Rochester Center for
Economic Research

Finite Horizons, Political Economy, and Growth

Kanh, James A. and Jong-Soo Lim

Working Paper No. 433
October 1996

University of

Rochester




Finite Horizons, Political Economy,
and Growth

James A. Kahn
Jong-Soo Lim

Rochester Center for Economic Research
Working Paper No. 433

October 1996






Finite Horizons, Political Economy,

and Growth

James A. Kahn

Jong-Soo Lim *

First draft, June 1992
Revised, July 1996

Abstract

This paper analyzes the political economy of growth as an issue of
inter-generational distribution. The first part of the paper develops a
model of endogenous growth via accumulation of knowledge in a
finite-horizon overlapping generations setting. Equilibrium growth is
inefficient due to the presence of an intergenerational externality. We then
analyze the outcome when the planner’s objective mirrors those of the
individuals in the economy. This results in a dynamic game between the
current and future planners in which growth is again inefficiently low
because future agents are unable to reward those currently alive to induce
them to accumulate knowledge. Numerical examples suggest that the
political equilibrium may be only marginally better than laissez—faire.
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In a world made up of individuals with finite horizons. any tradeoff between
the well-being of those currently alive and economic growth will inevitably
involve intergenerational conflict. Without the intergenerational markets needed
to resove that conflict, economic growth enters the arena of political economy.
While it is true almost by definition that a farsighted social planner can
generally achieve efficiency, it is more realistic to consider the behavior of
planners whose objectives reflect that of the population of which they are a part.
Thus we analyze the decisions with regard to growth and intergenerational
distribution of a planner with the same finite horizon as his constituents. The
result is that in the absence of institutions that allow precommitment (or its
equivalent in the form of “trigger strategy” equilibria), the sequence of
finite-horizon planners will enact policies that while better than nothing exhibit
inefficiently low growth.

The first part of the paper develops a simple endogenous growth model in
which the engine of growth is the accumulation of knowledge. We assume that a
higher level of knowledge attained by one generation reduces the cost of
attaining that same level by the next, an externality which has the consequence
that the laissez—faire equilibrium growth rate is inefficient. We then characterize
the set of Pareto efficient accumulation paths and find that there is a continuum
of efficient growth rate-interest rate combinations, the choice among which
depends on the social discount rate. Competitive equilibrium with subsidized or
mandated accumulation of knowledge may give rise to a Pareto efficient steady
state, though for some parameters efficiency requires intergenerational
redistribution.

The main contribution of the paper is to address the question of how a
government whose decision—makers reflect the finite horizons of their
constituents would choose policies that affect the accumulation of knowledge
and of physical capital. Specifically we assume that each government maximizes

a weighted sum of utilities of those currently alive. Policy decisions are modeled



as the outcome of a non—cooperative dynamic Stackelberg game: Each period
the government selects a policy that takes into account the effect (through state
variables) on subsequent policy decisions (and hence on the welfare of the
current young generation). Numerical methods are used to compute equilibria
under specific parametric assumptions. The political equilibrium is generally
inefficient, and only slightly superior to the laissez—faire equilibrium in terms of
- the growth rate.

This paper generalizes an earlier paper (Kahn (1996)) by including physical
capital, a consequence of which is that finding the political equilibrium involves
solving for equilibrium policy functions rather than just numbers. The findings
confirm and indeed strengthen those in the earlier paper. A second contribution
of this paper is that it provides a practical method for solving the problem of
ﬁnite-horizon sequential decision—making in a fully dynamic infinite-horizon
model. Other papers that have addressed related problems have typically
resorted to shortcuts such as looking only at a two—period model, or making
Nash rather than Stackelberg assumptions. The approach adopted here could
have broad applicability for a number of political economy issues, including

fiscal policy, capital taxation, and monetary policy.*

1. The Model

The model adapts the standard neoclassical overlapping generations model of
capital accumulation to incorporate endogenous growth. In a sense it represents
a cross between Diamond (1965) and Uzawa (1965).> Each generation (or
“cohort”) allocates time between labor and the accumulation of knowledge.

Output depends on physical capital and effective labor, and exhibits constant

1See, for example, Persson and Svensson (1989), Persson, Persson, and Svenson (1987),
Cukierman and Meltzer (1989).

2 Azariadis and Drazen (1990) explore different issues with a similar extension of the Diamond
model.



returns to scale. Knowledge is passed (at least to some degree) from one
generation on to the next, along with physical capital. We assume only that a
higher level of knowledge attained in one generation makes it less costly for the
next generation to attain the same level. Thus the fact that the Wright
brothers’ generation discovered how to make airplanes fly did not mean that the
next generation was born with this knowledge, only that it could attain that
knowledge more easily, and without fully rewarding their predecessors (hence the
externality).

We assume that within each period knowledge accumulated by an individual
translates directly into his human capital, Withdut any external spillovers. Hence
in what follows we will speak of knowledge and human capital interchangeably.
There is, however, an intergenerational externality, owing to the nonexcludability
of knowledge across generations. That is, the older generation cannot sell its
stock of knowledge to the young generation. In the model this is simply
assumed, but even if it were technically possible to make the stock of knowledge
excludable, the young have nothing to offer the old in exchange for it.?

Individuals»live for two periods. All individuals within each cohort are
identical. In their first period they allocate time between labor and
accumulation of knowledge. We will refer to the time spent on human capital
accumulation as “schooling”, though a more apt interpretation is the share of
flexible resources (in this case time) that productive individuals allocate to
increasing their knowledge rather than producing. The wage they earn for labor
depends on their accumulated human capital. They allocate their wage income
in the first period between consumption when young and consumption when old.

When old, individuals consume their savings plus interest.

