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Abstract

This paper models an agent in a multi-period setting who does not
update according to Bayes� Rule, and who is self-aware and anticipates
her updating behavior when formulating plans. Choice-theoretic axiomatic
foundations are provided. Then the model is specialized axiomatically to
capture updating biases that re�ect excessive weight given to (i) prior be-
liefs, or alternatively, (ii) the realized sample. Finally, the paper describes
a counterpart of the exchangeable Bayesian model, where the agent tries
to learn about parameters, and some answers are provided to the question
�what does a non-Bayesian updater learn?�

1. INTRODUCTION

This paper models an agent in a multi-period setting who does not update accord-
ing to Bayes�Rule, and who is self-aware and anticipates her updating behavior
when formulating plans. Three central questions are addressed.

Are there axiomatic foundations for such a model? We provide such founda-
tions in the form of a representation theorem for suitably de�ned preferences.

�Epstein and Noor are at the Department of Economics, University of Rochester, Rochester,
NY 14627; lepn@ troi.cc.rochester.edu, and jwdb@troi.cc.rochester.edu. Sandroni is at Kel-
logg School of Management, MEDS, Northwestern University, Evanston, IL 60208, san-
droni@kellogg.northwestern.edu. We have bene�tted from conversations with Joseph Perktold,
Werner Ploberger and especially Igor Kopylov.



A dynamic version of the (Savage or) Anscombe-Aumann theorem provides the
foundation for reliance on a probability measure representing prior beliefs and
for subsequent Bayesian updating of the prior belief as information arrives. We
generalize this Anscombe-Aumann theorem so that both the prior and the way
in which it is updated are subjective, that is, are derived from preference. The
model is dynamic: consumption processes are the ultimate source of utility, and
dynamic choice behavior is derived from preferences at time 0. Thus, though the
model is not normative, the agent is rational in the sense of maximizing a stable,
transitive and complete preference relation.

What updating rules are permitted? Our general framework is rich: just as the
Savage and Anscombe-Aumann theorems provide foundations for subjective ex-
pected utility theory without restricting beliefs, the present framework imposes a
speci�c structure for preferences without unduly restricting the nature of updat-
ing. Richness is demonstrated by axiomatic specializations that capture excessive
weight given at the updating stage to (i) prior beliefs, or alternatively, (ii) the
realized sample. A counterpart of the exchangeable Bayesian model, where the
agent tries to learn about parameters, is also described.
To illustrate the scope of our framework, consider an agent who is trying to

learn the true parameter in a set�. Updating of beliefs in response to observations
s1; :::; st, leads to the process of posteriors f�tg where each �t is a probability
measure on �. Bayesian updating leads to the process

�t+1 (�) = BU (�t; st+1) (�) ,

where BU (�t; st+1) (�) denotes the Bayesian update of �t, that is,

d [BU (�t; st+1)] (�) =
` (st+1 j �) d�t (�)R
` (st+1 j �0) d�t (�0)

, (1.1)

for a given likelihood function `. One alternative consistent with our model is the
process

�t+1 = (1� �t+1)BU (�t; st+1) + �t+1�t;

where �t+1 � 1. If �t+1 does not depend on the latest observation st+1 and if
�t+1 � 0, then the updating rule can be interpreted as attaching too much weight
to prior beliefs �t and hence underreacting to observations. Another alternative
has the form

�t+1 = (1� �t+1)BU (�t; st+1) + �t+1 t+1;
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where  0 is a suitable noninformative prior and subsequent  t�s are obtained via
Bayesian updating. This updating rule for the posteriors �t can be interpreted
(under the assumptions for �t+1 stated above) as attaching too much weight to
the sample. (See Section 5 for elaboration of these examples.)
It will be evident that there are many other kinds of updating biases that

can be accommodated, including biases similar to some that have been observed
in experimental psychology; see Tversky and Kahneman [20] and the surveys by
Camerer [2] and Rabin [16], for example. Our model does not address the ex-
perimental evidence directly, however, because the latter deals with the updating
of objective probabilities, while our model is more intuitive if, as we assume,
probabilities are subjective.1

What do non-Bayesian updaters learn? A central focus of the literature on
Bayesian learning is on what is learned asymptotically and how an agent forecasts
as more and more observations are available. Bayesian forecasts are eventually
correct with probability 1 under the truth given suitable conditions, the key con-
dition being absolute continuity of the true measure with respect to initial beliefs.
Hence, multiple repetitions of Bayes�Rule transforms the historical record into a
near perfect guide for the future. We investigate the corresponding question for
non-Bayesian updaters who face a statistical inference problem and conform to
one of the above noted biases. We describe simple non-Bayesian updating rules
that, if repeated multiple times, will also uncover the true data generating process.
However, our richer hypothesis about updating behavior permits a broader range
of possibilities for what is learned in the long run. In one of our results, we show
that convergence to correct forecasts holds for an agent who underreacts to obser-
vations when updating. If she overreacts then her forecasts are eventually correct
with positive probability - an example shows that with positive probability she
may become certain that a false parameter is true and thus converge to precise
but false forecasts.

The issue of foundations for non-Bayesian updating is taken up in [5] in a
three-period framework, where the agent updates once and consumption occurs

1See [17] and [14], for example, for models of updating for objective probabilities that address
the experimental evidence. Though the associated models of preference are not made explicit,
to the best of our understanding these authors assume implicitly that the agent is an expected
utility maximizer who is naive in the sense of not anticipating future deviations from Bayesian
updating nor the fact that today�s plans may not be implemented. In contrast, our agent is
sophisticated and dynamically consistent.
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only at the terminal time. The model is extended here to any �nite horizon. We
take as the benchmark the standard speci�cation of utility in dynamic modeling,
whereby utility at time t is given by

Ut (c) = Et
�
�T�=t �

��tu (c� )
�
, t = 0; 1; :::; T , (1.2)

where c = (c� ) is a consumption process, � and u have the familiar interpretations
and Et denotes the expectation operator associated with a subjective prior that
is updated by Bayes�Rule. Our model generalizes (1.2) to which it reduces when
updating conforms to Bayes�Rule.
In common with [5], the present paper adapts the Gul and Pesendorfer [7, 8]

model of temptation and self-control.2 While these authors (henceforth GP) focus
on behavior associated with non-geometric discounting, we adapt their approach
to model non-Bayesian updating. The connection drawn here between temptation
and updating is as follows: at period t, the agent has a prior view of the relation-
ship between the next observation st+1 and the future uncertainty (st+2; st+3; :::)
that she considers �correct�. But after observing a particular realization st+1, she
changes her view on the noted relationship. For example, she may respond exu-
berantly to a good (or bad) signal after it is realized and decide that it is an even
better (or worse) signal about future states than she had thought ex ante. She
tries to resist the temptation to behave in accordance with the new view rather
than in accordance with the view she considers correct. Temptation might be
resisted but at a cost. Thus she acts as though forming a compromise posterior
belief - it di¤ers from what would be implied by Bayesian updating of the origi-
nal prior and in that sense re�ects non-Bayesian updating. The exuberant agent
described above would appear to an outside observer as someone who overreacts
to data.
GP show that temptation and self-control are revealed through preference over

menus - for instance, preferring smaller menus from which to choose ex-post is a
way of dealing with (and thus may be regarded as an expression of) self-control
problems . For this reason, menus play a central role in [5] and in this model as
well - the agent�s ranking of contingent menus are shown to reveal behavior that
is consistent with non-Bayesian updating rules being used when choosing out of
menus. However, the current model di¤ers in one important respect from GP and
[5]: while the main concern of these models is how the agent makes choices out of
menus (that is, how she chooses or updates when experiencing temptation), these

2At a technical level, we rely heavily on generalizations of the Gul-Pesendorfer model proven
by Kopylov [9].
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choices are not part of their primitives. With an ex-ante preference ordering over
menus/contingent menus as their only primitive, the story about ex-post prefer-
ences they adopt is only suggested by the representation of this ex-ante preference.
As a result, it is not clear what dynamic behavior constitutes a refutation of the
model. This gap is closed in the current paper by taking preferences in every
period as the primitive. In this respect, our model is related to Noor [15], who
provides a revealed preference characterization of stationary GP-type models by
taking as a primitive a choice correspondence that describes choice out of menus
in every period.
The paper proceeds as follows: Section 2 de�nes the formal domain of choice,

the space of contingent menus, and then the functional form for utility. Section
3 provides axiomatic foundations. Section 4 illustrates the nature and scope of
the model by describing axiomatic specializations that capture speci�c updating
biases.3 Section 5 specializes further to capture an agent who is trying to learn
about parameters as in the Bayesian model with an exchangeable prior. Some re-
sults are provided concerning what is learned in the long run. Section 6 concludes.
Proofs are collected in appendices.

2. UTILITY

2.1. Primitives

The model�s primitives include:

� time t = 0; 1; 2; :::; T + 1

� (�nite) period state space S
full state space �T+1t=1 St, where St = S for all t

� period consumption space Ct = C

compact metric mixture space4

3Readers who are more interested in the functional forms implied by our model than in their
axiomatic foundations may wish to skip Sections 3 and 4 and proceed directly to Section 5; the
latter is in large part self-contained.

4We use this term to include the property that the mixture operation (c; c0; �) 7�!
�c+ (1� �) c0 is continuous with respect to the obvious product metric on C � C � [0; 1]:
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Though we often refer to ct in Ct as period t consumption, it is more accurately
thought of as a lottery over period t consumption. Thus we adopt an Anscombe-
Aumann style domain where outcomes are lotteries.
Information available at t is given by the history st1 = (s1; :::; st). Thus time

t consumption, conditional beliefs, conditional preferences and so on, are taken
to be suitably measurable, though dependence on st1 is often suppressed in the
notation.
For any compact metric space X, the set of acts from S into X is XS; it is

endowed with the product topology. A closed (hence compact) subset of C �XS

is called amenu (of pairs (c; F ), where c 2 C and F 2 XS). Denote byM (X) the
set of all compact subsets of X, endowed with the Hausdor¤metric. Analogously,
M
�
C �XS

�
is the set of menus of pairs (c; F ) as above; it inherits the compact

metric property [1, Section 3.16].
At each time t = 0; 1; :::; T , the agent chooses both current consumption and

a physical action. Actions taken at the penultimate period T are modeled by acts
as in the standard model, that is, by elements of

CT = (CT+1)ST+1 . (2.1)

Each element of CT describes random consumption at T + 1 as a function of
the realized state in ST+1. Consider next actions taken at time t < T , where
consumption at t has already been determined. The consequence of that action
is a menu, contingent on the state st+1, of alternatives for t + 1, where these
alternatives include both choices to be made at t+ 1 - namely, the choice of both
consumption and also another action. This motivates identifying each physical
action at time t with a mapping Ft, called a contingent menu, where

Ft : St+1 �!M (Ct+1 � Ct+1) . (2.2)

Here Ct = (M (Ct+1 � Ct+1))St+1 denotes the set of all (time t) contingent menus
and these sets are de�ned recursively by (2.2) for t = 0; 1; :::; T � 1, and by the
terminal condition (2.1).
Each Ct is compact metric. It also admits a mixing operation: given any space

X where mixtures �x+ (1� �) y are well de�ned, mix elements ofM (X) by

�M + (1� �)N = f�x+ (1� �) y : x 2M; y 2 Ng .

De�ne mixtures of contingent menus recursively by: (�F 0t + (1� �)Ft) (st+1) =

f
�
�c0t+1 + (1� �) ct+1; �H

0
t+1 + (1� �)Ht+1

�
:�

c0t+1; H
0
t+1

�
2 F 0t (st+1) ; (ct+1; Ht+1) 2 Ft (st+1)g,
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where (Anscombe-Aumann) acts, elements of CT+1 = (CT+1)
ST+2, are mixed in

the usual way. Finally, mixtures are de�ned componentwise on Ct � Ct.
The �nal primitive is a process of preference relations (�t)

T
t=0, one for each time

t � T and history st1, where the domain of �t is Ct�Ct. At time 0, the agent uses
�0 to choose (c0; F0) in C0�C0. She does this as though anticipating the following:
at 1�, a signal s1 is realized, and this determines a menu F0(s1) � C1 � C1; at
time 1, she updates and uses the order �1 (which corresponds to the history s1)

0�
"

choose (c0;F0)

� � �
observe s1

#
� t=1�

"
choose (c1;F1)2F0(s1)

� � �
observe s2

#
� t=2�

"
choose (c2;F2)2F1(s2)

�

to choose some (c1; F1) from F0(s1). She consumes c1 and her (contingent) options
for the future are described by F1. Continuing in this way, and given some previous
choice of contingent menu Ft, she observes a signal st+1, updates and then uses the
order�t+1 (corresponding to the history (s1; s2; :::st+1)) to choose some (ct+1; Ft+1)
from Ft (st+1). (See the time line.) Her choice (cT ; FT ) from FT�1 (sT ) at time
T yields consumption cT and a standard act FT : ST+1 ! CT+1, which describes
random consumption in the terminal period T + 1.
Our model subsumes the standard model where choice at every time t is guided

by a single preference �t and the evaluation of contingent menus involves valuing
menus according to their best alternative. We di¤er in permitting the agent
to exhibit a preference for commitment - at t she may strictly prefer a menu
Mt+1 (conditionally on some st+1) to a larger menu M 0

t+1 even though it renders
infeasible the �t+1-best alternative in the latter. The idea is that �t+1 may
represent choice that is a¤ected by temptation and thus ex-ante, at t, the agent
may not value menus according to their �t+1-best alternatives.

2.2. Functional Form

We describe the representation of (�t). Components of the functional form in-
clude: a discount factor 0 < � < 1, u : C �! R1 linear, continuous and noncon-
stant, a probability measure p0 on S1 with full support, and an adapted process
(pt; qt; �t)

T
t=1, where,

5

5�(S) is the set of probability measures on the �nite set S. A stochastic process (Xt) on
�11 S� is adapted if Xt is measurable with respect to the �-algebra St that is generated by all
sets of the form fs1g � ::: � fstg � �1t+1S� . Below we often write pt (�) rather than pt (� j st1).
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�t 2 (0; 1] , pt; qt 2 �(St+1) , and each pt has full support.

