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Abstract

We develop an approach to providing epistemic conditions for admissible behavior

in games. Instead of using lexicographic beliefs to capture infinitely less likely con-

jectures, we postulate that players use tie-breaking sets to help decide among strate-

gies that are outcome-equivalent given their conjectures. A player is event-rational

if she best responds to a conjecture and uses a list of subsets of the other players’

strategies to break ties among outcome-equivalent strategies. Using type spaces to

capture interactive beliefs, we show that common belief of event-rationality (RCBER)

implies that players play strategies in S∞W , that is, admissible strategies that also

survive iterated elimination of dominated strategies (Dekel and Fudenberg (1990)). We

strengthen standard belief to validated belief and we show that event-rationality and

common validated belief of event-rationality (RCvBER) implies that players play it-

erated admissible strategies (IA). We show that in complete, continuous and compact

type structures, RCBER and RCvBER are nonempty, and hence we obtain epistemic

criteria for S∞W and IA.
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1 Introduction

As noted by Samuelson (1992) and many others, there is a potential problem in dealing with

common knowledge of admissibility in games, which is known as the inclusion-exclusion

problem. The reason is that a strategy is admissible if and only if it is a best response

to a conjecture with full support. If we capture knowledge by the support of the agent’s

belief and assume that she is rational, that is, she optimizes given her belief, then playing

an admissible strategy implies that she must necessarily consider all strategies of the other

players as possible, including the strategies that are not admissible. So she cannot believe

that her opponents play admissible strategies because she cannot exclude from consideration

their inadmissible strategies.

Recently, Brandenburger et al. (2008), henceforth BFK, provided a way of dealing with

the inclusion-exclusion issue, by using lexicographic probability systems (LPS) and the notion

of assumption in the place of certainty. Roughly speaking, a player with conjectures that form

an LPS can have a fully supported conjecture while “assuming” certain events that are not

equal to the whole state space. BFK show that common assumption of admissibility (RCAR)

characterizes iterated admissibility (IA), but RCAR is empty in complete and continuous

type structures. So BFK do not provide an epistemic characterization of IA. Keisler and Lee

(2011) and Yang (2009) have recently extended BFK’s analysis and obtained nonemptiness

of RCAR. The former allows for discontinuous type mappings, and the latter uses a weaker

notion of assumption.

We propose an alternative route. Instead of an LPS-based analysis, we use event-

rationality to allow for players to break ties with lists of subsets of opponents’ strategies.

That is, we use a different notion of rationality: the LPS-based approaches assume that

players are lexicographic expected utility maximizers. We assume that players are event-

rational. The two notions of rationality equally describe admissible behavior. The difference

comes into play in the analysis of interactive beliefs. Interactive beliefs are described by type

spaces. In our framework, a type of a player determines her beliefs over the strategies and

types of the other players (as in the standard framework) and in addition it determines the

tie-breaking list that the (event-rational) type uses. As a result, common belief of event-

rationality does not run into the tension of having to exclude and include the same event.

In contrast, in an LPS-based analysis a type of a player determines her lexicographic be-

liefs over the strategies and types of the other players, and the inclusion-exclusion tension is
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avoided by the use of “assumption” in the place of certainty. Under our approach, we pro-

vide epistemic foundations for both the solution concept proposed by Dekel and Fudenberg

(1990) (S∞W ) and iterated admissibility (IA).

We consider finite two-player games in strategic form. The two players are Ann and

Bob, denoted by superscripts “a” and “b”. In order to provide some intuition about event-

rationality, note that if a strategy sa of Ann’s is rational then it is a best response to some

conjecture, v ∈ ∆(Sb), where Sb is the set of Bob’s strategies. If sa is inadmissible and

therefore weakly dominated by some (mixed) strategy σa, then sa and σa give the same

payoff for all strategies of Bob on the support of v while σa is strictly better than sa for

all conjectures with support on the complement of the support of v. Hence, whenever Ann

chooses an admissible strategy, it is as if she optimizes given her conjecture, as usual, but

when she is totally indifferent between two strategies she compares them using a measure

with support on the difference between Sb and the support of her conjecture. We say that

she “breaks ties” using the event that is the complement of her support (with respect to Sb).

In other words, Ann is confident in trusting her belief, just like any other rational agent.

But if two of her strategies are outcome-equivalent under her belief, she chooses the one that

is also optimal under a measure with support being the complement of the support of her

belief.

