Rochester Center for
Economic Research

Monotonic Extensions on Economic Domains

Thomson, William

Working Paper No. 431
September 1996

University of

Rochester




MONOTONIC EXTENSIONS ON
ECONOMIC DOMAINS

William Thomson
Rochester Center for Economic Research

Working Paper No. 431

September 1996






MONOTONIC EXTENSIONS ON
ECONOMIC DOMAINS

William Thomson*

April 1993; This version, September 1996

*University of Rochester, Rochester, NY 14627. This is the revision of an April 1993
mimeo entitled “Monotonic extensions”. Support from NSF under grant SES 9212557
and the comments of L. Corchén and F. Maniquet are gratefully acknowledged. I am
particularly endebted to Eiichi Miyagawa for providing a complete proof for one of the
examples of Section 3.






Abstract

The property of “monotonicity” is necessary, and in many contexts,
~sufficient, for-a-solution to-be Nash-implementable (Maskin, 1977). In
this paper, we follow Sen (1995) and evaluate the extent to which
a solution may fail monotonicity by identifying the minimal way in
which it has to be enlarged so as to satisfy the property. We establish
a general result relating the “minimal monotonic extensions” of the
intersection and the union of a family of solutions to the minimal
monotonic extensions of the members of the family. We then calculate
the minimal monotonic extensions of several solutions in a variety of
contexts, such as classical exchange economies, with either individual
endowments or a social endowment, economies with public goods, and
one-commodity economies in which preferences are single-peaked. For
some of the examples, very little is needed to recover monotonicity,
but for others, the required enlargment is quite considerable, to the
point that the distributional objective embodied in the solution has
to be given up altogether.

Key-words: Maskin-monotonicity. Nash-implementation. Minimal
monotonic extension. Fair allocation.
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1 Introduction

A “solution” is a mapping that associates with each economy in some admis-
sible domain a non-empty subset of its feasible set. ‘Solutions are mathemat-
ical representations of the objectives of a social planner. They are typically
specified so as to select efficient allocations, and also to satisfy some dis-
tributional requirement or participation constraint. In order to attain the
allocations selected by a solution, information about the agents’ preferences
is necessary in almost all interesting cases. The theory of implementation
(see Moore, 1992, and Corchén, 1994, for surveys) was developed to deal
with the strategic problems due to the fact that preferences are private in-
formation and that an agent often gains by unilateral misrepresentation. It
exploits the fact that for some solutions this problem can be circumvented
by confronting agents with well-chosen “game forms”: a game form consists
of a list of “strategy spaces”, one for each agent, and an “outcome function”;
each agent is supposed to choose and announce an element of his strategy
space, and the outcome function associates with every one of the possible
resulting profiles of strategies a feasible allocation. A solution is “(Nash)-
implementable” if there exists a game form such that for each admissible
economy the set of Nash equilibrium outcomes of the game form played in
that economy coincides with the set of outcomes that the solution would
select for it. '

A property was shown to be necessary, and in many contexts, sufficient,
for a solution to be implementable (Maskin, 1977); it is “monotonicity”:
if an allocation is selected by the solution for some profile of preferences,
and preferences change in such a way that the allocation does not fall in
anybody’s estimation relative to any other feasible allocation, then it is still
selected for the new profile. Unfortunately, many interesting solutions are
not monotonic and therefore not implementable. Here, we follow Sen (1995)
who proposed a method of evaluating the extent to which a solution may
fail to be monotonic. Specifically, we look for the minimal way in which the
solution has to be enlarged so as to satisfy the property. There is indeed a
“minimal monotonic” solution that contains any solution. In his work on the
subject, Sen limited his attention to the Arrovian model of abstract social
choice. Our main objective here is to study the concept of minimal monotonic
extension in economic models instead.

First however, we establish a general result relating the minimal mono-
tonic extensions of the intersection and the union of a family of solutions



to the minimal monotonic extensions of the members of the family. Then
we turn to examples and calculate the minimal monotonic extensions of
several solutions in a variety of economic contexts. We consider classical
exchange economies, with either individual endowments or a social endow-
ment, economies with public goods, and one-commodity economies in which
preferences are single-peaked. We chose the examples so as to illustrate the
wide range of possibilities. For some of them, very little is needed to recover
monotonicity, but for others, the required enlargment is quite considerable,
to the point that the distributional objective embodied in the solution has
to be given up altogether. However, efficiency is generally preserved, since
under minor assumptions on preferences, the solution that associates with
each economy its set of efficient allocations is monotonic.

In each of the examples we specified domains so as to obtain as simple
a statement as possible. This typically required assumptions eliminating
boundary situations. In the case of the Walrasian solution, violations of
monotonicity occur only on the boundary (under convexity of preferences)
and of course we did not make any such assumptions.

