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Monotonicity Properties of Bargaining Solutions

when Applied to Economics

1. Introduction. Bargaining theory is concerned with the
formulation of rules to select, for each bargaining problem
(S,d)--where S is a set of feasible alternatives and d is the
disagreement point, both being given in the utility space--a point
of S, suggested as a compromise among the agents' conflicting
interests. Various such rules, or solutions, have been proposed,
starting with Nash's solution (1950), defined in his seminal
article. Other solutions were introduced later, the solutions
proposed by Kalai-Smorodinsky (1975) and Perles-Maschler (1981)
being important alternative ones.

Various properties of solutions have been extensively
studied. Of particular interest are monotonicity properties, an
example of which is the property which we will call 'strong
monotonicity:'" the solution F is strongly monotonic if, given two
problems (S,d) and (S',d') with S' containing S and d=d', the
compromise F(S',d') specified for (S',d') dominates the compromise
F(S,d) specified for (S,d). It is known that none of the three
solutions mentioned ea}lier satisfy this property. We are
interested here in finding out whether such negative results are
preserved when the solutions are applied to economics.

First, we should say a few words on how solutions can be
applied to economics. An economic problem of fair division is

given by specifying a 1list of agents equipped with utility
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functions, together with an aggregate endowment: The agents have
"equal rights" on the resources and the aim is to determine
allocations at which all these rights have been properly
recognized. A solution F to the bargaining problem can be used to
solve an economic problem of fair division by simply taking S to
be the 1image in the utility space of the set of feasible
allocations and d to be the image of the zero allocation, solving
(S,d) according to F, (this of course requires that some
regularity assumptions be satisfied by the economy under
consideration), and finally selecting the allocations whose images
in utility space coincide with F(S,d).

In such a context, the typical c¢ircumstance that would cause
expansions of opportunities as described in the formulation of the
property of strong monotonicity is an increase in the aggregate
endowment, and the property of interest is whether a given
solution would respond to such a change by recommending that all
agents benefit from it. Of course the monotonicity properties of
solutions when applied to bargaining problems as compared to
economic problems need not be the same, and our object is to
determine the extént to which properties will carry over.

Billera and Bixby (1973) establish conditions under which a
bargaining problem can be seen as the image in the utility space
of some economic problem, but their results are not relevant here,
and this for two reasons. First of aill, one of their conditions

is that the number of commodities available be not too small in

relation to the number of agents, while we would like to analyze



economies with no a priori restrictions on the numbers of
commodities and agents. Second, and more importantly, what we
would really need are results on pairs of problems: taking as an
example the property of strong monotonicity discussed above, in
order to be able to deduce whether a given solution satisfies it
when applied to economics, from the knowledge that it does or does
not satisfy it on the domain of abstract bargaining problems, we
would have to be able to answer the following question: given any
two bargaining problems with one containing the other, under what
conditions can these problems be seen as the images in the utility
space of two economic problems with the same agenté but with two
different aggregate endowments, one dominating the other,.
Questions of this type have, to our knowledge, not been analyzed
in the literature. One can guess that conditions on the number of
commodities would appear here just as they did above. For these
reasons, we will address the question that interests us directly.
This issue concerning the number of commodities is of great
“interest. Indeed, the most widely discussed problem of fair
division is the so-called 'divide the dollar game" (see Luce and
Raiffa (1957)) in which two agents can receive a dollar if they
agree on a way to divide it and nothing otherwise. It is
important to know whether the insights that have been gained by
the study of this canonical problem extend to more general
situations and in particular to the case of more than 1 good and 2

