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1. INTRODUCTION

In this paper, we consider a production economy with a finite number of
heterogeneous, infinitely lived consumers. We show that for almost all
endowments, equilibria that converge to a nondegenerate stationary state or
cycle are determinate, that is, locally unique. This result stands in stark
coantrast to results established for overlapping generations models: Kehoe and
Levine [1985¢l give a simple example of an overlapping generations model that
has no cycles, is not chaotic, and has a robust continuum of Pareto efficient
equilibria that converge to the same Pareto efficient stationary state. This
example also shows that indeterminacy has nothing to do with whether or not
equilibrium prices lie in the dual of the commodity space. More strongly,
Kehoe, Levine, Mas-Colell and Zame [1986] show that robust indeterminacy can
arise when both the commodity and price spaces are the same Hilbert space,
provided there are infinitely many consumers. Consequently, it is the
assumption of finitely many consumers that drives our results in this paper.

Our results extend those of Muller and Woodford [1983], who consider
production economies with both finitely and infinitely lived agents. They show
that there can be no indeterminacy if the infinitely lived agents are suffici-
ently large. Their results are local however, and concern only equilibria that
converge to a particular stationary state., We prove a global theorem: for a
given starting capital stock, there are only finitely many equilibria that
converge to any nondegenerate stationary state. One particular implication is
that when the discount factor is sufficiently close to one, which implies that
there is a global turnpike, then equilibria are determinate,

The case of chaotic equilibrium paths remains largely unexplored: as far
as we know, there are no examples of robust indeterminacy in this case. Some

of our results suggest that if such examples exist, they must be qualitatively



different from the robust indeterminacy that occurs in overlapping generations
models.

We assume that markets are complete and that the technology and prefer-
ences are convex, Consequently, the behavior of equilibria in our model can
be characterized by the properties of a value function. This is because the
second theorem of welfare economics holds; that is, any Pareto efficient
allocation can be decentralized as a competitive equilibrium with transfer
payments., If the preferences of consumers can be represented by concave util-
ity functions, then an equilibrium with transfers can be calculated by
maximizing a weighted sum of the individual utility functions subject to the
feasibility constraints implied by the aggregate technology and the initial
endowments, Showing thatr an equilibrium exists is equivalent to showing that
there exists a vector of welfare weights such that the transfer payments
needed to decentralize the resulting Pareto optimal allocation are zero. This
approach has been pioneered by Negishi [1960] and applied to dynamic models in
a series of papers by Bewley [1980, 1982]1. Ysing this approach, Kehoe and
Levine [1985a] have considered the regularity properties of an infinite
horizon economy without production.

Tn general, calculating the transfers associated with a given set of
welghts requires the complete calculation of equilibrium quantities and prices.
In a dynamic model with an infinite number of commodities, this can be awkward.
To simplify the calculation, we adopt an alternative strategy based on the
simple geometrical observation that any convex set in R" can be interpreted

as the cross-section of a cone in Rm'1

. To exploit this fact, we add a set of
artificial fixed factors to the economy and include them as arguments of the

weighted social value function. These factors are chosen so that the augmented

utility and production functions are homogeneous of degree one, Thus, the



usual problem of choosing a point on the frontier of a convex utility
possibility set is converted into a problem of choosing a point from a cone of
feasible values for utility. This extension has theoretical advantages
analogous to those that arise when a strictly concave production function is
converted into a homogeneous of degree one function by the addition of a fixed
factor., When the technology for the firm is a cone, profits and revenues are
completely accounted for by factor payments. Analogously, making the social
value function homogeneous of degree one simplifies the accounting necessary to
keep track of the transfers associated with any given Pareto efficient alloca-
tion. The present value of income and expenditure for each individual can be
calculated directly from an augmented list of endowments and from the deri-
vatives of the augmented social value function without explicitly calculating
the dynamic paths for prices or quantities. This is the framework for studying
mul ti-agent intertemporal equilibria developed by Kehoe and Levine [1985b].

In such a settlng, equilibria are equivalent to zeros of a simple finite
dimensional system of equations involving the derivatives of the social value
function and the endowments. Intuition says that since the number of equa-
tions and the number of unknowns in this system are both equal to the number
of agents, equilibria ought to be determinate., To do the usual kind of
regularity analysis, however, we require that the system of equations that
determines the equilibria be continuously differentiable. Because these
equations involve derivatives of the social value function, they are cl if
the value function is C2.

There are four relevant cases. T1f for each set of welfare weights there
is a unique globally stable turnpike, as will be true for social discount
factors near one, then results of Araujo and Scheinkman [1977] show that the

value function is Cz, and determinacy follows. The extent to which the



value function is C2 outside the basin of stable turnpikes is not known.
However, if for each set of welfare weights every optimal path converges to a
turnpike (or cycle) with no roots on the unit circle, we should expect that
the boundary between the basins of sinks is of low dimension, and consequ-
ently, that for most initial capital stocks, the value function is Cz. In
this case we can indeed show that equilibria are generically determinate, and
that the value function is C> near every equilibrium,

If the dimension of the stable or unstable manifold of a stationary state
changes as the welfare welghts change, or if the total number of stationary
states changes, then the system bifurcates. 1In this case stationary states
must have unit roots, and our theorem does not apply. Moreover, little is
Known about whether value functions are C* in systens which are chaotic and
have paths which do not converge to cycles. Consequently our results may be
summarized by saying that in the class of economies which has no bifurcations
and no chaos, determinacy is generic., In the case of bifurcating or chaotic
systems we do not know if determinacy is generic. We should remark, however,
that our general methods apply to stochastic as well as deterministic complete
contingent claims economies (see Kehoe and Levine [1985b]), and as Blume,
Fasley and O'Hara [1982] have shown, a small amount of the right kind of uncer-
tainty leads to smooth value functions, This provides an alternative direction
for proving determinacy results, although we do not pursue this line here.

In the next section, we provide an overview of the method used to study
equilibria in the countext of a simple two person dynamic growth model.

Section 3 establishes preliminary mathematical details about concave func-
tions. Section 4 describes the economy. Section 5 defines and analyzes the
savings function of the economy. Section 6 studies competitive equilibrium

and regularityv, taking as given differentiability of the savings function. 1In



Section 7 we prove our major results on the genericity of regularity. Section

8 concludes with an overview of our results,

2. OVERVIEW AND AN FXAMPLE

Consider a simple two person growth model. Assume that preferences take
the usual additively separable form, discounted at the common rate g. For
each of the individuals 1 = 1,2, let ug denote the strictly concave
momentary utility function. Let ko € R be the time 0 endowment of the
single productive factor; let 68, € R be the share belonging to individual

i
i. Obviously, 61 + 62 =1, and 1i's total endowment is eiko' Assume that
the technology is described by a concave aggregate production function
f: R+ + R, Let a, € R denote the individual weights in a social optimiza-
tion problem. Given an aggregate endowment of capital ko and a vector of
nonnegative welfare weights (al,a ), define a value function V(ko,al,uz)
as the maximum of
oo
r B
t=0 i

subject to the constraint

e + kt+1 S f(kt)'

[ RS ]

i=1
Using standard results from capital theory, we can treat the derivative
Dlv(ko’“1’°2) as a time zero price for capital and use it to calculate the
value of the endowment eiko for each individual, To calculate the transfers
associated with these weights, we must also calculate the profits of the firm
(if any) and the expenditure of each individual. For profits this is
straightforward: If f is not homogeneous of degree one, introduce a fixed

factor x € R and define F(k,x) = xf(k/x). Specify endowments ¢i of this

fixed factor equal to the ownership shares of the individuals In the aggregate



firm. (Of course ¢1 + ¢2 = 1.) Then define V(ko’x’al’QQ) as the maximum

of the weighted objective function subject to the constraint
2
r ¢, + kr+1 S F(kr,x). In equilibrium, the aggregate endowment of the

4=1 it

factor x 1is be equal to 1, but it is useful to allow for the hypothetical
possibility that it takes on other values so that we can calculate deriva-
tives. Formally, we can treat x as a factor of production analogous to k

and conclude that the share of the profits for agent 1 is ¢ multiplied by

i

the price D?V(ko,x,a ). Since F(k,x) 1is homogeneous of degree one,

1°%
profits net of the new factor payments are zero. McKenzie [1959] has observed
that any convex production possibility set could be interpreted as a cross-—
section of a cone in precisely this fashion and suggested that x be
interpreted as an "entrepreneurial" factor.