2 Minimal monotonic extensions

We start with a general statement of the problem. Let A be a set of feasible
alternatives and R a class of preference relations defined on A. Let N =
{1,...,n} be a set of agents whose preferences belong to R. Giveni € N,
R; € R,and a € A, let L(Ri,a) = {b € A: aR;b} be the lower contour
set of R; at a. A solution is a correspondence : R™ —s A, which
associates with each profile R = (R)ieny € R" a non-empty subset of A.
Giveni € N, R; € R, and a € A, we say that R € R s obtained from
R; by a Monotonic Transformation at a if L(R;i,a) C L(R! a). Let
MT(R;,a) C R denote the class of all such R.. Given R, R € R™ with
R; € MT(R;,a) for all i € N, we write R' € MT(R, a).

The following property of solutions is fundamental: it says that if an
~ alternative is selected for some profile of preferences, and preferences change
in such a way that the alternative does not fall in anybody’s estimation
relative to any other feasible alternative, then it is still selected for the new
profile.

(Maskin)-Monotonicity: (Maskin, 1977) For all R, R € R™ and all
a € o(R), if ' € MT(R, a), then a € p(R)).
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It is easy to check that an arbitrary intersection of monotonic solutions,
if well-defined, that is, if non-empty for each economy in its domain, is
monotonic. Moreover, the solution that associates with each economy 1its
feasible set is monotonic. Therefore, the intersection of all the monotonic so-
lutions that contain a given solution ¢,! is a well-defined monotonic solution
that contains ¢, and it is the smallest solution with these properties. These
observations suggest the following definition:

Minimal monotonic extension: (Sen, 1995) Given @: R™ — A, the
minimal monotonic extension of ¢, mme(yp), is defined by

mme(p) = N{:1) D ¢, is monotonic}

Our first lemma, although straigthforward, will be of great help in our
calculations:

Lemmal Let ¢:R* - A. For all R € R, mme(p)(R) = {a €
A:there ezists R' € R™ such that a € p(R') and R € MT(R,a)}.

Proof: Let ¢* be the solution defined in the statement of the Lemma. It
obviously contains ¢. Also, any monotonic solution containing ¢ contains it.
Finally, it is monotonic. Indeed, let R € R", a € ¢*(R),and R" € MT(R, a).
To show that a € ¢*(R"), observe that by definition of ©*, there exists
R’ € R" such that a € p(R') and R € MT(R',a). But since R" ¢ MT(R,a)
and R € MT(R',a), we have R" € MT(R/, a), so that indeed a € *(R"). O

Sen studies the concept of minimal monotonic extension in the context of
abstract social choice when the number of alternatives is finite and under the
“unrestricted domain” assumption. However, the case of concretely specified
economic models seems to have been left open. The purpose of Section 3 is to
examine such models. We consider several examples of commonly discussed
solutions and calculate their minimal monotonic eztensions.

The general economic model and notation are as follows. Let / € N
be the number of goods; preferences are defined over ]R\’.i. As before, for
each ¢ € N, R; denotes agent i’s preference relation. Let P; be the strict
preference relation associated with R; and I; the corresponding indifference

1This is the solution that associates with each economy the set of allocations that are
chosen by all the monotonic solutions that contain .



relation. Let R4 be the domain of “classica, ", i.e., continuous, convex, and
monotone (this means that z; > 2! implies z;P;2!)? preferences. Let Rei,B
be the subdomain of R, of preferences such that no indifference surface
containing a positive point meets any of the coordinates subspaces (Cobb-
Douglas preferences satisfy this property and so do Leontieff preferences.

Linear preferences do not). We refer to this boundary condition as “condition
B”:

Condition B: A preference relation R; defined on Ri satisfies condition
B if for all z; € Ri+ and all z{ € Rﬁ_, if z;1;2], then 2! € RfH.

Each agent : € N is endowed with a vector w; € R% of goods. We refer
to the list w = (w;);en as the initial allocation. Endowments are given
once and for all, and therefore we simply denote an economy by alist R =
(Ri)ien of preference relations. The feasible set is Z = {zeR™Y 2z =
Y- nwi}. From each individual 7’s preferences over his consumption space
, Rﬁ_ we can derive a preference relation R; defined over the feasible set in the
usual way by comparing his components of allocations: given z = (2)ien and
2 = (2l)ien € Z, we write zR;2' if and only if z;R;zl. If z,2' € Z are such
that z;1;z] for all 1 € N, we write zIz". When we discuss the problem of fair
division, we specify a social endowment Q € R’ instead of the individual
endowments.