30f course in reality some knowledge is excludable. All that is required for the model is that
some knowledge not be inter-generationally excludable. Intra-generational excludability is just
a simplifying assumption.



Each individual solves the problem

1
Max u(cy:) + T au(cztﬂ)
subject to
cit + Cop1 /(1 +rey1) = wiHL, (1.1)
Ht = g(gt)[_{b—l (12)

where w; is the wage per unit of human capital, H, is the individual’s human
capital stock, H,_; is the average human capital level of the previous generation,
Tt+1 1s the interest rate, and £, € [0, 1] is the proportion of time allocated to
labor. The remaining time 1 — ¢; is allocated to human capital accumulation.
We assume that g’ < 0, that ¢(0) < oo, g(1) > 0, and that v’ > 0, u” < 0. Since
all individuals within a cohort are assumed to be identical, we know that

H, = H,, so we will drop the distinction for the remainder of the paper.

The first order conditions for the individual’s maximization problem are

u'(ew) = (14 o) (1 + repa ) (caesr) (1.3)

and

Etg’(ét) + g(&) = () (1.4)

assuming interior solutions. Thus the individual simply chooses #; to maximize
his earnings w:¢; Hy, given 1.2. The solution to 1.4—and consequently the
equilibrium growth rate—is independent of K, and H,_;.

Output is produced from a constant returns to scale production technology
F(K:, N:£ H;), where N, is the number of individuals born in iperiod t. We

assume that Ny = N;_;(1 +n). Competitive firms maximize profits, taking the



wage and interest rate as given. Defining k; = K;/(N:H,;), and
f(k) = F(kt, 1), profit maximization implies

F'(ke) =14, (1.5)

and

S (ki) — ke f' (k) = wy. (1.6)

Thus the model is a straight generalization of Diamond’s (1965) model. To
reproduce that model we would set g(£) = 1. The equilibrium value of £ would
be 1, the level of human capital would be fixed, and all of Diamond’s results
would follow.

In order to make the generalization interesting, we make one regularity
assumption on g(£). First define £* =argmax £g(£). Then we assume

Al: 0r < 1. ‘
The assumption that g(0) < oo already rules out £* = 0, so A1 guarantees an
interior solution for £.

Equilibrium requires 1.3-1.6 and

Nier + Ny—1cor + Ky = F(Ky, HiNWE) + K, (1.7)

or

cr + Car/ (1 + 1) = He19(L)8(f (ko) + ke — (1 + n)g (bt Voeralin /8] (1.8)

where H;_; and K; are predetermined state variables for period ¢. Since £* is
independent of the state variables, we can fix g(£) and £ Vt. The equilibrium

conditions imply that

co = (1 +n)l" Heke(1 + f'(ky)) (1.9)



o = EHy[f (k) — (1 +n)g(0) ks — kef' (Ke))] (1.10)
ulew) = (L4 ) (14 f/(k)w (L4 n)0 Heprkeya (1+ f/ (ki) (L11)

Given H; ; and k¢, we have H; = g(¢£*)H,_, and equations 1.5-1.6, 1.9-1.11
determine cy, ¢y, ki1, wy, and ry.
We will focus on balanced growth steady states in which k is constant,
under the assumption
V7 /(1 -1/0), if o # 1

log(c) otherwise
In such a steady state, K/N, H, c;, and c; all grow at the rate g(¢) — 1.

A2: y(c) =

Conditional on £*, analysis of competitive equilibrium proceeds entirely as in
Diamond (1965), albeit with a fixed growth rate g(£*) — 1. In particular, the
equilibrium may or may not be dynamically-efﬁcient. We shall see shortly,

however, that the competitive outcome is always Pareto inefficient. We first

analyze the problem of a planner with a fixed social discount rate.

1.1. A Social Planner’s Problem

We first consider the solution of an infinitely lived social planner who discounts
the utility of generations at rate p. At time 1 he chooses a path {c1t, cot, £} from

= 1 to oo to solve the problem

o 1
Max D (1 + p) " N [u(ers) + 1 aU(C2t+1)] (P2)
=1
subject to
Niere + Ny + Kip = F(Ky, HiNiby) + K, (1.12)
H; = H,_19(¢,) (1.13)

given Ky, Hy, and cy;. NV, enters the objective for convenience, but does not

affect the analysis, since it just implies an effective discount factor of



(14+mn)/(1+ p). Thus we will need to assume
A3: p>n
to assure a well-defined problem.

We can set up the following Lagrangian:

L= 332,1+p)"* (Nt[u(clt) + 11a 1+a u(Cop1)]+
)\t[F(Kt7 Httht) + Kt - NtClt - Nt_lcQt - Kt—l—l]—" (114)
Nt[Ht - Ht—lg(gt)])

where A; and p; are multipliers associated with the two transition equations.
The first order conditions for the solution of the optimization problem in

{Kt+1,Ht, Cit, Cot, bty At,m} are

Wlew) = M (1.15)
w(ce) = M(l+a)/(1+p) (1.16)
ANH Py (K NH L) = —piag (6) Hys (1.17)
ANl Fo(Ky, NeHely) = py — proag(lea) /(1 + p) (1.18)
ML+ F(Ky NHE) = Ma(l+p) (1.19)

along with the two constraints 1.12 and 1.13.