There is nothing particular about breaking ties with respect to the complement of her

support when defining event-rationality. Ann can conceivably break ties using any other set,

as long as it is outside her current frame, that is, disjoint from the support of her belief.1

Furthermore, Ann need not use a single such tie-breaking set. She may well have many such

sets, each providing extra validation for her chosen strategy.

The principle behind event-rationality is, therefore, the following: if two strategies are

outcome-equivalent given Ann’s conjecture, then Ann has no way of deciding among them

within her frame of mind: the two strategies yield the same outcome for whichever strategy

of Bob she considers possible. Ann must, therefore, resort to information beyond her frame

to make a decision. She could, for instance, flip coins, that is, resort to fully external means.

But in doing so Ann would be neglecting information about her two strategies, contained in

1But note that, for the purpose of breaking ties, it suffices to consider only subsets of Bob’s strategies.

In particular, when we introduce the formal model of interactive beliefs, it is without loss to assume that

Ann uses only lists of Bob’s strategies to break ties, because lists that include the types of Bob only matter

for breaking ties through the strategies of Bob that they are related to.
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how they fare against strategies of Bob that are considered impossible by Ann’s conjecture.

Event-rationality postulates that Ann does not neglect this information. Moreover, in doing

so, she does not change what she thinks about Bob’s choices.

Turn now to interactive beliefs, captured by type structures. Let T a and T b be the sets

of types of Ann and Bob. A type ta ∈ T a determines Ann’s conjectures over Bob’s choices,

Ann’s beliefs over Bob’s types and so on, together with the tie-breaking list used by Ann. A

state for Ann is a strategy-type pair (sa, ta) and her beliefs over Bob are given by her beliefs

over Sb × T b. A strategy-type pair (sa, ta) of Ann’s is called event-rational if sa is optimal

given ta’s conjecture and breaks ties for all sets in ta’s tie-breaking list. Event-rationality

and common belief of event-rationality is then captured as the intersection of infinitely many

events: Ann is event-rational, and so is Bob; Ann is certain that Bob is event-rational and

Bob is certain that Ann is event-rational. And so on. This yields our RCBER ((Event)

Rationality and Common Belief of Event Rationality) set of states.

Event-rationality captures the idea of choosing a strategy with extra validation, in the

sense that a strategy has to be optimal under one’s conjecture, but also pass a series of

validating tie-breaking tests. We also introduce the idea of extra validation of a belief.

Consider a type ta that believes that an event E ∈ Sb × T b is true, and is associated with a

list ` of subsets of Sb. The belief on the event E will be validated by the list ` if there is an

element of the list, say Eb ∈ `, that is equal to the projection of E on Sb.

Event-rationality and common validated belief of event-rationality is again captured as

the intersection of infinitely many events: Ann and Bob are event-rational. Ann has a

validated belief that Bob is event-rational and Bob has a validated belief that Ann is event-

rational. And so on. This yields our RCvBER ((Event) Rationality and Common validated

Belief of Event Rationality) set of states.

Our results are as follows. We characterize the strategies that are compatible with

RCBER by a solution concept, hypo-admissible sets (HAS), which is related to the self-

admissible sets (SAS) of BFK but it is neither weaker or stronger. In a complete structure,

RCBER produces the set of strategies that survive one round of elimination of inadmissi-

ble strategies followed by iterated elimination of strongly dominated strategies (S∞W ). We

characterize RCvBER with a solution concept we call hypo-iteratively admissible sets (HIA).

In a complete type structure, the resulting set of strategies is precisely the set of iterated

admissible strategies (IA). We then show that strategies played under RCvBER constitute

an SAS, but the converse is not necessarily true. Because BFK have shown that every SAS is
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the implication of RCAR in some type structure, the RCvBER construction is more restric-

tive than the RCAR construction of BFK. Nevertheless, we show that the RCBER and the

RCvBER are nonempty whenever the type structure is complete, continuous and compact,

therefore providing epistemic criteria for S∞W and IA.