For each (ct; Ft) 2 Ct � Ct, de�ne

Ut (ct; Ft) = u(ct) + �

Z
St+1

Ut+1 (Ft (st+1) ; st+1) dpt, for t � 0, (2.3)

Vt (ct; Ft) = u(ct) + �

Z
St+1

Ut+1 (Ft (st+1) ; st+1) dqt, for t > 0, (2.4)

where Ut+1 (�; st+1) :M (Ct+1 � Ct+1) �! R1 is given by

Ut+1 (M; st+1) = max
(ct+1;Ft+1)2M

f Ut+1 (ct+1; Ft+1) + (2.5)

1� �t+1
�t+1

 
Vt+1 (ct+1; Ft+1)� max

(c0t+1;F 0t+1)2M
Vt+1

�
c0t+1; F

0
t+1

�!
g;

and the boundary condition

UT+1 (c; sT+1) = u (c) .

Then �0 is represented by U0 (�) and for each t > 0, �t is represented by �tUt (�)+
(1� �t)Vt (�).
The Bayesian intertemporal utility model (1.2) is speci�ed by u, � and a process

(pt) of one-step-ahead conditionals, which determines a unique prior on the full
state space �T+11 St. It is obtained as the special case where (1� �t)(qt � pt) � 0
for all t. Then (2.5) reduces to

Ut+1 (M; st+1) = max
(ct+1;Ft+1)2M

Ut+1 (ct+1; Ft+1) ,

and �t is represented by

Ut (ct; Ft) = u(c)+�

Z
St+1

�
max

(ct+1;Ft+1)2Ft+1(st+1)
Ut+1 (ct+1; Ft+1)

�
dpt, (ct; Ft) 2 Ct�Ct:

When we want to emphasize dependence on the last observation st, we write pt (� j st). Similarly,
history is suppressed notationally below when we write Ut (ct; Ft) and Vt (ct; Ft).
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This is the standard model in the sense that it extends the model of utility over
consumption processes given by (1.2) to contingent menus by assuming that menus
are valued according to the best alternative they contain (a property termed strate-
gic rationality by Kreps [10]). In particular, time t conditional beliefs about the
future are obtained by applying Bayes�Rule to the prior on �T+11 St that is induced
by the one-step-ahead conditionals (pt).
More generally, two processes of one-step-ahead conditionals, pt�s and qt�s,

must be speci�ed, as well as the process of �t�s. The way in which these deliver
non-Bayesian updating is explained below along with further discussion and inter-
pretation. Sections 4 and 5 provide several examples. See also [5] for discussion
in the context of a three-period model.

2.3. Interpretation

To facilitate interpretation, and also for later purposes, consider some subclasses of
Ct. The contingent menu Ft provides commitment for the next period if Ft (st+1)
is a singleton for each st+1. Proceeding recursively in the obvious way, we can
de�ne the set of contingent menus that provide commitment for all future periods
- denote it by Cct � Ct. Each Ft in Cct determines a unique (random variable)
consumption process cFt =

�
cFt�
�
��t. If each c

Ft
� is measurable with respect to

information at time t+ 1, then all uncertainty is resolved next period - the set of
all such contingent menus is Cc;+1t � Cct . An example is a (one-step-ahead) bet on
the event G � St+1, which pays o¤with a good deterministic consumption stream
if the state next period lies in G and with a poor one otherwise.
Compute that for any ct and contingent menu Ft that provides commitment

(Ft 2 Cct ),

Ut (c; F ) = u(ct) + �

Z
St+1

Ut+1 (Ft (st+1) ; st+1) dpt (st+1) .

It follows that if F 2 Cc0, then

U0 (c; F ) =
Z
S1�S2�:::

�
�T+11 �t�1 u

�
cFt
��
dP0 (�) ,

where cF is the consumption process induced by F as just explained, and where
P0 (�) is the unique measure on �T+11 St satisfying

P0 (s1; s2:::; sT+1) = p0(s1) � :::� pt(st+1 j st1)� ::: � pT (sT+1 j sT1 ) . (2.6)
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Thus �0 restricted to Cc0 conforms to subjective expected (intertemporally addi-
tive) utility with prior P0. To interpret P0 further, consider its one-step-ahead
conditionals pt for t � 1. Because these conditional beliefs are formed with the
detachment and objectivity a¤orded by an ex ante stage (t = 0), the agent views
them as �correct�.6 She will continue to view them as correct as time passes. If
she were not subject to other in�uences, her posterior at t would be

Pt
�
st+1; st+2:::; sT+1 j st1

�
= pt(st+1 j st1) � ::: � pT (sT+1 j sT1 ) . (2.7)

the Bayesian update of P0. However, as explained shortly, she may update di¤er-
ently and be led to di¤erent posteriors.
Her actual updating underlies the preference �t prevailing after an arbitrary

history st1. By assumption, �t is represented by �tUt (�) + (1 � �t)Vt (�). To
proceed, de�ne the one-step-ahead conditional measure mt by

mt(st+1) = mt(st+1 j st1) = �tpt(st+1 j st1) + (1� �t)qt(st+1 j st1).

Next compute that for any ct and contingent menu Ft 2 Cct ,

�tUt (ct; Ft) + (1� �t)Vt (ct; Ft) =

u(ct) + �

Z
St+1

Ut+1 (Ft (st+1) ; st+1) dmt(st+1) =Z
St+1�St+2�:::

�
�1t+1�

��t�1 u
�
cFt�
��
dQt

�
� j st1

�
,

where Qt (� j st1) is the unique measure on �T+1t+1 S� satisfying

Qt

�
st+1; st+2:::; sT+1jst1

�
= mt(st+1 j st1)� pt+1(st+2 j st+11 )� ::: � pT (sT+1 j sT1 ).

(2.8)
Evidently, at t the agent�s behavior (at least within Cct ) corresponds to the pos-
terior Qt (� j st1), and this di¤ers from the period 0 perspective Pt (� j st1). Note
that Qt is not the Bayesian update of P0, nor is it the Bayesian update of Qt�1.
The di¤erence between Pt and Qt lies in the way that one-step-ahead beliefs over
St+1 are formulated - the conditional one-step-ahead belief actually adopted at t is
mt(�), whereas the one that seems appropriate from the perspective of the initial
period is pt(�).

6Since p0 is not relevant to the subsequent response to signals, its interpretation is less
important here. See the comments at the end of the section.
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The behavioral meaning of mt is sharper if we restrict attention to contingent
menus in Cc;+1t (providing perfect commitment and such that all uncertainty re-
solves at t + 1). Then beliefs about states in St+2 � ::: � ST+1 are irrelevant -
conclude that mt guides the ranking of such contingent menus, for example, it
guides the ranking of bets on St+1. Because the ranking of one-step-ahead bets,
and more speci�cally the way in which it depends on past observations, is a com-
mon and natural way to understand updating behavior, we refer to mt frequently
below when considering more speci�c models.
The story underlying the noted di¤erence between Pt and Qt is as follows: con-

sider the evaluation of a pair (ct; Ft) in Ct � Ct after having observed the history
st1. The functions Ut and Vt describe two ways that (ct; Ft) may be evaluated.
Both evaluate immediate consumption ct in the same way, and they discount the
expected utility of the contingent menu Ft in the same way as well. However,
they disagree on how to compute the expected utility of Ft: Ut uses pt and Vt
uses qt. The former is the �correct�one-step-ahead conditional. But in our model,
after having observed st1, the agent changes her view of the world to the one-
step-ahead conditional qt. For instance, if st1 represents a run of bad signals, she
may believe that the likelihood of another bad state is higher than her ex-ante
assessment. Alternatively, she may feel that a good signal �is due�and assign it
a higher conditional probability than she did when anticipating possibilities with
the cool-headedness a¤orded by temporal distance. Thus there are con�icting
incentives impinging on the agent at t. The period 0 perspective calls for maxi-
mizing Ut, but having seen the sample history st1 and having changed her view of
the world, she is tempted to maximize Vt. Resisting temptation is costly and she
recognizes that the time 0 perspective is �correct�. She is led to compromise and
to maximize �tUt (�) + (1 � �t)Vt (�), the utility function representing �t. Note
that corresponding behavior is as though she used the compromise one-step-ahead
conditional �tpt + (1� �t) qt, which is just mt. The parameter �t captures her
ability to resist temptation.
The cost of self-control incurred when compromising between Ut (�) and Vt (�)

is re�ected not in the representation of �t, but rather in that of �t�1, speci�cally
in the utility of a menu Mt 2 M (Ct � Ct) given by the function Ut (Mt; st). The
nonpositive term

1� �t
�t

�
Vt (ct; Ft)� max

(c0t;F
0
t )2Mt

Vt (c0t; F 0t)
�
� 0,

appearing in (2.5) can be interpreted as the utility cost of self-control. Thus (2.5)
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states that for any menu Mt received after the history st1, Ut (Mt; st) is the maxi-
mum over Mt of Ut (�) net of self-control costs. Observe that this maximization is
equivalent to

max
(ct;Ft)2Mt

�
Ut (�) +

1� �t
�t

Vt (�)
�
;

and that Ut (�) + 1��t
�t
Vt (�) represents �t. Thus (2.5) suggests that choosing the

�t-best element in Mt involves incurring a utility cost of self-control.
Our agent is self-aware and forward looking - she anticipates at period 0 that

she will later adopt conditional beliefs di¤erent from those that seem correct now;
similarly, at any time t she anticipates that she will later deviate from her current
view of conditional likelihoods. Thus she may value commitment: a smaller menu
may be strictly preferable because it could reduce self-control costs. In spite of
the value of commitment, the above constitutes a coherent model of dynamic
choice. Unlike the case in the modeling approach growing out of Strotz [18], there
is no need to add assumptions about how the agent resolves her intertemporal
inconsistencies. If you like, these resolutions are already embedded in her utility
function de�ned on contingent menus. This aspect of the model uses the insight
of GP.
However, there is an important di¤erence from GP in terms of the primitives

of the model. The primitive adopted by GP, and also by [5], is a single preference
ordering that describes choices at one point in time. Yet these are meant to
be models of dynamic choice - a story about choices in subsequent periods is
�suggested� by the primitive preference, and in particular, its representation.
But a characterization of a model in terms of behavior in a single period does not
constitute foundations for the story about dynamic choice; it begs the question
how one can use temporal data to refute the story. Such a question does not arise
in our model since our primitive consists of in principle observable preferences in
each period. Consequently, by characterizing our agent in terms of choices in each
period (see the next section), we are able to provide �complete�foundations for a
model of dynamic choice.
Finally, a comment on the asymmetry in the representations of �0 and �t

for t > 0 is in order. The utility function �tUt (�) + (1 � �t)Vt (�) for t > 0,
makes explicit the con�ict experienced by the agent in forming the belief mt over
St+1. The representation U0 (�) for �0 is neutral in this regard: it says nothing
beyond the fact that at 0 the agent has some belief p0 over S1, which may or
may not have been formed after resolving some con�ict. The reason for this
stems from the fact that, as in GP, we take a preference for commitment as the
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behavioral manifestation of a con�ict - the decomposition of the belief mt into its
correct �pt�and temptation �qt�components is based on preferences, in particular
on attitudes towards commitment opportunities, prevailing at time t�1. A similar
decomposition of p0 would involve preferences in (unmodeled) periods prior to time
0. Hence the asymmetry in the representation for t = 0 and t > 0. The reader
should note, however, that p0 is not relevant for understanding updating behavior,
and consequently, its decomposition is of little interest for our purposes.

3. AXIOMATIC FOUNDATIONS

In what follows, states s vary over S, consumption c varies over C, and unless
otherwise speci�ed, time t varies over 0; 1; :::; T . A generic element of Ct � Ct
is ft = (ct; Ft); t-subscripts will be dropped where there is no risk of confusion.
Denote by

�
G�st+1 ;M

�
the contingent menu in Ct that yieldsG

�
s0t+1

�
if s0t+1 6= st+1

and M otherwise. The menu M is identi�ed with the constant contingent menu
that delivers M in all states.
The �rst two axioms are standard.

Axiom 1 (Order). �t is complete and transitive.

Axiom 2 (Continuity). Both ff : f �t gg and ff : g �t fg are closed.

In Section 2.1, we described a way to mix any two elements in Ct � Ct. Thus
we can state the Independence axiom appropriate for our setting.

Axiom 3 (Independence). For every 0 < � � 1, and all f and g in Ct � Ct,

f �t g () �f + (1� �)h �t �g + (1� �)h:

Intuition for Independence is similar to that provided in [5] for a three-period
setting, and thus we do not elaborate here.
Given two contingent menus F and G in Ct, de�ne their union statewise, that

is,
(F [G) (s) = F (s) [G (s) :

The counterpart of GP�s central axiom is:

Axiom 4 (Set-Betweenness). For all t < T , states st+1, consumption c 2 Ct
and all F and G in Ct such that G

�
s0t+1

�
= F

�
s0t+1

�
for all s0t+1 6= st+1,

(c; F ) �t (c;G) =) (c; F ) �t (c; F [G) �t (c;G). (3.1)
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Since immediate consumption and the outcome of states other than st+1 is the
same in all the above rankings, the axiom is essentially a statement about how
the agent feels about receiving the menus F (st+1) ; G (st+1) or F (st+1)[G (st+1)
conditional on st+1. As a statement about the ranking of menus, Set-Betweenness
may be understood as the behavioral manifestation of temptation and self-control
- GP show this in their setting and [5] adapts their interpretation to the domain
of (three-period) contingent menus. The ranking of (c; F ) and (c; F [G) reveals
anticipation of temptation: the strict preference

(c; F ) �t (c; F [G); (3.2)

suggests that the decision-maker prefers that some elements of G (st+1) not be
available as an option conditional on st+1, and presumably, this preference for com-
mitment reveals that she anticipates being tempted by some element of G (st+1)
when choosing from the menu F (st+1) [ G (st+1) conditional on st+1. For per-
spective, note that temptations do not exist for a standard decision-maker who
evaluates a menu by its best element. In particular, she does not exhibit a pref-
erence for commitment and satis�es the stronger axiom:

F �t G =) F �t F [G

for all F and G that agree in all but one state s. Following Kreps [10, Ch. 13],
we call this axiom strategic rationality.
Set-Betweenness allows us also to infer the agent�s anticipated time t+1 choices

from menus (note that in conjunction with (3.2) this allows us to infer whether she
expects to succumb to temptation or to exert self-control). To illustrate, suppose
that F =

�
H�st+1 ; ffg

�
and G =

�
H�st+1 ; fgg

�
and also that the decision-maker

exhibits the preference

(c;
�
H�st+1 ; ffg

�
) �t (c;

�
H�st+1 ; fgg

�
): (3.3)

This ranking suggests that from the ex-ante perspective of period t, she prefers
to end up with f rather than with g conditional on st+1, and in particular, that
she prefers f to be chosen from ff; gg conditional on st+1. Whether she antic-
ipates f actually being chosen from ff; gg is then revealed by her ranking of
(c;
�
H�st+1 ; ff; gg

�
) and (c;

�
H�st+1 ; fgg

�
). For instance, if

(c;
�
H�st+1 ; ff; gg

�
) �t (c;

�
H�st+1 ; fgg

�
); (3.4)
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then she has a strict preference for f being available ex-post, which reveals that
she anticipates choosing f from ff; gg at t + 1. On the other hand, if she is
indi¤erent to f being available ex-post, that is,

(c;
�
H�st+1 ; ff; gg

�
) �t (c;

�
H�st+1 ; fgg

�
); (3.5)

then she anticipates a weak preference at t+ 1 for choosing g from ff; gg. To see
this, observe that given (3.3), (3.5) implies (3.2), which in turn implies that g is
tempting. Thus, the indi¤erence in (3.5) implies that she expects either to submit
to g, or to be indi¤erent between submitting to g and resisting it. That is, she
anticipates a weak preference for g at t+ 1.
Discussion of (3.4)-(3.5) revolved around what the decision-maker anticipates

at time t about her choices at time t + 1. The next axiom connects her time t
expectations regarding future behavior and her actual future behavior.7

Axiom 5 (Sophistication). Let (c;
�
G�st+1 ; ffg

�
) �t (c;

�
G�st+1 ; fgg

�
),

where t < T . Then

(c;
�
G�st+1 ; ff; gg

�
) �t (c;

�
G�st+1 ; fgg

�
)() f �t+1 g.

