fleurbaey’s (1995b) objective is to formalize notions of equal opportu-
nities, and in particular to define methods of compensating agents for non-
tranferable characteristics such as handicaps. One of the conditions he im-
poses is consistency. He obtains characterizations of two solutions in the
spirit of egalitarian-equivalence.

Finally, we note the logical relations derived by Shimomura (1993) be-
tween consistency, a condition akin to the weak axiom of revealed preferences,
and monotonicity with respect to resources and with respect to population.

67The requirement that if all agents have the same preferences the solution selects an al-
location consisting of bundles that are all indifferent according to that common preference
relation, together with consistency, imply equal treatment of equals.
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(ii) Models with production. Let us now enrich the model by adding
production possibilities.®® First, we consider a model in which each agent
is described in term of his preferences over a two-dimensional commodity
space and a productivity parameter. Solutions of interest for this model are
the following: the constant returns-to-scale lower bound solution,
which selects all the allocations that all agents find indifferent to the best
they could achieve if they had access to a common constant returns-to-scale
technology; the work alone lower bound solution, which selects all the
allocations that each agent prefers to the best he could achieve by operating
the technology by himself and providing consumptions to the others to which
he would not prefer his own. Two essentially single-valued solutions are the
equal-wage equivalent and Pareto solution, which selects the efficient
allocations that each agent finds indifferent to the best he could achieve by
maximizing his preferences on a budget set defined by a wage rate that is the
same for all agents, and the output-egalitarian-equivalence and Pareto
solution, which selects the efficient allocations that all agents find indifferent
to a common consumption consisting of only some amount of the output.

We will use the condition of equal welfare for equal preferences,
which says that two agents with the same preferences but possibly different
productivities should receive consumptions belonging to one of their com-
mon indifference curves. Also, contraction independence says that if an
allocation is chosen for some economy and the technology changes in such
a way that the set of feasible allocations shrink but the allocation remains
feasible, then it should still be chosen.

Theorem 35 (Fleurbaey and Maniquet, 1994) On the general domain of
production technologies, the equal-wage equivalent and Pareto solution is
the only essentially single-valued selection from the constant returns-to-scale
lower bound solution satisfying equal welfare for equal preferences, Pareto-
indifference, contraction independence, and consistency.

Note the difference of domains in the next theorem:

Theorem 36 (Fleurbaey and Maniquet, 1994) On each of the following do-
main: (i) economies with general production technologies, (ii) economies

8The model of Subsection 2.3.3 is of course a production model, but agents are described
in terms of a fixed demand parameter, which is irresponsive to the solution.
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with decreasing returns-to-scale technologies, (iii) economies with concave
technologies, the output-egalitarian-equivalence and Pareto solution is the
only essentially single-valued selection from the work-alone lower bound so-
lution satisfying equal welfare for equal preferences, Pareto-indifference, and
consistency.

Maniquet (1992) considers a class of production economies and formu-
lates a consistency condition that is satisfied by the equal-income Walrasian
rule and the constant returns-to-scale equivalent solution: this is the
solution that selects the efficient allocations that would be obtained by giving
each agent access to a common constant returns-to-scale “reference” technol-
ogy and letting him maximize his preferences. This solution is the only one to
satisfy this consistency notion together with several other appealing require-
ments. In a model in which productivities may differ from agent to agent,
Maniquet (1996) provides additional characterizations of subsolutions of the
Pareto solution based on replication invariance and consistency. The auxil-
iary conditions are a lower bound on welfares, a condition of skill-solidarity
which says that all agents should be affected in the same direction by a change
in the skill profiles, Pareto-indifference, and the implementability condition
of Maskin-monotonicity.

(iii) Model with a variable number of goods. In all of the models dis-
cussed so far, we imagined variations in the number of agents. However, the
dimensionality of problems can be affected in other ways. Roemer (1986a,b,
1988, 1990) considers exchange economies and allows for variations in the
number of goods instead. He formulates a consistency condition with respect
to such variations, and bases on it a characterization of egalitarian-type so-
lutions.

In order to state the condition, we need to introduce the number of goods
explicitly in the notation. An economy is a list (Q,u,Q), where Q € N is a
set of goods, u = (uy,...,u,) is a list of n utility functions defined on Hg,
and ) € Hf is a social endowment. Note that we use utility information.
We consider the domain of utility functions that are continuous, monotone,
concave and such that for all z € Hg, limg,o 7 u;(tz) = 0. Let DY be the
domain of economies so defined, D = genr D9, and Xp = Ugen R9™. Let a
solution defined on D be given. In the formulation of consistency, we apply
the solution to a problem in which a vector of goods in Rg has to be allocated.
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Then, given Q' C @, we keep at their chosen values all agents’ consumptions
of the goods in the set @\ @', and ask whether the solution would distribute
in the same way the remaining goods among the same agents when their
utility functions are adjusted so as to take into account the fact that they
have already received something.®® A basic solution here is the weak Pareto
solution, which selects the feasible allocations such that there is no other
feasible allocation that all agents strictly prefer. We will refer to the solution
that selects the set of weakly efficient allocations at which all utilities are
equal as the equal utility and weak Pareto solution.”™

In the theorem to be stated below, we impose the requirement of equal
treatment of equals, which says that two agents with identical utility func-
tions should receive bundles of equal utilities, and continuity, which says
that small changes in the data of the problem should not be accompanied
by large changes in the chosen allocation. Apart from the consistency con-
dition, another substantial requirement is resource-monotonicity, which
says that all agents should benefit from an increase in the social endowment.
Given z; € R? and Q' C @, we write z;g\@' to denote the projection of z;

onto the subspace HE\QI.

Consistency across dimensions: The solution ¢: D — Xp is consistent
across dimensionsifforall Q,Q' € N with Q' C @, alle = (Q,u, ) € D?
and ¢ = (Q',u/,V) € D?, and all z € ¢(e), if (i) for all i € N, and all
yi € RY, ui(y:) = wilzi0\qn, 1), and (ii) O = Qg then zg/ € (e).

A weaker condition in which each of the goods that is eliminated affects
favorably at most one agent (the others’ utility functions are constant with
respect to it) can be formulated. In that case, an efficient allocation rule
allocates the entire amount available to the only agent whose utility function
actually depends on the consumption of the good. Let us call this condition
weak consistency across dimensions. Note that the Walrasian solution
operated from equal division does not satisfy this requirement.

®Note that this formalism allows us to treat different goods differently, depending on
what kind of goods they are (luxuries or necessities).
"ORoemer refers to it as “egalitarian”.
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Theorem 37 (Roemer, 1986) On the domain D, the equal utility and weak
Pareto solution is the only subsolution of the weak Pareto solution satisfy-
ing essential single-valuedness, Pareto-indifference, equal treatment of equals,
resource-monotonicity, and weak consistency across dimensions.

The proof of this result is based in part on a result of Howe (1987) which
states conditions under which two utility functions on Hi can be seen as the
restrictions to Rﬂ_ of a unique utility function defined on the larger space Ri"‘l
by giving the additional argument two different values. Such an extension
can be interpreted in terms of the Kolm’s (1972) concept of “fundamental
preferences”. According to that interpretation, if two individuals have differ-
ent utility functions, it is only because they differ in their consumptions of
some “hidden” and non-transferable good. In a series of additional contribu-
tions Roemer (1988, 1990) developed characterizations of most of the central
solutions of the theory of bargaining. In all of these theorems, consistency
across dimensions plays a critical role.

Bibliographic note. As usual, in order to recover full opti- -
mality, a lexicographic extension of the equal utility solution is
natural. A characterization of this extension along the lines of
Theorem 37 is obtained by Nieto (1992). Iturbe and Nieto (1996)
base another characterization of the solution on a weaker mono-
tonicity requirement, but both consistency and consistency across
dimensions. Donaldson and Roemer (1987) consider the problem
of ranking allocations as a function of profiles of individual utility
functions. Their central condition is consistency across dimen-
sions. Herrero (1995) develops characterizations of solutions to
claims problems (Chun and Thomson, 1992) formulated in com-
modity space, again by using consistency and consistency across
dimensions.

2.4.2 Fair division in economies with single-peaked
preferences

A team of three workers is assigned a job that will take £ hours of work.
Each worker is paid a fixed hourly wage and his disutility of labor is a concave
function of the time he spends working. As a result, his total utility is
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Figure 2.10: Consistency in economies with single-peaked prefer-
ences. (a) The no-envy solution is consistent. (b) The equal division lower -
bound and Pareto solution is not consistent. Indeed, in the three-agent econ-
omy depicted here, each agent prefers what he receives to equal division, but
if agent 3 leaves with his assigned consumption z3, agent 1 prefers the new
point of equal division 2422 to his assigned consumption ;.

a concave function of the labor he supplies. Figure 2.10 gives numerical
representations of the three workers’ preferences over labor supplied for two
examples. How should the job be divided among them? Fairness, in addition
to efficiency, is one of our objectives.

It is easy to see that if Q is larger than the sum of the preferred sup-
plies, efficiency requires that all three workers work more than they would
prefer, and if the opposite holds, that all three workers work less than they
would prefer. This condition is sufficient for efficiency. As far as fairness.
is concerned, we will focus on no-envy and the equal division lower bound,
requirements already discussed in the previous section. An envy-free and
efficient allocation is illustrated in Figure 2.10a.

As on any domain, the no-envy solution is obviously consistent: if z is
envy-free, then the restriction of z to the subgroup consisting of agents 1 and
2, say, constitutes an envy-free way of dividing among them the sum z; + z,
that they are being assigned. On the other hand, consider the equal division
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lower bound solution. That it fails consistency is illustrated in Figure 2.10b
for a three-person example. At z = (z1,2,23), each of the three workers
prefers what he gets to 2/3; yet, if we had to divide x; + 22 among workers 1
and 2, we would find that (z1,2;) does not Pareto-dominate (£:f22, fif22)
Note that z is efficient, so that the same example actually shows that the
equal division lower bound and Pareto solution is not consistent.