Although the adjustment to a steady state is of interest, we will focus only
on the optimal balanced growth steady state in which k and £ are constant.
First, 1.15 and 1.16 imply that the growth rates of ¢;; and ¢y are the same in
the steady state, as one would expect. Also, the homogeneity of F implies that
the rate of growth of per capita consumption is equal to the rate of growth of

human capital. With the CES utility function assumed above, and with



Fy\(K,NtH) = f'(k), F5s(K, N¢H) = f(k) — kf'(k), we have
90" = M/ M1 (1.20)
Equation 1.19 implies that

A/ dpr = [L+ f/(K)]/(1 + p). (1.21)

Hence from equation 1.17 and 1.20 we have py1/p; = (1 +n)g(€)~'/7, which,

after some straightforward substitutions, yields:
1+g'(0)/9(0) = (1 +n)g(e)' 7/ (i +p). (1.22)
Finally, 1.20 and 1.21 imply
L+ f'(k) = (L+p)g(0)°. (1.23)

Equations 1.22 and 1.23 determine the planner’s choice of £, denoted £p, which
in turn determines the optimal growth rate g(£). While 1.23 is a standard
MRS = MRT condition, equation 1.22 equates the marginal foregone output
from additional work to the discounted value of the resulting increased output
the following period, in utility terms.

We can compare 1.22 with the equilibrium condition implied by (1.4),
1+ g'(£)¢/g(¢) = 0. The two conditions coincide when p = oo, as one might
expect, because then f'(k) = oo by 1.23. The optimal and equilibrium growth
rates also coincide when o, the intertemporal elasticity of substitution, is zero.
As o increases the optimal growth rate increases as well, although it is necessary
for p t§ increase with o to keep the maximization problem well-defined. Except
for the extreme cases, the planner’s optimal £ is lower than the equilibrium ¢,

" which means that the optimal growth rate generally exceeds the equilibrium



growth rate for any p < oo.

1.2. Efficient Knowledge Accumulation

The social planner’s optimum yields a particular set of Pareto efficient
allocations associated with different social discount rates, but as is well known
from the work of Diamond (1965), Cass (1972), and others, the fundamental
theorems of welfare economics do not apply to these economies. The competiti.ve
equilibrium need not be Pareto efficient, and the Pareto optima given by the
planner’s problem may not be achievable by decentralized equilibrium. It is also
unclear whether equations 1.22 and 1.23 fully characterize the set of Pareto
optimal steady state allocations, given that they come from a particular
intergenerational weighting schemé.

This section analyzes the relationship between efficiency and equilibrium.
We already know that £* is too large in equilibrium, so our default assumption is
that a planner can impose a choice of £ directly (presumably the efficient choice)
while allowing competitive equilibrium to determine the other endogenous
variables. We will provide an alternative derivation of efficiency conditions for ¢
that are independent of the social discount rate. First, however, we will note
necessary conditions for efficiency of k given a choice of Z.

The work of Cass (1972) and others suggests that a sufficient condition for
dynamic efficiency of the path {K;}, conditional on {£}, is that

t

lim T+ F(k))/[(1 4+ m)g(8)] > 0 (1.24)

s=0

In a steady state this condition translates into
L+ f/(k) > (L4+n)g(f) | (1.25)

which, as we have seen, is satisfied by the planner’s optimum. Also in a steady



state the resource constraint 1.12 becomes

¢+ e/ (1 +m) = HALF(k) + k — (1+ n)g(O)k]. (1.26)

If 1+ f'(k) < (1+n)g(¢), then reducing k would increase steady state
consumption, a contradiction of efficiency.

The characterization of efficiency or inefficiency in {¢,} is v.a problem of a
different nature, because it is no longer just a matter of aggregate consumption
efficiency. We can see from ‘1.26 that given H, ; and K;, maximizing N/, H,
yields the most resources to divide between Cit, Cot, and K;1;. Given any choice
of K41, consumption efficiency would appear to require just such a
maximization, and that is what occurs in the competitive equilibrium. It is easy
to show, however, that this cannot generally be efficient. Suppose we fix cy; and
consider the effects of reducing ¢; below £*. Intuitively, this has zero first order
effect on N4, H,, since we are starting from an interior maximum. Consequently
we can leave ¢;; and K, unaffected on the margin. But it has a first—order
effect on H;, which carries over into ¢ + 1. Hence we can make the individual
born at time ¢ strictly better off, at least insofar as he has some positive
elasticity of substitution between ¢; and c,.

Starting from some path in which £, = £* V#, consider a perturbation of 4,
holding fixed everything but the path of H, and the consumption of cohort t.

The effect on cy; is
deyg/dly = Fy(Ky /Ny, 6.Hy) Hy 1[leg' (€;) + g(£,)] (1.27)
which is zero at £*. The effect on H;y; from the change is
dHyy,/dl, = H,_19(€*)g' (€%) (1.28)
which is positive (for a marginal decrease in £;). Now consider the possibilities

10



for cory1. Even if we have £y, = £*, s = 1,2, ..., which means that H is on a

permanently higher path as a result of the change in £, the effect on ¢y 1 is

degsr1/dls = (Ney1/Ne) Fo (K1 /Newr £ Her ) Hy 1 £5g(£%) g’ (£7) (1.29)

which again is positive for a marginal decrease in £;. Thus we can make the
generation born at ¢ better off without making anyone else worse off.

To characterize efficient growth we can proceed as above, except that we
need to take account of the fact that subsequent generations are made better off.
We need to maximize the increase in cg¢y; as the consequence of lowering 4;,
which means leaving cohort ¢ + 1 no better off. In other words, a path for £ is
efficient if it cannot be altered to increase some cohort’s lifetime utility without
reducing some other cohort’s lifetime utility. So now in considering the effect of
changing £; on cy;1, we will allow for the possibility of lowering ¢;,; so as to
leave all future cohorts unaffected.