The next step is to show that strictly concave utility functions can also

be made homogeneous of degree one. If we interpret the fixed factor x as an

accounting device used to keep track of producer surplus -— the difference
between revenue and expenditure — it is clear that a similar factor can be
used to account for consumer surplus —— the difference between utility and

expenditure. TIntroduce an additional, person specific fixed utility factor

wy for each agent, and endow agent 1 with the entire aggregate supply of one
unit of factor i. (For simplicity, we make no distinction in the notation
between i's holdings of factor wy and the aggregate endowment,) Just as we
do for production, define an augmented utility function U;(c,w;) = wyjus(e/w;).
In the next section, we show that this augmented utility function can always be
defined and is well behaved even when wu; 1is unbounded from below. Now

define a value function V(ko,x,wl,w , ,0.) as the maximum of the weighted

2771772

sum of the augmented utility functions subject to the augmented technology.



I1f we let ¢y, denote the optimal consumption of agent i at time t, the

first order conditions from the maximization imply the equality

t
B @ D] Ui(c ,wi) = B éleUj(cjr,wj).

As a result, discounted marginal utility for either consumer can be used as a
time zero price for consumption at time t. The only difference from the usual
representative consumer framework 1s that the weights o convert the 1individ-
ual marginal utility prices at time O into a social marginal value price at
time Q0. We can then evaluate the expenditure of consumer i in period t as
Cyyp multiplied by this price. Using the properties of homogeneous functions,
we can decompose period t utility for consumer i into the sum of a term of

this form and an analogous term involving the added utility factor:

Ui(cit’wi) = ¢, DU (cit’wi) +w

1174 PyUg ey vy

i72 i

If the term involving the utility factor is interpreted as a measure of
consumer surplus, expenditure on goods in period t is simply utility minus
consumer surplus. By using a version of the envelope theorem, we can calculate
the present value of consumer surplus for agent 1 as the derivative of the

social value function V(ko,x,wl,w ,a) with respect to Wy multiplied by the

2

endowment Wy

8

a,) =

.
w103V(ko,x,wl,w B a IDZUl(clt’wl)'

s Qg
2°%°% 0

I

t
Similarly, we can calculate the discounted sum of utility for consumer 1,
measured in social value units, as the derivative of the soclal value function

with respect to al multiplied by al:

o

D) = I BlaUey W)

a,D V(k JX,Wo W, , 0O
1’72 =0

M

Then the present value of expenditure by agent 1 is simply the difference



a DSV(kO,x,w

1 az) - wlDBV(ko’x’wl’WZ’al’q?)'

l’wz ’a]-)
The transfer to agent 1 necessary to support this equilibrium is be zero if

and only if this expenditure is equal to the time zero value of the agent's

endowment

elkoDlv(ko’x’wl’WZ’al’a_) + ¢1D2V(ko,x,wl,w2,a1,a2).
Formally, this equality can be interpreted in terms of an augmented economy
where trade in the production factor x and the utility factors wy actually
takes place. 1TIn this case, this equality can be interpreted as a requirement
that the value of the augmented endowment for consumer 1,

0,k D
o

1 lV + ¢1D?V + w1D3V, equals the amount of social utility purchased,

8

_ t

0 o

t=0

It is useful to define a net gavings function 5, for agent 1, as

follows:

sk ,0,6,@) = 6k D V(k ,1,1,1,a,0) + ¢;0,V(k_,1,1,1,a

10%)

1

+ DV(k ,1,1,1,a,a) = aDdV(k ,1,1,1,a

1°% 1 1%

The savings function for consumer 2 is defined symmetrically. TFor a given set
of welfare welghts a, the transfer for each individual needed to support the
social optimum as a competitive equilibrium is the negative of the net savings
for that individual. A competitive equilibrium is therefore a vector of
weights «a such that s(ko,6,¢,a) = 0, 1In general, if m 1is the number of

m

individuals, S(ko,9,¢,.) is a map from R™ into RM, and the existence of

an equilibrium can be established using a standard fixed point argument in a

finite dimensional space.
This characterization of equilibria as zeros of an equation involving

endowments and the derivatives of an augmented value function is quite



general. All that is required is that the second welfare theorem hold and
that the preferences of the consumers can be represented using concave utility
functions. To do the regularity analysis, s must be cl, 1f ¢ is, we can
develop conditions under which the inverse function theorem and the implicit
function theorem show respectively that equilibria are locally unique and that
they vary continuously with parameters of the economy. For s to be CI, v
must be €2 in the weights o and in the state variables ko. To show this,
we rely heavily on the additional restrictions, like additively separable
utility, that we impose on the class of economies that we study. This could,
however, be weakened to allow for the kind of intertemporal dependence
suggested by Kydland and Prescott [1982], which can be described in terms of

the evolution of some finite dimensional state variable.

3. HOMOGENEOUS EXTENSION OF CONCAVE FUNCTIONS

To support the claim that the approach outlined above is broadly
applicable, we must first establish that it is possible to convert any concave
utility function into a homogeneous function by adding a fixed factor. This
does not follow immediately from results for production functions because
utility functions need not be bounded from below. The analysis that follows
would be considerably simpler if we restricted attention to utility functions
that are bounded, but functions like logarithmic utility and isoelastic
utility u(e) = -9 where o > 0 are widely used in applications of this
kind of model. 1In the formal analysis, we accommodate these functions using
the concepts and terminology from convex analysis for dealing with extended
real valued functions; see Rockafellar [1970] for a complete treatment.

If n, denotes the number of consumption goods in this economy, a
utility function u 1is a function that is defined on the nonnegative orthant

n

c
R+ in commodity space, and that takes on values in R LJ{—w}. On the
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n
strictly positive orthant R+i, u 1is finite, but to accommodate functions

like logarithmic utility, we want to allow for the possibility that u(c) is
equal to -« if one of the components of ¢ 1is equal to zero. We can define
a topology on R J {—m} by adding the open intervals [-«,a) to the base for
the usual topology of R, Note that (-»,%) 1is not a closed set in thig
topology and that convergence to =-= has the usual interpretation: a sequ-
ence {bn} in R converges to -« if, for all ™M € R, there exists an N
such that n > N 1implies »! e [-2,M). With this topology, the natural
assumption on preferences is that wu: R+c + R {-=} be continuous. For

1/2

example, the utility functions u(c) = ¢ and u(c¢) = 1n{ec) can both be

represented as continuous functions from R, to R U {—m}.
The extension of wu(c) to the homogeneous function U(c,w) = wulc/w)
+
does not preserve continuity on the nonnegative orthant in Rnc 1. A
discontinuity can arise at the point (c,w) = (0,0). This extension does,

however, preserve a weaker notion of continuity. Recall that for a function

g: R~ > R, g 1is upper-semi-continuous (u.s.c) if the inverse image

g—l([a,w)) is always a closed set. If we allow the function g to take
values in R |J {—w} instead of R, we can make an identical definition.
Equivalently, g 1is u.s.c, if, for any sequence {yn} in R2 converging to
v, %yg sup g(y™) < g{y). Since an u.s.c. function has a maximum over a
compact set, upper-semi-continuity is strong enough for our purposes. 1If the

function g 1s concave, define the recession function of g, r

Rf > R kJ{—m}, as

g:

rg(y) = 1im g(zﬂz) - g(z)

t>o0
where z 1s any point such that g(z) is finite., Since g 1is concave, it

can be shown that rg 1s homogeneous of degree one and does not depend on the



choice of =z 1in the definition. Roughly speaking, rg(y) describes the
asymptotic average slope of g along a ray from the origin passing through
the point vy.