The axiom states that she is sophisticated in that her expectations are correct
(at least for anticipated choices out of binary menus ff; gg). To see this, start
by taking f; g such that in period t she would prefer to commit to f rather than
g conditionally on st+1 (as in the hypothesis). As in the earlier discussion, this
relationship between f and g allows us to deduce her expected t + 1 choice out
of ff; gg from her �t-ranking of (c;

�
G�st+1 ; ff; gg

�
) and (c;

�
G�st+1 ; fgg

�
). Her

actual choice out of ff; gg is given by her �t+1-ranking of f and g. The axiom
states that the decision-maker expects to choose f at t + 1 if and only if she in
fact chooses f at t+ 1.

Some axioms below involve the evaluation of streams of lotteries (or lottery
streams), and it is convenient to introduce relevant notation at this point. Any
risky consumption stream for the time period [t+1; T +1], that is, where a unique
(independent of states) consumption level c� is prescribed for each t + 1 � � �
T + 1, may be identi�ed with an element of Ct+1 � Ct+1; if t = T , then a stream
may be identi�ed with an element of CT+1. Denote by Lt+1 the subset of all such
risky consumption streams; a generic element is ` = (`� )

T+1
�=t+1.

7In the axiom, �t and �t+1 are the preferences corresponding to histories (s1; :::; st) and
(s1; :::; st; st+1) respectively.
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In order to obtain meaningful probabilities, a form of state independence is
needed.

Axiom 6 (State Independence). For all st+1, contingent menus F in Ct+1 and
`0; ` 2 Lt+1,

(c; f`0g) �t (c; f`g)()
(c;
�
F�st+1 ; f`0g

�
) �t (c;

�
F�st+1 ; f`g

�
):

The axiom states that the ranking of the lottery streams `0 and ` received
unconditionally does not change if they are received conditionally on any speci�c
st+1 obtaining. Thus, time preferences and risk attitudes are not state-dependent.

In our model, temptation arises only because of a change in beliefs. This is
re�ected in the next axiom.8

Axiom 7 (Restricted Strategic Rationality (RSR)). For all t < T; states
st+1; st+2; consumption c; c0 2 C; and contingent menus F 2 Ct and H;H 0 2 Ct+1
such that H(s0t+2) = H 0(s0t+2) for all s

0
t+2 6= st+2, if

(c0;
�
F�st+1 ; f(c;H 0)g

�
) �t (c

0;
�
F�st+1 ; f (c;H)g

�
), (3.6)

then
(c0;
�
F�st+1 ; f (c;H 0)g

�
) �t (c

0;
�
F�st+1 ; f(c;H 0); (c;H)g

�
) (3.7)

and (c;H 0) �t+1 (c;H) : (3.8)

Suppose that, on observing st+1, the agent at t + 1 has to choose from the
menu f(c;H 0); (c;H)g where H 0(s0t+2) = H(s0t+2) for all s

0
t+2 6= st+2 for some

st+2. Since H 0 and H di¤er only in the single state st+2, their ranking does not
depend on beliefs over St+2 - there are no trade-o¤s across states that must be
made. Consequently, there is no temptation when choosing out of f(c;H 0); (c;H)g,
and, therefore, conditional on any st+1, the agent never exhibits a preference for
commitment. In particular, her preference �t satis�es a form of strategic ratio-
nality. This is the content of the implication �(3.6) =) (3.7)�. The implication
�(3.6) =) (3.8)�is another expression of the absence of temptation: if the t + 1
choice between the prospects (c;H 0) and (c;H) is not subject to temptation, then

8As in Sophistication, the preferences �t and �t+1 correspond to histories (s1; :::; st) and
(s1; :::; st; st+1) respectively.

16



there is no reason for her t + 1 perspective to deviate from her prior, time t per-
spective regarding the two prospects. The latter perspective is revealed by (3.6),
the agent�s time t preference for committing to (c;H 0) versus (c;H) conditionally
on st+1.
The �nal axiom places structure on the agent�s preferences over lottery streams.

Axiom 8 (Risk Preference). There exist 0 < � < 1 and u : C �! R1 noncon-
stant, linear and continuous, such that, for each `0 and ` in Lt+1,

`0 �t ` ()

�T+1t+1 ���(t+1)u (`0� ) � �T+1t+1 ���(t+1)u (`� ) . (3.9)

The axiomatic characterization of the utility function over streams of lotteries
appearing in (3.9) is well known (see [4], for example). Because time and risk
preferences are not our primary focus, we content ourselves with the statement of
the above unorthodox �axiom.�

3.1. Representation Result

Say that
�
�; u; p0; (�t; pt; qt)1�t�T

�
represents (�t) if �0 is represented by U0 (�)

and for each t > 0, �t is represented by �tUt (�) + (1 � �t)Vt (�), where these
functions are de�ned in (2.3)-(2.5) and where u; �; p0 and (�t; pt; qt)1�t�T satisfy
the properties stated there. For any c 2 Ct+1 and M � Ct+1, write (c;M) instead
of fcg �M 2M (Ct+1 � Ct+1).

Theorem 3.1. The process of preferences (�t) satis�es Axioms 1-8 if and only
if there exists some (�; u; p0; (�t; pt; qt)1�t�T ) representing (�t) . Moreover, if
(�0; u0; p00; (�

0
t; p

0
t; q

0
t)1�t�T ) also represents (�t), then �

0 = �, u0 = au + b for some
a > 0, and

p00 = p0, �0tp
0
t + (1� �0t)q

0
t = �tpt + (1� �t)qt for 0 < t � T . (3.10)

Finally, if t and st+1 are such that�
F�st+1 ; (c;M

0)
�
�t

�
F�st+1 ; (c;M

0 [M)
�

(3.11)

for some c 2 Ct+1 and M 0; M � Ct+1, then�
�0t+1 (st+1) ; q

0
t+1 (� j st+1)

�
= (�t+1 (st+1) ; qt+1 (� j st+1)) . (3.12)
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Absolute uniqueness of all components is not to be expected. For exam-
ple, if �t+1 (st+1) = 0, then every measure qt+1 (� j st+1) leads to the same st+1-
conditional preference; similarly, if qt+1 (� j st+1) = pt+1 (� j st+1), then �t+1 (st+1)
is of no consequence and hence indeterminate. These degenerate cases constitute
precisely the circumstances under which st+1-conditional preference is strategically
rational, which is what is excluded by condition (3.11). Once strategic rationality
is excluded, the strong uniqueness property in (3.12) obtains.

4. SOME SPECIFIC UPDATING BIASES

The framework described in Theorem 3.1 is rich. One way to see this is to focus
on one-step-ahead beliefs at any time t + 1. As pointed out in Section 2.3, these
are represented by mt+1 = �t+1pt+1 + (1 � �t+1) qt+1, while Bayesian updating
of time t beliefs would lead to beliefs described by pt+1. Thus, speaking roughly,
updating deviates from Bayes�Rule in a direction given by qt+1 � pt+1 and to
a degree determined by �t+1, neither of which is constrained by our framework.
Consequently, the modeler is free to specify the nature and degree of the updating
bias, including how these vary with history, in much the same way that a mod-
eler who works within the Savage or Anscombe-Aumann framework of subjective
expected utility theory is free to specify beliefs as she sees �t.
In this section, we go further and describe axiomatic specializations of the

model that impose structure on updating. Two alternatives are explored, whereby
excess weight at the updating stage is given to either (i) prior beliefs, or (ii) the
sample frequency. The axioms imply restrictions on the relation between qt+1 and
pt+1, but not on �t+1. Thus they limit the direction but not the magnitude of the
updating bias.

4.1. Prior-Bias

At time t > 0, after some history st1 has been realized, the agent holds some view
about �T+1t+1 S� . On observing the further realization st+1, the agent at t+1 forms
beliefs about St+2 by updating this view.

�
observe st

#
� t�

"
choose (ct;Ft)2Ft�1(st)

� � �

observe st+1
#
� t+1�

"
choose (ct+1;Ft+1)2Ft(st+1)

� � �

observe st+2
#
�

Consider the possibility that at this time, she attaches inordinate weight to prior
(time t) beliefs over St+2. To express this, denote by f(ct+1; G)g the contingent
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menu in Ct that assigns the singleton f(ct+1; G)g to every st+1.

Axiom 9 (Prior-Bias). For all t < T , st+1 and c0; c 2 C, and all F 0 2 Ct, and
F and G in Ct+1: if

(c0;
�
F 0�st+1 ; f(c; F )g

�
) �t (c

0;
�
F 0�st+1 ; f(c;G)g

�
) and (4.1)

(c0; f(c; F )g) �t (c
0; f(c;G)g), (4.2)

then
(c0;

�
F 0�st+1 ; f(c; F )g

�
) �t (c

0;
�
F 0�st+1 ; f(c; F ); (c;G)g

�
). (4.3)

To interpret the axiom, we suppress the �xed consumption c0 and c (and do
the same for interpretations in the sequel). Condition (4.1) states that at time
t, the agent strictly prefers to commit to F rather than to G conditionally on
st+1. According to (4.2), she is indi¤erent between them when they are received
unconditionally. The absence of a preference for commitment (4.3) implies that
under these circumstances, she is not tempted by G conditionally on st+1 at time
t+ 1. Thus the absence of temptation conditionally on st+1 depends not only on
how F and G are ranked conditionally at time t, but also on how attractive they
were at t, prior to the realization of st+1. This indicates excessive in�uence of
prior, time t beliefs when updating at time t+ 1.
Prior-Bias begs the question what happens to temptation if the indi¤erence

in (4.2) is not satis�ed. We consider two alternative strengthenings of the axiom
that provide di¤erent answers.
Label by Positive Prior-Bias the axiom obtained when (4.2) is replaced by

(c0; f(c; F )g) �t (c
0; f(c;G)g). (4.4)

This implies that G is tempting conditionally on st+1 only if it was more attractive
according to (time t) prior beliefs about St+2. An alternative, labeled Negative
Prior-Bias, is the axiom obtained when (4.2) is replaced by

(c0; f(c; F )g) �t (c
0; f(c;G)g). (4.5)

In this case, G is preferred at time t, but the signal st+1 reverses the ranking
in favor of F . Thus st+1 is a strong positive signal for F . The agent is greatly
in�uenced by signals. Thus she is not tempted by G after seeing st+1.
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Corollary 4.1. Suppose that (�t) has a representation (�; u; p0; (�t; pt; qt)1�t�T ).
Then (�t) satis�es Prior-Bias if and only if

qt+1 (� j st+1) = (1� �t+1) pt+1 (� j st+1) + �t+1

h
�s0t+1mt

�
s0t+1

�
pt+1

�
� j s0t+1

�i
,

(4.6)
for some adapted process (�t) with �t+1 � 1.9
Further, (�t) satis�es (i) Positive Prior-Bias or (ii) Negative Prior-Bias if and

only if (4.6) is satis�ed with respectively (i) 0 � �t+1 � 1 and (ii) �t+1 � 0.

To understand the result, recall from Section 2.3 that at t, after the history
st1, the agent�s beliefs about future uncertainty are captured by the measure

Qt

�
st+1; st+2; :::; sT+1 j st1

�
= mt (st+1) pt+1(st+2 j st+11 ) � ::: � pT (sT+1 j sT1 ) .

Refer to it as the agent�s prior view at t. The measure �s0t+1mt

�
s0t+1

�
pt+1

�
� j s0t+1

�
represents beliefs about St+2 held at t; refer to it as the prior view of St+2 at t.
The measure pt+1 (� j st+1) over St+2 is the Bayesian update of the prior view
at t conditional on observing st+1. Corollary 4.1 establishes that Prior-Bias is
characterized by qt+1 being expressible as a linear combination of the Bayesian
update pt+1 of the prior view at t and the prior view of St+2 at t. The weight on the
former is non-negative but the weight �t+1 on the latter could be negative. This
is ruled out under Positive Prior-Bias but is compatible with Negative Prior-Bias.
These functional forms for qt+1 support our choice of terminology. When

qt+1 = pt+1, updating consists of responding to data by applying Bayes�Rule to
the prior view. On the other hand, using the prior view of St+2 (expressed by
�s0t+1mt

�
s0t+1

�
pt+1

�
� j s0t+1

�
) as the posterior would give all the weight to prior

beliefs and none to data. Thus an agent who updates according to the average
scheme in (4.6) exhibits a positive bias to the prior if �t+1 > 0 and a negative one
if �t+1 < 0.
Though qt+1 leads to urges for making choices at t+1, the agent balances it with

the view represented by pt+1 as described in Section 2.3, and acts as though she
forms the compromise one-step-ahead posteriormt+1 = �t+1pt+1 + (1��t+1) qt+1.
The above noted bias of qt+1 extends to this mixture of pt+1 and qt+1: substitute
for qt+1 from (4.6) and deduce that

mt+1 = (1� �t+1(1� �t+1)) pt+1 + �t+1(1� �t+1)
h
�s0t+1mt

�
s0t+1

�
pt+1

�
� j s0t+1

�i
,

(4.7)
9When �t+1 < 0 in (4.11), qt+1 is well-de�ned as a probability measure only under special

conditions.