agents.
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As it turns out, as shpwn here, the divide the dollar game
is indeed exceptional: bargaining solutions tend to behave quite
well in that case; however, as soon as the number of commodities
is two, solutions are much less well behaved. |In particular, the
Nash and Kalai-Smorodinsky solutions, although they are strongly
monotonic in the one-commodity, two-person case. lose this property
as soon as the number of commodities increases to two. The
Peries-Maschler solution fares the worst; it is not strongly
monotonic even in the one-commodity case. Similar results are
obtained for two related but weaker properties that we also
consider: '“individual monotonicity'" and ‘'weak monotonicity."
These properties pertain to situations in which exbansions in the
feasible set are constrained, as would result when agents are
initially safiated. A final property we study is 'population
monotonicity,'" i.e. whether an increase in population size,
unaccompaniéd by an increase in resources, causes all agents
originally present to share the burden of supporting the
newcomers. There again the Nash solution behaveswell in the one-
commodity case but nqt as soon as the number of commodities is
greater than oHe. (The Kalai-Smorodinsky solution behaves well in
the general class of bargaining problems, as discussed in Thomson
(1983) .)
These results should help <clarify the wusefulness of
bargaining solutions in solving economic problems of fair
division. They show the fallacy of relying on the 'divide the

dollar game" as the main paradigm and identify £ = 1 as the exact
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boUnd on the number of commodities beyond which solutions start
behaving in the way they do for abstract bargaining problems.
Since the Egalitarian solution trivially satisfies all of tHe

properties, our result should reinforce its appeal.

2. Definitions. Notation. E(£,n) is the class of exchange
economies with £ € N' commodities and n € N agents; in which each
agent is characterized by his consumption set ﬁﬁ and his utility
function u;: aﬁ - ﬁt’ which is continuous, concave, non—const;nt
and non-decreasing and satisfies wu;(0) = 0. Q € ﬁ{ is the
economy's aggregate endowment. A typical element of E({£,n) is
denoted (u,) with u = (u],...,un).

An n-person bargaining prdb/em is a pair (S,d) of a convex,

compact subset S of Rn

and of a point d € §, strictly dominated
by at least one point of S. Each point of S is a utility vector
attainable by the n agents through some joint action, and d, the
'"disagreement point", is the utility vector that would result if
the agents failed to reach a compromise among the points of S. An
n—person bargaining solution or simply a solution is a function
defined on the class Zn of these problems, which associates with
every (5,d) € Zn a point of S, interpreted as the recommended
compromise.

Solutions can be applied to the problem of fairly dividing a
bundle § among n agents with wutility functions Uyseeesl, as
follows. Given (u,Q) € E(e,n), let
Y(u,Q) = {x = (X, .0000x,) E aﬁn|2xi < 9}2 be the set of feasible

allocations of (u,) and let S g;&ﬂfand d € 8-2 be defined by



{UE QNI x €Y(WUQ s.t. Vi, ujlx;)) =y
0

e

Note that (S,d) is an element of " if © > 0 so that given

a solution F, F(S5,d) can be determined. The allocations
x € Y(u,Q) such that u(x) = F(S,d) are called the F-allocations of
(u,). They are the allocations recommended by F for (u,).
With a slight abuse of notation, the set they constitute is
denoted F(u,f), just as the utility vector was denoted F (S,d).

Under the assumptions imposed above on economies, more can
actually be said about the set S associated with any economy
(u,Q) € E(4,n): S is comprehensive (i.e. for all u, u' € a:, if
U€ES and U 2Uu', then U' €S). Since we are interested in
problems obtained in this way, we explicitly introduce the class
22 < " of "economic" problems: such a problem is a subset S of
82 which is convex, compact and comprehensive and contains at
least one point strictly dominating the origin. Note that the
disagreement point is omitted from the notation. It should be
understood to be the origin.

The set of Pareto-optimal points of S is denoted PO(S); it
is defined by PO(S) = {u € S|z u' € S with u} 2 u; for all i and

ui > Gi for some i}.

The domain 22 is of particular interest not bnly because it
arises naturally from an examination of economic problems but also
because solutions are often better behaved on it than on Zn. in
particular, all the solutions that we will consider select weakly
Pareto-optimal, and usually Pareto-optimal, points on this domain.