Our approach provides an alternative and effective perspective to deal with common

“knowledge” of admissibility in games. A solution to the inclusion-exclusion problem is

obtained by using event-rationality together with having Sb (from Ann’s perspective) as

one of the tie-breaking sets. LPS-based approaches also obtain a solution to the inclusion-

exclusion problem. But some conclusions coming from the LPS-based approach are functions

of the notions of rationality and beliefs adopted by the approach. For instance, from BFK

and Keisler and Lee (2011) we get that either continuity or completeness have to be dropped

for an epistemic characterization of IA to be obtained. Our results show that, using a

different notion of rationality, neither continuity nor completeness have to be dropped for

such a characterization to be obtained. We should also note that completeness captures the

idea that players have no prior knowledge about each other, so it is a desirable property in

an epistemic analysis. And continuity is a consequence of the (universal) construction of

beliefs about beliefs (c.f. Mertens and Zamir (1985)).

1.1 Related Literature

Bernheim (1984) and Pearce (1984) argue that common knowledge of rationality implies (in

terms of behavior) the iteratively undominated (IU) set, that is, the set of strategy profiles

surviving iterated deletion of strongly dominated strategies. Tan and Werlang (1988) pro-

vides epistemic conditions for UI by characterizing RCBR (rationality and common belief

of rationality). Admissibility, or the avoidance of weakly dominated strategies, has a long

history in decision and game theory (see Wald (1939), Luce and Raiffa (1957) and Kohlberg

and Mertens (1986)). However, Samuelson (1992) shows that common knowledge of admis-

sibility is not equivalent to iterated admissibility and does not always exist. Foundations for

the S∞W strategies (Dekel and Fudenberg (1990)) are provided by Börgers (1994) (using

approximate common knowledge), Brandenburger (1992) (using lexicographic probability

systems (Blume et al. (1991)) and 0-level belief) and Ben-Porath (1997) (in extensive form

games). Stahl (1995) defines the notion of lexicographic rationalizability and shows that it

is equivalent to iterated admissibility.
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BFK use lexicographic probability systems and characterize rationality and common as-

sumption of rationality (RCAR) by the solution concept of self-admissible sets. They show

that rationality and m-th order assumption of rationality is characterized by the strategies

that survive m + 1 rounds of elimination of inadmissible strategies, in complete type struc-

tures.2 Finally, RCAR is empty in a complete and continuous lexicographic type structure

when the agent is not indifferent. Hence, although the IA set can be captured by RmAR

(rationality and m-th order assumption of rationality) for big enough m (note that games

are finite), BFK do not provide an epistemic criterion for IA. Keisler and Lee (2011) show

that the emptiness of RCAR can be overcome if one drops continuity. Yang (2009) provides

an epistemic criterion for IA, with an analogous version of BFK’s RCAR, that makes use

of a weaker notion of “assumption”. The message from Keisler and Lee (2011) and Yang

(2009), is that continuity strengthens the notion of caution implied by fully supported LPS.

The notion of caution implied by event-rationality is independent of continuity.

The paper is organized as follows. In the following section we illustrate the differences

between the various notions of rationality and belief through examples. In Sections 3 and

4 we set up the framework and provide the relevant definitions, including event-rationality,

RCBER and RCvBER. In Section 5 we characterize RCBER and show that RmBER (m

rounds of mutual belief) generates S∞W , for big enough m. In Section 6 we characterize

RCvBER, show that it is more restrictive than RCAR of BFK and show that RmvBER

generates the IA set, for big enough m. In Section 7 we show that RCBER and RCvBER

are always nonempty in compact, complete and continuous type structures, therefore pro-

viding epistemic criteria for S∞W and IA. Finally, the Appendix provides decision theoretic

foundations for event-rationality and validated beliefs.

2 Examples

In order to illustrate the differences between the BFK approach and that of the present

paper, consider the following game from Samuelson (1992) and BFK. There are two players,

Ann and Bob.

2See Section 6.1 for the formal definition of “assumption”.
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1 [1]

L R

1 U 1, 1 0, 1

[1] D 0, 2 1, 0

From the literature we know that rationality and common belief of rationality (RCBR)

is characterized by the best response sets (BRS) and, in a complete structure, the strategies

that survive iterated deletion of strongly dominated strategies.3 Can we get a similar result

for the admissible strategies and the iteratively admissible strategies if we modify the notions

of belief and of rationality? Recall that a strategy is admissible if and only if it is a best

response to a full support measure (no action of the other player is excluded). Then, the

obvious solution is to specify that rationality incorporates full support beliefs.