Now consider a path {cis, cos, K, Hy, £5}2,. If it is efficient, then we should
not be able to make cohort ¢ better off by changing £;, while leaving subsequent

cohorts no worse off. This will require

’U/(Clt)dclt/dgt -+ (1 + a)_lu/(62t+1)d62t+1/dgt =0 (130)

where dcy;/dl; and dcgsy1/dl; are constructed so as to leave all other cohorts’
consumptions unchanged. Since there is no presumption that £, = £* (in fact we
know that ¢, < £*), we have to take account of the effect on c¢;;. We also want to

increase £, to the point that Hy,, is left unaffected, i.e. so that

dHyy = Hea[g(Cei1)g (€)dl: + g' (L) g(€e)dliin] = O (1.31)

11



This implies
dlyi1/dly = —g(Liy1)g'(£0)/[g' (€es1) 9 (£r)) (1.32)

Also, holding ¢y, fixed, we have
dclt/dﬁt = FQ(Kt/Nt, Eth)Ht_l [Etg’(ﬁt) + g(gt)] <133)

which is positive.

Next we have the effect on cy.,1, which is

degtr1/dls = (Nypr/Ny) Fa(Kyy1/Niia, by Hiy)Hy o (1.34)

X [9()[ler19' (bera) + 9(ler)]dlei1 /Ly + G ()i i19(8esy)]

Substituting for d¢,,,/d¢; using 1.32, and noting that
F3(K:/ Ny, £Hy) = (1 — B;) f(k:), where (3, is capital’s share, we have

deger/dly = —(1+ n)(1 = Ber) f (ko) Hi19(6es1)’d'(8) /9 (bsn)  (1.35)

Consequently a necessary condition for efficient growth is (from substituting

equations 1.33 and 1.35 into 1.30):
() f (k) (1= Bo)[leg' (6) + g(40)] = (1.36)

(1 + )7 v (carp) (1 + 1) (1 = Bep1) f(kes1)9(Pes)?d ()9 (€ri1)

Equation 1.36 is a necessary condition for the path {¢,} to be Pareto efficient,
provided ¢; € (0,1). A similar perturbational argument for K,,; yields another

more familiar efficiency condition:

w(ci) = (L4 @) 7 1+ f/(kerr)]u'(corsr) (1.37)

12



Combining 1.36 and 1.37, we have
(&) (L = Bi)lleg' (8e) + g(£e)] = (1.38)

L+ n)(1 = Besa) f (k1) 9(6ei1)*d (8) /9 (exr) /1L + £/ (kerr)]

The left side of 1.38 is proportional to the change in earnings from a change in
¢;, and the right side is the corresponding discounted change in earnings from

the offsetting change in £;,.

1.3. Steady State Analysis

Now consider a steady state in which £ and k are constant. From 1.38 we have

1+£9'(0)/9(8) = (1 +n)g(0)/[1+ f'(K)] (1.39)

a condition that depends only on the economy’s technology. In fact this
condition is implied by the conditions 1.22 and 1.23, as can be seen by
substituting one into the other. But equilibrium conditions will determine %,
and these will generally depend on preferences, population growth, and
government policies.

Note that 1.39 implies
1+ f'(k) > (1 +n)g(£) ; (1.40)

for any steady state that has positive production. That is, in any efficient steady
state with positive production, k¥ must be strictly smaller than that which
maximizes consumption per worker. This is because 1+ f'(k) = (1 + n)g(f) and
(4.2) together would imply £¢'(¢)/g(¢) = 0, or £ = 0. Consequently if £ is chosen
efficiently, steady state dynamic efficiency in k is assured

How could a Pareto efficient outcome be implemented? Essentially all that

13



would be necessary is some mechanism to control ¢, e.g. “mandatory schooling”,
plus in some instances the ability to make intergenerational transfers. Together
with competitive labor and goods markets, these suffice to bring about a Pareto
efficient steady state. Note, however, that the equilibrium % is normally
increasing in £ (i.e. decreasing in the growth rate). This is because a higher
growth rate causes reduced savings.

We can let 1(£) denote the competitive equilibrium steady state value of k
as a function of an exogenously imposed ¢. Let ((£) denote the steady state
value of k as a function of ¢ that satisfies the efficiency condition 1.39. With
¥(¢) upward-sloping, and {(¢) downward sloping, the intersection yields the
unique efficient steady state (¢, k) under the assumption that a planner chooses

the optimal £ while k is determined competitively.

Example: Suppose f(k) = Ak®, and again assume u(c) = log(c),
g(€) = G(1 — £)%, where v > 1, £ < 1. Figure 1 displays the equilibrium for the
parameters A =20, f=.5,G =2,v =2, and £ = .5 (so g({) = 2/1 — £2). The
efficient £, denoted /., is approximately 0.57, which corresponds to g = 1.65.
With a 25 year time period this would be approximately 2 percent annual
growth. Equilibrium %, on the other hand is 0.71, g(¢*) = 1.41, so growth would
be less than 1.5 percent. Shifts in policy correspond to shifts in ¢(¢), which
would correspondingly shift the efficient £ and growth rate.

To summarize, the endogeneity of growth in this model implies that
equilibrium is always inefficient, but that the way to efficiency must involve
increasing knowledge accumulation, and need not involve reductions in physical

capital.

1.4. Efficient Growth and Policy

Any government policies that affect &k will shift the (£) schedule, implying that

if £ is shifted accordingly to maintain efficiency, that the policies alter the

14



growth rate of the economy. Differences in preference parameters or in
population growth will also alter the efficient growth rate. For example, consider
a pay-—as—you-go social security system. This would be associated with a smaller
steady state value of k, and consequentially the efficient growth rate is smaller
as well. This represents a movement along the Pareto frontier, favoring the
current old at the expense of the young and of future generations.