The other properties of solutions that will be central to our

analysis are:



7
strong monotonicity (S.M.): For all §,5' € Z] with S$'DS,
F(S') 2 F(S).
individual monotonicity (1.M.): For all §,S' € 22 with S' DS, for
all i, if {u€ sSlu, =0} = {0 € S'|u;, =0}, then F,(S') 2 F;(S).
weak monotonicity (W.M.): For all §,5' € ZJ with $'3 S, if for
all i, max{u,|u € S} = max{u;|u € S'}, then F(S') 2 F(S).

Note that S.M. implies |.M. and W.M. and that if n=2, |.M.

nEIN

implies W.M.
The last property concerns solutions that are defined on U
Zo.

population monotonicity (P.M.): For all n,n' €N with n>n', for

all  sezl, s exl, if S ={'eg)|FTES with

ul = u; Vi g n'}, then F;(S) £ F,;(S') for all i g n%

These four properties were respectively introduced by Lluce
and Raiffa (1957), Kalai and Smorodinsky (1975), Roth (1979) and
Thomson (1983).

Next, we define the solutions on which our analysis will
focus.

Given S € £7, for the Nash (1950) solution, N(S) is the
unique maximizer of I x; for x € S; for the Kalai-Smorodinsky
(1975) solution, K(S) is the maximal point of S on the segment
connecting the origin to the point a(s) where
a; (S) = max{u;|u € S}; for the Egalitarian solution, E(S) is the
maximal point of S with equal coordinates; for a Utilitarian

solution, U(S) is a maximizer of Zx; for x € 5; finally, for the

Peries-Maschler (1981) 2-person solution, and assuming that § is
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polygonal, PM(S) is the first point in common of the sequences
{p} and {Bk} constructed as follows: Ay and By are the points of
PO(S) the closest to the 1°% and 2™ axes respectively; A; and B,
are the points of PO(S) such that (i) the segments [AO,A]] and
[By:By] are contained in PO(S), (ii) they do not overliap, although
their endpoints A, and B, may coincide, (iii) the areas of the
right-angle triangles with hypothenuses [AO,A]] and [BO,B]] are
equal and maximal; ...; Ak and Bk for k=2,..., are defined from
Ak-] and Bk—] in 2 similar way. This construction is illustrated
in Figure 1 with an example for which the limits of the sequences
are obtained in three steps. (The definition of PM(S) when S is
not a polygonal problem is given by a limiting argument involving
approximations of S by polygonal problems; here we will need only

polygonal problems.)

Uz 'y

A3=B3=PM(S)

PR

Figure 1
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in the economic context in which we are placing our analysis
of monotonicity properties of solutions, the parameter changes
that are of interest are increases and decreases in §, keeping
the number of agents constant for the first three, and increases
and decreases in the number of agents keeping  constant for the
last one. An increase in §) leads to an expansion of the feasible
set as described in the hypotheses of S.M. I1f each agent i
satiated at ), the hypotheses of W.M. . =~ will be satisfied.
Finally, an increase in the number of agents accompanied by no
change in § and no external effects will Jlead to expansion as

described in the hypothesis of P.M.

3. The results. First, we consider the Nash solution. It is
known from Kalai and Smorodinsky (1975) that if n=2 the Nash
solution is not weakly monotonic and therefore not individually
monotonic and g fortiori not strongly monotonic. However, when
applied to economic division problems with one commodity, it is
strongly monotonic, and this independently of the number of
agents. Unfortunately, this result does not extend to the case of
more than one commodity, and even weak monotonicity is violated as
soon as there are two commodities. These negative results hold as
soon as n 2 2.

Theorem 1. The Nash solution is strongly monotonic on E(1,n) for
all n.

Proof. For simplicity we consider an economy {u,) € E{(i,n) for
which atl utility functions are differentiable and increasing.