For most economies, there are continua of efficient allocations satisfying
no-envy or meeting the equal division lower bound, and the question of se-
lection arises. We will look for consistent subsolutions of the no-envy and
Pareto solution and of the equal division lower bound and Pareto solution.
An appealing single-valued solution, which is a selection from both, is the
uniform rule, introduced in the fix-price literature and recently charac-
terized by Sprumont (1991) on the basis of incentive considerations. It is
defined as follows: for all 2 € N, let p(R;) be the preferred “consumption” of
worker ¢, that is, his preferred labor supply. If 3" p(R;) =2 Q, let A € Ry such
that (i) giving his preferred consumption to every worker whose preferred
consumption is smaller than A and, (ii) giving A to the others, defines a fea-
sible allocation. If }° p(R;) £ €, pick A such that (i) giving A to every worker
whose preferred consumption is greater than A and, (ii) giving their preferred
consumptions to the others, defines a feasible allocation. The existence and
uniqueness of A is easily established. The allocation that results for that A
is the uniform allocation. The rule, which is illustrated in each of the two
cases in Figure 2.11, is clearly consistent.

We now turn to the formal definitions. There is a group N € N of agents
among whom to allocate ) units of an infinitely divisible commodity. For all
: € N, R; is agent 1’s preference relation. This preference relation, defined
over Ry, is continuous and single-peaked: this means that there is a number
p(Ri) € Ry such that for all z;, 2} € Ry, if ) < z; < p(R;) or p(R;) <
z; < zj, then z;Pz. Let R, designate the class of all such preference
relations. A fair division problem with single-peaked preferences
is a pair (R,Q) € RY x Ry. Let &Y be the domain of such problems,
Eop = Unen gg, and X,, = Uyex RY. A solution is a correspondence that
associates with every N € N and every (R,() € Sg a non-empty subset
of {z € RY: Y 2z; = Q}, the set of feasible allocations of (R, Q). Note that
feasibility is defined with an equality sign, indicating that we do not assume
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Figure 2.11: The uniform rule. (a) The case § < T p(R;) : all agents
whose preferred consumptions are smaller than ) get their preferred con-
sumptions; the others get A. (b) The case Y p(R;) < Q : all agents whose
preferred consumptions are greater than A get their preferred consumptions;
the others get A. In each case, ) is chosen so as to obtain feasibility.

free disposability of the commodity.”

The Pareto solution is clearly consistent.”” We have already noted that
so are the uniform rule and the no-envy solution, but that the equal division
lower bound and Pareto solution is not. A negative result holds for the
equal division core as well.” This pattern of positive and negative results is
repeated for converse consistency.

The implications of consistency, and in fact, of its bilateral version and
of its converse, can be very completely described in this model, when these
properties are used in conjunction with no-envy or the equal division lower
bound. One of the auxiliary conditions in the theorem below is the following
continuity requirement with respect to the amount to be divided. Let v
be our generic notation for the natural numbers, and {2}, {2} denote
sequences in Ry and Rﬂ\_r respectively.

"1As noted earlier, the axiomatic analysis of this model was initiated by Sprumont
(1991). Additional studies of this model, not dealing with consistency, are due to Ching
(1992,1993), Ching -and Serizawa (1994), Gensemer, Hong, and Kelly (1992, 1996), Klaus,
Peters, and Storken (1995), and Barbera, Jackson, and Neme (1995).

"2We do not explicitly write out the statements of consistency and converse consistency

for this domain since they are the same as for classical economies.

73To obtain non-emptiness of the equal division core, we need to define it as the solution
that selects all the allocations such that no subgroup of agents can make all of its members
strictly better-off when each of them is given access to equal division.
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Continuity: If 2¥ € p(R,Q") for all v € N, Q¥ —  as v — o0, and 2 — z
as v — 00, then z € (R, Q).

The main result on the issue is the following:

Theorem 38 (Thomson, 1994a) If a subsolution of the no-envy and Pareto
solution satisfies continuity and consistency, then it contains the uniform
rule.

Since the equal division lower bound solution is a subsolution of the no-
envy solution in the two-person case and the no-envy solution is conversely
consistent, we deduce as a corollary of Theorem 38 that if a subsolution of
the equal division lower bound and Pareto solution satisfies consistency and
continuity, then it too contains the uniform rule. As other corollaries, we
obtain complete descriptions of the classes of subsolutions of the no-envy
and Pareto solution, and alternatively of the equal division lower bound and
Pareto solution, satisfying consistency and continuity together, or bilateral
consistency and continuity together. By imposing single-valuedness in addi-
tion, we derive characterizations of the uniform rule. Dagan (1996) shows
that under that requirement this rule can in fact be obtained in a very di-
rect way, without imposing continuity in addition, and even if the maximal
number of agents is finite.™

A different set of axioms, which does not include continuity either, also
leads to the uniform rule. This result is a simple corollary of a character-
ization of the class of subsolutions of the equal division lower bound and
Pareto solution satisfying converse consistency and the requirement that if
two agents have identical preferences, exchanging their consumptions in an
allocation chosen by the solution gives an allocation that should also be cho-
sen:

Weak equal treatment of equals: If R, = R; and z € (R, ), then z’
defined by z; = z;, 2 = z; and z} = x; for all k¥ ¢ N\{7,7}, is such that
z' € p(R,0Q).

Theorem 39 (Thomson, 1994) The uniform rule is the only single-valued
selection from the equal division lower bound and Pareto solution satisfying
weak equal treatment of equals and converse consistency.

"This result is obtained under the assumption that the set of potential agents has
cardinality greater than, or equal to, 4.
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Finally, we have the following counterpart of Theorem 33:

Theorem 40 (Thomson, 1994) The uniform rule is the only subsolution of
the equal division lower bound and Pareto solution satisfying consistency and
replication invariance.

Sonmez (1994) obtains characterizations of the uniform rule without im-
posing efficiency, but instead combining consistency with monotonicity re-
quirements with respect to the amount to be divided on the one hand and
the number of agents on the other. He derives parallel results with converse
consistency replacing consistency.

Otten, Peters, and Volij (1996) show that the uniform allocation of an
economy can be obtained as the Nash solution outcome (Section 2.2.1) of an
associated bargaining problem defined as follows: suppose that each agent
has preferences that are symmetric with respect to his preferred consumption.
Such preferences can be represented by a piece-wise linear “utility” function
having a slope of 1 to the left of the preferred consumption and a slope of
-1 to the right. Now, take the image in utility space of the set of feasible
allocations when agents are equipped with such utility functions. This image
is a truncated simplex. This is the problem to which they apply the Nash
solution. The uniform allocation is also the lexicographic egalitarian solu-
tion outcome of that problem (again, see Section 2.2.1). Since the uniform
rule depends only on preferred consumptions, the uniform allocation can be
obtained in this way even if preferences do not have the symmetry postu-
lated above. Interestingly, these authors’ proof of the coincidence of these
solutions relies on the consistency of the Nash and lexicographic egalitarian
solutions. These equivalences allow them to characterize the uniform rule by
means of lists of axioms related to lists known in the theory of bargaining to
characterize the Nash and lexicographic egalitarian solutions.

De Frutos and Massé (1995) suggest a way of associating with each econ-
omy a coalitional form game, and they study the correspondences between
counterparts of maz-consistency and self- consistency (Section 2.2.2-3) for
the class of games so obtained and consistency as we defined it earlier. Of
particular interest is the equivalence under efficiency of maz-consistency and
consistency. They also provide a characterization of the uniform rule exploit-
ing these correspondences.
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Klaus, Peters, and Storcken (1996) consider a “dual” version of the model
in which agents have “single-troughed” preferences”™ and identify the class
_ of selections from the Pareto solution satisfying strategy-proofness and con-
sistency.

Shimomura (1993) provides a characterization of the natural extension
of the uniform rule to the domain of economies with “single- plateaued”
preferences (here, there is a possibly non-degenerate interval of preferred
consumptions), along the lines of Theorem 38. He uses flezibility instead of
consistency, exploiting the equivalence of the two properties for economies
in which uniqueness of the p-optimal outcome holds (Section 1.7.3).

Bibliographic note. Sonn (1994) derives the uniform allocation
as the limit of solution outcomes of sequential strategic games.
This derivation relies importantly on consistency arguments.

2.4.3 Fair allocation in economies with indivisible
goods

There are 3 jobs that have to be assigned to 3 workers with the same seniori-
ties and qualifications. The jobs are not identical and the workers’ preferences
over job-salary packages differ. Salaries can be chosen to compensate agents
for being assigned jobs that they find less desirable. The sum of the salaries
is not to exceed a certain budget. How should jobs be assigned and salaries
determined? v

Figure 2.12a represents 3 axes, indexed by the three jobs. Along each
axis is measured the salary that will be associated with the corresponding
job. To keep track of which job-salary combinations an agent finds indifferent
to each other, we connect them by an “indifference curve”. A few sample
indifference curves are indicated for agent 1, and one indifference curve for
each of agents 2 and 3. 7

The notion of an envy-free allocation applies to this situation just as well
as to the classical domain. Depending on how the specification of the model
is completed, envy-free allocations may or may not exist, but when they do,
there often is a continuum of them, and again a natural question is how to
make selections from this continuum.

"SFor such a preference relation, there is a worst consumption, and moving away from
it, in either direction, makes the agent better off.
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Figure 2.12: Consistency in economies with indivisible goods. (a)
The no-envy solution is consistent. (b) The egalitarian-equivalence and
Pareto solution is not consistent.

Here too, we will attempt to do this by requiring consistency of the selec-
tion method. In the present context, we find it most natural in the definition
of a reduced economy to restrict preferences to the consumption subspace
corresponding to the remaining jobs, that is, to use what we called “reduced
preference relations” (see Part 2, section 3g). Some of the results below
depend on this reduction having taken place. Consider in particular the
solution that picks the efficient allocations for which there is a reference bun-
dle (ao,my) that each agent finds indifferent to his assigned consumption, ag
being chosen arbitrarily among the objects actually present. This straightfor-
ward adaptation of the egalitarian-equivalence and Pareto solution of Pazner
and Schmeidler (1978) is not consistent, in contrast with the behavior of the
solution on the classical domain. For instance, the allocation z = (21, 22, 23)
of Figure 2.12b satisfies this definition with reference bundle z;. However,
if agent 2 leaves the scene, he takes with him the object used in defining
the reference bundle making z one of the egalitarian-equivalent allocations
in the original economy. On the other hand, it is easy to see that the no-envy
solution is consistent, whether or not preference relations are reduced.