But such a specification does not always work. In the game above, if Ann is rational, she

assigns positive probability to Bob playing L and R. If Bob is rational, he assigns positive

probability to Ann playing U and D. Hence, Bob plays L. If Ann knows that Bob is rational,

she assigns positive probability only on Bob playing L. But then, Ann is not rational! In

other words, the modified RCBR set is empty for this game.

One solution is obtained using lexicographic beliefs. Suppose Ann’s primary hypothesis

assigns probability 1 to Bob playing L, and her secondary hypothesis assigns probability 1 to

Bob playing R. Bob’s primary hypothesis assigns 1 on U and his secondary hypothesis assigns

1 on D. Then, Bob playing L is rational because he is indifferent between L and R given

his primary measure, but strictly prefers L given his secondary measure.4 Ann playing U is

rational because U is the best response given her primary measure. She assumes that Bob

is rational, because she considers Bob playing L infinitely more likely than Bob playing R.5

Similarly, Bob assumes that Ann is rational. As a result, rationality and common assumption

of rationality (RCAR) is nonempty.

A similar result can be obtained if we use the definition of event-rationality in the context

of standard type structures. Suppose Ann’s belief assigns probability 1 to Bob playing L and

Bob’s belief µ assigns probability 1 to Ann playing U. Moreover, Bob has the set Sa \ supp µ

3Qa ×Qb is a BRS if each sa ∈ Qa is strongly undominated with respect to Sa ×Qb and likewise for b.
4That is, the associated sequence of payoffs under L is lexicographically greater than the sequence under

R.
5For more information on the notions of “assumption” and “infinitely more likely”, see BFK.
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in his tie-breaking list. Bob playing L is event-rational because he plays best response given

his beliefs and, although L and R are outcome-equivalent under his support, L is better

under a conjecture with support Sa \ supp µ. Similarly, Ann is event-rational since, under

her conjecture, she does not need to break ties. Finally, Ann believes that Bob is event-

rational and Bob believes that Ann is event-rational. Hence, rationality and common belief

of event-rationality (RCBER) is nonempty.

In the game above RCAR and RCBER produce the same strategies because the IA and

the S∞W sets are equal. However, this is not always true. Consider the following game

which illustrates the difference between RCBER (which yields the S∞W set) and RCvBER

(which yields the IA set).

L R

U 1, 0 1, 3

M 0, 2 2, 2

D 0, 4 1, 1

Since D is strongly dominated, event-rational Ann will not play that strategy. In a

complete structure though, event-rational Ann will play U or M, while event-rational Bob

will play L or R. For example, Ann’s type playing U is event-rational if she assigns probability

1 to Bob playing L. Ann’s type playing M is also event-rational if she assigns probability 1 to

Bob playing R. Note that Ann never needs to break ties. Moreover, for both U and M there

are event-rational types of Ann’s who assign positive probability to event-rational types of

Bob playing L or R. And similarly for Bob. In other words, these types of Ann believe the

event “Bob is event-rational”, Bob’s types believe the event “Ann is event-rational”, and so

on for any finite order of beliefs about beliefs. Hence, event-rationality and common belief

of event-rationality (RCBER) yields the S∞W set, {U,M} × {L,R}.
Suppose we repeat the same procedure but now impose a stronger form of belief. Take

an event E ⊆ Sb × T b, where Sb, T b is the set of Bob’s strategies and types, respectively. A

type ta of Ann is associated with a belief over Sb × T b and a list ` of subsets of Sb. We say

that ta has a validated belief in an event E if it assigns probability 1 to E and there exists an

element Eb of the list ` that is equal to the projection of E on Sb. Imposing event-rationality

and common validated belief of event-rationality gives us RCvBER.

Which strategies are generated by RCvBER? The first round of RCvBER yields the set
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of event-rational types for Ann and event-rational types for Bob, just like RCBER. But the

second round of RCvBER requires that each of Ann’s types has a validated belief in the event

“Bob is rational”, and similarly for Bob. Then, all types playing L are excluded. To see

this, note that if Bob is event-rational and has a validated belief in the event “Ann is event-

rational”, then the strategies played by event-rational types of Ann’s, namely {U,M}, must

belong to his list. The only event-rational types of Bob playing L (and having a validated

belief that Ann is event-rational) are the ones that assign probability 1 on Ann playing M.