Before we turn to the examples, we present a lemma which describes a
simple relationship between the minimal monotonic ertensions of two so-
lutions and those of their intersection and union. The lemma is an exact
counterpart of a result concerning a certain property of “consistency” of so-
lutions (Thomson, 1994). To prove the strict inclusion that it states, we
find it convenient to consider the following domain of quasi-linear economies:
preferences are defined over R x Ri"l, and they admit representations that
are separable additive in the first good, and linear in that good. This means
that there is a function v;: Ri_l — R such that, denoting by z; € R agent
¢’s consumption of the first good and y; € Ri"l his consumption of the re-
maining goods, his preference relation can be represented by the function
assigning value u;(z;,y:) = =i+ v;(y;) to the bundle (z;,;). In a quasi-linear
economy, if an allocation is efficient, then so is any other allocation obtained

?Vector inequalities: given a,b € R, a 2 b means ag > by for all k ; ¢ > b means a b
and a # b; a > b means a; > by for all k.
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Figure 1: Example showing that the minimal monotonic extension of the inter-
section of a family of solutions may be strictly contained in the intersection of the
minimal monotonic extensions of the elements of the family (Proof of Lemma 2).
(a) Definition of the solution. (b) By “flattening” his indifference curve through his
endowment, agent 1 can push the chosen allocation in a direction that is favorable
to him.

by arbitrary redistributions of the first good. Let Rq be the class of all such
preference relations. We are now ready for the statement of the lemma.

Lemma 2 Given two solutions ¢ and ¢,

mme(p U ¢') = mme(p) Umme(p')
Also, if o N ¢’ is a well-defined solution,

mme(p N ¢') C mme(p) N mme(y')

The inclusion may be strict.3

Proof: The proofs of the equality and of the inclusion are identical to their
counterparts pertaining to consistency, and we refer the reader to Thomson
(1994) for details. Indeed, the only property of consistency used there is that
it is preserved under arbitrary intersections and unions.

To show that the inclusion may be strict, we construct an example. Let
£ = 2 and R}, C Ry be the class of quasi-linear preferences defined on

3The result holds for any domain. The same statements also apply to arbitrary, finite
or not, unions and intersections.

|
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R X R4 such that at every point z;, there is a unique line of support to the
upper-contour set at z; (this implies that at every point z; on the z-axis, the
only line of support to the indifference curve.passing through z; is horizontal,
so that indifference curves reach the z-axis tangentially.) Let W denote the
Walrasian solution. Given R € (R!))?, and z* € W(R), let z!(R, z*) be the
individually rational* and efficient allocation that differs from z* only in the
distribution of the z-good and that is worst for agent 1 (Figure la). Now,
given k € [0,1], let o*(R) = {2*,kz}(R,2*) + (1 — k)z*:2* € W(R)}.S If
there is a unique Walrasian allocation, the generic case, ©*(R) contains at
most two points, one of which is that allocation.

Under our domain assumptions, the Walrasian solution W is monotonic
(more on this issue in Section 3.2). However, ©* is not monotonic except for
k = 0, in which case it coincides with W. Finally, the minimal monotonic
estension of @F is the solution 1* defined by 1*(R) = {[*, kz'(R,z*) + (1 —
k)z*]:z* € W(R)}. This says that in order to obtain monotonicity, and in
the case when there is a unique Walrasian allocation, say, we need to add
to the two points that the solution would have selected, the whole interval
joining them. To prove this, it suffices to observe that (i) ¥* is monotonic
and that (ii) by Lemma 1, given any R € (RY)?, and any 2’ € ¢*(R), there
are z* € W(R) such that 2 € [kz'(R,2z*) + (1 — k)2*] and R’ € (R)? such
that 2’ € p*(R') and R € MT(R',2'). Indeed, let 7 € [7\(R, z*), z*] be such
that 2’ = kZ + (1 — k)z*. The preference relation R, € R can be defined
by specifying one upper-contour set. For upper-contour set at Z, choose the
intersection of the upper-contour set at z!(R, 2*) for the preference relation
R, with the line normal to p passing through that point, where p are prices
supporting z*. This construction is illustrated in Figure 1b (the dashed
line). Now, given k, k' €]0,1], with k # &', we have f N ¥ = W, and by
monotonicity of the Walrasian solution on the domain under consideration,
we obtain mme(¢*Np*) = W. However, mme(p*) Nmme(p*) = P Ny* =
,¢,min{k,k’} 7& w. 0

*An allocation is individual rational if it Pareto-dominates the initial allocation.

5The set ¢*(R) consists of the Walrasian allocations and the allocations that are ob-
tained as linear combinations, with weights k — 1 and k of a Walrasian allocation and the
worst individually rational allocation for agent 1 at which the distribution of the second
good is the same.



3 Applications

In order to illustrate the notion of minimal monotonic extension, we start
with a private good model, in economies with individual endowments first,
then in economies with a social endowment. We discuss two fundamental
solutions, the Pareto solution and the Walrasian solution. Then we turn to
various solutions to the problem of fair division. Our final example pertains
to one-commodity economies with single-peaked preferences. Qur motivation
in this selection of examples was to illustrate the wide range of possibilities:
for some of the solutions, a very minor enlargment is needed to recover mono-
tonicity; for others, the required enlargment is considerable, to the point that
the distributional objective embodied in the solution is essentially lost; the
remaining cases fall somewhere in between. For applications of the notion
of minimal monotonic ertensions to classes of matching problems, see Kara

and S6nmez (1994, 1996).