20



which admits an interpretation analogous to that described above.10

Note that (4.6) de�nes all qt�s inductively given the pt�s and �t�s. Thus the
corresponding model of utility is completely speci�ed by �; u; p0 and the process
(pt; �t; �t)

T
1 .

Further content can be introduced into the model described in (4.6) by impos-
ing structure on the way in which �t+1 depends on the history st+11 . For example,
it might depend not only on the empirical frequency of observations but also on
their order due to sensitivity to streaks or other patterns. While each special-
ization we have described �xes a sign for �t+1 that is constant across times and
histories, one can imagine that an agent might react di¤erently depending on the
history. Formulating a theory of the �t+1�s is a subject for future research.

4.2. Sample-Bias

In the last section, temptation and hence also the updating bias, depended on
prior beliefs. Here we describe an alternative specialization of the general model
in which temptation and the updating bias depend instead on sample frequencies.
Denote by 	t+1 the empirical frequency measure on S given the history st+11 ;

that is, 	t+1 (s) is the relative frequency of s in the sample st+11 . Let G lie in Ct+1.
Then G (st+2) is a subset of Ct+2 � Ct+2 and so is the mixture

R
G
�
s0t+2

�
d	t+1.

Consider the contingent menu in Ct+1, denoted
R
Gd	t+1, that assigns

R
G
�
s0t+2

�
d	t+1

to every st+2. Then
�
ct+1;

R
Gd	t+1

�
denotes the obvious singleton menu.

The axioms to follow parallel the trio of axioms stated in the last section. One
di¤erence is that the contingent menus F and G appearing in these axioms are
assumed, for reasons given below, to lie in Cc;+1t+1 � Ct+1. Thus F and G provide
perfect commitment and are such that all relevant uncertainty is resolved by t+2.

Axiom 10 (Sample-Bias). For all t < T , st+1 and c0; c, for all F 0 in Ct, and for
all F and G in Cc;+1t+1 : if

(c0;
�
F 0�st+1 ; f(c; F )g

�
) �t (c

0;
�
F 0�st+1 ; f(c;G)g

�
) and

10We considered naming the above axioms Underreaction and Overreaction respectively, be-
cause attaching too much weight to the prior (as in Positive Prior-Bias) presumably means that
in a sense too little weight is attached to data (and similarly for the other axiom). However, the
term underreaction suggests low sensitivity of the posterior to the signal st+1, which need not
be the case in (4.7) unless �t+1 and �t+1 do not depend on st+1. See Section 5.1 for more on
underreaction and overreaction.
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(c0;

�
F 0�st+1 ; f(c;

Z
Fd	t+1)g

�
) �t (c

0;

�
F 0�st+1 ; f(c;

Z
Gd	t+1)g

�
), (4.8)

then
(c0;

�
F 0�st+1 ; f(c; F )g

�
) �t (c

0;
�
F 0�st+1 ; f(c; F ); (c;G)g

�
).

The next two axioms provide alternative strengthenings of Sample-Bias. Label
by Positive Sample-Bias the axiom obtained if (4.8) is replaced by

(c0;

�
F 0�st+1 ; f(c;

Z
Fd	t+1)g

�
) �t (c

0;

�
F 0�st+1 ; f(c;

Z
Gd	t+1)g

�
). (4.9)

Similarly, �de�ne�Negative Sample-Bias by using the hypothesis

(c0;

�
F 0�st+1 ; f(c;

Z
Fd	t+1)g

�
) �t (c

0;

�
F 0�st+1 ; f(c;

Z
Gd	t+1)g

�
). (4.10)

Interpret Positive Sample-Bias; the other interpretations are similar. First, we
interpret (4.9) as saying that the sample st+11 makes F look more attractive than
G: F delivers F (st+2) in state st+2 and st+2 appears with frequency 	t+1 (st+2)
in the sample. Thus �on average�, F yields

R
Fd	t+1. But the agent is indi¤erent

between F and its average because she satis�es Independence. Thus (4.9) implies
that the average for F is better than that of G: Now the axiom asserts that
if commitment to F is preferred (conditionally on st+1) to commitment to G,
and if the sample makes F look more attractive than G, then G is not tempting
conditionally. The fact that the sample may in�uence temptation after realization
of st+1, above and beyond its role in the conditional ranking, reveals the excessive
in�uence of the sample at the updating stage. The in�uence is �positive�because
G can be tempting conditionally only if it was more attractive according to the
sample history.
The preceding intuition, speci�cally the indi¤erence between F and

R
Fd	t+1,

relies on F lying in Cc;+1t+1 . That is because as st+2 varies, not only does F (st+2)
vary but so also does the information upon which the agent bases evaluation of
the menu F (st+2). Independence implies indi¤erence to the former variation but
not to the latter. For F in Cc;+1t+1 , however, information is irrelevant because all
uncertainty is resolved once st+2 is realized.

Corollary 4.2. Suppose that (�t) has a representation (�; u; p0; (�t; pt; qt)1�t�T ).
Then (�t) satis�es Sample-Bias if and only if

qt+1 (� j st+1) = (1� �t+1) pt+1 (� j st+1) + �t+1	t+1 (�) , (4.11)
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for some adapted process (�t) with �t+1 � 1.11
Further, (�t) satis�es (i) Positive Sample-Bias or (ii) Negative Sample-Bias if

and only if (4.11) is satis�ed with respectively (i) 0 � �t+1 � 1 and (ii) �t+1 � 0.

The implications of the functional form (4.11) are best seen through the implied
adjustment rule for one-step-ahead beliefs, which has the form

mt+1 = (1� �t+1(1� �t+1)) pt+1 + �t+1(1� �t+1)	t+1:

Under Positive Sample-Bias (�t+1 � 0), the Bayesian update pt+1 (st+2) is ad-
justed in the direction of the sample frequency 	t+1 (st+2), implying a bias akin
to the hot-hand fallacy - the tendency to over-predict the continuation of recent
observations. For Negative Bias,

mt+1 = pt+1 + (��t+1(1� �t+1)) (pt+1 �	t+1) ,

and the adjustment is proportional to (pt+1 �	t+1), as though expecting the next
realization to compensate for the discrepancy between pt+1 and the past empirical
frequency. This is a form of negative correlation with past realizations as in the
gambler�s fallacy.
Because she uses the empirical frequency measure to summarize past observa-

tions, the temptation facing an agent satisfying any of the models in the above
corollary depends equally on all past observations, although it might seem more
plausible that more recent observations have a greater impact on temptation. This
can be accommodated. For example, both the interpretations of the above axioms
and the corollary remain intact if 	t+1 is a weighted empirical frequency measure

	t+1 (�) = �t+11 w�; t+1�s� (�) .

Here �s� (�) is the Dirac measure on the observation at time � and w�; t+1 � 0 are
weights; the special case w�; t+1 = 1

t+1
for all � yields the earlier model. Thus the

framework, including axiomatic foundations, permits a large variety of biases due
to undue in�uence of the sample. For example, an agent who is in�uenced only
by the most recent observation is captured by the law of motion

mt+1 = (1� �t+1(1� �t+1)) pt+1 + �t+1(1� �t+1) �st+1 .

11When �t+1 < 0 in (4.11), qt+1 is well-de�ned as a probability measure only under special
conditions; for example, it su¢ ces that ��t+1

1��t+1 � min
st+2

pt+1 (st+2 j st+1).
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If �t+1 < 0, the resulting model admits interpretation (in terms of sampling
without replacement from changing urns) analogous to that o¤ered by Rabin [17]
for his model of the law of small numbers.

5. LEARNING ABOUT PARAMETERS

This section describes an example of our model in which the data generating
process is unknown up to a parameter � 2 �. In the benchmark Bayesian model,
time t beliefs have the form

Pt (�) =
Z
�


T
t+1` (� j �) d�t, (5.1)

where: ` (� j �) is a likelihood function (measure on S), �0 represents prior beliefs
on �, and �t denotes Bayesian posterior beliefs about the parameter at time t and
after observations st1. The de Finetti Theorem shows that beliefs admit such a
representation if and only if P0 is exchangeable. We describe, without axiomatic
foundations, a generalization of (5.1) that accommodates non-Bayesian updating.
Our specialization of the model in Section 2.2 to accommodate parameters is

de�ned by a suitable speci�cation for (pt; qt), taking (�t), � and u as given. We �x
(�; `; �0) and suppose for now that we are also given a process (�t), where each �t
is a probability measure on �. (The �-algebra associated with � is suppressed.)
The prior �0 on � induces time 0 beliefs about S1 given by

p0 (�) = m0 (�) =
Z
�

` (� j �) d�0.

Proceed by induction: suppose that �t has been constructed and de�ne �t+1 by

�t+1 = �t+1BU (�t; st+1) + (1� �t+1)�t+1; (5.2)

where BU (�t; st+1) (�) is the Bayesian update of �t (see (1.1)). This equation con-
stitutes the law of motion for beliefs about parameters. Finally, de�ne (pt+1; qt+1)
by

pt+1 (�) =
Z
�

` (� j �) d (BU (�t; st+1)) and (5.3)

qt+1 (�) =
Z
�

` (� j �) d�t+1. (5.4)

This completes the speci�cation of the model for any given process (�t).
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Notice that

mt+1 (�) = �t+1pt+1 + (1� �t+1)qt+1 =

Z
�

` (� j �) d�t+1. (5.5)

In light of the discussion in Section 2.3, preferences at t + 1 are based on the
beliefs about parameters represented by �t+1. If �t+1 � 0, then (�t) is the process
of Bayesian posteriors and the above collapses to the exchangeable model (5.1).
More generally, di¤erences from the Bayesian model depend on (�t), examples of
which are given next.12

5.1. Prior-Bias with Parameters

Consider �rst the case where

�t+1 = (1� �t+1)BU (�t; st+1) + �t+1�t, (5.6)

where �t+1 � 1. This is readily seen to imply (4.6) and hence Prior-Bias; the bias
is positive or negative according to the sign of the ��s. Posterior beliefs about
parameters satisfy the law of motion

�t+1 = (1� �t+1(1� �t+1)) BU (�t; st+1) + �t+1(1� �t+1) �t: (5.7)

The latter equation reveals something of how the inferences of an agent with
Prior-Bias di¤er from those of a Bayesian updater. Compute that (assuming
�t+1 6= 1)

�t+1(�)

�t+1(�
0) <

`(st+1j�)
`(st+1j�0)

�t(�)
�t(�

0) i¤ �t+1` (st+1 j �0) < �t+1` (st+1 j �) . (5.8)

For a concrete example, consider coin tossing, with S = fH;Tg, � � (0; 1) and
` (H j �) = � and consider beliefs after a string of H�s. If there is a Positive Prior-
Bias (positive ��s), then repeated application of (5.8) establishes that the agent
underinfers in the sense that

�t+1(�)

�t+1(�
0) <

�Bt+1(�)

�Bt+1(�
0)
, � > �0,

where �Bt+1 is the posterior of a Bayesian who has the same prior at time 0.
Similarly, Negative Prior-Bias leads to overinference.

12One general point is that, in contrast to the exchangeable Bayesian model, �t+1 depends
not only on the set of past observations, but also on the order in which they were realized.
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Turn to the question of what is learned in the long run. (Here, for choice
theoretic foundations we implicitly rely on an in�nite-horizon extension of our
model.) Learning may either signify learning the true parameter or learning to
forecast future outcomes.13 The latter kind of learning is more relevant to choice
behavior and thus is our focus. Suppose that �� 2 � is the true parameter and
thus that the i.i.d. measure P � = 
1t=1` (� j ��) is the probability law describing
the process (st). Say that forecasts are eventually correct on a path s11 if, along
that path,

mt (�) �! ` (� j ��) as t �!1.
Rewrite the law of motion for posteriors (5.7) in the form

�t+1 =
�
1� 
t+1

�
BU (�t; st+1) + 
t+1�t, (5.9)

where 
t+1 = �t+1(1 � �t+1) � 1. In general, 
t+1 is St+1-measurable (
t+1 may
depend on the entire history st+11 , including st+1), but we will be interested also in
the special case where 
t+1 is St-measurable. In that case, (5.9) can be interpreted
not only in terms of Positive and Negative Prior-Bias as above, but also in terms of
underreaction and overreaction to data. For example, let 
t+1 � 0 (corresponding
to �t+1 � 0). Then �t+1 is a mixture, with weights that are independent of st+1, of
two terms: (i) the Bayesian update BU (�t; st+1), which incorporates the �correct�
response to st+1, and (ii) the prior �t, which does not respond to st+1 at all. In a
natural sense, therefore, an agent with 
t+1 � 0 underreacts to data. Similarly, if

t+1 � 0, then BU (�t; st+1) is a mixture of �t+1 and �t, which suggests that �t+1
re�ects overreaction. Clearly, if 
t+1 = 0 then the model reduces to the Bayesian
updating rule.

Theorem 5.1. Let � be �nite and �0 (�
�) > 0.

(a) Suppose that 
t+1 is St-measurable and that 
t+1 � 0. Then forecasts are
eventually correct P � � a:s:
(b) Suppose that 
t+1 is St-measurable and that 
t+1 � 1� � for some � > 0.

Then forecasts are eventually correct with P �-strictly positive probability.
(c) If one drops either of the assumptions in (a), then there exist (S;�; `; �0)

and � 6= �� such that

mt (�) �! ` (� j �) as t �!1,

with P �-strictly positive probability.