(The other cases can be dealt with by an approximation argument
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making use of the fact that the Nash solution is continuous).
N(u,) is obtained by maximizing Iu;(x;) in x € 62 subject to

Zx; = Q. This problem is solved by requiring that

ui (x;) uj(xj)
(1) = for all i,j and Zx; = Q
U|(XI) UJ(XJ)
Since each u; is concave and increasing, each function

uixg) .
g;: R4 > R defined by g;(x;) = uf s decreasing. If @
| |

increases, (1) can be preserved only if all X; increase, which
implies that all agents gain.

QED
Theorem 2: The Nash solution is not strongly monotonic on E{£,n)
as soon as (£,n) 2 (2,2).
Proof. (i) The main step of the proof consists of an example with

(4,n) = (2,2), illustrated in Figure 2. The other values of

(¢,n) are dealt-with later.

u2 A
1
0.8660 | L R :
0.8488,-~2::f.:--1:::r':;:|
l -~
! E : u1u2—1.67
1 -~
. ! u,u,=1.29
b : '
G :
[ 1l t §
+ 1 { 1 -
0 1 L2 1.5 1.9 2 2.64 Ty
Figure 2

Let UpsUy: ai + R, be defined by
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At first, we assume that Q = (1,1). N(u,) is obtained by

solving

max uy(x;)uy(xy) st xy + x5 5 (1,1).
X],Xz

Since Uy is independent of X595 and u, is increasing in X129

solving this problem requires setting X9 =0 and x;, = 1. We are

led to solving

max (X::{z + ‘) (] = X]])]/z s.t. O é X"] é 1.

X1

After differentiating, we obtain the equation in X1
1/2 =

2X'|'| + X'I'l -1 =0
whose unique positive solution is

Xyq = /4.
Then X9y = 3/L and the agents' utilities are u; = 1.5,
up = ¥2 & 0.8660.

Next, we assume that § increases to ' = (1,(1.2)“). An

analogous reasoning leads to the problem

max (1.LL x}{z + 1.2y (1 - x]])]/z s.t. 0 g x4 1,
X
11

which yields the equation in xj,
2.88 xqp + 1.2 x192 - 1.4k = 0
whose unique positive solution is
X1y = 0.2796.
The utilities are then u; = 1.9614 and Uy = 0.8488. Agent 2 has

lost in spite of the increase in the social endowment. This

concludes the proof for case (i).
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(ii) Next, we take care of the case n > 2. Let S and S' be
the problems obtained in (i) for § and Q' respectively. We now
introduce n-2 additional agents with utility functions u,: ai 2> K]
for 2 < k £ n, defined by

] T+ X T X g < e

up (x) =
1 otherwise
where ¢ > 0. (The motivation for introducing such agents is that
they become satiated quickly if ¢ is small so that small amounts
of resources will ever be allocated to them by any solution
satisfying Pareto-optimality, such as the Nash solution. Thus
their presence will hardly disturb the problem faced by the agents
originally present).

First, let T € 32 be defined by T = {u € BQI(G],GZ) €S,
u €1 Vk>2}. T is a truncated cylinder with base S; it is
represented on Figure 3 in the case n = 3, for which k takes only
the value k = 3.

Now it is easily checked (see Thomson (1984) for a study of
related properties of solutions) that N(T) projects onto the
coordinate plane pertaining to the original two agents at N(S): in
fact Ny(T) = Ny (S), N,(T) = N,(S) and N (T) =1 for all k > 2.
Similarly, if T' is constructed from S' in the same way T was
constructed from S, we have that N, (T') = Ny(S'), No(T') = N,(S')
and N (T) =1 for all k > 2.

Let T¢,T'€ ¢ 22 be the problems derived from the economies

with utitity functions U, u, and df for k > 2, and aggregate

endowments = (1,1) and Q' = (l,(].Z)h) respectively. Note that
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H
' N(S)
T
T N(T
S 1
i
=3
Figure 3
as € 20, T€ 5T and T7'€ 5 T'. Since the Nash solution is

continuous, we have that N(T€) - N(T) and N(T'€) - N(T'). Given
that N, (T) = N, (S) > Ny (T') = N,(S'), we obtain that for e small
enough, N2(Te) > NZ(T'G), the desired conclusion.