Given these definitions, we can now state the key lemma for our

construction. See Rockafellar [1970, p. 67] for a proof.

LEMMA 1: Let g: Rf > R\J {—m} be concave and continuous. Let

a: RY x R > R L}{—w} be defined by

L

og(y/p) if >0 and y e R/,

L

G(y,p) = rg(y) if p=0 and y e R/,

-0 otherwise,

Then G 1s concave, u.s.c., and homogeneous of degree one,

If g 1is a production function, hence nonnegative, G(vy,p) 1is
increasing in p. If g represents a utility function that takes on negative
values, G(y,p) is decreasing in p for some values of y. 1In the artific-
ial equilibrium where we allow for trade in the utility factors, this may
imply that the price associated with the utility factor is negative. Impli-
citly, the strategy here is to consider first an equilibrium with explicit
markets in all goods, including the fixed factors in the utility functions.
Prices are such that each individual consumes his endowment (equal to 1) of
the utility factor. Then prices and quantities for all other goods do not
depend on whether or not trade in the utility factors is possible. The
possibility of negative prices for utility factors in the complete markets
equilibrium poses no problem for proving existence because it is not necessary
to assume free disposal of the utility factors. So long as each individual is

endowed at time zero with a positive amount of capital or some other factor



with positive value, strictly positive consumption of all true consumption
goods is feasible. The total value of any individual's endowment may be
negative, but it 1is always possible to use up the utility factor (that is,
consume it), leaving strictly positive income to be spent on the true

consumption goods.

4. TFORMAL EQUILIBRIUM MODEL

Assume that there are m consumers in the economy. Let m

K denote the

number of reproducible capital stocks, N. the number of consumption goods.
Let k, denote the ny vector of initial aggregate capital stocks. TLet ¢
denote the m vector of ownership shares for the single aggregate firm. FEach
agent has a utility function wujy: Rnc > R\ {“”}; let Uy: Rnc x R »R L){‘m}
denote the homogeneous extension of u; as defined in Lemma 1. Naturally
UyCesprl) = ugleg)e

Again, we assume that all consumers have the same discount factor
B < 1. Conceptually, there is no difficulty with different consumers having
different discount factors. Kehoe and Levine [1986] show how to integrate
this into the formal model. Moreover, the proof of the existence of an
equilibrium remains straightforward. We should note, however, that insofar as
some individuals with low discount factors asymptotically consume zero, we do
not know whether or not the value function is C2, and are unsure of whether
our determinacy results extend to this case.

For simplicity, assume that the technology that relates period t to period
t+l can be described in terms of an aggregate production function. Let ¢,

kt’ and k. ;| denote aggregate consumption at time t, and capital at time t

and t+l. Then the technology is described by the constraint f(ktvkt+1’ct) > 0,

where f: R X R x R + R, Formally, it is convenient to allow £ to
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be defined when the terminal stock kiy lies outside the nonnegative
orthant. Hypothetically, if it were possible to leave negative capital for
next period, f describes the additional current consumption that would be
possible, 1In the intertemporal optimization problems we explicitly impose the

constraint that k be nonnegative.

t+1

In this specification of the aggregate technology, we have not made
explicit the dependence of output on factors of production that are in fixed
supply. Formally it is as if we have given ownership of all such factors to
the aggregate firm. Individuals sell any endowments of land and labor for an
increased ownership share in the firm. To consume a specified amount of
leisure or of consumption services from land, an individual must purchase
these like any other consumption good. This is merely a notational conveni-
ence. To make these factors explicit, we would simply need to augment the
argument list for the production function and specify individual endowments in
these additional factors.

By Lemma 1, there exists a homogeneous function F(kt,kt+1,ct,x) such
that F(ky,keqpp,ce,l) = f(kt’kt+1’ct)' Given the additional fixed factor x,
the aggregate technology set is a cone. Tts representation in terms of an
aggregate production function 1is convenient because it allows a simple speci-
fication qf the smoothness properties of the technology. If F 1is smooth,
the boundary of the cone is smooth. A more general treatment along the lines
of Bewley [1982] would start from assumptions about the separate technologies
available to individual firms, but our interest here lies not so much with the
specification of the technology, but rather with the specification of
preferences and endowments.

We can now specify the properties assumed for the preferences and

technology. The assumptions concerning continuity and smoothness are
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standard. For convenience, the usual monotonicity assumptions are
strengthened, but this is not essential. A more important restriction is that
the utility function be strictly concave and that the production possibility
set for output capital stocks be strictly convex when the input capital stocks

and aggregate consumption are held constant,.

n
ASSUMPTION 1: For all i, the utility function wuj: R+c > R\J {—”} is

concave, strictly increasing, and continuous. On the strictly positive
n

orthant R+:, u is €% and has a negative definite Hessian.
0, 0y n,
ASSUMPTION 2: The production function f£f: R+ x R x R+ + R is concave

and continuous, with £(0,0,0) = 0. On the interior of its domain, f 1is

C2, strictly increasing in its first argument, and strictly decreasing in the
second and third arguments. Also the matrix of second derivatives with res-
pect to the vector of terminal stocks, D22f(kt’kt+l’ct)’ is negative

definite.

In his discussion of the von Neumann facet, McKenzie [1983] has
emphasized that it is restrictive to assume that f 1s strictly concave. If
fixed factors in production can be allocated between different constant
returns to scale industries (for example labor in the multi-sector neoclassi-
cal growth model), there can exist an affine set of initial and terminal
capital stocks that produce the same consumption goods vector. In the usual
case where consumption and next period capital can be exchanged one for one,
the weaker assumption that D22f(kt’kt+1’ct) is negative definite requires
that, given k., the set of possible output combinations have a production

possibility frontier with positive curvature.
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Because some of the factors of production are in fixed supply, output
exhibits diminishing returns as a function of the initial capital stock. The
next assumption strengthens the diminishing returns so that feasible output
stocks are bounded.

n

k
ASSUMPTION 3: (Boundedness) There exists Koax € R+ and a bound b <1

such that k¢ > kp,. and  keyq > bk, implies that k.., 1is not feasible.

This assumption states that capital stocks larger than kmax cannot be
sustained. By the definition of F, this bound also holds when f£(k;,k41,¢)
is replaced by its homogeneous extension F(kt,kt+1,c,x) for any value of x
less than or equal to 1. This boundedness assumption is stronger than is
needed for existence of a social optimum or an equilibrium, but it is required
to rule out unbounded growth paths in the proof of the existence of an optimal
stationary value for the capital stocke.

Proving the existence of an optimél stationary state also requires the
other half of a set of Inada-type conditions on production. Assumption 4
ensures that there exist strictly positive feasible paths for capital and
consumption and that at least one such path does not converge asymptotically

n

k
to zero consumption and capital. Recall that R++ denotes the strictly
n

positive orthant in R k and that B < 1 1is the discount rate.

ASSUMPTION 4: (Feasibility) For all k, € Rii, there exists kt+l € Rit
and c € R:i such that (kg,kpyy,c) 1is feasible, that is, f£(kg,kpyp,c) > 0.
Furthermore, for some point kt € R:+, kKypp and ¢ can be chosen so that

c € RIE and Bkt+1 > kt'

The smoothness arguments that follow require that the optimal values of

the capital stock and consumption lie in the interior of the domain of the
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production function and the consumption function respectively. This is
guaranteed here by infinite steepness conditions on the boundary of the
2

domains, For a concave function g: R™ > RU {—w}, the generalization of a

derivative is a subgradient. The set of gubgradients of g at vy, denoted

3g(y), 1is defined by

2

3g(y) = {p ¢ R": g(z2) - g(y) < p(z-y) for all z ¢ Rz}

Note that we follow the unfortunate, but well established, convention of
letting a term like subgradient have a different meaning for concave and
convex functions. For a convex function h(z), the definition of dh(z) 1is
given by reversing the direction in the inequality in the definition given

here. Let {yn} be a sequence in Rf+. Suppose g 1is a differentiable

function with the property that one of the components of the gradient Bg(yn)

has a limit equal to « as y® approaches a point y. Then 3dg(y) is

empty. By the assumption of concavity, a point like y can arise only on the

0.3 0.3

boundary of the domain of g. For a function like g(yl,yz) =y Yy the

n
1

is still the case that 23g(0,0) is empty.

limit of the gradient as (y ,y;) goes to (0,0) can not be defined, but it

ASSUMPTION S: (Infinite steepness on the boundary)

(a) If ¢ 1is an element of the boundary of the domain of u the set of

i
subgradients aui(c) is emptye.