The same is true of any other policy that affects the equilibrium level of k,
though the model in its present form is not rich enough to permit a variety of
government policies. But, for example, if the government cannot set ¢ but
instead has to achieve a desired value via taxes and subsidies, the ¢ it wishes to
achieve (and consequently the growth rate) will depend, for example, on whether
wages or interest earnings are taxed, and on whether deficit or surplus financing
is used.

The remainder of the paper will drop the assumption that governments
necessarily implement efficiency, and replace it with an assumption that
governments have the same time horizon as their constituents, and act

sequentially and in an uncoordinated fashion to maximize their welfare.

2. Political Economy

The normative implications of the model for government policy are
straightforward, as we have seen. In particular, with the ability to make
lump-sum transfers between individuals, government policy can in principle
attain any point on the Pareto frontier. As a positive matter as well it would
seem that a rational government ought to be interested in efficiency, regardless
of how it chooses to split the rents. When distortions arise from the fact that
individuals have finite horizons, however, it is less obvious that governments
composed of such individuals will necessarily opt for efficiency. First, it might be

necessary that those currently alive collectively appropriate the full gains from



increased efficiency, or else they will lack the incentive to pursue it. Second, the
gains must be distributed among those alive in accordance with the
government’s preferences. Otherwise the government could face a tradeoff
between efficiency and the distribution of wealth.

In this part of the paper the political system is assumed each period to
maximize a weighted sum of the utilities of those currently alive, taking into
account the fact that the same decision process will take place in the next
period, and that the choice today will influence next period’s choice through its
influence on the state variables of the economy. Thus political choice is depicted
as a dynamic Stackelberg game between governments at different time periods.
The decision problem within each period is treated like a bargaining problem,
with the government selecting some point on the contract curve.* A solution
technique is developed to solve for the equilibrium of this game as applied to the
model from the first part of the paper. We assume that the political system
chooses £ and the size and direction of intergenerational transfers.

In general the inability to coordinate with subsequent governments gives rise
to inefficiency in the steady state. It turns out that the government improves
upon the competitive equilibrium, but does not achieve Pareto efficiency. There
exists a steady state policy that would make everyone better off by increasing
growth (at the expense of current output) and increasing transfers to the old.
That policy is not selected, however, because each government cannot coordinate
with subsequent governments to carry out the transfer that results in the Pareto
improvement. In equilibrium some of the gains from growth spill over to those
not yet alive. Consequently governments opt for inefficiently low growth.

The model economy is the same as in Section 1 except that it will now
incorporate an explicit policy of lump-sum intergenerational transfers. The

consumption and savings decisions of individuals are determined in a

- *Majority voting would not be very interesting in this context with only two types of agents.

16



competitive equilibrium in which each individual takes the political decision as
given. The political decision, however, takes into account its effect on individual
decision-making, and hence on the political decision of the next period. We
introduce at this time a minor refinement in notation: k; denotes the aggregate
per capita quantity (which individuals view as exogenous), while k; denotes the
value that a representative individual chooses. Of course in equilibrium the two

quantities are identical. Hence the individual’s budget constraint is
cu + Copr1 /(1 + 1e41) = weHly — 7 Hy + o1 Hy 1 (14 1) /(14 r441) (2.1)

where w; is the wage, and 7; is the politically-determined lump-sum transfer
(scaled by the level of the economy so that 7 will be constant in a
balanced-growth steady state) from cohort ¢ to cohort ¢ — 1 at date ¢.

Market equilibrium requires r; = f'(k;) and w; = f(k;) — ke f' (k). The first

order conditions for the individual’s maximization problem are as before:

w(ew) = (L+a) (1 + f'(kesr) ) (coea) (2.2)

and the budget constraint 2.1. Equilibrium still requires 1.12 and 1.13, the

equations that give the evolution of K; and H;. Consequently we have
e/ Heet = g(8) (G1f (k) = kf (B)] = g(ber) (L4 m)balis = 72)  (2.3)

cot/ Heoy = (1+n)g(6) [Ceke(1 + f'(Ks)) + 7] (2.4)

For a given path of the policy variables 7, and £;, the model can be solved for
the equilibrium path of ki, c¢yy, ¢at, wy, and 7.

The political system at time ¢ is assumed to choose 7; and #; to solve

Max

£e,Tt

(o) + (1= Dluler) + = uleni)] (P2)

17



given k; and H;_;, given 2.2-2.4 and knowing that at ¢ + 1 the same decision
process will determine ¢;,; and 7;41.°> Thus it follows that the political decision
at t takes into account its effect on all future political decisions, since the
decision at t + 1 takes into account its effect on ¢ + 2, and so forth.

The result is a decision for (7, £;) that should only depend directly on &,
H;_, and next period’s decision rule (741,641) = Dopr (koyr, Hy; ...
Consequently we have Ty (ky, Hy_1;Tepq (Eip1, Hy; Tivolkiya, Heyq; ..., ...))- But in
a symmetric equilibrium the state of the system at entering time ¢ is fully
described by k; and H,_, so the equilibrium strategy can be described simply as
r(k, H_.). "

Even so, actually finding an equilibrium policy function remains a difficult
task. It is possible in general only to characterize equilibrium sufficiently so that
numerical techniques can find a solution under specific parametric assumptions.
The results are suggestive of more general conclusions, and in any case can be
compared to the “cooperative” solution of a longer— or infinitely-lived social
planner. We do not address the questions of existence and uniqueness of

equilibrium.

2.1. Solution Technique

The technique for solving the model consists of starting at an arbitrary time ¢
with an arbitfary policy rule I'yy(kyy1, Hy) specified for the next period. This
generates first-order conditions that characterize a pohCy rule

T (ky, Hy 1Ty (keyr, H,;)). This process can be repeated until the function so
generated converges to a rule I'(k, H_;). The iteration process should not be
thought of as dynamic convergence to a “steady state” I'(-) function; it is just an

expositional method for characterizing the equilibrium. The function so

5 Although some types of intergenerational altruism in which agents effectively have an infi-
nite horizon—such as in Barro (1974)—would make this problem completely uninteresting, the
results that follow are not sensitive to the inclusion of a conventional bequest motive.
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computed is valid globally, not just in steady state.