(iii) We conclude by examining the case 4 > 2. To that
effect, it suffices to modify the example of (ii) by introducing
utility functions Vi Rﬁ + R, related to the u; defined earlier by

vi (x;) = u; (x;4,x;,) for all x; € aﬁ and for all i,
since this choice will leave unaffected the problems T and T', T€
and T'€,
QED
Remark 1. The example of (i) can be modified to show that the
Nash solution does not satisfy weak monotonicity either on E(2,n)
for all n 2 2; it suffices to replace Uy by w, defined by:

w](x]) = min{u](x]),z} for all x; € ai.
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The derived S and S' are such that S = S while S' is obtained
from S' by a truncation by a vertical line of abscissa a](S).
(Reca]l that a,(s) = max{ﬁi|u € S}.) Obviously N(g) = N(S) and
since N,(s') < a,(s), N(S') = N(S'). The claim is proved by
noting that a(g) = a(g').

Remark 2. It is conceivable that the imposition of additional
conditions on the utility functions would permit to extend the
positive result of Theorem 1. We have determined that if the
utility functions are separable additive, the Nash solution is
strongly monotonic for (£,n) = (2,2) and (£,n) = (3,2). It is an
open question whether this result extends to other values of
(£,n).

Remark 3. Theorem 1 can easily be generalized to the case of
solutions defined by the maximization of a function of the form

Zf; (u;) for u € S,

where each f; is concave. This family of solutions include in
particular all CES solutions. (Solutions obtained by maximizing a

function with constant elasticity of substitution.) The

Utilitarian solution is covered by such a generalization.

Next, we turn to the Kalai-Smorodinsky solution. Although
this solution satisfies individual ﬁonotonicity (it is principally
on this fact that Kalai and Smorodinsky based their
characterization of the solution for n=2) and weak monotonicity,
it violates strong monotonicity. We show here that it does
satisfy strong monotonicity on E(1,2) but not on E(£,n) for any
other pair (£,n). This is in unfavorable contrast to the Nash

solution.
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Theorem 3. The Kaliai-Smorodinsky solution is strongly mo;otonic
on E(1,2).
Proof. For simplicity, we consider an economy (u,Q) € E(1,2) for
which the wutility functions are twice differentiable and
increasing (the other cases are dealt with by making use of the
continuity of the KS solution). Then K(u,f) is obtained by

finding the unique x € ﬁi such that

uy (xy) uy (x5)
(n) = s.t. Xy + x, =Q
u](Q) uz(ﬂ)

Let  (x;(Q),x,(2)) be the solution to this equation. By
substituting into (1) we obtain an identity both sides of which

can be differentiated with respect to §, yielding a second

identity
(2) f1(Q) = f,(Q) where
ul (x; (Q)) u; (x; (@)
fi@ =———— xj (@ - ———— uj(@ for i =1,2.
u: () (u; (@)

Suppose now that xj(Q) < 0 for some Q. Since x;(Q) + x,(Q) =1
for all @, we conclude that xj(Q) + x5(@) =1 for all Q.

Therefore xé(Q) > 1. Since U, is concave and

X9 Q) L9, 2

This, in conjunction with x;(Q) > 1 yields that fz(Q) > 0. But
if xj(@) <0, f,(Q) < 0. These two statements on the signs of

f,(Q) and fz(Q) are incompatible with (2).