(b) 1f any component of kt is 0, the set of subgradients of f with

respect to its first argument, Slf(kt,kt+l,c), is empty.

Part (a) implies that the marginal utility of any good is infinite
starting from zero consumption of that good. As stated, it allows u to be
finite or to equal - on the boundary. It implies that every individual

consumes some amount of every good in equilibrium, but weaker conditions could
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be used. All that is necessary is that a strictly positive amount of each
good be produced in equilibrium. Part (b) is the usual assumption of infinite

marginal productivity of each capital good starting from zero usage.

5. SOCIAL RETURN AND SAVINGS FUNCTIONS
We now define the return and savings functions derived from social
optimization. These are then used to define an equilibrium. For expositional
convenience, all proofs in this section may be found in the Appendix. Given
the underlying preferences and technology, we define a weighted momentary
Oy RN m m
social return function v: R~ x R =~ x R x R x R > R LJ{‘“} as

follows: If F(kt,kt+1,0,x) > 0, that 1s, if nonnegative aggregate

consumption is feasible,

m
v(kt,kt+l,x,w,a) = max I aiUi(ci,wi)
i=1
m
Sete F(kt’kt+l’.z ci,x) >0,
i=1
ey > 0.
If F(kt,kt+1,0,x) < 0,
v(kt,kt+1,x,w,a) = -,

If we were to work only with utility functions that are bounded from
below on a suitably chosen domain, v would be a familiar, real valued saddle
function. It is concave and homogeneous of degree one in (kt,kt+l,x,w),
convex and homogeneous of degree one in a. It would also be continuous in

the usual sense, instead of u.s.c. as established below,

PROPOSITION 1: Under Assumptions 1-5, we have the following results:

(a) v 1is well defined.
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(b) For o € Rf, V(e,e,0,0,0) 18 concave, u.s.c. and homogeneous of degree
one, with the same monotonicity properties as F,

n n
(¢) For any (ky,k.41,X,w) € R+k x R k R+ x RT, the function

v(kt,kt+1,x,w,.): RT+ + R L){—w} is convex and homogeneous of degree
one.

(d) TFor any (x,w,a) € R+ X RT X RT, the set of subgradients of the
concave function v(.,.,x,w,a) 1is empty at every point on the boundary
of its domain,

(e) On the interior of its domain, v is c?,

(f) Evaluated at any point in the interior of the domain of v,

D22v(kt,kt+l,x,a) is negative definite.

k m m .
Let Vv: R =~ x R_x R_x R~ R\j {—m} denote the social present
value function derived from the return function v:

o0

V(ko,x,w,a) = max I Btv(k L,k

‘ t+l,x,w,a).
t=0

Here, the maximization is over all nonnegative sequences {kt} having an
initial value equal to k,. The constraint that the sequence be feasible is
implicit in the maximization problem since v must take on the value -« at
some point along an infeasible sequence. Let P(ko,x,w,a) denote the const-
rained maximization problem that defines V. The next proposition establishes
the basic properties of the problem P(ko,x,w,a) and its value function
V(ko,x,w,a). The proof that P(ko,x,w,a) has a solution is complicated by
the possibility that the utility functions u; can take on the value -=, If
all the functions uy were agssumed to be bounded, this follows from the fact

that the objective function 1s continuous in the product topology. Here we

use Fatou's lemma (as stated for example in Rudin [1966]) to show that the
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extended real valued objective functional is upper-semi-continuous.

n
PROPOSITION 2: Let ko € R+k, let x € R+, let w € RT, and let
a € RT. Under Assumptions 1-5 the following results hold:

{a) The problem P(ko,x,w,a) has a unique solution; V(ko,x,w,a) is well
defined and finite.

(b) The function V(.,.,.,a) 1is concave, homogeneous of degree one with the
same monotonicity properties as F,

(c) The function V(ko,x,w,.) is convex and homogeneous of degree one.

(d) There exists an optimal stationary value k5% = k®5(x,w,a); that is, the

kSS

sequence defined by kt = solves the problem P(kss,x,w,a); every

optimal stationary value lies strictly in the interior,

(e) On the interior of its domain, V is Cl; moveover, if {k is the

o0
t}t=0

solution to P(ko,x,w,a), then

Dlv(ko,x,w,a) = Dlv(ko,k ,X,w,a), and

1

8

DjV(ko,x,w,a) =

|

t .
B Dj+1v(kt,kt+1,x,w,a) for j = 2,3,4

t=0

The value function for the social optimization problem depends only on
aggregate quantities, but to define the savings functions we need to specify

the matrices of individual endowments. Let © denote the n X m nmatrix of
m
nonnegative capital shares. Naturally T eij = 1. Let K, denote the
j=1
me X ong diagonal matrix of capital stock corresponding to an n, vector kg,

and let A denote the m x m diagonal matrix of welfare weights
corresponding to an m vector a. As before, ¢ denotes the m vector of
endowment shares of the fixed factor for production. We say that the
endowment shares 6 and ¢, and initial stock kX, are admissible if all of

the components are nonnegative, if the aggregate supplies ko, are strictly
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positive, if every individual is endowed with a positive amount of some

capital good, and if the shares sum to one. If we let eT

denote the
transpose of O and interpret all the following products as matrix products,

we can define the savings function for any admissible ko,0,¢ and o« ¢ R? as

+
follows:
T
s(ko,s,¢,a) = 9 KODlV(ko,l,l,a) + ¢D2V(k0,l,l,a) + D3V(ko,l,l,a)
- ADAV(ko,l,l,a).
Note that in defining the savings function, we have set x =1 and w; =1

1
for 1i=1,...,m. At these values the augmented functions Ui(cit’wi) and
F(kt’kt+1’°t’x) reduce to the original specifications wu; and f.
To prove the existence of an equilibrium and demonstrate its properties,
the next proposition establishes that the savings function is formally similar

to the standard pointwise product of excess demand with prices in an economy

with m goods.

PROPOSITION 3: Let ko,6,¢ w be admissible:

(a) s(ko,9,¢,.) is continuous at all points o« in RT different from O.

(b) s(ko,6,¢,.) is homogeneous of degree 1 in a.

(c)

I~ 3

s, (k_,8,6,0) = 0 for all ace RT.

i=1

(d) 1If @, =0, then si(ko,6,¢,a) > 0.

6. COMPETITIVE EQUILIBRIUM
In this framework, an economy E = {k0,6,¢,f,ul,...,um} consists of a
specification of the production function f, the utility functions

Up,eee,un, an admissible capital shares matrix 6, and an admissible vector

of ownership shares ¢. Following the remarks in Sectlon 2, we define a
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competitive equilibrium for E as a vector of weights a € R™ such that the
transfers assoclated with the solution to the problem P(ko,l,l,a) are zero,
that is, such that s(ko,6,¢,a) = 0.

To see that this definition is equivalent to the usual definition of an
equilibrium, one need only verify that this economy satisfies conditions 1like
those given in Debreu [1959] for the second welfare theorem to hold in a
general linear space. (The existence of an interior point follows immediately
from the use of the sup norm in the usual Banach space of bounded sequences.)
Then using the necessary conditions from the concave maximization problem
P(ko,x,w,a), it is easy to verify that discounted marginal utilities are
indeed time zero prices for consumption goods and that a zero of our savings
function does correspond to an equilibrium with no transfers.