(i) Multiple-object case. We will consider several versions of the model,

113



and give the formal definitions first in the general case of multiple objects.
There is a group N € N of agents and a collection A of objects taken
from some infinite set A. We require |[N| = [A|. An amount € Ry of
an infinitely divisible good, called money, is also available for distribution.
Each agent : € N is equipped with a preference relation R; defined over
the space A x R. This relation is continuous and strictly monotonic in its
second argument, and such that for all (a,m;) € A X R, and all &/ € A,
there is m’ € R such that (o, m;)L;(a/,m'). Let Rinq be the class of these
preference relations. Each agent should consume one and only one object. A
fair allocation problem with indivisible goods is a triple (R, A,Q) €
RN, x AxR. A feasible allocation for (R,A,Q) is a pair z = (o,m)
of a bijection 0: N — A specifying which object each agent receives, and
a vector m € RV such that Y,y m; = Q specifying how much money each
agent receives. Let OV be the class of these problems, O = (Jyep OV, and
Xo = Unen(A xR)Y. A solution is a correspondence that associates with
every N € N and every (R, A,Q) € OV a non-empty subset of its feasible
set.”®

The primary solution here is the no-envy solution, already introduced.
Under the assumptions made above, the no-envy solution is non-empty (see
Maskin, 1987, Alkan, Demange, and Gale, 1991, Aragones, 1995, for existence
results). It also turns out to be a subsolution of the Pareto solution
(Svensson, 1983). Moreover, the group no-envy solution and the equal-
income Walrasian solution, first encountered in the context of classical
economies, and which are easily adapted to the current model, coincide with
the no-envy solution (Svensson, 1983). Another interesting solution is the
solution that associates with each economy the set of allocations that each
agent prefers to the unique (up to Pareto-indifference) envy-free allocation
that would exist if everyone had the same preferences as his (Moulin, 1990).
We will refer to it as the tdentical-preferences lower bound solution.
We also have the egalitarian-equivalence and Pareto solution and the
selections from it obtained by requiring the reference bundle to contain a
specific object. Finally, we will consider the intersections of these last two
solutions with the Pareto solution.

76This model has been considered by Svensson (1983), Maskin (1987), Alkan, Demange,
and ‘

Gale (1991), Tadenuma and Thomson (1991,1993,1995), Moulin (1991), Bevia (1993,
1996), Alkan (1994), and Aragones (1995).
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As discussed earlier, we only allow solutions to depend on agents’ pref-
erences over the bundles containing the objects that are actually present:
when some agents leave with their assigned objects, the preferences of the
remaining agents over consumptions containing the vanished objects are ig-
nored in deciding whether the resources they have collectively received should
or should not be reallocated among them. It is for that reason that the
egalitarian-equivalence solution and its selections discussed above are not
consistent. In the statement of consistency, we use the preference relations
so restricted, the “reduced” preference relations. If N' C N, let Ri|a( -
denote the restriction of agent :’s preferences from A X R to o(N') x R.

Consistency for allocation problems with indivisible goods: The
solution ¢: O — Xp is consistent if for all N, N' € N with
N' C N and all (R,A4,Q) € OV, if z € ¢(R,A,Q), then zy: €
O((Rijo(vryxR)ient, o(N'), Xy mi).

We omit the formal statement of converse consistency, which is straight-
forward. Just as on the classical domain, the Pareto solution and the no-envy
solution are consistent. The former is not conversely consistent but the latter
still is.

To state the results, we need the following very mild condition: if an
allocation obtained by exchanges of bundles from one that is chosen by the
solution leaves unaffected the welfares of all agents, then it should also be
chosen:

Neutrality: If z € (R, A,Q), 2’ is obtained from z by switching around its
components, and z;1;z; for all ¢ € N, then 2’ € p(R, A, Q).

Theorem 41 (Tadenuma and Thomson, 1991) If a subsolution of the no-
envy solution satisfies neutrality and consistency, then it coincides with the
no-envy solution.

There is an infinity of subsolutions of the no-envy solution satisfying
neutrality and bilateral consistency, or neutrality and converse consistency,
but they can be completely described. When all three conditions are used
together, we obtain the following additional characterization of the no-envy
solution:

115



Theorem 42 (Tadenuma and Thomson, 1991) If a subsolution of the no-
envy solution satisfies neutrality, bilateral consistency, and converse consis-
tency, then it coincides with the no-envy solution.

Bevia (1996) investigates the existence of consistent selections from the
identical-preferences lower bound solution. This solution contains the no-
envy solution and it coincides with it in the two-person case. It is not con-
sistent but it is conversely consistent. Given that the no-envy solution is
conversely consistent, a consequence of these observations and Theorem 41
is that the no-envy solution is its only neutral and consistent subsolution.

A special case of the model just described is when the objects are all
identical. For instance, imagine the allocation of jobs on an assembly line
when there are more workers than jobs, all extra workers remaining unem-
ployed. Of course, on this subdomain, the Pareto solution and the no-envy
solution remain consistent but now the Pareto solution is conversely consis-
tent. Moreover, the domain is still sufficiently rich to allow characterizations
of the no-envy solution along the lines of Theorems 41 and 42 (Tadenuma
and Thomson, 1991). Bevia (1996) shows that her results also extend to that

case.

(i) One-object case. If we consider the even more specialized situation in
which there is a single object to allocate, the results change in a significant
way.

To give a geometrical representation of this case, we need only two axes,
one indexed by the object, which is received by exactly one person, the
“winner” and the other indexed by what we will call the “null object”, which
is received by all other agents, the “losers”. The null object is denoted by v
on the figure. For the losers not to envy each other, they should receive the
same amount of money.

This respecification of the domain has important consequences. Indeed,
consistency is now satisfied by many proper subsolutions of the no-envy so-
lution. An example is the solution F'* that selects the envy-free al-
location(s) such that the winner is indifferent between what he
recetves and what the losers receive, as represented in Figure 2.13a:
the winner’s indifference curve through his bundle passes through the losers’
common bundle. We also need to consider the case when there is only money
to allocate, or when there is only one agent. In any one of these cases, there
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Figure 2.13: Consistency in economies with a single indivisible
good. (a) The solution F*, which selects the envy-free allocation such that
the winner is indifferent between his bundle and the losers’ common bundle,
is consistent. (b) The “dual” solution, which selects the envy-free allocation
at which one loser is indifferent between his bundle and the winner’s bundle,
is not consistent. In this example, if agent 2 leaves, the winner could be
moved further to the right (consider the dashed indifference curves).

is a unique envy-free allocation, which of course the solution should pick.
Now, for the solution so defined, if some but not all of the losers leave the
scene with their assignments of money, the required indifferences remain in
the resulting reduced economy. The degenerate cases, when all the losers
leave or when the winner leaves, are equally easy to check. Therefore, the
solution F™ is consistent. It is also conversely consistent. On this restricted
domain, both the Pareto solution and the egalitarian-equivalence and Pareto
solution are conversely consistent too.
The following theorem is the central result for this model:

Theorem 43 (Tadenuma and Thomson, 1993) One-object case. If a subso-
lution of the no-envy solution satisfies neutrality and bilateral consistency,
then it contains the solution F™*.

As corollaries of Theorem 43, we obtain characterizations of the classes
of subsolutions of the no-envy solution satisfying neutrality and consistency,
or neutrality and bilateral consistency. A straighforward consequence is that
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F* is the only neutral and consistent subsolution of the no-envy solution
satisfying the following requirement:

Single-valuedness up to indifferent exchanges: If z, 2’ € ¢(R, A,Q),
then 2’ is obtained from z by switching around its components and z; ;2! for

all7 € N.

(iii) Related models. Bevia (1993) studies a more general model in which
each agent may receive more than one object. The assumption brings about
a considerable enlargment of the space of admissible preferences, and the
results presented above do not extend: it is not true any more that the no-
envy solution is a subsolution of the Pareto solution; more significant is that
the no-envy and Pareto solution is not conversely consistent; finally there are
no counterparts of Theorems 41 and 42.77

Fleurbaey (1995a) considers a model in which agents differ with respect
to a variable that can be interpreted as talent or handicap. Then, preferences
are defined over the cross-product with R of the set of possible levels of this
variable. The level of the variable is fixed for each agent. Therefore, his model
can be interpreted as a special case of the model examined above in which
the indivisible goods cannot be reassigned. He focuses on solutions satisfying
consistency and converse consistency, and studies the compatibility of these
properties with other normatively appealing desiderata.

Of particular interest are certain logical relations that he notes be-
tween consistency and various monotonicity properties. These relations, also
pointed out by Chun (1985) in the context of bankruptcy problems, extend
beyond the framework of the particular model that they study. For instance,
any consistent solution that is resource-monotonic (all agents benefit from an
increase in the amount of resources to divide) is population-monotonic (all
agents initially present lose if the number of agents increases but resources
stay fixed; see Section 2.2.1 for an application of the idea).

2.5 OTHER MODELS

Here, we examine two additional models. The first one, apportionment,
is familiar to political scientists. The second one is a model of matching,

""The same conclusions hold on the subdomain of quasi-linear economies.
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which has many applications. Both models are characterized by their discrete
mathematical structure.

2.5.1 Apportionment problems

One of the oldest problems in political science is that of attributing seats to
states in order to get as close to proportional representation as possible. The
problem arises because rounding is necessary, and it is important because
which rounding method is used may dramatically affect the representation
of small states. Consider the three-state apportionment problem described
in Table 3, and let us solve it according to two well-known methods: for
Jefferson’s method, choose a divisor of the populations of the states so
that the whole numbers contained in the quotients sum to the total number of
seats. Then, give to each state its whole number. For Hamilton’s method,
define the “quota” of each state to be the ratio of its population to the
aggregate population times the total number of seats. Give to each state the
whole number contained in its quota. Assign the remaining seats to those
states having the largest fractions.

Note that in the example, under Jefferson’s method states 1 and 3 have
been allocated 1 and 5 seats respectively, for a total of 6. Applying this
method to the problem of allocating 6 seats to these states produces exactly
the same apportionment (1,5). This is because Jefferson’s method is con-
sistent. However, Hamilton’s method is not since initially, it would assign 1
seat and 5 seats to states 1 and 3 respectively, for the same total of 6 seats,
but applying the method to the allocation of 6 seats among them produces
the apportionment (2,4).

We now turn to the general definitions. An apportionment problem is
a pair (s, H) € NV xN: the members of N € A are states with populations
given by the coordinates of s; H is the number of seats in the house. The
objective is to allocate seats to states as close to proportionally to their pop-
ulations as possible. Let A" be the class of these problems, A = Uyep AY,
and X4 = Unex(NU{0})N. A solution is a correspondence that associates
with every N € N and every (s, H) € AN a vector in (N U {0})" whose
coordinates add up to H.