3.1 The Pareto solution

The Pareto solution is the solution that associates with each economy its set
of feasible allocations such that there is no other feasible allocation that all
agents prefer and at least one agent strictly prefers.

Pareto solution, P : Given R € R*, P(R) = {z € Z:thereisno ' € Z
such that 2{R;z; for all : € N and 2!P;z; for some i € N }.

The fact that this solution is not monotonic on the classical domain
is illustrated in Figure 2.° In the economy R ¢ R2% it depicts, agent
I’s preferences can be represented by the function u; defined by ui(z1) =
Yz for all 2 € Ri, and agent 2 has the same preferences. Let
z = ((1,92/2),(0,92/2)), and note that z € P(R). Now, let R, € R,
be the preference relation that can be represented by the function u defined
by ui(z1) = 211 for all z; € R%, (now, agent 1 cares only about the first
good), and let R, = R,. Let R' = (R}, R}). Note that R' € MT(R,z) and
that z is Pareto-dominated in R’ by 2’ = ((Q4,0)(0, Q,)), proving the claim.

This lack of monotonicity of the Pareto solution is due to the fact that
preferences are not strictly monotone (this term means that z; > z! implies

SThis is a point worth clarifying since it is a common misconception that the Pareto
solution is monotonic on this domain.



O

Figure 2: The Pareto solution is not monotonic. On the classical domain viola-
tions of monotonicity occur on the boundary of the feasible set.

z;P;z). When the domain is required to contain only strictly monotone
preferences, the Pareto solution coincides with the solution that picks all
the feasible allocations to which there is no other feasible allocation that all
agents strictly prefer, the “weak Pareto solution”:

Weak Pareto solution, WP : Given R € R*, WP(R) = {z €
Z:there is no 2’ € Z such that z/P.z; for all i € N}.

This solution is monotonic on the classical domain. We state without
proof the following result, which relates the Pareto and weak Pareto solutions.

Theorem 1 On RY, the minimal monotonic extension of the Pareto solu-
- tion is the weak Pareto solution.

A consequence of this result and of Lemma 2 together is that on the
classical domain, the minimal monotonic extension of a subsolution of the
Pareto solution is a subsolution of the weak Pareto solution.

3.2 The Walrasian solution

Our next example is the Walrasian solution. Hurwicz, Maskin, and Postle-
waite (1985) noted, and this fact is now well-known, that the Walrasian so-
lution is not monotonic on the classical domain. A violation of monotonicity
is illustrated in Figure 3a for an economy R € R?. We have z € W(R) with
supporting prices p € A", R{ € MT(Ry,2) and R, = R,, but z ¢ W(R').
Indeed, 2 fails to maximize R} in agent 1’s budget set at prices p, these
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Figure 3: (a) The Walrasian solution is not monotonic. Violations of monotonic-
ity occur on the boundary of the feasible set. Its minimal monotonic extension is
the constrained Walrasian solution (Theorem 3.2). (b) If preferences are not con-
vex, violations of monotonicity may occur in the interior of the Edgeworth box.

prices being the only candidate equilibrium prices. Under convexity of pref-
erences, violations of monotonicity can only occur at boundary Walrasian
allocations. Figure 3b shows that if preferences are not convex, violations
of monotonicity can also occur in the interior of the feasible set. There,

-z € W(R), B} € MT(Ry,2), and R} = R,, but z ¢ W(R'), since at the only
1 2 .

prices at which z; is a local maximizer of R} on the resulting budget set, the
point 21 is affordable by agent 1 and 2| P/z;.

Hurwicz, Maskin, and Postlewaite defined the concept of the “constrained
Walrasian” solution by having each agent maximize his preferences in the
intersection of his Walrasian budget set with the projection of the feasible
set onto his consumption set, and showed that it is monotonic and that it
contains the Walrasian solution. The result following the definition provides
a formal justification for the introduction of this solution in terms of the
concept of minimal monotonic extension.

Constrained Walrasian solution, CW: Given R € R*, CW(R) =
{z € Z: there exists p € A*! such that for all i € N, and all z! € R* such

that [pz] < pw;, and for some 2’ ; € Ri(n_l), (2},2.;) € Z], we have zR;z!}.

Theorem 2 On R4, the minimal monotonic extension of the Walrasian
solution is the constrained Walrasian solution.

Proof: Given R € R} and z € CW(R) with associated supporting price
p € Al, it is trivial to construct R’ € RY such that z € W(R') and R €
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MT(R',z). For instance, for all s € N, let R, be a linear preference relation
whose indifference surfaces are hyperplanes normal to p- Then, appeal to
Lemma 1. a

Another proof of this result, noted by Hurwicz, Maskin, and Postlewaite
(1995), can be obtained along the lines of Hurwicz (1979).7 Incidentally, on
the classical domain, the constrained Walrasian solution is not a subsolution
of the Pareto solution (on this domain, the Walrasian solution is). Indeed,
in the example depicted in Figure 2, z € CW( 1> R2) (the supporting prices
are normal to the indifference curves through w) but z is not efficient. Any
point of the segment [z, 2] is a constrained Walrasian allocation for R, but
only 2/, which is Walrasian, is efficient.’