Given the properties of the savings function described in Proposition 3,
the proof of the existence of an equilibrium follows by repeating the standard
textbook proof of the existence of a competitive equilibrium with m goods.
(See for example, Varian [1984].) Consequently, we merely state our existence

result.

PROPOSITION 4: For any economy there exists an equilibrium.

We can now describe the conditions under which equilibria are locally
unique and vary continuously with the parameters of the economy. Exactly as
in the theory of regular economies as developed by Debreu [1970], these
results follow if we can apply the inverse function theorem and the implicit

function theorem to an equation like
s(ko,6,¢,a) = 0,

We cannot apply these theorems directly to this equation for the m xm

matrix of derivatives of s with respect to a 1is singular. The difficulty



arises because we have one too many variables (because of the homogeneity of
degree one of s with respect to a) and one too many equations (because the
sum of the components of s is identically equal to zero.) Because the
savings function is strictly positive on the boundary of Rf, we can choose a
normalization of a — analogous to he usual normalization for prices — such
that am = 1, Just as one typically uses Walras's law to discard one of the
equations, we can use the adding up constraint on s to discard the equation
Sm = 0., Thus, it 1s sufficient to consider the resulting m—-1 equations in
the m-1 unknowns al,...,am_l. Then we can apply the inverse function

theorem and the implicit function theorem if the function s 1is continuously

differentiable and if the following matrix J 1is nonsingular:

asl asm_l

_’ ae e

aal aal
J =

le asm_l

Sam_l aam_l

Following Debreu, we say that an economy E 1is regular if these two
conditions hold. 1In this case the index theorem developed by Dierker [1972]
allows us to use the sign of the determinant of this matrix to count the
number of equilibria and establish conditions ensuring uniqueness.

Under the assumption of cl differentiability, the analogue of J in
finite economies is almost always nonsingular; that is, regular economies are
generic., As we show below, this is true as well for J, provided that s 1is
cl. The difficulty, as we shall see later, lies in verifying that s 1is Cl,

or equivalently, that V 1is c2,

PROPOSITION 5: Suppose that, for given k , there exists admissable ©

and ¢ so that s(ko,6,¢,.) is cl, Then, for the given values of %k, and

¢ and almost all 6, the economy is regular,



Proof: Since s 1s linear in 6 it is jointly ¢l in (6,0). We must show
that, for almost all 6 and given ko and ¢, the matrix J is nonsingular
when the derivatives of s are evaluated at a point (ko,6,¢,a) such that
sl(ko,8,¢,a) =0, sesu, sm_l(ko,6,¢,a) = 0., As noted prior to the definition
of J, the last equation in s = 0 <can be discarded and a can be chosen so
that a = (a_m,l) € RT_l x R. The transversality theorem of differential
topology [Guillemin and Pollack 1974, p. 67] states that a sufficient condi-
tion for J to be of full rank m—-1 at such a point for almost all 6 is
that changes in 6 can cause changes in s in m-1 dimensions. More pre-
cisely, the matrix of partial derivatives of the first m—-1 components of s

with respect to 6 should itself be of rank m-1l. But, from the definition of

s, we can calculate (the transpose of) this matrix to be a (m—l)nk x (m—-1)

matrix of the form,

KODIV 0 cos 0
0 KOD1V cen )

where DV stands for the derivatives Dlv(ko,l,l,a). Since k, and the

derivative DV must be strictly positive, this matrix has m-1 linearly

independent rows and the result follows. 0.E.D.

The simplicity of this theorem comes from the fact that we consider
changes in the specification of the economy that do not affect the aggregate
variables that enter as arguments in the social value function.

One important implication of Proposition S5 follows from standard turnpike
theorems, of the type proven by McKenzie [1986]. These theorems assert that

if B 1is sufficiently close to one, relative to the curvature of v, then
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there is a unique stationary capital stock k5% to which all optimal paths
converge. Araujo and Scheinkman [1977] show that in this case the value
function V is CZ with respect to k, and 8. With minor modifications,
indicated below in Section 8, their method of proof shows that V 1is also c?
with respect to other parameters, such as «a. In our context these two
results, together with the fact that the curvature of v can be bounded
uniformly in &, 1imply that for B sufficiently close to one V is C2,
and the conclusion of Proposition 5 is immediate.

While Proposition 5 assumes that s 1s cl globally in a, 1in fact s
need only be ¢l in the neighborhood of equilibrium values of a. Moreover, in

this case we can use the derivatives of V and the implicit function theorem to

do local comparative statics with respect to 06, ¢, or other parameters.

7. REGULARITY

We do not know, either by theorem or counterexample, about the
differentiability of s outside the basin of a stationary state, In a non-
chaotic system the area between the basins of stationary states is a low
dimensional set, consisting of the stable manifolds of unstable stationary
states or cycles. 1If differentiability fails only on a low dimensional
subset, however, then it ought to be merest coincidence that it fails in
equilibrium,

In what follows, it is often convenient to let x and wy be equal to

1, and write v(kt,k ), V(ko,a), P(ko,a), and so forth. From the

t+1° %
Assumption 5 of infinite steepness on the boundary, we may assume that

n

k
(kt’k a) lies in the interior. Let £&_  denote the Banach space of

t+1°
M
bounded sequences in R under the sup norm, |k| = sup |kt

, Wwhere |kt‘

n, n
k

k
denotes any norm equivalent to the usual norm on R ; 1let (2w )+ denote
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n
the positive orthant in ka. For convenience, assume that the first
n
component of any sequence in &_~ has an index t=1. DNefine the mapping
Py "o a "k
associated with the Fuler equation, &: (lw )++ x R++ x R++ > 2, by the

rule

1

E(k,ko,a)t Dzv(k ,a) + BDlv(kt’k t > 1.

e-1°% e+
By the usual sufficient conditions for concave maximization problems, any path
ke that remains hounded and satisfies the Euler equation E(k,ko,a) =0 1is an
optimal path for the problem P(ko,a). Conversely, any optimal path k

n
. . . k .
starting at an interior k_ € R++ satisfies this equation and remains bounded.

o
n
Consequently, k € (QNF)+ is optimal if and only if E(k,ko,a) = 0O,
Lemma 2 below shows that £ is Cl. Define D &= [D £ Dy&l. Let
Dj v denote Dijv(kt’kt+1’a)' Then we can write the component t

of DhE(k,ko,a)h as

BD h + (BD + D

12V e+ hy +

117 ¥ P22%e-1 Dy1¥e-1"e-1"
In other words, DhEh = () gives rise to a linear dynamical system. At a
stationary state, the coefficients are time independent, so we omit the time
subscript. For emphasis we write DhESS to emphasize we are considering a
stationary state. By the roots of DhESS we mean the eigenvalues of the
associated linear dynamical system. We call a stationary state nondegener-
ate if DhESS has no roots on the unit circle and if Dy,v is
nonsingular.

The fact that D;,v 1s nonsingular ensures that the dynamical system can
be solved both forwards and backwards. 1In economic terms, thils means that the
model must be stated using a minimal set of capital goods. To see what this

rules out, consider a Cobb-Douglas neoclassical growth model stated in terms

of two capital goods, two consumption goods and a fixed endowment of labor
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that must be allocated between identical production functions for the two
consumption goods. Let two individuals have identical preferences 1n(c1) +
1n(c2). This economy satisfies Assumptions 1 through 5. It is straightfor-
ward to show by direct algebraic manipulation that independent of the initial
stocks of capital, the subsequent aggregate stocks of the capital goods in the
soclal maximization problem for any set of weights a are always chosen in
fixed proportions. (The consumption goods are also consumed in fixed
proportions.) The model is not in any relevant sense two dimensional; the two
capital goods and the two consumption goods can be combined into single
composite capital and consumption goods. The dynamical system associated with

the social maximization problem for this economy always maps k onto a

t+1

line in RZ. One can also show directly that DlZV(kt’k is everywhere

t+1 » &)
singular in this case, This kind of collapse in the dimensionality of the

model is prevented, even locally, by assuming that Diov  is nonsiagular.