Balinski and Young (1982) carry out an extensive analysis of apportion-
ment. One of their main axioms is consistency. It corresponds directly to
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States’ Jefferson’s method Hamilton’s method
Population applied to applied to
s (s,10) (s1,83,6) (s,10) (s1, $3,6)
s1 =200 1 1 1 2
SS9 = 500
33 = 590 5 5 5 4

Table 2.3: Consistency of apportionment methods. Jefferson’s
method is consistent but Hamilton’s method is not. In the example,
N ={1,2,3}, s = (200,500,590), and H = 10.

what we have already seen a number of times. The second condition they
use was introduced in Subsection 1.7.1. under the name of flezibility. It says
ifz € p(s,H) and y € ¢(r%.(s, H)), then (s, H) admits as solution outcome
the juxtaposition of y with zy\n/, namely (y, zy\n1).™

Consistency for apportionment problems: The solution ¢: A — X4 is
consistent if for all N, N' € N with N’ C N, all (s,H) € AV, and all
z € (s, H), we have zns € o(rF.(s, H)), where r%.(s, H) = (sn1, S 7).

Flexibility for apportionment problems: The solution ¢: A — X4 is
flexibleif for all N, N' € N with N' C N, all (s, H) € AV, all z € (s, H),
and all y € (rf(s, H)), we have (y, zn\n1) € ¢(s, H).

In addition to consistency, we will require of solutions that they satisfy
two properties. For this model, as in most models with a discrete structure,
there is sometimes no way of treating identical agents identically. Instead,
we will first demand that if two states have equal populations, their appor-
tionments should not differ by more than one seat:

Balancedness: s; = s; implies |¢;(s, H) — ¢;(s, H)| < 1.

Next, we will ask that the the solution should be invariant under ex-
changes of the names of the states:

"8What they call “uniformity” is the conjunction of consistency and flezibility.
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Anonymity: If [N| = |N|, and =N — N is a permutation, then
p(m(s), H) = m(p(s, H)).

Let r: € x NU{0}) — R be a monotone decreasing function of its second
argument, and let F be the class of all functions f:CY x (N U {0}) —
(NU {0})" defined recursively as follows:

(i) for H =0, f(s, H) = (0,...,0)

(ii) if f(s,H) = z, then f(s, H + 1) is obtained by giving z; + 1 seats to
some state ¢ € N such that r(s;,z;) > r(s;,z;) for all j € N\{:}, and
z; seats to all j € N\{:}.

Then, the rank index solution based on r is defined by (s, H) =
{z e (NU{0})N:z = f(s, H) for some f € F}.7®

Theorem 44 (Balinski and Young, 1982) The rank index solutions are the
only solutions satisfying balancedness, anonymity, consistency, and flexibility.

By imposing two further conditions, an interesting refinement of Theo-
rem 44 can be obtained. It identifies the family defined as follows: given
a monotone increasing function d = N U {0} — N U {0} such that
a < d(a) < a+ 1, the divisor solution based on d is defined by
o(s, H) = {z € NU{0H)":d(z; = 1) < si/A < d(z:) and Tyzi = H
for some A € R, }.

The first additional condition says that if the populations of the states
change in the same proportions, the apportionment should be unchanged.
Let C denote the set of rational numbers:

Homogeneity: ¢(As, H) = (s, H) for all A € C,,, the set of positive
rational numbers.

If there is a feasible apportionment proportional to the populations, it
should be the only one recommended by the solution:

Proportionality when possible: If there exists € (N U {0})" such that
>nz; = H and x = )s for some A € Cyy, then ¢(s, H) = {z}.

"Jefferson’s method is the member of the family obtained for r defined by r(si, @) =

sif(z; +1).
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The second requirement is that if a state has a greater population than
another one, it should receive at least as many seats at any apportionment
recommended by the solution:

Order preservation: If s; > s;, and = € ¢(s, H), then z; > z;.

Theorem 45 (Balinski and Young, 1982) The divisor solutions are the only
ones to satisfy homogeneity, anonymity, proportionality when possible, order
preservation, consistency, and flexibility.

Bibliographic note. The more general problem of allocating
seats “proportionally to both populations and parties” has been
examined by Balinski and Demange (1989a,b). Consistencyis one
of the axioms they use. Balinski (1995) also invokes consistency
in his discussion of the problem of rounding.

2.5.2 Matching and assignment problems

There are three men and three women. Each of the men has preferences over
the women and each of the women has preferences over the men. These pref-
erences are represented by the functions graphed in Figure 2.14: a score of 0
is assigned to the least preferred mate, a score of 2 to the most preferred, and
a score of 1 to the intermediate one. In the example, man 1 prefers woman
2 to woman 3, and woman 3 to woman 1 (scores are indicated horizontally).

The objective is to find a way of matching men and women. One method
consists in selecting matches such that no pair of a man and a woman prefer
each other to their assigned mates. Say that such a match is divorce-proof.
There always is at least one such match (Gale and Shapley, 1962). In the
example of Figure 2.14, the match indicated by the arrows passes the test.
Now, note that ms and ws have been paired. Let us imagine them to leave
the scene. Would the restriction of the match to the four remaining agents
be divorce-proof? The answer is of course yes. This is because this solution
is consistent.

On the other hand, the solution that selects the match that minimizes
the sum of rankings of all agents within the core (McVitie and Wilson, 1971)
is not consistent.

Another application of the above model is to the assignment of medical
residents to positions in hospitals. A generalization is when each agent on
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Figure 2.14: Consistency for matching problems. A six-person match-
ing problem. If the match is divorce-proof, then its restriction to any sub-

group obtained by deleting married pairs, is also divorce-proof.

-

one side of the market can be matched to several agents on the other side,
as would be the case for the matching of workers to firms. An application of
this more general model that has been the object of much literature is to the
so-called “college admission” problem. Here, we limit ourselves to one-to-one
matches.

Here are the formal definitions. We consider groups N € A that are the
union of two subgroups Njs and Ny of men and women respectively. A
matching problem is a list R = (R;);cn, where for each i € N, R; denotes
agent i’s strict preference relation over the members of the opposite sex:
if i € Nus, R; is defined over Ny; if i € Ny, R; is defined over Ny,. We
assume equality of the numbers of men and women: |Nu| = |Nw|.®® The
objective is to pair men and women, i.e. to find a match, simply a bijection
b: Nyy — Nw. Let BN be the set of all such bijections. Let MY be the
class of these problems, M = Uyep MY, and Xy = Unen BN. A solution
is a correspondence assigning with every N € A and every R €¢ MV, a
non-empty subset of BY. This model, first formulated by Gale and Shapley
(1962), has been the object of a now considerable literature, reviewed by

80See below for a discussion of the case when the two groups may have unequal cardi-
nalities (and situations where not all agents have to be matched even when equality of
cardinalities holds). Formally, this situation is accommodated by the introduction of a
“single” status. In the application to assignments of workers to firms, this corresponds to
unemployment for a worker and closing down for a firm.

123



Roth and Sotomayor (1990).

The stable solution is the solution that chooses for all N € NV, and all
R € MY the set of matches b € BN such that for no (m,w) € Ny X Ny,
wR,,b(m) and mR,, b~ (w), with at least one strict preference. This solution
actually coincides with the core, the solution that chooses the set of matches
that cannot be improved upon by any subgroup, and from here on, we will
refer to it by that name.

Just as in the case of the assignment of indivisible goods, it is appeal-
ing in specifying a reduced problem to redefine the preferences of the re-
maining agents, here by simply restricting them to the set of possible re-
maining partners. Given N € N, R € MY, b € BN, and N’ C Ny, let
b(N') = {w € Nw:w = b(m) for some m € N'}. Given m € N’, let Rnjp(nn
be the restriction of man m’s preferences to the women in 5(N') and let RN
be symmetrically defined. In the reduced problem the preference profile is

(Ropp(vry)ment U (Runt)web(vn-

Consistency for matching problems: The solution ¢: M — X is con-
sistent if for all N, N' € Ny with N' C N and all R € MV if b € ¢(R),
then blN' € (P((leb(N/))meNl U (Rw]N’)web(N’))'

It is worth noting here that a reduced problem is formally identical to
a subproblem, as it is simply obtained by restricting the original data to a
subset of the agents. However, the conclusion of consistency is not written
for all subsets of the original set of players, but only for subsets that are
defined by applying the solution to the original problem.

Here is the natural form taken by converse consistency for this model:
consider some matching problem and a match for that problem. Check
whether the restriction of the match to each subgroup of two matched pairs
is among the recommendations made by the solution for this four-person re-
duced problem. If the answer is yes for all such subgroups, the match should
be one of the recommendations for the original problem.

Apart from the standard requirement of Pareto-optimality, which we will
not state explicity, we will use the following condition, which says that the
names of the participants should not matter. Let N,N € N be such that
[N| = |N|:

Anonymity: For all R € MY and (Ri); .z € MY with [N| = |N|, let
m: N — N be a bijection such that
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(a) m(Na) = Nar and ©(Nw) = Ny

(b) For all m € Np and all w, w' € Nw, wP,w' if and only if
T(w) Pr(mym (w')

(c) A similar statement holds when the roles of men and women are
exchanged

Furthermore, for each b € BV, let 7, be defined by
mp(m’) = w(b(r1(m")) for all m’ € Ny;.

Then, ifbe (P(R), Ty € (p((Ri)ieN)'

We are now ready for the main result of this section, which is a charac-
terization of the core:

Theorem 46 (Sasaki and Toda, 1992) The core is the only solution satisfy-
ing Pareto-optimality, anonymity, consistency, and converse consistency.

In the model as specified above, no agent ever remains single. Let us
now introduce a “single” status. The preferences of each agent are defined
over the members of the opposite sex and remaining single. For this model,
examined by Toda (1993a), the axioms of Theorem 46 do not identify a
unique solution any more.®? However, by adding two additional but mild
conditions, the core emerges once again. The first condition, individual
rationality, simply says that no agent is assigned a mate to whom he prefers
remaining single. The second condition, weak strategy-proofness, says
that in economies in which there is only one man or only one woman, no one
gains by misrepresenting his or her preferences.