13See [12] for the distinction between these two kinds of learning.
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Assume that before any data are observed the prior belief puts positive weight
on the true parameter, that is, assume that �0 (�

�) > 0: Then multiple repetition of
Bayes�Rule leads to near correct forecasts. This result is central in the Bayesian
literature because it shows that the mere repetition of Bayes�Rule eventually
transforms the historical record into a near perfect guide for the future. Part (a)
of the theorem generalizes the Bayesian result to the case of underreaction. This
result shows that, if repeated su¢ ciently many times, all non-Bayesian updating
rules in (5.9) with the additional proviso of a Positive Prior-Bias and the indicated
added measurability assumption, eventually produce good forecasting. Hence,
in the case of underreaction, agent�s forecasts converge to rational expectations
although the available information is not processed according to Bayesian laws of
probability.
Part (b) shows that, with positive probability, forecasts are eventually correct

provided that the Bayesian term on the right side of (5.9) receives weight that
is bounded away from zero. This applies in the case of Negative Prior-Bias,
corresponding to overreaction. In fact, the results holds even if the forecaster
sometimes overreacts and sometimes underreacts to new information. However,
part (c) shows that convergence to wrong forecasts may occur in the absence of
either of the assumptions in (a). This is demonstrated by two examples. In the
�rst example the weight 
t+1 is constant, but su¢ ciently negative, corresponding
to a forecaster that su¢ ciently overreacts to new information. In the second
example, the weight 
t+1 is positive corresponding to underreaction, but 
t+1
depends on the current signal and, therefore, 
t+1 is only St+1-measurable. In
both examples, forecasts may eventually converge to an incorrect limit. Moreover,
wrong forecasts in the limit are at least as likely to occur as are correct forecasts.
The proof of Theorem 5.1 builds on classic arguments of the Bayesian liter-

ature. Consider the probability measure �t on the parameter space and let the
random variable ��t be the probability that �t assigns to the true parameter. It fol-
lows that the expected value (according to the true data generating process) of the
Bayesian update of ��t (given new information) is greater than �

�
t itself. Hence,

in the Bayesian case, the weight given to the true parameter tends to grow as
new information is observed. This submartingale property ensures that Bayesian
forecasts must converge to some value and cannot remain in endless random�uctu-
ations. The submartingale property follows because under the Bayesian paradigm
future changes in beliefs that can be predicted are incorporated in current beliefs.
It is immediate from the linear structure in (5.9) that this basic submartingale
property still holds in our model as long as the weight 
t+1 depends upon the
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history only up to period t. Hence, with this measurability assumption, forecasts
in our model must also converge and, as in the Bayesian case, cannot remain
in endless random �uctuations.14 In addition, convergence to the truth holds in
both the Bayesian paradigm and in the case of underreaction. However, given suf-
�ciently strong overreaction, it is possible that forecasts will settle on an incorrect
limit. This follows because the positive drift of the above mentioned submartin-
gale property on ��t may be compensated by su¢ ciently strong volatility which
permits that, with positive probability, ��t converges to zero.

5.2. Sample-Bias with Parameters

Sample-Bias can also be modeled when learning about parameters is taking place.
Take as primitive a process ( t+1) of probability measures on � that provides a
representation for empirical frequency measures 	t+1 of the form

	t+1 =

Z
` (� j �) d t+1 (�) . (5.10)

Let �0 be given and de�ne �t+1 and �t+1 inductively for t � 0 by (5.2) and

�t+1 = (1� �t+1) BU(�t; st+1) + �t+1 t+1, (5.11)

for �t+1 � 1. Then one obtains a special case of the Sample-Bias model of Corol-
lary 4.2; the bias is positive or negative according to the sign of the ��s. The
implied law of motion for posteriors is

�t+1 = (1� �t+1(1� �t+1))BU (�t; st+1) + �t+1(1� �t+1)  t+1: (5.12)

To illustrate, suppose that S = fs1; :::; sKg and that `
�
sk j �

�
= �k for each

� = (�1; :::; �K) in �, the interior of the K-simplex. Then one can ensure (5.10) by
taking  0 to be a suitable noninformative prior; subsequently, Bayesian updating
leads to the desired process ( t+1). For example, the improper Dirichlet prior
density

d 0 (�)

�Kk=1d�k
/ �Kk=1�

�1
k

14We conjecture that beliefs �t may not converge in some examples when the weight 
t+1 is
St+1-measurable. In our example, it does converge, but to an incorrect limit.
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yields the Dirichlet posterior with parameter vector
�
nt (s

1) ; :::; nt
�
sK
��
, where

nt
�
sk
�
equals the number of realizations of sk in the �rst t periods; that is,

d t (�)

�Kk=1d�k
/ �Kk=1�

nt(sk)�1
k . (5.13)

By the property of the Dirichlet distribution,Z
`
�
sk j �

�
d t (�) =

Z
�k d t (�) =

nk(t)
t
,

the empirical frequency of sk, as required by (5.10).
Finally, compute from (5.12) and (5.13) that (assuming �t+1 6= 0)

�t+1(�)

�t+1(�
0) >

`(st+1j�)
`(st+1j�0)

�t(�)
�t(�

0) i¤ �t+1
 t(�)
 t(�

0) > �t+1
�t(�)
�t(�

0) . (5.14)

Suppose that all �t+1�s are negative (Negative Sample-Bias) and consider the coin-
tossing example. As above, we denote by

�
�Bt
�
the Bayesian process of posteriors

with initial prior �B0 = �0. Then it follows from repeated application of (5.13)
and (5.14) that

�t+1(�)

�t+1(�
0) >

�Bt+1(�)

�Bt+1(�
0)
;

if st+11 = (H; :::; H), j � � 1
2
j> j �0 � 1

2
j and if the common initial prior �0

is uniform.15 After seeing a string of H�s the agent described herein exaggerates
(relative to a Bayesian) the relative likelihoods of extremely biased coins. If instead
we consider a point at which the history st+11 has an equal number of realizations
of T and H, then

�t+1(�)

�t+1(1��)
> �

1��
�t(�)
�t(1��)

= BU(�t;H)(�)
BU(�t;H)(1��)

;

for any � such that �t (�) > �t (1� �). If there have been more realizations of H,
then the preceding displayed inequality holds if�

�
1��
�nt+1(H)�nt+1(T )

< �t(�)
�t(1��)

,

for example, if � < 1
2
and �t (�) � �t (1� �). Note that the bias in this case is

towards coins that are less biased (� < 1
2
). The opposite biases occur in the case

of Positive Sample-Bias.

15More generally, the latter two conditions can be replaced by
�0(1��0)
�(1��) > �0(�)

�0(�
0) .
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We conclude with a result regarding learning in the long run. In order to avoid
technical issues arising from � being a continuum as in the Dirichlet-based model,
we consider the following variation: as before S = fs1; :::; sKg and `

�
sk j �

�
= �k

for each k and �. But now take � to be the set of points � = (�1; :::; �K) in the
interior of the K-simplex having rational co-ordinates. De�ne

 t+1 (�) =

�
1 if the empirical frequency of sk is �k, 1 � k � K,
0 otherwise.

Then (5.10) is evident.16 The law of motion can be written in the form

�t+1 =
�
1� 
t+1

�
BU (�t; st+1) + 
t+1 t+1; (5.15)

where 
t+1 = �t+1(1� �t+1) � 1.
We have the following partial counterpart of Theorem 5.1.

Theorem 5.2. Let S, (�; `) and ( t) be as just de�ned and suppose that pos-
teriors (�t) evolve according to (5.15), where 
t+1 is St-measurable and 0 < 
 �

t+1 � 1. Then forecasts are eventually correct P � � a:s:

The positive lower bound 
 excludes the Bayesian case. The result does hold in
the Bayesian case 
t+1 = 0: However, unlike the proof of Theorem 5.1, the proof of
Theorem 5.2 is in some ways signi�cantly di¤erent from the proof in the Bayesian
case. We suspect that the di¤erences in the approach make the lower bound
assumption technically convenient but ultimately disposable. We also conjecture
(but cannot yet prove) that just as in part (c) of Theorem 5.1, convergence to the
truth fails in general if 
t+1 is only St+1-measurable. The other case treated in
the earlier theorem - 
t+1 is St-measurable but possibly negative - (which in the
context of that model corresponded to overreaction) is not relevant here because
these conditions violate the requirement that each �t+1 in (5.11) be a probability
measure and hence non-negatively valued.

6. CONCLUDING REMARKS

Our main contribution is to provide a choice-theoretic model of updating. An
important feature of the model is its richness - it can accommodate a range of
16If � were taken to be �nite, then one could not assure (5.10) without admitting signed

measures for  t+1 and hence also for �t+1. Bayesian updating is not well-de�ned for signed
measures and even if that problem were overcome, the interpretation of such a model is not
clear.
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updating biases. We have illustrated this to a degree via the (axiomatic) spe-
cializations called Prior-Bias and Sample-Bias. However, much more might be
done in this vein. For example, we characterized two alternative specializations
of Sample-Bias that correspond roughly to the hot-hand fallacy (Positive Sample-
Bias) and the gambler�s fallacy (Negative Sample-Bias) respectively. However,
while in each case the agent is assumed to su¤er from the indicated fallacy at all
times and histories, it is intuitive that she may move from one fallacy to another
depending on the sample history. Thus one would like a theory that explains
which fallacy applies at each history. Our framework gives this task a concrete
form: in light of Corollary 4.2, one must �only�explain how the weights �t+1 vary
with history. Similarly with regard to further specializations of Prior-Bias.
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A. APPENDIX: Proof of Main Representation Result

A.1. Preliminaries

For any compact metric space D endowed with a continuous mixture operation, say that a pref-
erence � overM (D) has a (U; V ) representation if the functions U; V : D ! R are continuous
and linear, and if � is represented by WU;V :M (D)! R, where

WU;V (M) = max
c2M

fU + V g � max
c02M

V; M 2M (D) .

Say that � is strategically rational if for all M;M 0 2M (D) ;

M �M 0 =)M �M [M 0:
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Lemma A.1. If � has a (U; V ) representation with U nonconstant, then:
(a) � is strategically rational i¤V = aU+b for some a � 0. In particular, if V is nonconstant

then � is strategically rational i¤ U + V = aV + b for some a > 1.
(b) � is strategically rational i¤ for all c; c 2 D,

fcg � fcg =) fcg � fc; cg: (A.1)

Proof. (a) The argument is similar to [7, p. 1414].
(b) Su¢ ciency is clear. For necessity, suppose that � is not strategically rational so that,

as in [7, p. 1414], U and V are nonconstant and U is not a positive a¢ ne transformation of
V . Consequently, there exist c; c 2 D such that either [U(c) > U(c0) and V (c) � V (c0)], or
[U(c) � U(c0) and V (c) < V (c0)]. Linearity and nonconstancy of U and V imply the existence
of c and c close to c and c0, respectively, such that all inequalities are strict. Then

fcg � fcg and fcg � fc; cg;

which violates (A.1) and yields the result.

Lemma A.2. Suppose that � has a (U; V ) representation and that there exists c; c such that
fc; cg � fcg. Then a preference �� over D is represented by U + V if and only if it satis�es the
vNM axioms and the following restriction:

if fcg � fdg; then fc; dg � fdg () c �� d: (A.2)

Proof. That the conditions on �� are necessary for it to be represented by U + V follows
immediately from the latter�s linearity and continuity, and by Step 1 below. Establish the
converse.

Step 1 : Show that if fcg � fdg, then

fc; dg � fdg () U(c) + V (c) > U(d) + V (d).

=): Suppose fc; dg � fdg, and that, by way of contradiction, U(c)+V (c) 6> U(d)+V (d). Then
fc; dg � fdg =)

maxfc;dg fU + V g �maxfc;dg V > U(d) =)
U(d) + V (d)�maxfc;dg V > U(d) =)
V (d) > maxfc;dg V , which contradicts fc; dg � fdg.

(=: Suppose U(c) + V (c) > U(d) + V (d) and by way of contradiction that fc; dg 6� fdg. Then
fc; dg 6� fdg =)

maxfc;dg fU + V g �maxfc;dg V � U(d) =)
U(c) + V (c)�maxfc;dg V � U(d) =)
U(c) + V (c) � U(d) + maxfc;dg V:

If maxfc;dg V = V (c), then U(c) � U(d), contradicting the hypothesis that fcg � fdg. If
maxfc;dg V = V (d), then U(c) + V (c) � U(d) + V (d), contradicting the hypothesis that U(c) +
V (c) > U(d) + V (d).

Step 2 : The result.
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By hypothesis, fc; cg � fcg, and by Set Betweenness, fcg � fcg. Thus Step 1 and (A.2)
imply that U(c)+V (c) > U(c)+V (c) and c �� c. These observations will be used to prove that
U + V represents ��.

Take any c; d 2 D such that c �� d and suppose by way of contradiction that U(d)+V (d) �
U(c) + V (c). Step 1 and (A.2) rule out fcg � fdg. If, on the other hand, fdg � fcg, then by
Independence and linearity of U + V ,

fd�cg � fc�cg and U(d�c) + V (d�c) > U(c�c) + V (c�c);

for all � 2 (0; 1), where d�c is short-hand for the mixture �d+ (1� �) c and so on. By Step 1,
fd�c; c�cg � fc�cg for all � 2 (0; 1), and by (A.2), d�c �� c�c for all � 2 (0; 1). Continuity of
��implies d �� c, a contradiction.

Next suppose c �� d and wlog U(c) + V (c) > U(d) + V (d). If fcg � fdg then by Step 1,
fc; dg � fdg, and by (A.2), c 6�� d, a contradiction. If, on the other hand, fdg � fcg, then since
� and �� satisfy the Independence axiom, it follows that

fd�cg � fc�cg and d�c �� c�c,

for all � 2 (0; 1). By (A.2), fd�c; c�cg � fc�cg for all � 2 (0; 1), and thus by Step 1, U(d�c) +
V (d�c) > U(c�c)+V (c�c) for all � 2 (0; 1). By continuity of U+V , U(d)+V (d) � U(c)+V (c),
a contradiction.

For any state st+2, G 2 Ct+1 and L �M (Ct+2 � Ct+2), de�ne the set Lst+2G of contingent
menus by

Lst+2G =
�
[G�st+2 ;M ] : M 2 L

	
� Ct+1.

De�ne �t jst+1;st+2 on closed subsets ofM (Ct+2 � Ct+2) by: L0 �t jst+1;st+2 L i¤

(c0;
�
F�st+1 ; (c; L

0st+2G)
�
) �t (c0;

�
F�st+1 ; (c; Lst+2G)

�
) ,

for some c; c0 2 C; F in Ct, andG in Ct+1.