2n
k can be

At a nondegenerate steady state, it is well known that R
written as the direct sum of a stable and unstable manifold. We refer to oy
minus the dimension of the stable manifold as the index of Dhﬁss. In Lemma 3

below we show that DIESS is one—-to~one. It follows directly that the index

is nonnegative, We call a path %k nondegenerate for a and ko if ke

converges to a nondegenerate stationary state kss(a) and if, whenever index
k% (a) > 1, DlZV(kt’kt+l’a) is nonsingular for t = 0,l,ceee

Note that these definitions may easily be extended to allow cycles, in
place of stationary states. Consider a cycle with period p. We simply
redefine periods with n.p comnodities and nyp types of capital per period
so that all cycles appear as stationary states. This kind of trick is frequ-
ently used with overlapping generations models. Consequently the subsequent

propositions apply equally to paths conversity to cycles.
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n
Let E(ko) denote the set of pairs (k,a) € (zmk) x R™ 1 such that k&

+
1s nondegenerate for a and kj. In other words, we restrict attention to

paths that converge to a non-degenerate stationary state. Our goal in this

section is to prove:

PROPOSITION 6: For fixed ¢ and a full measure subset of ko and 9 there

are finitely many equilibria in E(ko) and if (k,a) € E(ko) is an
equilibrium for ¢ and 6, then V(ko,x,w,a) is c? in a neighborhood of

(k,»1,1,0).

In particular, in this full measure set, s(ko,6,¢,a) is Cl and Proposition
S5 implies a further full measure subset in which the economy is regular.
Notice incidentally, that by Fubini's theorem, the fact that Proposition 6
holds for fixed ¢ and a full measure subset of k; and 6 implies that 1t
holds for a full measure subset of ko’ 8 and ¢.

Our strategy of proving Proposition 6 is to expand the dimensionality of
the system of equations to include the dynamic path of capital. This means we
are dealing with an infinite dimensional equation system, but one that is
globally cl. We first show that generically equilibria in E(ko) are
regular in an infinite dimensional sense. Proposition 6 is then an immediate
corollary.

We first examine the savings functions. By Part (e) of Proposition 2

each of the derivatives in the definition of s may be written as a sum of

derivatives along the optimal path. Define

T
oCk,k_,a,8,6) = 8K Dyv(k_ ,k;,1,1,0)

1’

8

+ ¢ 1,1,a)

t

I ™

£
0 BDyv(k sk g
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t
- A Z B st(kt)kr+l’ b b
t=0
It follows that for given k, and 0, k and a are an equilibrium if and

only if
E(k)ko,a) =0
c(k,ko,a,6,¢) = 0.

As in Proposition 5, we fix a = 1 and delete one redundant equation from
de For notational simplicity, we assume throughout that

a = (al,az,...,am_l) and that o consists of % to o _; oanly; in other
words, we take o to be the reduced system. A proof of the followlng result

can be found in the Appendix.
LEMMA 2: The system of equations §&, o 1is cl.

We can now define an equilibrium to be regular if the operator

is nonsingular. This definition, although it differs from the earlier one,
has preciéely the same consequences since the inverse function theorem and
implicit function theorem work as well in infinite dimensions. 1In particular,
since for each «a, the optimal %k 1is unique, it follows that a regular
economy has only finitely many equilibria.

Our preliminary goal is to study the circumstances under which I 1is

nonsingular.
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LEMMA 3: DIE is one-to-one,

Proof: Araujo and Scheinkman [1977] provide a proof under the assumption that
v(e,s,a) 1is strictly concave but this 1is stronger than is necessary.
Proposition 2 demonstrates the uniqueness of solutions for this model and this

is all that is required for their argument. N.E.D.

With this preliminary, we can now give a sufficient condition for I to

be nonsingular.
LEMMA 4: 1If I 1is onto, then it is non singular,

Proof: We must show I 1is one to one. Let

n

_ m-1 k _
K = {ha € R there exists h_€ 2~ such that Dy&h + D3€ha o}.
Since Dlé is one-to-one by Lemma 3, there is a unique linear operator
"k

B: x » % such that DlEBha + D3€ha = (0, Notice that, since B has finite
dimensional domain, i1t is a continuous operator.

Suppose h € ker I. Then ha € kK and h, = Bh

Kk which implies that

a’

m l.
D OH + ) a = (). ()). + ONCO. Let y € L{

and let O ¢ lmk with y = (O,ya). Since I is onto, let h be a solution
of Th =y, Then Ea € K and Ek = Bﬁa. This implies that

(DloB + D3o)ﬂa =Y which implies that D, 0B + Dyo is onto. Finally, since
DloB + D3o is a finite dimensional square matrix, it 1s also one-to-one. We

conclude that if h € ker I, since (DloB + D3o)ha =0, then h =0. Since

hk = Bha’ we find that h = 0. Q.E.D.

We should emphasize that the picture is already very different than that
with infinitely many agents. TIf we follow standard practice in infinite

dimensional transversality theory, we would call an equilibrium regular if I
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is onto and 1ts kernal has closed complement. We just showed that this
definition of regularity implies that I 1s nonsingular. This should be
contrasted with the robust indeterminacy that occurs with infinitely many
agents. In this case the fact that I 1is regular, that is, onto, does not
imply that it is one-to—one. The kernal of I 1is simply the tangent space to
the manifold of equilibria. Since the manifold deforms smoothly with respect
to small perturbations, they change neither the fact that I 1is regular, nor
the dimension of the kernal. The indeterminacy is robust. For a more
detailed discussion of this point, the reader is referred to Kehoe, Levine,

Mas-Colell and Zame [19861.

LEMMA 5: At a nondegenerate steady state Dhiss is onto and

dim ker Dhgss = n

Ss
K index DhE .

Proof: That dim ker DhESS = nk - index DhESS means that dim ker DhESS has
the same dimension as the stable manifold; since multiple solutions to
DhESSh = 0 are indexed by pairs (ho’hl) on the stable manifold, this
follows. That DhESS is onto follows from the fact that the stable manifold
is robust at a nondegenerate stationary state with respect to small non-
stationary perturbations; see the proof of the local stable manifold theorem
in Irwin [1980]. Consequently, DhEssh = b has nonempty stable manifold for

small enough b, and since it is linear, for all b, In particular

Dhgssh = b has at least one solution. Q.E.D.

The next task is to show that, if k converges to a nondegenerate

stationary state, then DhE(k,ko,a) is onto.

PROPOSITION 7: If k 1is a nondegenerate path for a and ko, then

Dhg(k,ko,a) is onto, and has index equal to that at k3% (a).
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Proof: First we show that Dhi is onto. Araujo and Scheinkman [1977] give a

proof for the case where index DE®S = 0. We examine only the case where

ss "o Mk Mk M
index D&”” > 1., Let F: R x 2~ +R x L be defined by the rule

Fk = (k;, (kg,kg,sse))s Since kt > k%%(a) and small perturbations of

D

Ss
no

are also onto, for some finite T, DhE(FTk,kT,a) is onto. Given b,
n n
k

find h € R X Kmk such that DhE(FTk,k )FTh = FTb. Then since D9V

¢

is by assumption nonsingular, we simply solve recursively backwards to find

-1
= =D__v [(BDllv +D

Do) 21Ve-1 VM

b 1.

)+ BDy,vihiy T By

n
k
Since only a fianite number of steps are involved, h € Ly *

The fact that DhE and DhESS have the same index follows from the fact
(shown, for example, in Araujo and Scheinkman) that they differ by a compact
operator, and the fact that the index of a Fredholm operation is invariant

under the addition of a compact operator. QeE.De

n

Let Ei(ko) denote the set of pairs (k,a) € (lmk)+ x ‘"1 guch that k

1s nondegenerate for a and k; and 1s of index i, Recall now that
n
- k—
< i o ¥ . z . .
0 i <€ n, Je are interested in E(ko) §£O El(ko)

PROPOSITION 8: For any fixed ¢ and a full measure subset of k and ©

(¢}

every equilibrium in E(ko) is regular.