Theorem 47 (Toda, 1993a) On the domain of matching problems in which
remaining single is a possibility, the core is the only solution satisfying Pareto-
optimality, individual rationality, anonymity, weak strategy-proofness, consis-
tency, and converse consistency.

One may wonder about the implications of a consistency notion in the
spirit of the one used by Davis and Maschler (see Subsection 2.2.2.(i)). Recall
that this notion is based on a certain maximization exercise carried out by
coalitions: in the present model, the options open to a man, say, in the

81Not surprisingly however, Theorem 46 applies if preferences are restricted by the
condition that for each agent the single status is necessarily the least preferred alternative.
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reduced problem associated with a certain match and a particular subgroup
that contains him, would be defined by letting him search for the best wife
among those women in the complementary subgroup that would want to
elope with him; a woman would want to do that if she prefers him to the
husband assigned to her by the match under consideration. We will refer to
this notion as maz consistency. Note that the same woman may be the
solution to the maximization problems of several men, whereas the definition
we considered earlier raises no such feasibility issue. Toda (1993b) looks for
solutions satisfying in addition the requirement of anti-momnotonicity: if a
match is chosen for some profile, then it is still chosen for the profile obtained
by possibly lowering the single status of anyone who is matched. As compared
to Theorem 46, it is of interest that the characterization of the core stated
next relies on neither anonymity nor any notion of converse consistency. The
possibility of moving the single status allows a considerably simpler proof.8

Theorem 48 (Toda, 1993b) On the domain of matching problems in which
remaining single is a possibility, the core is the only solution satisfying Pareto-
optimality, individual rationality, maz consistency, and anti-monotonicity.

Next, we consider matching problems with money, commonly called “as-
signment” problems (Shapley and Shubik, 1972). In this model, studied by
Sasaki (1995), and to which the next theorems pertain, the formation of
each couple produces a certain worth. Each agent only cares about how
much money he or she receives, not to whom he or she is matched. The issue
is to determine which couples to form and how to distribute the worths their
formations produce. Sasaki considers the weakening of consistency, which we
will call separation independence, obtained by limiting its applications
to situations where the restriction to a subgroup of the payoff vector that is
being evaluated is feasible for that subgroup: this is when the sum of the
payoffs received by the members of the subgroup is equal to the sum of the
worths that can be generated by forming couples in the subgroup.®3 He also
uses a condition of worth monotonicity which says that given any out-
come chosen by the solution, if the worth of a pair of a man and a woman
increases, then there exists an outcome chosen by the solution for the new

821t is based on the well-known “decomposition lemma”. ;
831t is the counterpart for this model of the property of the same name discussed in
connection with the problem of fair division (Section 2.4.1.)
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problem at which the sum of their payoffs is at least as large.®* Other require-
ments are individual rationality, which here says that each agent should get a
payoff greater than 0, the common value of their reservation payoffs, couple
rationality, which says that each matched pair should receive in total at
least as much money as its formation produces, and a standard continuity
condition with respect to the worths of the pairs.

Theorem 49 (Sasaki, 1995) On the domain of matching problems with
money, the core is the only solution satisfying Pareto-optimality, continu-
iy, individual rationality, couple rationality, separation independence, and
worth monotonicity. A similar statement holds with continuity replaced by
Pareto-indifference.8

For this model, Toda (1993c) explored the implications of a consistency
property that here too is the counterpart of the Davis and Maschler condi-
tion. However, in defining the reduced game relative to a subgroup of agents
to which a given agent, say a man, belongs and a payoff vector z, only his
reservation payoff is adjusted. This adjustment is effected by means of a
maximization exercise with respect to his potential partners in the comple-
mentary group: his revised reservation payoff is defined to be the greater of
the following two numbers: first, his original reservation payoff and second,
the surplus that would remain after paying his partner her payoff at z, after
the partner for whom the surplus is the greatest is identified. Toda character-
izes the core by means of the corresponding notion of consistency, to which
we again refer as maz consistency. This result involves as an auxiliary condi-
tion a counterpart of the super-additivity condition used by Peleg (1986;
Subsection 2.2.2): consider a problem that is obtained from two component
problems by adding their worth vectors on the one hand and their reservation
functions on the other. Then, if a payoff vector of the sum game is obtained
by adding payoff vectors chosen by the solution for the component games,
then it should be chosen for the sum game.

84This is a weakening of a condition used by Zhou (1991) in the context of coalitional
form games.

85Recall that this is the condition that if an allocation is chosen, any allocation that is
Pareto-indifferent to it is also chosen.
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Theorem 50 (Toda, 1993¢c) On the domain of matching problems with
money, the core is the only solution satisfying Pareto-optimality, individual
rationality, couple rationality,®® maz consistency, and super-additivity.

In a previous study of the problem, Rochford (1984) had proposed the fol-
lowing solution: consider a payoff vector and a match that makes it feasible.
For each man, identify the woman for which the difference between the worth
of the pair and her payoff is maximal. For each woman, perform a similar
calculation. Then, say that a payoff vector is symmetrically bargained if
there exists a match that makes it feasible, and such that in each matched
pair, the payoff of each partner is equal to his or her maximal surplus at the
match plus one half of the difference between the worth of the pair and the
sum of their maximal surpluses at the match. We name the solution that
selects those payoff vectors for each problem the symmetrically bargained
solution.®” In the characterization of this solution presented next, the ax-
iom of homogenetly is used. It says that the addition of constants to the
reservation payoffs and the multiplication of the worths of all pairs by the
same positive number should affect the payoffs in exactly the same way (see
the condition of the same name in Section 2.2.2 on coalition form games). Fi-
nally, we will use weak symmetry, which says that for a problem consisting
of only one man and one woman with equal reservation payoffs, their payoffs
should be equal (note that this implies single-valuedness for that case).

Theorem 51 (Toda, 1993c) On the domain of matching problems with
money, the symmetrically bargained solution is the only solution satis-
fying Pareto-optimality, homogeneity, symmetry, couple rationality, maz-
consistency, and maz converse consistency.

Toda also considers an extension of the model to the case when preferences
are defined over pairs consisting of a mate and some amount of money, and

86This condition does not appear explictly in Toda’s theorem. Instead it is a consequence
of Pareto-optimality together with the stronger feasibility condition that he uses. The
formulation we have chosen should facilitate the comparison of Theorems 50 and 49.

87Rochford (1984) shows the solution is non-empty and that it coincides with the in-
tersection of the core and the kernel of the associated coalitional form game. She also
constructs an algorithm converging to it. In fact, for this model, the kernel is a subset
of the core, as shown by Granot (1995) and Driessen (1995). Driessen (1995) provides
useful geometric illustrations of the core of the assignment game and of the symmetrically
. bargained solution.
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provides a characterization of the core along the lines of Theorem 50: it is
the only solution satisfying Pareto-optimality, individual rationality, couple
rationality, maz consistency, and weak anti-monotonicity (if a payoff
vector is chosen for some problem, it should still be chosen after a possible
decrease of the reservation payoffs of all matched agents).

Moldovanu also (1990a) extends the model to the non-transferable utility
case, when the set of options available to each pair is defined as a subset
of a two-dimensional utility space satisfying some regularity assumptions.
Without going into the details, let us refer to the domain as “regular”. He
defines an NTU version of the symmetrically bargained solution and proves
its non-emptiness on the regular domain. He also establishes the following
characterization:

Theorem 52 (Moldovanu, 1990a) On the regular domain of NTU matching
problems, the NTU extension of the symmetrically bargained solution is the
only solution satisfying bilateral maz consistency, maz converse consistency,
and coinciding with the Nash solution for the two-person case.
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Part 3

OTHER ISSUES AND
DIRECTIONS FOR
FURTHER RESEARCH

In Part 3, we discuss a number of directions for further research. In each
case, some results are already available, but much remains to be done. First,
we discuss consistency in a model with a large number of agents modelled as
a continuum. We then propose and formalize two ways of evaluating how far
a non-consistent solution is from satisfying the property. We point out the
difficulties in formulating notions of consistency in private good economies
in which agents are differentially endowed, and suggest a resolution of these
difficulties. We present the few results available for economies with public
goods. We show how the converse consistency of a solution can be used in the
calculation of the outcomes the solution recommends. Finally, we consider
the issue of consistency in the context of intertemporal allocation.

3.1 MODELS WITH A CONTINUUM OF
AGENTS

First, we consider economies with a large number of infinitesimal agents.
Following Aumann (1964), it is now standard to model such economies by
specifying the set of agents as a measure space. An analysis of consistency
in such a setting is undertaken by Thomson and Zhou (1993) who work
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on a domain of exchange economies with possibly satiated preferences, and
characterize the extension to such a domain of the solution proposed by Mas-
Colell (1992) for finite economies under the name of Walrasian solution
with slack. An equal-income Walrasian allocation with slack is supported
by equilibrium prices, that is, prices at which demand equals supply, but
some prices may be zero or negative, and agents maximize their preferences
in a modified budget set — it is the set of consumptions whose value at
the equilibrium prices does not exceed the value of the mean endowment by
more than some number whose specification is also part of the definition of
the equilibrium. At equilibrium, the slack generated by interior maximization
of some agents is thereby redistributed to the others. When specialized to
economies with monotonic preferences, the equal-income Walrasian solution
with slack coincides with the equal-income Walrasian solution (Subsection
2.4.1). When specialized to the one-commodity case and preferences are
strictly convex, it coincides with the uniform rule (Subsection 2.4.2).

Our next result is a characterization of the Walrasian solution with slack.
A feature of this theorem worth noting is that it applies to a solution defined
on any domain consisting of a given economy e and all of the economies in
which the set of agents is an arbitrary measurable subset of the set of agents
of e, and the social endowment is an arbitrary share of the social endowment
of e. It is proved under standard continuity and measurability assumptions,
and the requirements on preferences that they be locally non-satiated at non-
satiated points, and smooth at non-satiated points. Let &, denote any such
domain.

Theorem 53 (Thomson and Zhou, 1993) On a domain &,, if a subsolution
of the equal division lower bound and Pareto solution is consistent, then it
is a subsolution of the equal income Walrasian solution with slack.

As corollaries of Theorem 53 we derive characterizations of the equal-
income Walrasian solution and of the uniform rule. They are obtained by
imposing the additional restrictions on the domain that preferences be mono-
tonic on the one hand, or that there be only one commodity on the other

hand.