Although both k;_; and H, are state variables, in fact the model has been
formulated in such a way that the two policy instruments ¢, and 7; will only
depend on k;. This is because of the homotheticity built into both preferences
and technology. Substituting 2.3 and 2.4 into P2, we can express the political

decision problem as

Max

Max (L4 n)g () k(1 + £/ (k) + )+ (P2)

(1= O){u(g(Co) el f (Re) — Kef' (Be)] = g(Lesr) (1 + n)kerrbers — 7))+

T au((l +1)g(€)g (Les1) [Lerr ke (1 + f’(/_ft+1)) + 7o)}

subject to 2.2-2.4, given k;, = k, and H,_;, and given 7i11(keyr), Ly (kipn).
Note that 2.2-2.4 determine a function ke (74, Terr (Resn), by, le1(key1)). That
is, individuals choose savings taking policy variables as given. But they know
that k1 = kyi1; hence if 7; or £, change, with perfect foresight consumers take
account of the effect on 7,1 ; through the effect on k1. So to get, for example,

the total effect of a change in 7; on k;;; (and hence on key1), we have

dkyyq _ Okt q 4 [akt—H dZ’t+1 Oki1q d€t+1 5/ft+1} dEt+1 (2 5)
d’f't aTt 3Tt+1 dkt+1 8€t+1 dkt+1 8kt+1 th ’ )
and since d—(’i—tj{—l = é%t‘i, we have
dkt-{—l — 5kt+1 {1 _ 5kt+1 dZ’t+1 _ 8kt+1 d€t+1 . 8]ft+1:l_1 (2 6)
th 57} 87’t+1 dkt+1 8€t+1 dkt+1 8kt+1
We similarly have
dkt+1 _ akt+1 [1 _ 3/€t+1 d’fﬂ—l _ akt+l d€t+1 _ 8lft+1}_l (2 7)
dgt 66,: 8Tt+1 dk)t+1 8€t+1 dkt+1 8k5t+1

for the total effect of 4; on k.
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The effects given by 2.6 and 2.7 will enter the political decision process for
7 and £;. They can be found by differentiating 2.2, and are detailed in the
Appendix. As one would expect, the direct effect of a transfer from young to old
is normally to decrease the saving of the young (i.e. dkty1/dm < 0), while the
effect of increased time working relative to accumulating knowledgé is to
increase saving (i.e. dky1/d¢; > 0), assuming that the marginal effect on current
earnings is positive, which it always will be at the optimum. .

Let 1+ v1 = (1 +n)g9(€y1) and ¢ = ¢'(€:)/g(£;). After some tedious but

straightforward manipulations, the first-order conditions for (P2’ ) turn out to be

B(1 + n)u'(car) = (1 — ) (carsn) X (2.8)

dk i1
dr

de i drist
{(1 + f(keg1)) — (1 + Y1) —— <7t+1Qt+1 as keoilor f7 (Beir) + z—t“) }

dkt—H. dkt+1

and

(1 +n)u'(cae) [(1 + qele) k(1 + f'(Ke)) + Tige) =
(1 = 0)v/ (carr){(1 + f’(km))[—(l +qule) (fe = kef' (Re)) + mqe]— (2.9)
(1 + Ye41) [Qt'rt+1 + fo (Tt+1Qt+1 Ty T lerrkery " (ketr) + 3,5;{—1)]}

Given k; and sufficiently well-behaved functions 7y, (kir1) and lipr(kiv1),
equations 2.2-2.4 and 2.8-2.9 can (in principle) be solved for 7, and ¢, as
function of k¢. An equilibrium is a pair of policy functions 7(k), £(k) such that
if 741 = 7(kiy1) and £yy = £(kyy1), then the 7, and 4, values that satisfy 2.8 and
2.9, given that ki, comes from 2.2-2.4, are 7(k;) and 4(k;).

If we combine 2.8 and 2.9 to eliminate the marginal utility terms we get
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(after some simplification)

L+ 941

1 + tht :- 1 + f’(kt+1)

(2.10)

th dé’t

{“”*“ ’ [“1 a1+ (k) + g } 9

dlyyq dTe1 1
= kio1? "(k =
(Tt+1qt+1dkt+1 + k1 lopr f7 (Feyr) + Do X (f (ko) + k2)

Using the relationship (A3) from the Appendix to eliminate dk.., Jdl; we get

I+ v

1+Qt€t = 1+f/(kt+1)

(2.11)

‘ dk
{‘Qt'rt—f—l + [qlek(1 + f'(Ky)) + Tegs + F(ke) + k] dt+1 X

Tt

dlyiq " ATy 1
= kil k z
(Tt+1%+ldkt+'1 + k1l [ (ko) + T X (f(ke) + k)

Recall again that the laissez-faire equilibrium has 1 + ¢4, = 0, while the optimal
steady state has 1+ g = (14 v)/(1 + f'(k)). The above condition clearly differs
from either of these cases, but it is difficult to say much more than that without
either simplifying the model or looking at numerical examples. We will take the
latter route. See Kahn (1996) for a model without physical capital in which

analytical solutions are possible.