Proof: 1In steps 1-4 we consider a fixed index i, and Ei(ko)'

Step 1: We must find an open domain for £ 1in order to do calculus. If
(k,a) € Ei(ko), then there is an open neighborhood Ei(ko) of (k,ko,a)
such that 1if (k',ké,a') £ Ei(ko) and g(k',ké,a') = 0, then

(k',a') € Ei(ké); in other words, locally paths either converge to a
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nondegenerate statlonary state, or leave; they do not remain bounded nearby
without converging. This is shown in the proof of the robustness of the
stable manifold; see for example Irwin [1980]. We may also assume that, in
Ei(ko), DhE(k',ké,a') is onto and has kernal of dimension nk—i. This
follows from the facts that the set of operators of this type is an open set
(see Abraham and Robbin [1967]1), and that DhE is a continuous function of

its arguments by Lemma 2, Finally let E

i koEi(ko)' This open set we

take to be the domain of &.

nk(m—l)
Step 2: Consider the matrix function on ER x R
k k a )
o)
. Dli DZE 035 0
ch Dzo D30 DAO

Proposition 5 says that 040 is onto; and by construction

[Dlg DZE] = DhE is onto. It follows that py 1is onto. Moreover, since Dao
is nonsingular, and [D1€ DZE] is onto with a nk—i dimensional kernal, it
is clear that dim ker u = o - i +m - 1. The implicit function theorem then
implies that the set of (k,ko,a,e) such that (a,k) 1is an equilibrium is an

ny - £+ m -1 dimensional C1 manifold.

Step 3: To apply the parameteric transversality theorem in step 4 below, we
must show that the equilibrium manifold is second countable; that is, that
every open covering has a countable subcovering. Since lzk is not separ-
able, it 1s not itself second countable. It 1is clearly sufficient, however,
that the set of (k,ko,a) in Ei with E(k,ko,a) = () 1is second countable.
By counstruction such k converge to a nondegenerate stationary state, and

such convergence must be exponential, so it suffices to show that the space of

convergent sequences converging at the rate 1/t 1is second countable. This
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n
is the product of the second countable space R k, containing the limits, and
the space of sequences converging to zero at the rate 1/t. The latter space
of sequences is second countable because it is the union of sequences domin-

ated by N/t as N > o, and each of these spaces is compact. Finally, we

observe that the product of second countable spaces is second countable.

Step 4: This step is identical to the finite dimensional proof of the
parameteric transversality theorem. Consider the projection
M(k,k_,a,8) = (k_,8) restricted to the equilibrium manifold. This is a cl

map between second countable n, - i + (m - 1) and oy + (m - 1) dimen-

k
sional cl manifolds; moreover, the point (k,ko,a,e) is a regular
equilibrium if and only if it is a regular value of 1. By Sard's theorem,

however, the set of regular values (ko,e) are of full measure., This shows

regular equilibria are full measure for each 1.

Step 5: Since the countable union of measure zero sets has measure zero, the
intersection of the full measure sets for each 1 has full measure,

Q.E.D.

Observe that in step 4 the wmap to which Sard's theorem applies is from an
oy - i +m=- 1 dimensional manifold to an e+ m -1 dimensional one. Tt
follows directly that if 1 > 1 then the equilibria in Ei(ko) are regular
by virtue of not existing at all. Moreover, as we remarked above, Araujo and
Scheinkman show that DIE is onto at a steady state with index O.
Consequently, under the hypothesis of Proposition 6, we may assume that there
are finitely many equilibria, and every equilibrium has DIE nonsingular. By
the implicit function theorem itvfollows that locally near equilibria we may
solve to find k(ko,a) a ¢! function. We already know that V is cl,

Moreover, as noted in the proof of Lemma 2 in the Appendix,
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DiV(ko,x,w,a) = wi(ko,x,w,a,k) evaluated at k = k(ko,a), where ¢ 1is cl,
Consequently, since k(ko,a) is Cl, DiV is Cl, and V 1is C2. This

yields the final conclusion of Proposition 6.

8. CONCLUSION

We can sum up this way: For almost all ko and 6 there are finitely
many equilibria with nondegenerate capital paths. In particular, if the
dynamics of the optimization problem are such that for each a the only
solutions to the problem P(ko,a), are paths converging to a nondegenerate
stationary state, then there are finitely many equilibria.

If the discount factor B 1s close to one, there is for each a a
global non-degenerate turnpike. It follows that there are finitely wmany
equilibria. For B8 far from one, there may be multiple stationary states or
cycles. However, there are still finitely many equilibria converging to non-
degenerate cycles. It is also possible that there are a continuum of
equilibria at values of a for which the cycles bifurcate, and we cannot say
whether or not these are robust. Moreover, Boldrin and Montrucchio [1985] and
Deneckere and Pelikan [1985] have demonstrated that when the discount factor
8 1is far from one, chaotic bhehavior can arise. More strongly, Boldrin and
Montrucchio [1986] has shown that any dynamical system, including any chaotic
system, can be the solution to the type of dynamic optimization problem we
consider. Because of the methods used to construct these examples, the value
function in each case is at least Cz, so chaos does not necessarily imply
that regularity analysis fails. 1Tt remains an open question whether these

examples are exception, or whether robust indeterminacy is possible,
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APPENDIX

Proof of Proposition 1: Since F 1is concave and strictly decreasing in c,
the set of feasible, nonnegative aggregate consumption vectors 1s compact for

glven (kt,kt+1,x,w), so v 1s well defined in either case. Concavity and

homogeneity of degree one for v(kr,k ) follows immediately from

g+1° %00
these properties for Uy and F.

]

t+l,xJ,wj,cxj) be a sequence

To show that v 1is u.s.c., let zd = (ki,k

in the domain of v converging to a point =z. Corresponding to each zj,

either v = - or there exists an optimal nonnegative consumption vector for
the maximization problem in the definition of v. Suppose first that the
sequence {zj} has an infinite subsequence with the property that nonnegative
consumption is feasible. Since {zj} is bounded in Rz, any 1nfinite

subsequence of optimal consumption vectors 1s contained in a compact set in

n
Cc

R+ and hence has a convergent subsequence. Then using the upper-semi-
continuity of Uy and F, it follows that v(z) > lim sup v(zj). If only a
finite number of the elements in {zj} allow nonnegative consumption, this
inequality is trivial.

If (kt’kt+l’x) allows finite utility for each agent, v(kt,k X ,Wya)

t+1°

is the support function for the convex set of feasible utilities, hence is
convex and homogeneous of degree one (Rockafellar [1970]). If it does not

allow positive consumption then (Akt,kk x) does not either and convexity

r,+1’>‘

and homogeneity follow once again. By the assumption that f 1is strictly
increasing in ¢, the boundary of the set of points where v(.,.,x,w,a) 1is

finite consists of those pairs (¥;,kyy)) such that k. has a component equal

t

to 0O or such that the implied optimal value for consumption is 0O because

kKyyp 1s as large as possible or k, 1s as small as possible. In any of these

t
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cases, Assumption 5 guarantees that the set of subgradients 1is empty.
Since v 1s concave-convex, it is continuous on the interior of its

domain, To see that 1t is C2 in this region, define a Lagrangian

3
[/ =]

+
U Ceywp) + ARGk Lk s

c,,X).
1 i t

i 1

Using the interilority assumption and the fact that OZui is invertible for each
individual, we can apply the implicit function theorem to express the optimal
values for ¢y and A as ¢! functions of kt’ kt+1’ X, w, and a., By an
application of the envelope theorem, all of the first partial derivatives of v
can be written as the composition of the cl  functions Ui(c,wi),

F(kt,kt+1,c,x), ci(kt,kt+1,x,w,a), and A(kt,k x,a), so v 1is c2,

t+1°

In particular,

Dzv(kt,k X,W,q) = XDZF(kt,k

™8

ci )X) ’

’
t+1 1

+1°?
t+1 1

where we have suppressed the arguments of the functions ey and A. Then
Dyov includes a term of the form, XDZZF. Because v  1is concave, D,,v is
negative semidefinite. Since DyoF 1s negative definite, a simple argument
by contradiction shows that Dyov must also be negative definite.