Most of the domains of problems reviewed in part II can be reformu-
lated by modelling the set of potential agents as a continuum but much work
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remains to be done to find out whether and how the results presented ear-
lier can be rewritten for such formulations, in particular how the auxiliary
conditions can be weakened.

The analysis of converse consistency in such models also remains to be
carried out. A possible formulation for fair division problems is as follows.
Consider a solution and let z be an efficient allocation for some economy
in its domain of definition. Suppose that for all € > 0, the restriction of x
to all measurable subsets of the set of agents of measure at most € is one
of the recommendations the solution would make for the associated reduced
economy. Then, z should be recommended by the solution for the original
economy.

Bibliographic note. Diamantaras (1991) applies to public good
economies techniques similar to those developed in Theorem 53
and provides a characterization of Foley’s (1967) public compet-
itive equilibrium. Winter and Wooders (1994) offer a characteri-
zation of the cores of games of TU or NTU games in which the set
of players may be a continuum but only finite coalitions are al-
lowable. Their axioms are maz consistency and its converse, and
the requirement that the solution coincides with the core for two-
player games. This result should be compared with Peleg (1985)’s
own characterization of the core for finite games (Theorem 6).

3.2 MINIMAL CONSISTENT EXTEN-
SION. MAXIMAL CONSISTENT SUB-
SOLUTION

When a solution is not consistent, we would like to know how serious the
violations of consistency are. One way to evaluate them is to find out the
extent to which the solution would have to be modified in order to satisfy the
property. Two procedures for doing this are developed in Thomson (1994b),
on which this section is based.
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3.2.1 Minimal consistent extension.

We first propose to minimally enlarge the solution so as to recover consis-
tency. That this can be done follows from the following observations: it is
a direct consequence of the definition of consistency that if all the members
of a family ¥ of solutions with common domain and range are consistent,
and the intersection @(e) = Nyey ¥(€) is non-empty for each economy e in
the domain, then the well-defined solution @ also is consistent. Now, given
a solution ¢, let ¥ be the family of consistent solutions containing ¢; that
is, ¥ = {¢:¢ D ¢, ¢ is consistent}. The solution that associates with each
economy its whole feasible set is of course consistent. Therefore W # (). Let
® = yew ¥- Since ¢ D ¢, @ is a well-defined solution. Therefore @ can
be described as the minimal consistent extension of ¢. The “size” of the
difference @\ is the price we have to pay to recover consistency if we 1ns1st
that all the allocations picked by ¢ be included.

Minimal consistent extension: Given a solution ¢, its minimal consis-
tent extenston, mce(yp), is defined by

mce(p) = () 1, where U = {1p:4h D 0,1 is consistent}
PeEY

Given two solutions ¢ and ', we have mce(p U ') = mce(p) U mee(¢').
Also, if ¢ and ¢’ are such that ¢ N ¢’ is a well-defined solution, we have
mce(p N ¢') C mee(p) Nmee(¢’). The inclusion may be strict.

We illustrate these notions by first examining the problem of fair allo-
cation in classical economies (See Subsection 2.4.1 for the definitions of the
solutions used as examples below). To simplify the statement of the first
result, consider the solution that selects for each economy the subset of its
efficient allocations admitting supporting prices such that the value of all con-
sumptions be positive. We refer to it as the “strong” Pareto solution. Note
that the Pareto and the strong Pareto solutions are “very close”. Clearly,
the strong Pareto solution is consistent. The following theorem reveals that
if the point of departure is the equal division lower bound and strong Pareto
solution, which as we saw is not consistent, a considerable enlargment of it
is necessary in order to obtain the property:
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Theorem 54 (Thomson, 1992c) On the domain of economies with classi-
cal preferences, the minimal consistent extension of the equal division lower
bound and strong Pareto solution is the strong Pareto solution itself.

The minimal consistent extension of the often used selection from the
egalitarian-equivalence solution that is obtained by requiring the reference
bundle to be proportional to the social endowment (the (-egalitarian-
equivalence solution of Subsection 2.4.1) can also be calculated in a simple
way: it essentially coincides with the egalitarian-equivalence solution.

In the context of fair allocation in the presence of indivisible goods, re-
call the solution that selects the efficient allocations that each agent prefers
to what he would receive under equal treatment of equals if everyone had
preferences identical to his — this is the identical-preferences lower bound
solution (see Subsection 2.4.3 for the definition). This solution is not consis-
tent but here too, the extent of the violations can be calculated. Once again,
a considerable enlargment is necessary to recover consistency:

Theorem 55 (Bevia, 1996) On the domain of fair allocation problems
with indivisible goods, the minimal consistent extension of the identical-
preferences lower bound and Pareto solution is the Pareto solution. The
same result holds on the subdomain of economies in which the indivisible
goods are identical, and in the one-object case.!

Similar calculations can be carried out in the context of the abstract
bargaining model when solutions are allowed to be multi-valued. For instance,
on the domain of strictly comprehensive problems, the minimal consistent
extension of the Kalai-Smorodinsky solution can be shown to bear a close
relation to the solution that selects for each problem the relative interior of

the Pareto set (Thomson, 1995a).

In that case however, if preferences are such that receiving the object is always prefer-
able to not receiving it, then the minimal consistent eztension of the identical-preferences
lower bound and Pareto solution is the solution that selects the set of efficient allocations
such that each agent prefers his assigned bundle to the bundle consisting of the null object
and an equal share of the social endowment of money.
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3.2.2 Maximal consistent subsolution

The procedure discussed in the preceding paragraphs is certainly not the only
way of evaluating the extent to which a solution ¢ may fail to be consistent.
Alternatively we could delete from, instead of adding to, the ¢-optimal set,
and ask how much should be deleted in order to recover the property. Here,
of course, we would like to delete as little as possible. This operation will
be well-defined only if ¢ does contain a consistent subsolution, but there is
no other precondition. Indeed, if all the members of a non-empty family ¥
of solutions are consistent, then so is the union ¢ = Uyeg . If 3 C ¢ for
all € W, then of course ¢ C ¢, so that ¢ can be described as the mazimal
consistent subsolution of .

Maximal consistent subsolution: Given a solution ¢ containing a con-
sistent subsolution, its mazimal consistent subsolution, Mecs(yp), is

defined by

Mecs(p) = | o, where U = {¢:9p C ¢, is consistent.}
Yey

Given two solutions ¢ and ¢, each of which contains a consistent solution,
we have Mcs(oUgp') D Mes(p)UMes(¢'). The inclusion may be strict. Also,
if o N ¢’ contains a consistent solution, we have Mcs(p N ¢') = Mes(p) N
Mes(¢').

Note that Mcs(y) is equal to the solution ¢ defined, for all N € /' and
all e € EV, by

(*) le) ={z € Z(e): zn» € (rF(€)) for all N' C N}.

Indeed, ¢ is consistent, and of course ¢ C ¢ (set N = N in the definition).
‘Maximality follows from the fact that these conditions are necessary.

The concept of a mazimal consistent subsolution can be used to relate
various solutions that have been discussed separately in the literature. For
instance, for fair division problems in classical economies, the solution that
selects the allocations such that every agent prefers his consumption to any
point in the convex hull of the various consumptions assigned to all the
agents (Kolm, 1973), can be understood as the mazimal consistent and repli-
cation invariant® subsolution of the equal division lower bound. Similarly,

2 Replication invariance is stable under union too, so the concept is well-defined.
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the strict no-envy solution (Zhou, 1992) can be described as the mazimal
consistent subsolution of the solution that selects the set of allocations at
which each agent prefers what he receives to the average of what the others
receive (Thomson, 1982; Baumol, 1986). On the domain of fair allocation
problems with indivisible goods, Bevia (1996) shows that the mazimal con-
sistent subsolution of the identical-preferences lower bound solution is the
no-envy solution. Other results presented earlier in this survey can be seen
as describing the mazimal consistent subsolutions of solutions of interest.

Similar operations to those described in the previous paragraphs can be
defined starting from bilateral consistency.

It remains to be determined whether the notions of minimal consistent
eztensions and mazximal consistent subsolutions can help in the understanding
of other domains.

3.2.3 Minimal conversely consistent extension. Mini-
mal flexible extension

It is also possible to define the notion of the minimal conversely consistent
extension of a solution, or that of its minimal flezible extension. Indeed, the
intersection of an arbitrary family of conversely consistent solutions is con-
versely consistent, and the feasibility solution has that property. Similarly,
the intersection of an arbitrary family of flezible solutions, if well-defined, is
flezible, and so is the feasibility solution.

3.3 ECONOMIES WITH INDIVIDUAL
ENDOWMENTS

In the standard formulation of the problem of fair division, there is a social
endowment on which agents have equal rights. In richer specifications, each
agent starts out with his own endowment, that is, the social endowment is
initially distributed among the agents, not necessarily evenly. A constraint

3However, the union of two conversely consistent solutions may not have the property
and the union of two flezible solutions may not have the property either. Therefore, there
does not seem to be a natural counterpart of the concept of mazimal consistent subsolution
when the point of departure is either converse consistency or flezibility.
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in the design of allocation rules is that they recognize these possibly different
rights. This is the usual model of the theory of general equilibrium.

Most of the central concepts that have been formulated to solve the
problem of distributing a social endowment can be adapted to the prob-
lem of redistributing individual endowments. The question addressed here
is whether, and how, consistency and its converse can be adapted to such
situations. The central issue is defining the concept of a “reduced economy”.
We will discuss the difficulties that come up in formulating a definition and
propose a resolution. This resolution involves enlarging the class of prob-
lems under consideration by specifying, in addition to the agents’ prefer-
ences and endowments, a net trade vector in commodity space; a positive
coordinate is interpreted as a surplus of the corresponding good that has
to be distributed among the agents, whereas a negative coordinate is to be
interpreted as a shortfall that has to be absorbed. In this context, a solu-
tion provides a way of redistributing endowments and accommodating a net
trade vector among agents, taking into proper account their preferences and
endowments. Equipped with these definitions, consistency is then straight-
forward. We close by providing simple examples of consistent solutions. This
section is based on Thomson (1992b). Dagan (1992) has also addressed the
same issue. Additional papers are by van den Nouweland, Peleg, and Tijs

(1994), and Serrano and Volij (1995).