In order to have a validated belief in {U,M} × T a0 , where T a0 is Ann’s event-rational types,

Bob must have U as a tie-breaking set in his list. Moreover, he assigns probability 1 to M

and therefore needs to break ties, because L and R are outcome equivalent given his support.

But L is never a best response for any conjecture with support on U. Hence, Bob, assigning

probability one on M , cannot have a validated belief that Ann is event-rational.

In the third round of RCvBER, Ann has a validated belief that Bob has a validated belief

that Ann is event-rational. This means that types of Ann’s playing U are excluded, because

those types assign positive probability to Bob’s types playing L, and none of them has a

validated belief that Ann is event-rational. The only event-rational types of Ann playing M

and of Bob playing R survive all rounds of RCvBER and generate the IA set, {M} × {R}.

3 Setup

Let (Sa, Sb, πa, πb) be a two-player finite strategic form game, with πa : Sa × Sb → R, and

similarly for b (as usual, a stands for Ann, and b stands for Bob). For any given topological

space X, let ∆(X) denote the space of probability measures defined on the Borel subsets of

X, endowed with the weak* topology. We extend πa to ∆(Sa) × ∆(Sb) in the usual way:

πa(σa, σb) =
∑

(sa,sb)∈Sa×Sb σ
a(sa)σb(sb)πa(sa, sb). Similarly for πb. A strategy sa ∈ Sa is

a best response to a conjecture v ∈ ∆(Sb) if πa(sa, v) ≥ πa(ŝa, v) for every ŝa ∈ Sa. It is

denoted by sa ∈ BRa(v). Similarly for b.

3.1 Admissibility and Event-Rationality

The following definition and Lemma are taken from BFK.

Definition 1. Fix X×Y ⊆ Sa×Sb. A strategy sa ∈ X is weakly dominated with respect

to X × Y if there exists σa ∈ ∆(Sa), with σa(X) = 1, such that πa(σa, sb) ≥ πa(sa, sb) for
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every sb ∈ Y and πa(σa, sb) > πa(sa, sb) for some sb ∈ Y . Otherwise, say sa is admissible

with respect to X × Y . If sa is admissible with respect to Sa × Sb, simply say that sa is

admissible.

Lemma 1. A strategy sa ∈ X is admissible with respect to X × Y if and only if there exists

σb ∈ ∆(Sb), with supp σb = Y , such that πa(sa, σb) ≥ πa(ra, σb) for every ra ∈ X.

Lexicographic beliefs have been used in dealing with the inclusion-exclusion issue iden-

tified by Samuelson (1992) (see BFK, Brandenburger (1992), Stahl (1995), Keisler and Lee

(2011) and Yang (2009)). We follow an alternative approach, based on “tie-breaking lists.”

We stress that our approach is a way of capturing admissible behavior (Lemma 2 below.)

Admissible behavior can be viewed as the requirement that ties be broken by events outside

the conjecture of a player. This leads us to consider tie-breaking events, as follows.

By a list of subsets of Sb we mean a collection ` = {F1, ..., Fk}, with Fi ⊂ Sb for

every i = 1, ..., k, for some k ≥ 1, with the property that Fi 6= Fj for every distinct pair

i, j ∈ {1, ..., k}. The collection of all such lists, Lb, is a set of finite cardinality, because Sb is

a finite set. Similarly for b, with lists ` of distinct subsets of Sa denoted by La.

For a given conjecture v ∈ ∆(Sb), let σa ∼supp v sa denote that the mixed strategy

σa ∈ ∆(Sa) satisfies πa(σa, sb) = πa(sa, sb) for every sb ∈ supp v. That is, σa ∼supp v s
a

means that σa is outcome equivalent to sa in supp v.

Definition 2. A strategy sa ∈ Sa is event-rational if there exists a conjecture v ∈ ∆(Sb) and

a list ` ∈ Lb such that:

• sa ∈ BRa(v),

• for each F ∈ ` with F \ supp v 6= ∅ and mixed strategy σa ∈ ∆(Sa) with σa ∼supp v s
a,

there exists a conjecture v′ ∈ ∆(Sb) with supp v′ = F \ supp v such that πa(sa, v′) ≥
πa(σa, v′),

• Sb ∈ `.

Likewise for b.