Note that on the domain R% > the Walrasian solution is monotonic since
- the corner problems illustrated in Figure 3 do not occur.

At this point, it may also be useful to observe that on the classical domain,
the minimal monotonic extension of any solution satisfying the following
minor condition (Property P in Thomson, 1983; non-discrimination between
Pareto-indifferent allocations in Gevers, 1986), and selects allocations that
Pareto dominate the initial allocation, contains the constrained Walrasian
solution. The condition says that if an allocation is chosen, then so is any
allocation that is Pareto-indifferent to it:

Pareto-indifference: For all R € R" and all 2,2/ € Z, if z € ¢(R) and
2'Iz, then 2’ € ¢(R).

The same statement can be made about solutions satisfying the next
condition (Thomson, 1987), which says that if the initial allocation is efficient,
then the solution selects all the allocations that are Pareto-indifferent to it
(perhaps others):®

"Hurwicz shows that if an upper semi-continuous subsolution of the individual ratio-
nality and Pareto solution is implementable over a sufficiently rich domain (the domain
has to contain linear preferences as well as preferences that are arbitrarily close to being
linear), then it contains all Walrasian allocations. By the same argument, one shows that
in fact it has to contain all constrained Walrasian allocations. The result follows then from
the fact that the constrained Walrasian solution is implementable.

80f course, a constrained Walrasian allocation that is not Walrasian may be efficient.
In Figure 2, if R; is replaced by a linear preference map with steeper indifference curves,
% remains constrained Walrasian without being Walrasian, but now it is efficient.

%In the first case, the conclusion follows from the fact that on the classical domain
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Condition a: For all R € R™, if w € P(R), then p(R) D {z € Z: zlw}.

For public good economies, a similarly defined extension of the Lindahl
solution, known as the constrained Lindahl solution, can be given a simi-
lar justification. Also, the ratio equilibrium solution (Kaneko, 1977), and
recently introduced solutions such as the balanced linear cost share equilib-
rium solution (Mas-Colell and Silvestre, 1989), are not monotonic, but their
minimal monotonic extensions can be easily obtained by requiring maxi-
mization of each agent’s preferences over the intersection of his budget set
as specified in the original definitions of these solutions, with the projection
of the feasible set onto his consumption space (Diamantaras, 1993).

3.3 The essential no-envy solution

The next example shows that the extension required to obtain monotonicity
can bring about a considerable change in a solution. It pertains to an ex-
tension of the no-envy solution, the solution that selects for each economy
its set of allocations such that no agent would rather receive someone else’s
bundle to his own. In private good economies with non-convex preferences,
and even if all other standard properties of preferences are maintained, there
may be no envy-free and efficient allocations (Varian, 1974). To remedy this
difficulty, Vohra (1991) suggested to select the allocations such that for each
agent, there is a Pareto-indifferent allocation at which he envies no-one. He
proved the non-emptiness of this solution under very general conditions. Let
R be the class of preferences defined on RY that are continuous, strictly
monotone on Rﬁ_ + and satisfy condition B (convexity is not assumed any
longer). On this domain the Pareto solution is monotonic.1®

Essential no-envy solution, V: (Vohra, 1991) Given R € R", V(R)
= {2 € Z: for all 2 € N, there is 2' € Z such that 2'Tz and for all J €N,
Z R; 2%} :

A disadvantage of the essential no-envy solution as compared to the no-
envy solution is that it is not monotonic. We show next that the minimal

any monotonic subsolution of the solution that selects allocations that Pareto-dominate
the initial allocation and satisfies Pareto-indifference contains the constrained Walrasian
solution. In the second case, it follows from the fact that any monotonic solution satisfying
satisfying Condition a contains the constrained Walrasian solution.

1950 is the Walrasian solution on the subdomain on which it is well-defined.

11
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Figure 4: Minimal monotonic ertension of the essential no-envy solution (Proof
of Theorem 3).

monotonic extension of its intersection with the Pareto solution can be easily
calculated, at least in the two-agent case. The result is that this extension
almost coincides with the Pareto solution! On the domain considered in
Theorem 3, the only Pareto-optimal allocations that are excluded are the
origins. Let P° denote this “interior” Pareto solution.

Theorem 3 On R?, the minimal monotonic extension of the essential no-
envy and Pareto solution is the interior Pareto solution.