N.E.D.

Proof of Proposition 2: Parts (b) and (c) of the proposition follows

immediately from the properties of v from above. A proof of part (d) is
given in McKenzie [1983]; the interiority follows from part (c) of Proposition
1. Part (e) is shown by Benveniste and Scheinkman [1975].

We turn to part (a). Define § to be the objective functional as

defined on the sequence space for x, w, and a held constant:

~ 8

k) = Btv(kt,k X,W,Q) .

t+1°

t=0
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To prove that there exists a solution to the maximization problem

P(ko,x,w,a) it suffices to show that in some topology the problem is to
maximize a u.s.c. function over a compact set. The finiteness of V follows
from Assumption 4, guaranteeing a feasible solution. Let M denote the set
of nonnegative sequences 1In R" that are bounded componentwise by

is the initial value for the problem and

m = max {lko ,

l}, where k

max o

kmax is the upper bound specified in Assumption 3. By Assumptions 2 and 3

and the definition of v, any sequence yielding a finite value for the
objective function 1s contained in this set. Moreover, M 1is compact in the
product topology. Tt remains to show that the objective function Q exhibits

sequential upper semi-continuity. Suppose k% € M and k" > k 1in the product

n

t+l,x,w,a) and let

topology. Coansequently k? *> kt. Let v? denote v(k?,k

£ denote v(k ,k

n
e t+l,x,w,a). Since v is u.s.c., %i% sup v < Ve for all

t. Since v? < max {V(E,O,x,w,a): |E| < a}, the sequence v" 1is uniformly
bounded from above by a (constant) sequence that 1s summable with respect to
Bt. Interpreting summations as integrals with respect to a measure

concentrated on the Integers, an application of Fatou's lemma implies that

8
8

t n,n
8 v(kt’kt+l ,X,W,a) _<_

0 t

lim sup
n-+co t

I ™

Btv(kt,k X, W,q) .

t+1?

i ™

0
or lim sup (k™) < (k). Since the sequence [k"} can be chosen so that

n -+
lim sup (k™ equals the supremum of the problem P(ko,x,w,a) it must have a

n+o
solution,

The uniqueness of the solution follows from the assumption that
v(kt,.,x,a) 1s strictly concave., This implies a kind of conditional strict
concavity; given the fixed initial value, the objective functional defines a

strictly concave function over the sequence space. To see this, assume that

9
kl,k2 € M, and let kA denote the convex combination Akl + (1-M)k". Let



F denote the forward operator on the sequence space: for any sequence

k= {k.,k,,k

0k 2,...}, Ftk is the sequence {kr’k let 1T be the

t+1’...}.
largest component at which k! and %2 agree. Since they must have the same

initial value, 7T > 0, Then we can express the difference

AkD) + (1-2) (k%) - (k™

1

T 1.1 2,2
B [Av(kT,kT+l,x,w,a) + (1-)) v(kT,kT+l,x,w,a)

- v(kt,k:+l,x,w,a)] + 8™ [arTY) + (-0 2P k%) - a(F%M].

Since v 1is (weakly) concave in its first two arguments, Q 1is (weakly)

concave. Consequently the second term in this expression is nonpositive,

Given that kl = kz, that kl * k2 , and that v 18 strictly concave in
T T ™1 T+1

its second component, the first term is strictly negative. This shows that

kx dominates k! and 2. 1In other words, Q(k) 41is strictly concave for

fixed k00 Q.E.D.

Proof of Proposition 3: From Part (e) of Proposition 2 it follows that the

derivatives of V exist and are continuous and, consequently, that s 1is
well defined and continuous everywhere on the interior of Ri. The definition
on the boundary 1s discussed below.

By an application of the envelope theorem in finite dimensional space to
the definition of v, Djv(kt,kt+1,x,w,a) 1s homogeneous of degree 1 for
j=1,e0.,4. Also, Dav(k,x,w,a) is homogeneous of degree 0 since V 1is
homogeneous of degree 1 in a. Thus, s 1is homogeneous of degree 1. That
the sum of the components of s 1s equal to zero follows by applying twice
the observation that a function that 1s homogeneous of degree 1 is equal to
the sum of its arguments times its derivatives,

The only remaining issue is the continuity of s on the boundary. The

L

difficulty arises when one of the components of a goes to ), Let o be a

sequence in the interlor converging to a point a such that ai = 0 and
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éj #0, If cf and cR denote the corresponding consumption choices in the

]
definition of v, 1infinite steepness on the boundary of the utility functions
implies cf, c;, and cj are strictly positive and that the equality

afDu(cf) = q;Duj(C§)

hold for all £. By an application of the maximum theorem (see, for example,
Hildenbrand [1974]), since the mapping that sends o to the vector of optimal
consumptions 1s single valued, it 1s a continuous function., From the defini-
tion of v, 1t is clear that the optimal value for ¢y is 0 siace
a = N+ By continuity, cf converges to zero. Using the equality noted
above, this implies that

2 4 2
lim aiDui(ci)Ci = 0.
2,400

That 1s, the expenditure on the usual consumption goods allowed consumer i
goes to 0 as his welght in social utility goes to 0.

By the envelope theorem, we know that the last term in the definition of
s 1s simply the product of the utility weights times the present discounted
utility for each consumer. Using the homogeneity of the augmented utility
function Ui(c,wi), we can comblne the last two terms in s and express Sy
as

si(ko,6,¢,a) = 8 KODlV(kO,l,l,a) + ¢iDZV(ko,l,l,a)

i

8

_ai
t

t
B Duy(ey dey

I ™

0

By the argument above, the last term in this expression goes to 0 as af goes
to 9; from the definition of v and the envelope theorem, the first and
second derivatives of V can be expressed in terms of the marginal utility of
agent j and hence 1s continuous as & + «, Therefore, s 1is continuous on

all of Rj_l \{O} if we define it so that at a boundary point like a,
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si(ko,9,¢,a) = eiKoDlV(ko’l’l’a) + ¢iDZV(kO,1,1,a).
Note that this last term is simply the value of consumer i's endowment capital

and share of profits. By the definition of admissible endowments, ei 0.

Since f and uy  were assumed to be strictly increasing, every component of

D}V is strictly positive and sy 1s greater than 0. N.E.D.

Proof of Lemma 2: Consider any function wt = w(kt,k a) where w is cl,

a2
Since (kr’kr+l’a) may be restricted to a compact domain, the operator
defined by
= + k h
(Dw(k,a)h)t Dlw(kr’kt+1’a)ht + DZW(kt’kt+1’a)ht+l D3w( t,kt+l,a) “

is bounded and therefore continuous. Moreover,

[D¥(k,a) ~ DW(k',a')]h|
{e

Ik—k'T?Ta—a'
LS

< 3sup |Djw(kt,k ) = Dow(ky ket ,an) ]

t+1°¢ j t+1
The compactness of the domain implies that Djw is uniformly continuous; so,
as € >0, |D¢(k,a) - Dw(k',a')l + 0, 1n other words, Dy varies
continuously,

Finally, we can show that Dy 1is actually the derivative of ¢ by again
using the uniform coantinuity of Djw to show that the integral form of the

remainder in period t, which is made of terms of the form

1
g (1-8)[D,w(k _ +sh _, .k +sh ,atsh ) ~ Djw(kt_l,kt,a)]ds

vanishes uniformly across periods as h » 0,

n
This shows that £ is Cl. Moreover, the mapping B: 2mk > R by
B(k) = I Btkr 1s continuous linear, and thus C . Since ¢ 1s then a
t=0
composition of the form B(y), 1it too 1is cl. Q.E.D.
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