2.2. Numerical Methods and Results

We now turn to solving for the equilibrium policy functions 7(k) and £(k)

numerically. The method to be used here will be to assume that they can be
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approximated by a polynomial. Specifically we will assume that

(k) =3 vn(F) 2.12)
) = S wmi(h (2.13)

where p; is the ith-order Chebyshev polynomial in k£ (with the appropriate
domain adjustment). The Chebyshev polynomials are a family of orthogonal
polynomials defined by po(z) = 1, p1(z) =z, p;(z) = 2zp;_1(z) — pi_s(x), on the
interval [—1,1].

If 7(k) and £(k) satisfy the above, then 7/(k) and £'(k) are defined
accordingly. The solution procedure involves selecting a value of m and finding
values of w and z that approximately satisfy the system (2.8)—(2.9) . Of course
unless the true solution is a polynomial of order less than or equal to m, there
will not be a solution at each stage that holds for all values of k;. A variety of
methods can be used to find solutions that are good approximations. One
convenient method advocated by practitioners of numerical techniques (e.g.
Judd (1991)) is to solve the system exactly at m + 1 points, specifically the roots
of pr11. The accuracy of the fit can than be checked at intermediate points, and
in particular at the steady state value of k.

Results were computed for a the case of Cobb-Douglas production
f(k:) = Ak? and CES utility u(c) = "7 /(1 — 1/0) under a variety of
parametric assumptions. It turns out that relatively low order polynomials (e.g.
m = 4, meaning a cubic equation) provide a good approximation to the true
equilibrium policy functions, at least for k not too small. Figure 2 plots a
representative graph of the steady state equilibrium interest rate 1+ f/(k) and
aggregate equilibrium growth rate g(£.) — 1 against 4. Also plotted are the
steady state efficient growth rate (g(£,) — 1) given the same steady-state k and

the laissez~faire growth rate g(¢*) — 1. (The rates are annualized percentage
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rates based on a 30 year period). The specific parametric and functional form
assumptions are f = 0.3, 0 =1, A =6, n = 0.3, and g(¢) = 21/1 — ¢2. Note that
for these parameters the efficient planner’s problem is only well-defined for

6 > 0.51, because the implicit social discount rate o associated with lower values
of 6 would fall below n, and the maximization problem (P2) would have no
solution.

Figure 3 plots the equilibrium and efficient total growth rates (1 +n)g
against the interest rate, again in annualized percentage rates. The diagonal
dotted line represents the 45° line, so anything to the left of it is dynamically
inefficient. Again the efficient planner’s problem is not defined in that region.
The equilibrium growth rate here is seen only to kick up in the dynamically
inefficient region.

Finally, Figure 4 plots the two equilibrium policy functions (k) and £(k)
for the case of # = 0.6. Note that these policy functions are valid for any value of
k, not just in steady state. At this value of 8 the equilibriuin per capita growth
rate 1 1.34 percent, while the efficient growth rate is 1.75 percent.

The main finding is that for moderate values of § (say between 0.5 and 0.7)
the equilibrium growth rate falls substantially short of the efficient growth rate.
This is because the equilibrium growth rate is essentially flat with respect to the
interest rate, hence there is no & for which the equilibrium growth rate would be
efficient. For the case plotted in the figures the per capita equilibrium growth
rate hovers at about 1.3 percent aH but extreme values of §, while the efficent
rate varies between 1.5 and 2.3 percent. By comparison, the laissez—faire
equilibrium growth rate is just under 1.2 percent. Similar results were obtained
for a variety of parameters.

The intuition for the qualitative result is that the benefits of growth largely
spill over onto subsequent generations. There is no mechanism available by
which a subseqent generation can commit to reward the previous generation for

its sacrifices. To some extent each generation can extract some reward for growth
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via its influence on subsequent policy decisions through the state variables of the
economy. The government is assumed to exploit this to the extent possible in
choosing a point along a pseudo—Pareto frontier. In the examples computed this
effect is rather meager, and leads to only a slight improvement over laissez— faire.
The other notable feature of the numerical results is that the equilibrium
£(k) function is virtually flat, and that steady state £ also does not vary much
with 6 or with k, in or out of steady state. This would appear to rule out
explaining differences in growth rates by differences in social policy preferences
(as represented by ), in contrast to the infinite horizon case where the social

discount rate matters a lot.

2.3. Trigger—Strategy Equilibria

As in Kahn (1996), the analysis would not be complete without some discussion
of trigger—strategy equilibria. It is clearly possible to sustain an equilibrium that
is superior to the Markovian outcome if appropriate out—of-equilibrium beliefs
are specified. In particular, the efficient solution is a trigger—strategy subgame
perfect equilibrium under the following beliefs: If the planner at date ¢ deviates
in any way, subsequent planners revert to the Markovian equilibrium.Given
those beliefs, the best deviation a planner could make is the Markovian
allocation itself, which is demonstrably inferior to the efficient solution. So no
planner would chose to deviate, and the efficient alllocation is sustained.

Thus such a trigger-strategy equilibrium is effectively equivalent to having
a planner with an infinite horizon, or one who can commit future planners to a
particular path of policies. The problem is obviously that it is only one of many
equilibria, and whether one wants to contrast the Markovian equilibrium with
the trigger—strategy efficient outcome or with the infinite-horizon planner, the
basic point is the same: More than one outcome is possible, and some are
distinctly inferior to others. Moreover, the trigger-strategy equilibrium suffers

from the conceptual drawback that it relies on the belief that a deviation will
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give rise to a punishment that—if the deviation were to occur—would be

undesirable to carry out.