Proof: (Figure 4) Let ¢ = mme(V N P). Let R = (Ry,R;) € R?, and
z € P°(R) be given. If z € F(R), and since p D VNP D F P, then
z € ¢(R). Suppose now that z ¢ F(R) and to fix the ideas, that agent
1 envies agent 2 at z: 2,Piz;. Since z € P(R), then agent 2 does not
envy agent 1 at z (Varian, 1974)."" Let m:R? — R? denote the symmetry
operator with respect to the middle of the Edgeworth box. Let C be agent
I’s indifference curve passing through z, and C' = 7(C). Now, select z' € C
such that 7(2’) be below C. By condition B, such a 2’ exists (any allocation
on the curvi-linear segment connecting a to b would do, where a is the point
of intersection of C' with 7(C) to the South-West of z and b is the point of
intersection of C' with the right side of the Edgeworth box). Let Rf = R;
and R, € R be such that z,2' € P(R') and R € MT(R',2). Since at 2/,
which is Pareto-indifferent to z in R, agent 1 does not envy agent 2, and at

11Varian shows that at an efficient allocation, there is at least one agent that envies
no-one. In our two-person economy, if agent 2 envied agent 1, we could exchange their
bundles and make them both better off.

12



z, agent 2 does not envy agent 1, we have z € (VN P)(R'). Since p D VN P,
z € @(R'). The proof concludes by Lemma 1. O

Note that by contrast with the no-envy solution, Vohra's solution satis-
fies Pareto-indifference. One could ask how much the no-envy solution, or its
intersection with the Pareto solution, differ from what could be called their
minimal Pareto-indifferent extensions: Pareto-indifference being closed un-
der arbitrary intersections, this concept can be defined just as we defined
the notion of minimal monotonic extension. If preferences are strictly con-
vex, then of course, the no-envy and Pareto solution does satisfy Pareto-
indifference. It turns out that otherwise, we may have to add points at which
non only envy is violated, but even the weaker condition of no-domination,
which says that no agent should consume more of every good than any other
agent (Thomson, 1983; Moulin and Thomson, 1988). In fact, given any € > 0,
an example can be constructed so that one may have to add points at which
some agent’s bundle multiplied by the factor € may still dominate the bundle
of some other agent (this is a violation of the condition of e-no-domination
of Moulin and Thomson, 1988). Since the essential no-envy solution sat-
isfies Pareto-indifference, one can deduce from these observations that the
considerable enlargment of the essential no-envy solution that is required to
obtain monotonicity is at least in part due to the enlargment of no-envy
needed to obtain Pareto-indifference. The minimal monotonic extension of
the Pareto-indifferent extension of the no-envy and Pareto solution can be
easily determined, at least for n = 2, by adapting the argument of Theorem 3.

3.4 Egalitarian-equivalence and Q-egalitarianism

Next we consider another solution that has played an important role in the
theory of fair allocation. Say that an allocation is “egalitarian-equivalent” if
there exists a “reference bundle” such that every agent is indifferent between
his assigned consumption bundle and the reference bundle.

Egalitarian-equivalence solution, E: (Pazner and Schmeidler, 1978)
Given R € R", E(R) = {z € Z: there exists z, € R% such that for all
1t €N, z;L;z}. '

It is easy to see that the egalitarian—equivalence solution is not monotonic
and that neither is its intersection with the Pareto solution, with which
Theorem 4 is concerned. For that result, we will find it convenient to consider
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Figure 5: Minimal monotonic extension of the egalitarian-equivalence solution
(Proof of Theorem 4). ‘

the class R* of preferences that are continuous, convex, strictly monotonic
in Ri +» and satisfy condition B:

Theorem 4 On R*™", the minimal monotonic extension of the egalitarian-
equivalence and Pareto solution is the interior Pareto solution.

Proof: (Figure 5) First, note that if R € R** and z € (E N P)(R), then
z € P°(R). Let ¢ = mme(E N P). Now, let R € R*" and z € P°(R). Also,
let p € A*"! be prices supporting z (they exist by convexity of preferences).
Since z € P°(R), then p > 0. Let z € NnL(R;,2) be such that pzy =
max;en pzi. For each i € N, let Rl € R* be such that (i) R; € MT(R., z),
(ii) 2{L;zo, and (iii) p supports the upper-contour set at z;, {2} € R%: 2/R;z}.
Note that z € (F N P)(R'), with reference bundle 2z,. The proof concludes
by appealing to Lemma 1. a

If condition B is not imposed, the result is a little more difficult to state
but the proof is essentially the same. Then, mme( ENP)(R) consists of all the
~‘allocations z at which the intersection of all the lower contour sets contains
at least one point whose value at some prices supporting z is greater than
the maximal value of any of the components of z. Then a profile R’ € R**
satisfying (i), (i), and (iii) as in the proof can easily be found.

A useful selection from the egalitarian-equivalence solution is obtained
by requiring that the reference bundle be proportional to the social endow-
ment. Again, we will also consider its intersection with the Pareto solution
(Figure 6a). It is suggested by Pazner and Schmeidler and it has played an
important role in a number of recent studies.
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Figure 6: (a) Definition of the Q-egalitarian solution. (b) Its minimal monotonic
eztension (Proof of Theorem 5).

The Q-egalitarian solution, Fq: Given R € R", Eq (R) = {#z €
Z:there exists A € R, such that for all : € N, z,;(A\Q)}.