The idea is that Ann uses each of the sets in the list ` to break ties: whenever she has

a conjecture v ∈ ∆(Sb) over Bob’s choices under which sa is optimal and sa is outcome-

equivalent to a (mixed) strategy σa in supp v, Ann uses each F ∈ ` as the “tie-breaking
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experiments”: there has to exist a probability measure v′ with support on F \ supp v that

validates the choice of sa. Ann is fully confident in her conjecture v and in her best response

sa to v as long as there is no σa that is outcome equivalent to sa in supp v. In that case,

her probabilistic assessments captured by v are irrelevant, for whichever other conjecture v̂

with supp v̂ = supp v would not help Ann breaking ties between sa and σa. In that case,

Ann uses the tie breaking list `.

It is important to note that, although the “tie-breaking experiments” are additional

thought experiments that Ann uses to guide her choices, they do not play the role of addi-

tional hypotheses in a lexicographic framework. If sa is indifferent to σa according to v, but

not outcome equivalent in supp v, then there is no need to break ties. The following Lemma

shows the connection between admissibility and event-rationality.

Lemma 2. For each F ∈ `, if sa is event-rational under ` and v such that supp v ⊆ F ,

then sa is admissible with respect to Sa × F . Conversely, if sa is admissible with respect to

Sa × F , for each F ∈ ` and Sb ∈ `, then sa is event-rational under `.

Proof. Suppose that sa is event-rational for v such that supp v ⊆ F . If supp v = F then

the result is immediate so suppose supp v ⊂ F and F \ supp v 6= ∅. Suppose there exists

σa ∈ ∆(Sa) with π(σa, sb) ≥ πa(sa, sb) for every sb ∈ F , with strict inequality for some

sb ∈ F . Because sa ∈ BRa(v), we have sa ∼supp v σ
a, which implies that there exists v′ with

supp v′ = F \ supp v and π(sa, v′) ≥ π(σa, v′), a contradiction. Conversely, because sa is

admissible with respect to Sa × Sb, there exists v with supp v = Sb such that sa ∈ BR(v).

Moreover, for each F ∈ ` we have F \ supp v = ∅.

Turn now to decision theoretic considerations. We postulate that a decision maker (Ann)

may contemplate several theories. She has a theory captured by her preference relation %

and the resulting probability measure µ. Let F0 = supp µ and write % as %0. Moreover,

when faced with a comparison between two acts that are completely indifferent according

to her theory, Ann resorts to alternate theories, or gedankenexperiments (thought experi-

ments). This is captured by a list of conditional preferences, where the conditioning event

is outside F0. Formally, Ann’s theories are captured by a list of preferences (%0,%1, . . . ,%k)

and the resulting supports (F0, ..., Fk). F0 represents the theory that guides her choices,

while (F1, ..., Fk) are thought experiments, used only for the purposes of breaking complete

indifference. Put differently, F0 describes Ann’s frame of mind, as it contains the states
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that Ann considers possible, and (F1, ..., Fk) describe zero probability “counter-factuals” as

F0 ∩ Fi = ∅ for each i = 1, . . . , k. Ann prefers an act x to an act y if x %0 y and if x is

outcome-equivalent to y in F0, then x %i y for all i = 1, ..., k. Appendix A provides a more

detailed exposition and shows that the notion just defined is equivalent to event-rationality.

3.1.1 Gedankenexperiments

It is important to stress that each Fi, i > 0, is considered impossible by Ann, as it is

the support of a preference conditional on an event which is disjoint from her support, F0.

Resorting to an alternative theory to break ties does not entail considering the alternative

theory possible. This is obviously true when dealing with “facts”: for instance, one may

wonder what would have happened if Germany had won World War II, and use it to help

deciding whether to move to Germany or not. But one knows that Germany did not win.

So the counter-factual “what if Germany had won” is simply a mental construct, and the

decision maker is sure that it is impossible. With beliefs, the distinction is not so sharp,

because there is no presumption that a conjecture will necessarily come to pass. Still, a

decision maker that is fully confident in her conjecture may contemplate alternative scenarios,

as a way to validate her planned choices, without considering the alternative scenarios real

possibilities. As an extreme example, consider the same decision to move or not to Germany,

and say that under the scenario considered by the decision maker, she is completely indifferent

between the two options. Now consider the alternative scenario of Martians invading the

Earth. And consider that the decision maker is fully confident that this is impossible. Still,

say that in her mind living in Germany would be the best way to be protected from Martians.

This alone may tip the scale in favor of moving to Germany.