QED
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Theorem 4. The KS solution is not strongly monotonic on E(£,n)
whenever (£,n) ¥ (1,2).
Proof. (i) We first prove that the KS solution is not strongly
monotonic on (1,3). The proof is by way of an example. Let

UpsUp,ug: R, ° &, be defined by

b ox, if O0gxy8 5
uy (x)) = 401/72) x; + 35/2 if 5 g x; g25
30 if 25 g x,
2 x, if 0gxys10
uy (xy) =
He (2/3) x5, + 40/3 if 10 g x,
2 X3 if 0g X3 £ 10
uz (xz) =

(2/3) X3 + Lo/3 if 10

A
bad
w

First, we assume that = 25. We claim that the KS allocation is

(5,10,10) . Indeed,

= = 20/30
Uy (25) Us (25) U3 (25)

and feasibility holds.

Next, we increase § to Q' = kL0. Then u, (LO) = 30,
u, (40) = u3(b0) = 40. The new KS allocation x = (x],xz,x3) has to
satisfy

U](X]) U,y (Xz)_ U3(X3)

and x; + X, + X, = 40.
1 2
30 40 Lo 3

Since agents 2 and 3 are identical and the KS solution treats
identical agents identically, Xy = X3 and therefore x; = Lo - 2Xo .
We can determine the KS allocation by solving the following

equation in Xt
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L(b0-2xy)  (2/3)x,+40/3

30 Lo
The solution is x, = X3 o 17.647 and X| 4,706. This is the
desired result; since agent 1 has lost as resources increased from
Q to Q'.
(ii) Next, we take care of the case (1,n) for n > 3. Starting
from the 3-person economy (u,Q) defined in step (i), let S be its
utility feasibility set S; and let us add n-3 new agents with

utility functions ug: R, » R, for b < k g n, defined by

1 .
-E‘Xk if 0_

A
bed
>
BA
o

up (x,) =
1 if e

nA

As ¢ » 0, we find that the enlarged economy yields a utility
feasibility set T€ which converges to T = {x € an|(x1,x2,x3) £ S,
x, =1 for all k > 3}. Also K(T€) - K(T), since the KS solution
is continuous. The other steps of the argument are analogous to
those in (ii) of the proof of Theorem 2.

(iii) The case of arbitrary £ and n > 3 is treated as in (iii) of
the proof of Theorem 2.

(iv) Finally, we discuss the casé (£,n) = (2,2). The proof is by
way of an example, the same as the example used in step (i) of the
proof of Theorem 2. First, we assume that = (1,1). Then

uy(Q) = 2 and u,(Q) = 1. The KS allocation satisfies

/2 1

= (]'X]]) 1/2
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since u, is independent of X929 and therefore x,, should be set
equal to O, and x;, to 1. Solving this equation vyielids
Xy = 0.36, x5, = 0.6k, and corresponding utilities u; = 1.6 and
u, = 0.8.

Next, we assume that  increases to ' = (1,(1.2)“). An
analogous calculation leads to the KS allocation X1y = 0.3768,
X9 o 0.6231, X19 = (1.2)“ = 2.0736 and X599 =0, and
corresponding utilities u; ~ 2.0840, u, ~ 0.7894. Agent 2 has

lost as resources increased from  to Q'.-

QED

Finally, we consider the Perles-Maschler solution. This
solution satisfies very few of the properties that have been
advocated in bargaining theory. The unsatisfactory behavior of
the solution is confirmed here since, even if (£,n) = (1,2), it
does not satisfyW.M. We do not consider the case of more agents
since the generalization of the solution to that case has not
appeared in print.

Theorem 5. Thé Perles-Maschler solution is not weakly monotonic
on E(£,2) for all 4. .

Proof. The proof is by way of an example, illustrated in Figure

L., Let uyp,ust R - ] be given by

(9/5) X1 if 0gxy8 5
uy () = {01/5) x; + 8 if 525 x;515
) 1 if 15 £ x,

and
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Uz(Xz) =
i f 15 5 x,
I\u2
3
2
1

Figure L

We assume first that @ = 15. Then, the utility feasibility
set is given by S = cch{(11,0), (9,2), (0,3)}, these three points
being the images of the allocations (15,0), (5,10) and (0,15)
respectively. The PM solution outcome of S is (%5, %3); it is
obtained by noting that the areas of the triangles with verfices
(11,0), (9,2) and (9,0) on the one hand and (0,3), (0,—;), (6,-%)
on the other are equal and that (%5, is the midpoint of the
segment [(9,2), (6,—%)].