We refer to this solution as “egalitarian” since it involves equating numer-
ical representations of preferences but note that this differs from standard
usage of this term where the utility functions capture notions of intensity of
satisfaction. By contrast, our definition is ordinal. ‘ ‘

We will need the following piece of notation: given R € R**, z € P(R)
and z € N, let )\(Ri,zi) € R4 be such that z,-I,-)\(R,-, z,-)Q.

Theorem 5 On R**, the minimal monotonic extension of the Q-egalitarian
and Pareto solution is the solution ¢ defined by: p(R) = {z € P(R): there
exist supporting prices p € A*"! such that max;en pz; < minjen pA(R:, z:)Q}.

Proof: First, we show that ¢ is monotonic. Let R € R*" and z € ¢(R),
with p € A% as supporting prices. Also, let R’ € R** € MT(R, z). First,
we note that z € P(R') with supporting prices p. Also, for each ; € N,
AR}, z) > MRy, z;). Therefore, maxjen pz; < minien pA(R:, 2;)z;, so that
z € mme(Eq N P)(R').

Next, given R € R*" and z € (R), with p € A*~! as supporting prices,
we show that there is B’ € R** such that z € (Eq N P)(R') and R €
MT(R',z). Indeed the only additional requirement is that that agent i's
indifference curve through z; passes through the point [minjen A(R;, )]0
(Figure 6b). The proof concludes by appealing to Lemma 1. a
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3.5 An equal-gains solution for economies with quasi-
linear preferences

‘We now turn to an examination of the domain of quasi-linear economies and
for this domain, we focus on the solution that divides the gains from trade
equally among all agents. These gains can be unambiguously measured in
terms of the good with respect to which the representations of preferences are
linear. Let s(R) € Ry be the gains from trade achievable in R € Ry Using
the notation introduced when we first defined quasi-linearity of preferences,
s(R) = max{}  ui(z;): 3 2z = Y w;} — ¥ ui(w;). The definition is illustrated
in the two-person case in Figure 7a. Note that the solution is a subsolution
of the Pareto solution.

Equal-gains solution, G: For all R ¢ a GR) = {z € Ziyy(z) =
ui(w;) + s(R)/n}.

For n = 2, the minimal monotonic extension of the equal-gains solution
can be informally described as the solution that selects for each economy the
set of allocations at which each agent’s gain from his endowment is equal
to 1/2 times his gain at a constrained Walrasian allocation. This result is
illustrated in Figure 7b by means of an example R € ’Rg, for which the Wal-
rasian allocation is unique. The worst allocation for agent 1 in mme(G)(R)
is half-way between the Walrasian allocation and the efficient allocation that
is indifferent for him to his endowment.

For n > 2, the construction is as follows (I owe the complete argument
for that case to Eiichi Miyagawa). Let R € Ry, and z* be a constrained
Walrasian allocation for R, with supporting prices p € A*1 Foralli € N, let
ai(R, z*) € R be such that (a;(R, z*), y!)iw;, and Bi(R, z*) = [ai(R, 2*), z}].
Now, let ¢(R) = {2 € Z: there exist z* € CW(R) and b € II1B;(R, z*) such
that z; = b; + Y (2f — b;)/n and y = y*}. Note that ¢ contains CW (choose
b; =z} for all i € N) and ¢ contains G (choose b; = a;(R,z*) for all i € N).

Theorem 6 On Ry, the minimal monotonic extension of the equal-gains
solution is the solution ¢*.

Proof: First, we show that ¢ is monotonic. Let R € R™ and z € e(R),
let ' € MT(R,z). By definition of ¢, there exists z* € CW(R) and b €
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Figure 7: (a) The definition of the equal-gains solution. (b) In the two-person
case, its minimal monotonic extension consists of half of the set of efficient allo-
cations that Pareto-dominate equal division.

IIB;(R, z*) such that z; = b;+ Y (27 — b;)/n and y = y*. Since CW is mono-
tonic, z* € CW(R'). Also, note that for all ¢ € N, B;(R',2*) D Bi(R, z*).
Therefore, b € II B;(R', 2*) and we are done.

Finally, we show that for all R € R"™ and all z € ¢(R), there exists
R € R" such that z € G(R') and R € MT(R,z). Let p be a price of
support to z. For all 2 € N, let R; € R, be the preference relation whose
upper contour set at z; is the intersection of the upper contour set of R; at
w; and the upper contour set at z; of the linear preference relation whose
indifference curves are all normal to p. The proof concludes by Lemma 1. O

Note that in the two-person case, the equal-gains solution coincides with
the Shapley value. Therefore, Theorem 6 tells us how much the Shapley
value has to be modified in that case so as to recover monotonicity. It is an
open question whether a simple formula exists for the Shapley value when
there are more than two agents.