Lemma A.3. Suppose that (�t) satis�es Axioms 1-8 and that �tjst+1;st+2 has a (U; V ) repre-
sentation with nonconstant U . Then �tjst+1;st+2 is strategically rational.

Proof. By Lemma A.1(b), we need only establish that for any M;M 0 2M (Ct+2 � Ct+2),

fMg �tjst+1;t+2 fM 0g =) fMg �tjst+1;t+2 fM;M 0g:

Observe that fMg �tjst+1;t+2 fM 0g ()�
c0;
�
F�st+1 ; f(c; [G�st+2 ;M ])g

��
�t
�
c0;
�
F�st+1 ; f

�
c; [G�st+2 ;M

0]
�
g
��
=)��

c0;
�
F�st+1 ; f c; [G�st+2 ;M ])g

��
�t
�
c0;
�
F�st+1 ; f(c; [G�st+2 ;M ]); (c; [G�st+2 ;M 0])g

��
=) fMg �tjst+1;t+2 fM;M 0g, where the implication =)� is by RSR.

In the next Lemma, �t and �t+1 are the preferences corresponding to histories (s1; :::; st)
and (s1; :::; st; st+1) respectively.

34



Lemma A.4. Suppose that (�t) satis�es Axioms 1-8. If H;H 0 2 Ct+1 are such that H(s0t+2) =
H 0(s0t+2) for all s

0
t+2 6= st+2, then for any st+1; c; c0 and F ,

(c;H) �t+1 (c;H 0)()

(c0;
�
F�st+1 ; f (c;H)g

�
) �t (c0;

�
F�st+1 ; f (c;H 0)g

�
):

Proof. (= follows from RSR. Conversely, suppose that (c;H) �t+1 (c;H 0) and�
c0;
�
F�st+1 ; f (c;H 0)g

��
�t
�
c0;
�
F�st+1 ; f (c;H)g

��
. Sophistication implies

(c0;
�
F�st+1 ; f (c;H 0) ; (c;H)g

�
) �t (c0;

�
F�st+1 ; f (c;H)g

�
);

by Set-Betweenness, this weak preference is in fact indi¤erence. Therefore,

(c0;
�
F�st+1 ; f (c;H 0)g

�
) �t (c0;

�
F�st+1 ; f (c;H 0) ; (c;H)g

�
);

which contradicts RSR.

A.2. Proof of Theorem 3.1

Necessity : We provide details only for some axioms. To verify Sophistication, suppose that
t < T and (c;

�
G�st+1 ; ffg

�
) �t (c;

�
G�st+1 ; fgg

�
). Then by the representation and Step 1 of

the proof of Lemma A.2,

(c;
�
G�st+1 ; ff; gg

�
) �t (c;

�
G�st+1 ; fgg

�
)() Ut+1 (f) > Ut+1 (g)() f �t+1 g.

Risk Preference and State Independence follow from pt+1 having full support and the fact
that for any ` 2 Lt+1, Ut+1 (`; st+1) = u(`t+1) + ��T+1t+2 ���(t+2)u (`� ). To establish RSR, take
any H;H 0 2 Ct+1 such that H(s0t+2) = H 0(s0t+2) for all s

0
t+2 6= st+2. The hypothesis (3.6) implies

Ut+2 (H
0 (st+2) ; st+2) � Ut+2 (H (st+2) ; st+2). Thus Ut+1 (f(c;H 0); (c;H)g; st+1) =

u(c) + maxF2fH0;Hg �
R
St+2

Ut+2 (F (st+2) ; st+2) d
�
pt+1 +

1��t+1
�t+1

qt+1

�
� maxF 02fH0;Hg

1��t+1
�t+1

�
R
St+2

Ut+2 (F
0 (st+2) ; st+2) dqt+1(st+2)

= u(c) + maxF2fH0;Hg �
R
St+2

Ut+2 (F (st+2) ; st+2) dpt+1 (st+2)

= u(c) + �
R
St+2

Ut+2 (H
0 (st+2) ; st+2) dpt+1 (st+2)

= Ut+1 (f(c;H 0)g; st+1), which implies (3.7).
To see (3.8) note that since pt+1 has full support,

Ut+2 (H
0 (st+2) ; st+2) � Ut+2 (H (st+2) ; st+2) =)R

St+2
Ut+2 (H

0 (st+2) ; st+2) d
�
pt+1 +

1��t+1
�t+1

qt+1

�
�
R
St+2

Ut+2 (H (st+2) ; st+2) d
�
pt+1 +

1��t+1
�t+1

qt+1

�
=) Ut+1 (c;H 0) > Ut+1 (c;H), as desired.

Su¢ ciency : The proof of su¢ ciency is by backward induction on t. Begin by showing that �T
is represented by the function

WT (cT ; FT ) = u(cT ) + �

Z
ST+1

u (FT (sT+1)) dmT , (cT ; FT ) 2 CT � CT , (A.3)
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where mT 2 �(ST+1) and mT has full support.
We claim that �T may be represented by

WT (c; FT ) = u1(c) + u2(FT ), (A.4)

where u1 (�) and u2 (�) are continuous and linear. Argue as follows: Since CT � CT is a mixture
space and �T satis�es Order, Continuity and Independence, there exists a continuous linear
representation WT (�) of �T . By de�nition of the mixture operation, for any c; c0 2 C and
F; F 0 2 CT ,

1

2
(c; F ) +

1

2
(c0; F 0) =

1

2
(c0; F ) +

1

2
(c; F 0):

Thus
WT

�
1
2 (c; F ) +

1
2 (c

0; F 0)
�
=WT

�
1
2 (c

0; F ) + 1
2 (c; F

0)
�
=)

1
2WT (c; F ) +

1
2WT (c

0; F 0) = 1
2WT (c

0; F ) + 1
2WT (c; F

0) =)
WT (c; F ) =WT (c; F

0) +WT (c
0; F )�WT (c

0; F 0) � u1 (c) + u2 (F ).
Linearity and continuity of u1 and u2 are evident.

Return to the proof of (A.3). Take any c and de�ne the order � on CT by

F � G() (c; F ) �T (c;G): (A.5)

Verify that � satis�es the Anscombe-Aumann axioms: Order, Continuity and Independence
are immediate. By Risk Preference and nonconstancy of u (�), there exists c0; c00 2 CT+1 such
that c0 6� c00, and thus � satis�es the Anscombe-Aumann nondegeneracy condition. State
Independence applied twice yields (F�sT+1 ; c

0) � (F�sT+1 ; c
00) =) (F�s0T+1 ; c

0) � (F�s0T+1 ; c
00)

for all c0; c00 2 CT+1 and sT+1; s0T+1 2 ST+1. Thus there existsmT 2 �(ST+1) and u : CT+1 �!
R, nonconstant, continuous and linear, such that � is represented by w (�),

w (FT ) =

Z
ST+1

u (FT (sT+1)) dmT , FT 2 CT .

Since u2 (�) is continuous, linear and (by (A.5)) ordinally equivalent to w (�), it follows that
u2 (�) = aw (�) + b for some a > 0. By Risk Preference, it is wlog to set u(�) = u1(�); a = � and
b = 0. State Independence, Risk Preference and the nonconstancy of u (�) imply that mT has
full support.

As the induction hypothesis, suppose that for some t < T and every � satisfying t � � < T ,
��+1 is represented by

W�+1 (c; F�+1) = u(c) + �

Z
S�+2

U�+2 (F�+1 (s�+2) ; s�+2) dm�+1, (c; F�+1) 2 C�+1 � C�+1,

where m�+1 has full support, U�+2 (�; s�+2) :M (C�+2 � C�+2) �! R1 is nonconstant, contin-
uous, linear and is de�ned recursively via

U�+2 (M�+2; s�+2) =
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max
(c;F�+2)2M�+2

(
u (c) + �

R
S�+3

U�+3 (F�+2 (s�+3) ; s�+3) dp�+2

+ (1���+2)
��+2

�
u (c) + �

R
S�+3

U�+3 (F�+2 (s�+3) ; s�+3) dq�+2

� )

� max
(c0;F 0

�+2)2M�+2

(1� ��+2)
��+2

(
u (c0) + �

Z
S�+3

U�+3
�
F 0�+2 (s�+3) ; s�+3

�
dq�+2

)
,

and the boundary condition

UT+1 (cT+1; sT+1) = u (cT+1) .

Above
��+2 2 (0; 1], p�+2; q�+2 2 �(S�+2) , each p�+2 has full support,

and m�+2 = ��+2p�+2 + (1� ��+2) q�+2:

We construct Wt having the appropriate form and representing �t.17 The argument is
divided into a series of steps.

Step 1 : We de�ne the �convex hull" of contingent menus.
For any mixture space, we have the usual notion of convex hull of a set M - the smallest set

convex (mixture-closed) containing M . However, a mixture space framework is not adequate
because, for example,M (CT � CT ) is not a mixture space - �

�
�0M + (1� �0)M 0� + (1��)M 0

6= ��0M + (1���0)M 0 ifM andM 0 are not convex . More generally, because �M+(1� �)M 6=
M in general, the �convex hull" of any M need not contain M . In fact, we are interested in
the convex hull of contingent menus. Thus we de�ne co (Ft) for any Ft in Ct and we do so by
backward induction.

For t = T � 1, CT = (CT+1)ST+1 , the set of (Anscombe-Aumann) acts over ST+1, and both
CT and CT�CT are mixture spaces. Thus so is CT�CT , and �convex hull ofMT�1" has the usual
meaning - the smallest convex set containing MT�1. For any contingent menu FT�1 in CT�1,
de�ne its convex hull, co (FT�1), as the contingent menu that maps each sT into co (FT�1 (sT )).
Let

DT�1 = fco
�
F 0T�1

�
: F 0T�1 2 CT�1g � CT�1.

Then DT�1 is a mixture space.
For the inductive step, supposing that co (�) has been de�ned on Ct+1, and that

Dt+1 = fco
�
F 0t+1

�
: F 0t+1 2 Ct+1g � Ct+1

is a mixture space. Let Ft 2 Ct, st+1 2 St+1, and

N = f(ct+1; co (Ft+1)) : (ct+1; Ft+1) 2 Ft (st+1)g.

Since Ct+1 �Dt+1 is a mixture space, the smallest convex subset of Ct+1 �Dt+1 containing N
is well-de�ned. We de�ne co (Ft) (st+1) to be that set. This de�nes co (Ft). Note that it lies in
Dt = fco (F 0t ) : F 0t+1 2 Ct+1g, and that the latter is a mixture space.

17For t = 0, the measure m0 over S1 that we construct can be denoted instead by p0, as in
the desired representation.
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Step 2 : Each �t satis�es Indi¤erence to Randomization, that is,
(c; Ft) �t (c; co (Ft)). (A.6)

Let t = T � 1, corresponding to the 3-period setting in [5]. Then �t is de�ned on CT�1 �
(M (CT � CT ))ST , which, as noted above, is a mixture space. Hence IR is implied by Order,
Continuity and Independence (see Dekel, Lipman and Rustichini [3, Lemma 1]).18

However, the domain of �t is not a mixture space if t < T � 1. Fortunately, we can
invoke Kopylov [9] to prove (A.6).19 He extends the GP theorem to a domain, consisting of
hierarchies of menus, that corresponds to our setting when the state space S is a singleton
and when consumption occurs only at the terminal time. In achieving this extension, Kopylov
proves a counterpart of (A.6) for his setting (see his Appendix B, especially Lemma B.4 and
its discussion). The multiplicity of states and the presence of intermediate consumption are not
germane to the validity of (A.6), and Kopylov�s arguments are readily adapted to accommodate
these features.

Step 3 : The order �t can be represented by cWt (�) having the formcWt (c; F ) = u�t (c) + �st+1U
�
t+1 (F (st+1) ; st+1) ; (A.7)

where ut(�) and U�t+1 (�; st+1) are nonconstant, continuous and linear on Ct and
M (Ct+1 � Ct+1) respectively, and where

U�t+1 (M; st+1) = U�t+1 (co (M) ; st+1) , for M 2M (Ct+1 � Ct+1) . (A.8)

To prove this, restrict attention �rst to Ct�Dt. Each F inDt maps St+1 intoMc (Ct+1 �Dt+1),
the collection of convex (and closed) subsets of the mixture space Ct+1�Dt+1. ButMc (Ct+1 �Dt+1)
is a mixture space. Since �t satis�es Order, Continuity and Independence on Ct�Dt, �tjCt�Dt

admits a utility representation by some cWt : Ct � Dt ! R1 having the form (A.7) when re-
stricted to Ct �Dt; additivity across c and F can be established as in (A.4), while the additive
separability across states follows as in [10, Propn. 7.4], for example. Use (A.8) to extend (A.7)
to all of Ct � Ct. Indi¤erence to Randomization (Step 2) implies that cWt (�) represents �t on
Ct � Ct.

Let �t jst+1 onM (Ct+1 � Ct+1) be the preference represented by U�t+1 (�; st+1).

Step 4 : �t jst+1 satis�es GP axioms suitably translated to M (Ct+1 � Ct+1). Thus by their
theorem and the extension provided by Kopylov [9],20

18Their result is formulated for preference de�ned on menus of lotteries, but the same argument
can be used for menus of any compact metric mixture space. The contingent nature of menus
in our case is of no signi�cance because mixtures are de�ned statewise.
19We are grateful to Igor Kopylov for pointing out this line of argument.
20GP work with a domain of menus of lotteries. Their theorem would apply directly if we had

adopted the larger domain obtained by replacing (2.2) with Ft : St+1 �!M (� (Ct+1 � Ct+1)).
However, adding an extra layer of lotteries can be avoided by invoking Kopylov, suitably ex-
tended to accommodate a �nite (nonsingleton) state space and intermediate consumption. (His
Temporal Set-Betweenness axiom is satis�ed by our preference �t jst+1 , by Lemma A.4 and
Set-Betweenness.)
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U�t+1 (M; st+1) = max
(c;F )2M

�
UGPt+1 (c; F; st+1) + V

GP
t+1 (c; F; st+1)

	
� max

(c0;F 0)2M
V GPt+1 (c

0; F 0; st+1) ,

for some UGPt+1 (�; st+1) and V GPt+1 (�; st+1), continuous and linear functions on Ct+1 � Ct+1. The
subscript t indicates that these functions may depend also on the history st1 underlying �t.