First, we describe the model. There are £ € N goods. Each agent : € N
is characterized by a preference relation defined over R, denoted by R;,
and an tndividual endowment, a point in Hﬂ, denoted by w;. Given a
class R of admissible preferences, an economy is a pair (R,w) € RN x R¥Y,
where N € N is a group of agents, R = (R;);en is the profile of their
preferences and w = (w;);en the profile of their endowments. For each N €
N, let EN be a class of admissible economies, that is, economies in which
preferences satisfy some regularity conditions, and let £ = Upep EV and
X =UnenRY. A solution is a mapping that associates with every N €
and every economy e = (R,w) € £V a non-empty subset of its feasible set
Z(e)={z e RY: Tz =T ywi}

Let ¢ be a solution. Given e = (R,w) € EY¥, N' C N, and z € ¢(e),
a first choice for the reduced economy of e relative to N' and z is
e’ = (R, zn1); that is, the endowments of the members of N’ are simply
replaced by the consumptions assigned to them by . Once the reduced
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economy is defined, consistency would simply say that zy: € @(Rnv,2zn1).
We feel that this definition limits too much the options open to the remain-
ing agents. Indeed, if a subsolution of the Pareto solution chooses the profile
of endowments whenever that profile is an efficient allocation, and most so-
lutions of interest do, it automatically satisfies consistency as so formulated.
Consequently, the property is too weak to be of much help in distinguishing
among solutions. An alternative formulation would be to keep the profile of
endowments unchanged. But then, the requirement zy: € ¢(Rp:,wpn) would
be unreasonably strong since the allocation zy+ would only exceptionally be
feasible for the economy (Rn:,wpnr). Writing that zy: € p(Byr,wnt) of 20
is feasible would give us the counterpart of the condition of separation inde-
pendence discussed in Subsection 2.4.1, a condition that is in general rather
weak.*

More interesting is a formulation in which the endowment profile is ad-
Jjusted, instead of replaced, so as to reflect the constraints placed on the re-
maining agents by the departure of some members of the initial group. This
respecification of the endowment profile should of course be carried out in
such a way that zx+ be feasible in the resulting reduced economy. To achieve
this, it is necessary to distribute the net trade vector y\n+(w; — z;) among
the remaining agents, the members of N’. Equal distribution comes to mind,
but this might produce revised endowments with negative coordinates. A
distribution as close to equal division as possible taking these non-negativity
constraints into account is a natural alternative, although we do not feel that
there is a strong justification for it. For the problem of reallocating a private
good among agents with single-peaked preferences (Section 2.4.2), this for-
mulation was recently investigated by Klaus, Peters, and Storcken (1996b),
who based on it several characterizations of an extension of the uniform rule,
characterizations patterned after results obtained for the fair division version
of the model.

Other procedures of redistributing net trades could be devised but what-
ever method is adopted, it seems appropriate to require that it be itself
consistent. A formulation of the problem along these lines would then lead
us to searching for pairs (1, ¢) where ¢ is a method of redefining profiles
of endowments so as to absorb a given trade vector, and ¢ is an allocation

*Yet, we saw that in some models, such as matching (Subsection 2.5.2), this condition
is actually quite useful.
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method. Consistency would be required of both 1 and .

Instead of this two-part process, we propose a unified formulation based
on the generalization of the concept of an economy. The generalization is
obtained by simply adding a net trade vector to the original data. This
generalization was independently proposed by Dagan (1992), and his notion
of consistency is the same as the one to be stated shortly:

A generalized economy is a list e = (R,w,T) where N € N,
R = (R;)ien € RV, and w = (w;)ien € RN are profiles of preferences and en-
dowments respectively, and T' € R¥is a net trade vector satisfying Yy w; = T.
Let GV be a class of such problems, G = Unenx GV and Xg = Unven RV, A
solution on G associates, with each N € N and each (R,w,T) € GV, a
non-empty subset of Z(e) = {z € R{": Yy 2z = Ly wi + T}

A positive coordinate of T' corresponds to a surplus of the good, and
a negative coordinate to a deficit. Solutions are designed to allocate these
combinations of surpluses and deficits in a desirable way, taking preferences
and endowments into proper consideration.

With the concept of a generalized economy, consistency can now be given
the following very natural formulation:

Consistency for generalized economies: The solution ¢:G — Xg is
consistent if for all N, N' € N with N' C N, all e = (R,w,T) € GV,
and all z € ¢(e), we have zy+ € p(ri.(e)), where r3,(e) = (Ryr,wnr, T +
Cnwe(wi = 2)).

Two special subclasses of generalized economies that are of interest are
the class of surplus-sharing problems, obtained when T > 0, and the
class of deficit-sharing problems, obtained when T < 0. We discussed
these classes in Subsection 2.3.1 in the one-good case. Note that monotonic
increasing preferences over a one-dimensional commodity space are identical,
so that in that special case, |N|+1 numbers are all that is needed to specify a
problem, the |N| agents’ endowments (or claims, or investments, depending
upon the interpretation given to the model), and one additional number,
representing a surplus if positive, and a deficit if negative.

Now, returning to the {-dimensional case, and given a net trade vector
T € R* that only has non-negative coordinates, the vector T+ 33 M (wi — zi)
may nevertheless have negative coordinates. Similarly, if 7" happens to only
have negative coordinates, the vector T'+ 3"y n/(w; — 2;) may very well have
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some positive coordinates. Therefore, if our point of departure had been
the class of surplus-sharing problems, the “reduction” would sometimes take
us outside of the class. And if we wanted to limit ourselves to the class of
deficit-sharing problems, once again, the reduction would sometimes take us
outside of the class.

We could of course require of the solution that it produce recommenda-
tions with respect to which the reduction operation is closed. Alternatively,
we could restrict the application of consistency to situations where the re-
duced game remains admissible. However, we find it more natural to allow
net trade vectors with coordinates that are unrestricted in sign.

Two consistent solutions are defined next. Both can be described as
“partially” Walrasian since they are based on concepts of prices. Since there
is no a priori reason why such concepts should play a role, we do not have
a strong justification, except that they seem to be natural extensions of
solutions that have played an important role in related models. For the first
one, prices are chosen so that after adjusting agents’ incomes by a fraction
of the value of the net trade proportional to the values of the endowments,
maximization of preferences yields an equilibrium.

Definition. Given N € V and e = (R,w,T) € RN x RN x R* € GV, let
M (e) = {z € Z(e): there exists p € A*! s.t. for all 2 € N and all 2 € R,
with pz! < pw; + [(pws)/ X n pw;]pT, 2z Riz!}.

For the second example, the value of the net trade is distributed evenly,
but an adjustment is made to prevent bankruptcy.

Definition. Given N € NV and ¢ = (R,w,T) € RY x RN x R € gV, let
N(e) = {z € Z(e): there exists p € A*"! s.t. agents can be divided into two
groups Ny and Ny; for all ¢ € Ny, pw; + pT /[Ny + 1| < 0 and z; = 0; for all
t € Ny and all 2/ € Rﬁ_ with pz] < pw; + pT'/| N2, z: Rz}

Note that if T' > 0, then for all p € A*! we have pw; 4+ pT/|N| > 0 so
that V; = ) and N, = N.

At this point, Dagan (1992)’s formulation departs from ours as he does
not insist on non-emptiness of solutions. He defines a Walrasian allocation as
one at which there exist prices such that each agent maximizes his preferences
over his standard budget set at his component of the allocation. Together
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with the distributional requirements that he formulates, he shows that con-
sistency leads to the equal-income Walrasian solution on the subdomain of
economies for which the value of the net trade vector at the equilibrium
prices is zero. Non-emptiness is not required by van den Nouweland, Peleg,
and Tijs (1994) either, and they too obtain a characterization of the Wal-
rasian solution on the same subdomain. The axioms they use are consistency
and its converse, together with the condition that the rule coincides with the
Walrasian solution for one-person economies.

Another contribution on the subject is Serrano and Volij (1995), who
consider several reduction operations. For the first one, and given a recom-
mendation z made for some economy with agent set N, the production set of
the grand coalition is set equal to all the vectors that can be written as the
difference between a production plan that was initially available to the grand
coalition of the original game minus any sum ¥ y\n+ 2} of consumptions with
the property that each agent in N\ N’ prefers z/ to z;. For the proper subsets
of N', the reduced production set is defined to be the union of all the sets
obtained in this way when cooperation with any subset of N\N’ is allowed.
This is as in the Davis-Maschler max reduced game of the theory of coali-
tion form without transferable utility (Section 2.2.3). The second definition
differs from the first only in that the grand coalition of the reduced game
can also search for the best subset of N\ N’ with which to get together. The
last notion is defined for economies in which only the one-person subgroups
have production opportunities, and it involves infinite iterations of the pre-
vious construction. Using these conditions Serrano and Volij successively
characterize the Pareto solution, the core and the Walrasian solution.

Understanding the implications of the condition of consistency formulated
above for the model considered here, and further extending its definition and
applications to other models, seem to be interesting open questions. We
also add that in economies with production, the definition that we proposed
above can be easily adapted by similarly enlarging the class of economies un-
der consideration, and working with generalized production economies
with individual endowments, that is, lists of the form (R,w, Y, T), where -
a production set Y has been added to the data defining what we called a gen-
eralized economy. Then, the reduced economy of (R,w,Y,T) with agent set
N, with respect to some subset N’ C N and some recommended allocation

z would be (Ryi,wnt, Y, Cj\wi(wi — ).
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In the context of a one-dimensional model with single-peaked preferences
(Section 2.4.2), the following results concerning the implications of consis-
tency are available. First, we respecify economies by adding to the list of
preference relations a profile of endowments w € Rf and a “net trade” T' € R
satisfying the inequality > w; + 1" > 0 (once again, this is to guarantee the
existence of feasible allocations). For an economy (R,w,T) € R xRY x R,

-so defined, the no-envy idea is applied to reallocations of endowments in
the following staighforward way: for no pair {7,5} € N, agent ¢ should pre-
fer the difference between agent j’s final consumption and endowment to
the corresponding difference for himself (this is as in Schmeidler and Vind
(1972)). Since envy-free reallocations may not exist, we use the slightly less
demanding notion obtained by adding the proviso “if agent j’s consump-
tion is positive”. We also generalize our earlier definition of the uniform
rule, under the name of “generalized uniform rule”, by dropping the sign
restriction on the parameter A, an adjustment being made to ensure that all
agents receive non-negative consumptions. The main result here is that if a
subsolution of the weak no-envy and Pareto solution satisfies consistency and
continuity, then it contains the generalized uniform rule (Thomson, 1995b).
The corollaries of this result are parallel to the corollaries of the main theorem
for the fair division version of the model.