3.6 Two solutions to the problem of fair division in
economies with single-peaked preferences

Finally, we consider the problem of fair division in the one-commodity case
(€ = 1) when preferences are single-peaked (Sprumont, 1991). Let Rsp be the
class of continuous preference relations R; satisfying the following property:
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there is a number p(R;) € Ry such that for all z;, 2! € R, if 2l < z; < p(Ry),
or p(R;) < z < 2!, then 2;P;z!. This number is agent i’s peak. Let Q € R,
denote the total amount to be allocated. .Here too,. the social endowment
is kept fixed and ignored in the notation, so that an economy is a list
R=(Ri)ien € R5p- The feasible set is defined as Z = {z € R}:> 2 =0},

Our first example of a solution is the “proportional solution”, which al-
locates the commodity proportionally to the peaks.

Proportional solution, Pro: Given R € Reyy 2= Pro(R) if z € Z and
there exists A € R, such that z; = Ap(R;) for all i € N; if no such A exists,
z=(Q/n,...,Q/n).

The solution defined below is based on comparing distances from peaks
unit for unit as opposed to proportionally. It selects the allocation at
which all agents’ consumptions are equally far from their peaks except when
boundary problems occur, in which case. those agents whose consumptions
would be negative are given zero instead (Thomson, 1994): :
Equal-distance solution, D: Given R € Res 2= D(R)ifz € Z and
(i) when Q < " p(R;), there exists d > 0 such that z; = max{0, p(R;) — d}
for all : € N, and (ii) when 3" p(R:) < Q, there exists d > 0 such that .
z; = p(R;) +d for all i € N.

Note that both solutions are selections from the Pareto solution. Neither
is monotonic. To describe their minimal monotonic extensions, we need to
introduce the solution that selects all the Pareto-optimal allocations except
for those allocations at which one agent receives the whole endowment (if
it is efficient). Let us refer to this solution as the strong Pareto solution
and denote it by P*. For convenience we will consider the class Rsp4++ of
preferences having a positive peak.

Theorem 7 On R4+ the minimal monotonic extension of the propor-
tional solution contains the interior Pareto solution. On Ry,, the minimal
monotonic extension of the equal-distance solution contains the strong Pareto

solution.

Proof: Let R € R}, ., and z € P*(R). First, we assume that < Y- p(R;).
Let A > 1 be such that Amax z; < Q. Foreachi € N, let R} € Ry, 4+ besuch
that p(R}) = Az; and QPiz;. Note that z = Pro(R') and that R € MT(R,z).
The argument for the case 0 > p(R;) is similar and we omit it. The proof
for the equal-distance solution is similar. O
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4 Concluding comments

We applied the notion of minimal monotonic extension to a variety of eco-
nomic models and showed that the minimal monotonic extensions of a num-
ber of solutions can be easily calculated. We chose the examples so as to il-
lustrate the wide range of possibilities: in some cases the enlargment needed
to obtain monotonicity is quite small (the Walrasian solution, the Pareto
solution). In some other cases, it is considerable (the essential no-envy solu-
tion, the egalitarian-equivalence solution). The extensions needed to recover.
monotonicity of other examples fall somewhere in between (the Q-egalitarian
solution). Therefore, the cost of implementability can be very low or very
high depending on the particular solution that is being considered. It would
be interesting to identify general properties of solutions under which each of
these cases occurs.

Gevers (1986) defined a property related to Maskin-monotonicity: it says
that if z is chosen by a solution for some profile of preferences and preferences
change in such a way that for every agent, z does not fall with respect to any
other allocation in the space over which his preferences are defined, then z.is
still chosen for the new profile. Any Maskin-monotonic solution is Gevers-
monotonic. The difference with Maskin-monotonicity lies in the fact that in
economic models, preferences are defined over a set that is not the feasible
set, and that Maskin-monotonicity only pays attention to the way preferences
change over the feasible set. This property was analyzed by Nagahisa (1994)
and Maniquet (1994). Gevers-monotonicity is also closed under arbitrary
intersections so that we could define the concept of the minimal Gevers-
monotonic extension of a solution in a similar way to the way we defined its
minimal Maskin-monotonic ertension. On the classical domain, the Pareto
solution and the Walrasian solution are Gevers-monotonic.

Finally, we note that instead of enlarging a non-monotonic solution in
order to obtain the property, we may restrict it. Here, we would of course
like to restrict it in a minimal way. That this can be done is a consequence
of the fact that monotonicity is preserved under arbitrary unions. There-
fore, if a solution contains at least one monotonic solution, it has a maximal
monotonic subsolution, which is simply the union of all of its monotonic sub-
solutions.!’? As examples of application, we can show that in the two-person

12Thomson (1994) considers and studies the similarly defined notion of the “maximal
consistent subsolution” of a given solution.
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case, the mazimal monotonic subsolution of the egalitarian-equivalence and
Pareto solution is the no-envy solution. In the case of three or more agents,
the egalitarian-equivalence and Pareto solution contains no monotonic sub-
solution, and therefore it has no mazimal monotonic subsolution.
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