Step 5 : Show that for some A(st+1) > 0,

UGPt+1 (c; F; st+1) + V
GP
t+1 (c; F; st+1) = A(st+1)

"
u(c) + �

Z
St+2

Ut+2 (Ft+1 (st+2) ; st+2) dmt+1

#
(A.9)

By Risk Preference and State Independence, for any c;H; st+1 there exists `; `0 2 Lt+1 such
that

(c;
�
H�st+1 ; f`g

�
) �t (c;

�
H�st+1 ; f`0g

�
) and ` �t+1 `0.

It follows from Sophistication that

(c;
�
H�st+1 ; f`; `0g

�
) �t (c;

�
H�st+1 ; f`0g

�
).

In particular, the preference �t jst+1 on M (Ct+1 � Ct+1) satis�es f`; `0g �tjst+1 f`0g. By Step
4 this preference has a (UGPt+1 ; V

GP
t+1 ) representation, and thus by Sophistication and Order,

Continuity and Independence for �t+1, Lemma A.2 implies that UGPt+1 (�; st+1) + V GPt+1 (�; st+1)
represents �t+1. By the induction hypothesis, �t+1 is represented also by Wt+1 (�), and since
both functions are continuous and linear, they must be cardinally equivalent. Thus (A.9) follows
wlog.

Step 6 : Let Vt+1 (c; F; st+1) = 1
A(st+1)

V GPt+1 (c; F; st+1) and show that

Vt+1 (c; F; st+1) = wt+1(c; st+1) + �st+2vt+1 (F (st+2) ; st+1; st+2) , (A.10)

where wt+1(�; st+1) and each vt+1 (�; st+1; st+2) is continuous and linear on Ct+1 andM (Ct+2 � Ct+2)
respectively.

The functionM 7�! Vt+1
�
c; [F�st+2 ;M ]; st+1

�
gives the (temptation) utility of the indicated

consumption and contingent menu pair as a function of the menu M provided in state st+2.
Similarly for the function M 7�! U t+1

�
c; [F�st+2 ;M ]; st+1

�
, where

U t+1 (c; F; st+1) =
1

A(st+1)
UGPt+1 (c; F; st+1) .

Recall the order �t jst+1;st+2 de�ned prior to Lemma A.3. For any given c and F , it is represented
by

L 7�! max
M2L

fU t+1
�
c; [F�st+2 ;M ]; st+1

�
+ Vt+1

�
c; [F�st+2 ;M ]; st+1

�
g

� max
M 02L

Vt+1
�
c; [F�st+2 ;M

0]; st+1
�
; (A.11)
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for any closed L � M (Ct+2 � Ct+2). By Risk Preference, State Independence and Lemma
A.4, U t+1

�
c; [F�st+2 ; �]; st+1

�
is nonconstant, and so by Lemma A.3, �t jst+1;st+2 is strategi-

cally rational. By Lemma A.1(a), if Vt+1
�
c; [F�st+2 ; �]; st+1

�
is nonconstant then it is ordi-

nally equivalent to U t+1
�
c; [F�st+2 ; �]; st+1

�
+ Vt+1

�
c; [F�st+2 ; �]; st+1

�
, which by Step 5 is ordi-

nally equivalent to Ut+2 (�; st+2). Thus, if Vt+1
�
c; [F�st+2 ; �]; st+1

�
is nonconstant, then for all

M;M 0 2M (Ct+2 � Ct+2),

Vt+1
�
c; [F�st+2 ;M ]; st+1

�
� Vt+1

�
c; [F�st+2 ;M

0]; st+1
�
() (A.12)

Ut+2 (M; st+2) � Ut+2 (M
0; st+2)()

Ut+2 (co(M); st+2) � Ut+2 (co(M
0); st+2)()

Vt+1
�
c; [F�st+2 ; co(M)]; st+1

�
� Vt+1

�
c; [F�st+2 ; co(M

0)]; st+1
�
,

where use has been made of (A.8). On the other hand, if Vt+1
�
c; [F�st+2 ; �]; st+1

�
is constant,

then the equivalence of the �rst and last lines is clear. Conclude that for every F; c and st+2;

Vt+1
�
c; [F�st+2 ;M ]; st+1

�
= Vt+1

�
c; [F�st+2 ; co(M)]; st+1

�
.

Repeated application of this equality for all states in St+2 yields

Vt+1 (c; F; st+1) = Vt+1 (c; co(F ); st+1) ,

a form of indi¤erence to randomization for Vt+1. Thus one can argue as in Step 3 to derive
(A.10).

Step 7 : Show that for some 
(st+1) � 0, continuous linear function w(�; st+1) on Ct+1 and
qt+1 2 �(St+2),

V GPt+1 (c; F; st+1) = A(st+1)

"
wt+1(c; st+1) + 
(st+1)

Z
St+2

Ut+2 (M; st+2) dqt+1(st+2)

#
.

Begin by providing structure on each vt+1 (�; st+1; st+2) in (A.10) - show that

vt+1 (�; st+1; st+2) = a (st+1; st+2)Ut+2 (�; st+2) + b (st+1; st+2) , (A.13)

for some a (st+1; st+2) � 0. Given (A.10), we can re�ne (A.12) into the statement that if
vt+1 (�; st+1; st+2) is nonconstant, then vt+1 (�; st+1; st+2) is ordinally equivalent to Ut+2 (�; st+2).
Given continuity and linearity of both functions, (A.13) holds for some a (st+1; st+2) > 0. If
vt+1 (�; st+1; st+2) is constant, then (A.13) holds with a (st+1; st+2) = 0.

De�ne 
(st+1) and the measure qt+1 over St+2 by


(st+1) =
X
St+2

a (st+1; st+2) � 0;

qt+1(st+2) =

(
a(st+1;st+2)

(st+1)

if 
(st+1) > 0
mt+1(st+2) otherwise

.
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Then

Vt+1 (c; F; st+1) = wt+1(c; st+1) + 
(st+1)

Z
St+2

Ut+2 (M; st+2) dqt+1(st+2) + k,

where k =
X
St+2

b (st+1; st+2). Set k = 0 wlog.

Step 8 : Show that for some 0 < �t+1(st+1) � 1,

V GPt+1 (c; F; st+1) = A(st+1) (1� �t+1(st+1))
 
u(c) + �

Z
St+2

Ut+2 (F (st+2) ; st+2) dqt+1

!
.

(A.14)
By Risk Preference and State Independence, UGPt+1(`; st+1) is ordinally (and hence cardinally)

equivalent to the continuous linear function ` 7�! �T+1t+1 ���(t+1)u (`� ). Thus wlog

UGPt+1(`; st+1) = A(st+1)�t+1(st+1)
h
�T+1t+1 ���(t+1)u (`� )

i
(A.15)

for some �t+1(st+1) > 0. By Step 5,

UGPt+1 (`; st+1) + V
GP
t+1 (`; st+1) = A(st+1)

h
�T+1t+1 ���(t+1)u (`� )

i
:

Thus, V GPt+1 (`; st+1) = A(st+1)(1� �t+1(st+1))
h
�T+1t+1 ���(t+1)u (`� )

i
, and by Step 7,

wt+1(`t+1; st+1) + 
(st+1)
h
�T+1t+2 ���(t+2)u (`� )

i
=

(1� �t+1(st+1))
�
u(`t+1) + �

h
�T+1t+2 ���(t+2)u (`� )

i�
=)

wt+1(`t+1; st+1)�(1��t+1(st+1))u(`t+1) = [(1� �t+1(st+1))� � 
(st+1)]
h
�T+1t+2 ���(t+2)u (`� )

i
.

Since u (�) is nonconstant, deduce that (1 � �t+1(st+1))� = 
(st+1) and wt+1(`t+1; st+1) =
(1 � �t+1(st+1))u(`t+1). If 
(st+1) = 0, then � > 0 implies wt+1(`t+1; st+1) = 0, which yields
(A.14) with �t+1(st+1) = 1. On the other hand, if 
(st+1) > 0, then � > 0 implies (A.14) with
�t+1(st+1) < 1.

Step 9 : Show that the unique measure pt+1 over St+2 satisfyingmt+1 = �t+1pt+1+(1��t+1)qt+1
is a probability measure with full support and furthermore that

UGPt+1 (c; F; st+1) = A(st+1) �t+1(st+1)

 
u(c) + �

Z
St+2

Ut+2 (F (st+2) ; st+2) dpt+1

!
. (A.16)

Steps 5 and 8 yield (A.16), given that pt+1 satis�es mt+1 = �t+1pt+1 + (1 � �t+1)qt+1.
Show next that pt+1 is a probability measure with full support. The de�nition of pt+1 implies
that

X
st+2

pt+1(st+2) = 1. To see that pt+1(st+2) > 0 for all st+2, note that Ut+2 (�; st+2) is

nonconstant (by the induction hypothesis) and that for any st+1; st+2; c0; c;M 0;M; F and G,
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Ut+2 (M
0; st+2) � Ut+2 (M; st+2)()

(c;
�
F�st+2 ;M

0�) �t+1 �c; �F�st+2 ;M��()�

(c0;
�
G�st+1 ; f (c;

�
F�st+2 ;M

0�)g�) �t (c0; �G�st+1 ; f (c; �F�st+2 ;M�)g�)()
UGPt+1

�
c;
�
F�st+2 ;M

0� ; st+1� � UGPt+1
�
c;
�
F�st+2 ;M

�
; st+1

�
()

Ut+2 (M
0; st+2) pt+1(st+2) � Ut+2 (M; st+2) pt+1(st+2),

where the equivalence ()� is implied by Lemma A.4.

Step 10 : Complete the inductive step.
Since At(st+1)�t+1(st+1) > 0 for all st+1, we have

P
st+1

At(st+1)�t+1(st+1) > 0. Consider

the positive a¢ ne transformation of cWt de�ned by Wt(c; F ) =

�P
st+1

At(st+1)�t+1(st+1)
cWt(c; F ) =

�P
st+1

At(st+1)�t+1(st+1)
u�t+1(c) +

�P
st+1

At(st+1)�t+1(st+1)
�st+1U

�
t+1 (F (st+1) ; st+1) ;

for all (c; F ) 2 Ct � Ct. Obviously, Wt(�) represents �t . De�ne

ut+1(c) � �P
st+1

At(st+1)�t+1(st+1)
u�t+1(c);

Ut+1 (Mt+1; st+1) � 1

At(st+1)�t+1(st+1)
U�t+1 (M; st+1) ;

mt(st+1) =
At(st+1)�t+1(st+1)P
st+1

At(st+1)�t+1(st+1)
> 0 for each st+1:

Then mt has full support and

Wt (c; F ) = ut+1(c) + �

Z
St+1

Ut+1 (F (st+1) ; st+1) dmt (st+1) , Ft 2 Ct,

where Ut+1 (Mt+1; st+1) =

max
(c;Ft+1)2Mt+1

(
u (c) + �

R
St+2

Ut+2 (Ft+1 (st+2) ; st+2) dpt+1

+ (1��t+1)
�t+1

�
u (c) + �

R
St+2

Ut+2 (Ft+1 (st+2) ; st+2) dqt+1

� )

� max
(c0;F 0

t+1)2Mt+1

(1� �t+1)
�t+1

(
u (c0) + �

Z
St+2

Ut+2
�
F 0t+1 (st+2) ; st+2

�
dqt+1(st+2)

)
.

It remains to show that ut+1(�) = u(�). By Risk Preference and the representation Wt(�),
the following functions are ordinally equivalent:

(c; `) 7�! u (c) + �
h
�T+1t+1 ���(t+1)u (`� )

i
(c; `) 7�! ut+1 (c) + �

h
�T+1t+1 ���(t+1)u (`� )

i
:

Since both are continuous linear functions, they must be cardinally equivalent. An argument
analogous to that used in Step 8 yields the desired result, and concludes the proof of su¢ ciency.

The proof for uniqueness is similar to that in [5], and thus is omitted.
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B. APPENDIX: Proofs for Speci�c Biases

Proof of Corollary 4.1: Necessity of Prior-Bias: Given the representation, let

�t (st+2) =

Z
pt+1

�
st+2 j s0t+1

�
dmt

�
s0t+1

�
:

Then the axiom can be translated into the statement:Z
[Ut+2 (F (st+2) ; st+2)� Ut+2 (G (st+2) ; st+2)] dpt+1 > 0 andZ
[Ut+2 (F (st+2) ; st+2)� Ut+2 (G (st+2) ; st+2)] d�t (st+2) = 0

imply

(1� �t+1)
Z
[Ut+2 (F (st+2) ; st+2)� Ut+2 (G (st+2) ; st+2)] dqt+1 � 0.

This is obviously satis�ed given (4.6).

Su¢ ciency of Prior-Bias: If �t+1 = 1, then any qt+1 is consistent with a representation for �t,
including in particular qt+1 as in (4.6) with any �t+1. Suppose that �t+1 < 1 and consider
contingent menus F and G that lie in Cc;+1t+1 . They provide perfect commitment, with all un-
certainty resolved at t + 2, and as in Section 2.3, F (st+2) and G (st+2) can be identi�ed with
deterministic consumption process cF (st+2) and cG (st+2) respectively. It follows that

Ut+2 (F (st+2) ; st+2) = ��=t+2 �
��(t+2) u

�
cF� (st+2)

�
� bu �cF (st+2)� ,

and similarly for G. Write

xFG (st+2) = bu �cF (st+2)�� bu �cG (st+2)� .
Then by Prior-Bias,

[

Z
xFG (st+2) dpt+1 (st+2 j st+1) > 0 and

Z
xFG (st+2) d�t(st+2) = 0 ] =)Z

xFG (st+2) dqt+1 � 0.

One can show that xFG (�) can be made to vary su¢ ciently (over an open neighborhood of
zero) as we range over F and G lying in Cc;+1t+1 . Apply a Theorem of the Alternative [13, p. 34].

The arguments for the other axioms are similar.

Proof of Corollary 4.2: The proof is similar to that of the preceding corollary. We point out
only that for G in Cc;+1t , Ut+1

�
ct+1;

�R
Gd	t+1

�
(st+1) ; st+1

�
= u (ct+1) + �

Z
St+2

Ut+2

 Z
St+2

G
�
s0t+2

�
d	t+1; st+2

!
dpt+1 (st+2)
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= u (ct+1) + �

Z
St+2

Z
St+2

Ut+2
�
G
�
s0t+2

�
; st+2

�
d	t+1

�
s0t+2

�
dpt+1 (st+2)

= u (ct+1) + �

Z
St+2

Ut+2
�
G
�
s0t+2

�
; st+2

�
d	t+1

�
s0t+2

�
;

because Ut+2
�
G
�
s0t+2

�
; st+2

�
does not depend on st+2.