3.4 ECONOMIES WITH PUBLIC GOODS

We now turn to the public good economies, which have not been the object
of much work either. Here too, it is not immediately obvious how consistency
should be defined.

One result is available that pertains to the very simple problem of choos-
ing the level of a unique public good in some interval, each agent being
equipped with a single-peaked preference relation defined over the interval.
Once the level of the public good is chosen, let us imagine some agents to
leave. If we think of a commitment to a “physical decision” having been
made, then of course, the only way to guarantee that the departing agents
receive what they were promised is to maintain the initial decision, and
consistency is vacuously satisfied: in the reduced economy, there is only one
permissible decision. However, an interesting alternative formulation is possi-
ble. Moulin (1984) enriches the model by allowing the interval of permissible
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decisions itself to vary, solutions being required to provide a recommenda-
tion not only when population changes but also when the interval changes.
Now, imagine the departure of some agents, and in specifying the options
open to the remaining agents, impose the requirement that the agents that
departed be made at least as well off as they were initially. It is this con-
straint that defines the reduced problem. When agents have single-peaked
preferences over the initial interval and when the preferred levels of all the
departing agents are on the same side of the level initially chosen, there is
in general a non-degenerate interval of levels that all of them would find at
least as good as the initial choice.

We will search for solutions that are anonymous, that is, invariant under
permutations of agents, satisfy contraction independence, which says
that for each pair of intervals related by inclusion, if the choice made for
some profile of preferences defined over the larger interval belongs to the
smaller interval, then the choice made for the restriction of that profile to
the smaller interval should be the same; and finally independence with
respect to preferences over unfeasible alternatives: the decision from
some interval should depend only on the restriction of preferences over the
interval.

These conditions lead to a characterization of the following family of
alternating generalized Condorcet-winner solutions. For each popu-
lation size, select a number of parameters in the interval of possible public
good levels equal to the number of agents minus one. Between any two pa-
rameters pertaining to the list relative to populations of size n + 1 is located
one and only one parameter pertaining to the list relative to populations of
size n. Then, given a preference profile for some group of agents, the chosen
level is the median of the agents’ preferred levels and the list of parameters
chosen relative to that size.

Theorem 56 (Moulin, 1984) The alternating generalized Condorcet-winner
solutions are the only subsolutions of the Pareto solution satisfying
anonymity, contraction independence, independence with respect to prefer-
ences over unfeastble alternatives, and consistency.

This proof of this result is a simple corollary of the characterization of
the class of solutions satisfying all of the listed properties except for consis-
tency. An open question here concerns the extent to which these properties
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could be dispensed with, without the class of admissible solutions becoming
unmanageably large.

A formulation of consistency is explored by Tadenuma and Thomson
(1989) for a two-dimensional model in which there are crowding effects. The
technology is linear and crowding effects are modelled by making the tech-
nology depend on the number of agents; specifically, if k£ is the number of
agents, 1 unit of the input yields 1/k units of the public good. In such an
economy, when some agents leave, the options available to the remaining
agents change. Another contribution is Diamantaras (1991) who considers a
model with a continuum of agents (also, see Section 3.2).

Van den Nouweland, Tijs, and Wooders (1995) formulate other notions
of consistency and characterize two important solutions, the Lindahl and
ratio solutions. Their reduced games involve notions of prices and ratios re-
spectively, and an interesting open question is whether these solutions would
emerge from considerations of consistency free of such notions.

3.5 COMPUTATIONAL IMPLICATIONS
OF CONVERSE CONSISTENCY

Here, we apply the computational algorithm based on the notion of converse
consistency with respect to a graph that we developed in Subsection 1.6.4.

We start with bargaining problems. Recall (Subsection 2.2.1) that the
Nash solution is conversely consistent on the class of smooth problems. So
is the egalitarian solution even if the smoothness restriction is not imposed.
In fact these properties hold for any connected graph. Does this help in the
calculation of the desired outcomes. The next proposition gives a positive
answer.?

5The convergence of dynamic processes leading to solution outcomes of coalitional form
games has been studied by several authors. Stearns (1968) defines a process that leads to
points in the kernel, and one that converges to the bargaining set. Justman (1977) extends
his results. The most general theorems are due to Maschler and Peleg (1976). Butnariu
and Censor (undated) study convergence to the core. None of these works is explicitly
based on converse consistency notions however, and it would be interesting to see whether
a connection exists. '
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Theorem 57 (Thomson, 1992a) On the class of smooth bargaining prob-
lems, the Nash solution and the egalitarian solution are decentralizable with
respect to any connected graph.®

The second example pertains to fair allocation in classical economies, and
to the main solution for this domain, namely the Walrasian solution operated
from equal division. Here, we find that decentralizability does not hold for
two natural examples of graphs (hub-and-spoke, and circular) with respect to
which, under smoothness of preferences, the solution is conversely consistent

(Thomson, 1992a). Similarly, the no-envy solution is not decentralizable
for the problem of allocating indivisible goods and money.

The examples above illustrate the possible usefulness of the notion of
decentralizability but also its limitations. In contexts where the algorithm
does converge, important further questions concern its speed of convergence.
Can it be estimated? Can variants of the algorithm be identified that speed
convergence? In contexts where the algorithm does not converge, can it
be modified so as to generate sequences that do converge? Can interesting
domain restrictions be imposed that permit convergence? In most interesting
applications, we should use a connected graph. Complete graphs or graphs
in which links are visited randomly, with each link being visited with positive
probability, might be sufficient for probabilistic convergence when minimal
connected graphs are not.

Goldman (1984) and Ostroy and Starr (1974) ask whether step-by-step
Walrasian exchange processes involving only two agents at a time lead to
Pareto-optimal allocations. Goldman (1984) considers connected graphs.
Their results pertain to the decentralizability of the Pareto solution as we
defined this term. Lainé (1986,1987a,b) derives additional results on this is-
sue, and in particular studies the range of allocations that can be reached at
the limit. Bell (1996) studies sequences of allocations obtained by bilateral
trading when the set of agents is endowed with a graph structure, and estab-
lishes sufficient conditions for convergence to a Pareto-optimal allocation.

Finally, we recall the convergence results due to Maschler and Owen
(1989) and Orshan (1992). These results pertain to the version of aver-

SEven though smoothness is not needed to guarantee the converse consistency of the
egalitarian solution, cycles may occur in the adjustment process associated with a circular
graph if the restriction is not imposed.
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age consistency on which Maschler and Owen based their extension of the
Shapley value from the class of TU games to the class of (NTU) hyperplane
games (Section 2.2.2). Maschler and Owen show that their value can be ob-
tained by a dynamic adjustment process involving only 2-person coalitions.
Orsham shows that the Maschler-Owen value can be reached by a dynamic
adjustment process involving all coalitions. Neither convergence result is
based on converse consistency however.

3.6 INTERTEMPORAL ALLOCATION

Consider an intertemporal allocation problem in which agents are interpreted
as generations. In such a situation, it is natural to formulate consistency by
only allowing for reductions obtained by setting aside the first ¢ generations,
for ¢ arbitrary. Would a decision made at time 0 remain the right one after
having been implemented for ¢ periods?

A special feature of the situation is that reduced problems belong to
the same class as original problems, so that a decision rule has only one
component.

There are few contributions on this subject. Epstein (1986a) looks for
orderings on a space of infinite consumption plans required to satisfy a cer-
tain feasibility condition, and he establishes the non-existence of orderings
satisfying a number of basic requirements, including consistency: in this
context, this is the requirement that if a consumption plan maximizes the
ordering from time 0, then its restriction maximizes the ordering over the
space of consumption plans starting at time ¢ obtained by taking as given
the consumptions up to that time. Shinotsuka (1994a) provides additional
information on the independence of the axioms in Epstein’s theorem.

The model considered by Blackorby, Bossert, and Donaldson (1994) is
richer in that it pertains to the ranking of infinite utility matrices. However,
they impose no feasibility conditions.

When the objective is changed from defining an ordering on the set of
consumption plans to obtaining a decision rule, positive results become avail-
able: indeed, Epstein (1986b) develops a joint characterization of egalitarian
and utilitarian solutions. Again, the main axiom is consistency.

The analysis of a model formulated in commodity space and in which
each generation may comprise several agents as in Blackorby, Bossert, and
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Donaldson, and feasibility constraints are made explicit, remains to be carried
out.” For such a model, consistency conditions obtained by imagining the
departure of all but a connected (finite or infinite) set of generations would be
particularly meaningful. Consider for instance the group N’ of agents whose
lifespans overlap with the interval between ¢ and t/, where ' > ¢; given some
solution and a recommendation made by this solution, calculate the resources
made available to N’ at the initial date ¢ under the requirement that the
commitments to the agents alive until ¢ be honored; similarly, calculate the
obligations incurred by N’ so as to make it possible to honor the commitments
to the agents alive after ¢'. Now, identify the alternatives available to N’
subject to these initial and final constraints. This is the reduced problem
they face. Solve the problem by applying to it the relevant component of
the solution. The solution is consistent if the recommendation it makes for
the reduced problem produces the same consumption plans over the interval
[t, 1] for the members of N’ as the ones they were initially assigned.

Note that for this new test to be meaningful, it is necessary that the
concept of a solution be redefined: the domain should include the set of all
infinite and finite allocation problems defined by, (i) a pair of dates ¢ and
', where t' > t, t’ being possibly infinite, (ii) a pair of a vector of resources
made available to a group at time ¢ — this is the group’s endowment —
and a vector of resources to be bequeathed by the group at time t/ — the
group’s obligations to the future generations, (iii) the preferences of each
of the members of the group over the subinterval of [¢,#'] during which he
is alive, and finally, (iv) the production possibilities of the group. For this
exercise to make sense, preferences also should be redefined so as to take
into account any consumption that may have taken place, or will take place,
outside of the interval. Indeed, an agent alive in the interval (i) may also have
been alive before ¢ and according to the initial plan, he may already have
consumed, or (ii) he may still be alive after # and he may have to consume
after that date, or (iii) both.

3.7 CONCLUDING COMMENT

We hope to have convinced the reader that the consistency principle is inter-
esting, powerful, and versatile, and that so is its conwverse.

"The following discussion is based on Thomson (1995b).
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Much remains to be investigated, however, and we also hope that the
present review will help motivate further explorations and applications of
these ideas.
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