For Q' = 20, the wutility feasibility set is given by

S' = ceh{(11,1), (9,3)}, these two points being the images of the
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allocations (15,5) and (5,15) respectively. The PM solution
outcome of S' is (10,2); it is obtained by noting that (10,2) is
the midpoint of the segment [(11,1), (9,3)].

We conclude by observing that as § increases to ', agent
2's utility decrea;es from. %3- to 2, in violation of weak
monotonicity which applies since S' © S, and a(S) = a(S').

This takes care of the case £ = 1. The case of arbitrary ¢
is dealt with as in the previous theorems.

QED

The last property we consider is population monotonicity.
Since KS satisfies the property in general (Thomson, 1983), and as
pointed out earlier, the PM solution is not defined for more than
two persons, we limit our attention to thebNash solution. It is
known that the Nash solution does not satisfy the property in
general (Thomson, 1983). However, we have:
Theorem 6. The Nash solution is population monotonic on E(1,n)
for all n.
Proof. For simplicity we consider an economy (u,) € E(1,n) for
which utility functions are differentiable and increasing. Then,
we recail that the Nash .allocation is given by XyreeonXg €& °

such that in = ) and

u! (x:) ut(x.)
s 2 torant i,j.

Ui(Xi) UJ(XJ)

Also recall that the function
ui(xi)

ui(xi)
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is non-increasing for all i, and finally, note that the increase
in the number of agents yields the same effect as the decrease in
the social endowment on the original agents.

QED
Theorem 7. The Nash solution is not population monotonic on
E(f4,n) if £ 2 2 and n 2 2.
Proof. (i) We first consider the case £ = 2 and we show that the
Nash solution is not population monotonic when n increases from 2
to 3. The proof is by way of an example. Let Uy, Uy be as in
Theorem 2 and § = (1,1). There, we already computed that at the
Nash allocation x, Xj =-é-and X99 = 0.
Next, we assume that a third agent enters the scene with
us: ai + /&, defined by u3(x3) = x%éz. The Nash solution is

obtained by solving

max (x}{zx}éz + x}éu)(1—x]])]/2(l-x]2)]/2,

using the fact that u, is independent of X9 and Uz of X37-

After differentiating, we obtain the equation in X11s X729

From the feasibility condition, x;, £ 1. At the Nash allocation,
X12 < 1. This implies that xy; < 1/b. Therefore x,; > 3/b and
X9y = 0. Agent 2 gains upon the arrival of agent 3.

(ii) In order to take care of the case when the economy enlarges
from an element of E(2,n) to an element of E(2,m+n) we introduce

m+n-3 additional agents with utilities up ﬁi > R+defined by
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1
€

A

€ Xk for 0 Xk] + xkz S €
Uk (xk) =

for ¢

A

X1+ X2
The argument concludes as in the proof of Theorem 2.
(iii) The case of arbitrary £ can be treated as it was in the
proof of Theorem 2.

QED
Remark. As discussed in a previous remark concerning the strong
monotonicity of the Nash solution, the positive result of Theorem
6 can be extended to solutions defined by the maximization of a

function of the form Zfi(“i) for u € S.
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Footnotes

N designates the positive integers and & the real numbers.
Vector inequalities ¢t x 2y, x 2y, X >yY.

Given a list x],...,xk of points in 82. cch{x],...,xk}
denotes the convex and comprehensive hul!l of these points,
i.e. the smallest subset of 82 containing these points which
is convex and comprehensive (for all x,y € 82» if x €S and
X 2y, theny E S).

In order to obtain the inequality "X,; < 1/4", which is all
that we need, it suffices to use this first-order condition.
The precise caluclation of Xyy requires the use of the second

first-order condition too. We omit these calculations.
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