C. APPENDIX: Learning in the Long Run

Proof of Theorem 5.1: (a) First we show that log�t (�
�) is a submartingale under P �. Because

log�t+1 (�
�)� log�t (��) = log

��
1� 
t+1

� `(st+1j��)
mt(st+1)

+ 
t+1

�
, (C.1)

it su¢ ces to show that

E�
h
log
��
1� 
t+1

� `(st+1j��)
mt(st+1)

+ 
t+1

�
j St
i
� 0, (C.2)

where E� denotes expectation with respect to P �. By assumption, 
t+1 is constant given St.
Thus the expectation equalsX

st+1

` (st+1 j ��) log
��
1� 
t+1

� `(st+1j��)
mt(st+1)

+ 
t+1

�
�

X
st+1

` (st+1 j ��)
�
1� 
t+1

�
log
�
`(st+1j��)
mt(st+1)

�
=

�
1� 
t+1

�X
st+1

` (st+1 j ��) log
�
`(st+1j��)
mt(st+1)

�
� 0

as claimed, where both inequalities are due to concavity of log (�). (The second is the well-known
entropy inequality.)

Clearly log�t (�
�) is bounded above by zero. Therefore, by the martingale convergence

theorem, it converges P � � a:s: From (C.1),

log�t+1 (�
�)� log�t (��) = log

��
1� 
t+1

� `(st+1j��)
mt(st+1)

+ 
t+1

�
�! 0

and hence `(st+1j��)
mt(st+1)

�! 1 P � � a:s:

(b) E�
h��

1� 
t+1
� `(st+1j��)
mt(st+1)

+ 
t+1

�
j St
i
=
�
1� 
t+1

�
E�
h
`(st+1j��)
mt(st+1)

j St
i
+
t+1 �

�
1� 
t+1

�
+


t+1 = 1. (The last inequality is implied by the fact that

minX

n
E�
h

1
X(st+1)

j St
i
: E� [X (st+1) j St] = 1

o
= 1.
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The minimization is over random variable X�s, X : St+1 �! R1++, and it is achieved at X (�) = 1
because 1

x is a convex function on (0;1).) Deduce that E
�
h
�t+1(�

�)

�t(�
�) j St

i
� 1 and hence that

�t (�
�) is a submartingale. By the martingale convergence theorem,

�1 (�
�) � lim�t (�

�) exists P � � a:s:

Claim: �1 (�
�) > 0 on a set with positive P �-probability: By the bounded convergence theorem,

E��t (�
�) �! E��1 (�

�) ;

and E��t (�
�)% because �t (�

�) is a submartingale. Thus �0 (�
�) > 0 implies that E��1 (�

�) >
0, which proves the claim.

It su¢ ces now to show that if �1 (�
�) > 0 along a sample path s11 , then forecasts are

eventually correct along s11 . But along such a path,
�t+1(�

�)

�t(�
�) �! 1 and hence

�
1� 
t+1

� � `(st+1j��)
mt(st+1)

� 1
�
�! 0.

By assumption,
�
1� 
t+1

�
is bounded away from zero. Therefore,�

`(st+1j��)
mt(st+1)

� 1
�
�! 0.

Part (c) calls for two examples.

Example 1 : Convergence to wrong forecasts may occur with P �-positive probability when 
t+1 <
0, even where 
t+1 is St-measurable (overreaction); in fact, we take (�t+1; �t+1) = (�; �) and
hence also 
t+1 = 
 to be constant over time and states.

Think of repeatedly tossing an unbiased coin that is viewed at time 0 as being either unbiased
or having probability of Heads equal to b, 0 < b < 1

2 . Thus take S = fH;Tg and ` (H j �) = �
for � 2 � = fb; 12g. Assume also that

1 < �
 < b
1
2 � b

. (C.3)

The inequality 
 < �1 indicates a su¢ cient degree of overreaction.
To explain the reason for the other inequality, note that the model requires that (�t) solving

(5.6) be a probability measure (hence non-negative valued). This is trivially true if �t+1 � 0
but otherwise requires added restrictions: �t+1 � 0 if

` (st+1 j �)
mt (st+1)

=
dBU (�t; st+1) (�)

d�t
� � �t+1

1 + �t+1
.
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In the present example mins;�
`(sj�)
mt(s)

� 2b, and thus it su¢ ces to have

� �

1 + �
� 2b. (C.4)

Because only values for � in (0; 1] are admissible, 
 = �(1 � �) is consistent with (C.4) if and
only if �
 < b=

�
1
2 � b

�
.

We show that if (C.3), then

mt (�) �! ` (� j b) as t �!1,

with probability under P � at least 12 .
Abbreviate �t

�
1
2

�
by ��t .

Claim 1: ��1 � lim��t exists P � � a:s: and if ��1 > 0 for some sample realization s11 , then
mt (H) �! 1

2 and �
�
t �! 1 along s11 . (The proof is analogous to that of part (b).) Deduce that

��1 2 f0; 1g P � � a:s:

Claim 2: f (z) �
h
(1� 
)

1
2

z + 

i h
(1� 
) 1� 1

2

(1�z) + 

i
� 1, for all z 2 [b; 12 ]. Argue that f (z) � 1

() g (z) � [(1� 
) + 2
z] [(1� 
) + 2
(1� z)] � 4z (1� z) � 0. Compute that g
�
1
2

�
= 0,

g0
�
1
2

�
= 0 and g is concave because 
 < �1. Thus g (z) � g (0) = 0.

Claim 3: E�
�
log

�
(1� 
) `(st+1j

1
2 )

mt(st+1)
+ 


�
j St
�

= 1
2 log

�
(1� 
)

1
2

b+( 12�b)��t
+ 


�
+ 1

2 log

�
(1� 
) 1� 1

2

(1�b�( 12�b)��t )
+ 


�
= 1

2 log
�
f
�
b+

�
1
2 � b

�
�t
�
1
2

���
� 0, by Claim 2.

By Claim 1, it su¢ ces to prove that ��1 = 1 P � � a:s: is impossible. Compute that

��t = ��0

"
�t�1k=0

 
(1� 
)

`
�
sk+1 j 12

�
mk (sk+1)

+ 


!#
,

log��t = log��0 +�
t�1
k=0 log

 
(1� 
)

`
�
sk+1 j 12

�
mk (sk+1)

+ 


!
= log��0 +�

t�1
k=0 (logzk+1 � E [logzk+1 j Sk]) + �

t�1
k=0E [logzk+1 j Sk] ,

where zk+1 = (1� 
)
`(sk+1j 12 )
mk(sk+1)

+ 
. Therefore, log��t � 1
2 log�

�
0 i¤

�t�1k=0 (logzk+1 � E [logzk+1 j Sk]) � �1
2 log�

�
0 � �t�1k=0E [logzk+1 j Sk] � ak.

By Claim 3, ak > 0. The random variable logzk+1 � E [logzk+1 j Sk] takes on two possible
values, corresponding to sk+1 = H or T , and under the truth they are equally likely and average
to zero. Thus

P � (logzk+1 � E [logzk+1 j Sk] � ak) � 1
2 .
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Deduce that
P �
�
log��t � 1

2 log�
�
0

�
� 1

2

and hence that
P � (log��t �! 0) � 1

2 .

Example 2 : Convergence to wrong forecasts may occur with P �-positive probability when 
t+1 >
0 (Positive Prior-Bias), if 
t+1 is only St+1-measurable.

The coin is as before - it is unbiased, but the agent does not know that and is modeled via
S = fH;Tg and ` (H j �) = � for � 2 � = fb; 12g. Assume further that �t+1 and �t+1 are such
that


t+1 � �t+1(1� �t+1) =
�
w if st+1 = H
0 if st+1 = T ,

where 0 < w < 1. Thus, from (5.9), the agent updates by Bayes�Rule when observing T but
attaches only the weight (1� w) to last period�s prior when observing H. Assume that

w > 1� 2b.

Then
mt (�) �! ` (� j b) as t �!1,

with probability under P � at least 12 .
The proof is similar to that of Example 1. The key is to observe that

E�
�
log

�
(1� 
) `(st+1j

1
2 )

mt(st+1)
+ 


�
j St
�
� 0 under the stated assumptions.

The proof of Theorem 5.2 requires the following lemmas:

Lemma C.1. (Freedman (1975)) Let fztg be a sequence of uniformly bounded St-measurable
random variables such that for every t > 1; E� (zt+1jSt) = 0: Let V �t � V AR (zt+1jSt) where
V AR is the variance operator associated with P �. Then,

nX
t=1

zt converges to a �nite limit as n!1, P �-a:s: on
( 1X
t=1

V �t <1
)

and

sup
n

nX
t=1

zt =1 and inf
n

nX
t=1

zt = �1, P �-a:s: on
( 1X
t=1

V �t =1
)
:

De�nition C.2. A sequence of fxtg of St-measurable random variables is eventually a sub-
martingale if, P � � a:s:; E� (xt+1jSt)� xt is strictly negative at most �nitely many times.

47



Lemma C.3. Let fxtg be uniformly bounded and eventually a submartingale. Then, P ��a:s:;
xt converges to a �nite limit as t goes to in�nity.

Proof. Write

xt =
tX

j=1

(rj � E� (rj jSj�1)) +
tX

j=1

E� (rj jSj�1) + x0; where rj � xj � xj�1:

By assumption, P � � a:s:; E� (rj jSj�1) is strictly negative at most �nitely many times. Hence,
P � � a:s:;

inf
t

tX
j=1

E� (rj jSj�1) > �1:

Given that xt is uniformly bounded, P � � a:s:;

sup
t

tX
j=1

zj <1; where zj � rj � E� (rj jSj�1) :

It follows from Freedman�s result that P � � a:s:,
tX

j=1

zj converges to a �nite limit as t!1.

It now follows from xt uniformly bounded that sup
t

tX
j=1

E� (rj jSj�1) <1. Because E� (rj jSj�1)

is strictly negative at most �nitely many times,

tX
j=1

E� (rj jSj�1) converges to a �nite limit as t!1.

Therefore, P � � a:s:; xt converges to a �nite limit as t goes to in�nity.

Proof of Theorem 5.2:

Claim 1: De�ne f (�;m) =
P

k �
�
k
�k
mk

on the interior of the 2K-simplex. There exists �0 2 RK++
such that

j �k � ��k j< �0k for all k =) f (�;m)� 1 � �
K�1
X
k

j mk � �k j .

Proof: f (�; �) = 1, f (�; �) is convex and hence

f (�;m)� 1 �
X
k 6=K

�
@f (�;m)

@mk
� @f (�;m)

@mK

�
jm=� (mk � �k)

=
X
k 6=K

�
� ��k
�k
+

��K
�K

�
(mk � �k) .
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But the latter sum vanishes at � = ��. Thus argue by continuity.

Given any � 2 RK++, � << �0, de�ne �� = (�� � �; �� + �) � �Kk=1 (�
�
k � �k; ��k + �k) and

��t = ��2���t (�).

Claim 2: De�ne m�
t

�
sk
�
= ��2���k�t (�) = �

�
t (�). Then

j mt

�
sk
�
�m�

t

�
sk
�
j � 1� ��t .

Proof: mt

�
sk
�
�m�

t

�
sk
�
= ��2���k�t(�)

��t
(��t � 1) + ��=2���k�t (�) . Therefore, (�

�
t � 1) �

m�
t

�
sk
�
(��t � 1) =

��2���k�t(�)
��t

(��t � 1) � mt

�
sk
�
�m�

t

�
sk
�
� ��=2���k�t (�) � 1� ��t .

Claim 3: For any � << �0 as above,X
k

��k
m�
t (s

k)
mt(sk)

� 1 � �
 (1� ��t ) .

Proof: Because j m�
t

�
sk
�
� ��k j< �k < �

0

k, we have thatX
k

��k
m�
t (s

k)
mt(sk)

� 1 � �
K�1
X
k

j mt

�
sk
�
�m�

t

�
sk
�
j .

Now Claim 3 follows from Claim 2.

Compute that

E�
�
�t+1 (�) j St

�
=
�
1� 
t+1

� "X
k

��k
�k

mt(sk)

#
�t (�) + 
t+1E

� � t+1 (�) j St� , (C.5)

where use has been made of the assumption that 
t+1 is St-measurable. Therefore,

E�
�
��t+1 (�) j St

�
� ��t =

�
1� 
t+1

�X
k

�
��k

m�
t (s

k)
mt(sk)

�
��t + 
t+1��2��E�

�
 t+1 (�) j St

�
� ��t

=
�
1� 
t+1

� "X
k

�
��k

m�
t (s

k)
mt(sk)

�
� 1
#
��t + 
t+1��2��E�

�
 t+1 (�) j St

�
� 
t+1��t .

By the LLN, P � � a:s: for large enough t the frequency of sk will eventually be ��k and

��2��E�
�
 t+1 (�) j St

�
= 1:

Eventually along any such path,

E�
�
��t+1 (�) j St

�
� ��t =

�
1� 
t+1

� "X
k

�
��k

m�
t (s

k)
mt(sk)

�
� 1
#
��t + 
t+1 (1� ��t )
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�
�
�

�
1� 
t+1

�
��t + 
t+1

�
(1� ��t ) � 0,

where the last two inequalities follow from Claim 3 and the hypothesis 
� 
t+1.
Hence (��t ) is eventually a P

�-submartingale. By Lemma C.3, ��1 � lim��t exists P ��a:s:
Consequently, E�

�
��t+1 (�) j St

�
� ��t �! 0 P � � a:s: and from the last displayed equation,�

�

�
1� 
t+1

�
��t + 
t+1

�
(1� ��t ) �! 0 P � � a:s: It follows that ��1 = 1. Finally, mt (�) =R

` (� j �) d�t eventually remains in �� = (�� � �; �� + �).
Above � is arbitrary. Apply the preceding to � = 1

n to derive a set 
n such that P
�(
n) = 1

and such that for all paths in 
n; mt eventually remains in
�
�� � 1

n ; �
� + 1

n

�
: Let 
 �

1\
n=1


n:

Then, P �(
) = 1 and for all paths in 
; mt converges to �
�.
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