3. Discussion and Conclusions

This paper has developed a model of sequential government decision-making in a
finite-horizon setting, and applied it to a simple endogenous growth model. The
approach yields explicit policy outcomes in equilibrium, and we suspect that it
could be useful for a variety of policy questions beyond those addressed here.
Each government’s objective mirrors the objectives of the individuals currently
alive. Each rationally takes its effect on subsequent governments’ actions into
account when making its policy decision. We have limited our attention to
Markovian solutions, i.e. those in which policies only depend on the state of the
economy.® While this ignores potential history-dependent equilibria that involve
(for example) trigger strategies, the Markovian solutions have the virtue of being
renegotiation—proof. Nonetheless we expect that analyses of history-dependent
equilibria may prove useful and would be interesting topics for future research.
The lack of coordination in this model has symptoms that are similar to
those from more familiar models. In monetary models (e.g. Samuelson (1958))
each young generation’s willingness to accept money for goods is dependent on
their belief that the subsequent generation will accept‘it from them. In the
capital accumulation model each young generation’s willingness to transfer
wealth to the old is dependent on their belief that the same thing will happen in
the subsequent time period. The ability to bind subsequent generations does not
in itself induce the socially desirable outcome in the current period. Indeed the
fact that subsequent governments are bound to their policies (or that subsequent
beliefs are independent of whatever happens in the current period) makes it all

the more tempting for the current young to exploit the situation. In the

6See, for example, Kotlikoff, Persson, and Svensson (1988).



monetary model they could consume all of their endowment, and then
reintroduce money in the following period. In the capital accumulation model
the young could refuse to transfer to the old, and then still obtain transfers the
next period by virtue of the government’s being bound. In other words, the
incentive to deviate is present with or without precommitment. By themselves
(i.e. without some kind of mechanism to resolve the mtergenerational conflict)
these models are not equipped to deal with the types of positive policy questions
addressed in this paper.

The inability to coordinate is the crucial factor that leads to inefficiency in
equilibrium. Even if each government ignored its effect on subsequent
governments’ decisions the outcome would be inefficient. Indeed in numerical
solutions it appeared that the likelihood of inefficiency was actually greater
under the naive behavior than under the more sophisticated. The naive behavior
is analogous to the Cournot assumption in models of imperfect competition,
where each producer takes the others’ quantities as given in its own quantity
decision. The sophisticated behavior corresponds to the Stackelberg assumption
that one producer can act first and take the others’ responses into account. As
in the imperfect competition models, in which neither Cournot nor Stackelberg
maximizes joint profits, here neither the naive nor sophisticated behavior
necessarily guarantees efficiency. Only full cooperation accomplishes that. But
surely between the sophisticated, Stackelberg-like behavior and the the naive
Cournot-like behavior, the former is a priori the preferred assumption.

The more fundamental question is whether this model has anything to say
about differences in growth rates across countries. Clearly if the model is simply
applied to all countries, then all should have the same low growth rate, since
differences in policy preference parameters appeared to have little effect on the
equilibrium growth rate. What the analysis suggests, rather, is the possibility
that the model might apply more to some countries than others, perhaps

because of differences in political stability. A country that can set up a stable
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intergeneral redistribution institution that rewards human capital accumulation
appropriately can clearly do better than one that cannot. Endogenizing the
ability to create such an institution is beyond the scope of the present paper,
but certainly a stable political system would be one ingredient.

In terms of empirical support, we know that less developed countries have a
significantly higher return to human capital accumulation (e.g. the return to
schooling) than developed countries (see Psacharopolous (1973)). Kahn (1996)
provides additional evidence that measures of schooling and human capital
investment are negatively related to political instability, even after controlling
for income level.

If developed countries have overcome this obstacle, it must be either the
result of institutions that allow those who accumulate human capital to recoup
more of the benefits, or the result of a longer horizon. But it is doubtful that
redistributional mechanisms such as Social Security serve the purpose of
inducing human capital accumulation. Moreover, rapid growth in developed
countries preceded the development of such institutions. So it is probably hard
to sustain the case that the redistributive mechanism itself is crucial.
Institutions that enhance property rights to knowledge may be more important.
This research shows, though, that a finite horizon has potentially catastrophic
effects on growth, and that the ability to set up institutions that overcome this

by appropriately rewarding human capital accumulation may be important.
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Appendix
Each of the components of 2.6 and 2.7 can be found by total differentiation
of 2.2. After converting second derivatives of utility into relative risk aversion,
and substituting 2.2 in various places, we get

dky iy
1 = —
( +’Yt+1) dr, @t+1/

, d
{(1 + (k1) + or1) (€t+1 + (1 + qee1bes1)keya dEt+l> + (A1)
t+1

d€t+1 ATy

Tt4+1Gt+1 = — + f" (k1) o1 b — o(yprker + o1 /[1 + f,(kt—l—l)])]}
dkiyr dky
and
dkitq
1 —
(14 941) a0,
Prr1 (1 + qle)(f (ke) — ke f' (ke)) — Glg(Les1)leqikrir (1 +n) + 7)) —
(1 + Y1) @ellerabra (1 + f'(kugr)) + 71 (A2)
’ d£t+1
(1 + (k1) + @eg1) | Losr + (1 + ger1bi41) kern T +
-
at dm "
Ter1@ep1—= + == 4 [ (key1)liprkres — o (boprke + Te1/[1+ f'(kt+1)])]}
dkiy1  dkeyy

where 1 + y11 = g(lip1)(1 + 1), g = 9'(¢)/g(4:), and
¢r+1 = [(1+ f'(ks41))/(1 4+ @)]°. Further manipulations of the numerator of (A2)
(using the fact that ;41 also equals cyyp1/c1) lead directly to the result that

k1

! dkt-ﬁ-l
di, = “[f(kt) —kif (kt)]

th

(A3)
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Figure ]

Efficient Growth and Competitive Equilibrium
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Figure 2: Equilibrium versus Efficient Growth Rates.
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Figure 3: Equilibrium and Efficient Growth vs. Real Interest Rates
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