To repeat, our postulate is that resorting to thought experiments does not entail consid-

ering the events used in the thought experiment possible. The following example, suggested

by an anonymous referee, illustrates this point further.

L C R

U 4, 6 0, 0 4, 3

M 0, 0 4, 6 0, 3

D 2, 3 2, 3 0, 0

Suppose that Ann is represented by a measure with support F0 = {L,C} and she resorts

12



to the gedankenexperiment F1 = {R} to resolve complete indifference. Ann’s subjective belief

assigns 50% probability to L and C respectively. Conditional on F1, Ann’s subjective belief

assigns 100% probability to R. D is outcome equivalent to a coin-flip between U and M under

%0, so Ann cannot decide between D and this coin-flip, and resorts to F1 for help. Under %1,

D is strongly dominated by the coin flip, so the coin flip is preferred to D (equivalently, Ann’s

tie-breaking list consists of the set R, and there’s no conjecture supported in R that makes

D better than the coin flip, so D is not event-rational). Note that R is weakly dominated

by a coin flip between L and C. So Ann resorts to a thought experiment whereby Bob plays

an inadmissible strategy. But, as we indicated above, this does not mean that Ann does not

believe that Bob plays admissible: her theory only considers possible Bob playing either L

or C, which are admissible. So Ann believes that Bob plays admissible, and at the same

time Ann uses an alternative theory to help break ties.

Moreover, the alternative theories are not restricted to be measurable with respect to

Bob’s rationality (or lack of it). The same referee suggested the following modification of

the example:

L C R E

U 4, 6 0, 0 4, 3 4, 6

M 0, 0 4, 6 0, 3 0, 0

D 2, 3 2, 3 0, 0 0, 3

Imagine again that Ann is represented by two preferences, with F0 = {L,C} and F1 =

{R,E} (the second being the gedankenexperiment used to break ties). Conditional on F1

Ann’s subjective belief assigns 50% probability to R and E respectively, and %0 is as above.

Ann again decides for the coin flip between U and M over D by resorting to %1, which is a

thought experiment that envisages Bob playing an admissible strategy E and an inadmissible

strategy R. Yet again, Ann knows that Bob plays admissible (either L or C).

What is at stake here is our perspective over thought experiments. Instead of having

“infinitely less likely events” represent what Ann believes is impossible and yet possible, we

fix that Ann only considers F0 possible. The gedankenexperiments are the events {F1, ..., Fk},
which Ann believes are impossible. Yet, Ann uses the information coming from these thought

experiments to help break ties.

Note that because Ann is not indifferent between two strategies that are outcome equiv-
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alent under her support, she “considers everything to be possible” in terms of how she acts.

However, when reasoning about Bob, she uses her measure µ (and possibly an additional

tie-breaking set to validate her beliefs) and therefore believes that Bob is event-rational.

The combination of considering everything possible and believing that Bob is event-rational

resolves the inclusion/exclusion tension. In the two examples above, Ann’s theory only con-

siders Bob playing admissible strategies, so Ann includes only admissible strategies. At the

same time, event-rational Ann breaks ties with thought experiments that envisage Bob play-

ing either admissible or inadmissible strategies, so Ann does not have to include all of Bob’s

strategies in her frame of mind.

3.2 Type Structures and Beliefs

Type structures are used to describe interactive beliefs. Because event-rationality has players

using tie-breaking sets, a type of a player must determine a conjecture and a list of tie-

breaking sets. Fix a two-player finite strategic-form game 〈Sa, Sb, πa, πb〉.

Definition 3. An (Sa, Sb)-based type structure with tie-breaking lists is a structure

〈Sa, Sb, La, Lb, T a, T b, λa, λb〉,

where λa : T a → ∆(Sb × T b)× Lb, and similarly for b. Members of T a, T b are called types,

members of La, Lb are called lists and members of Sa × T a × Sb × T b are called states.

We refer to an (Sa, Sb)-based type structure with tie-breaking lists as simply a type

structure. The types spaces T a and T b are assumed topological. The sets Sa, Sb, La, Lb are

finite, and we endow each with the discrete topology so that they are compact spaces. The

belief mappings λa and λb are assumed Borel measurable. A type structure is: complete

when λa and λb are surjective (c.f. Brandenburger (2003)); continuous when λa and λb are

continuous; and compact when T a and T b are compact spaces.

The by now standard construction of all coherent hierarchies of “beliefs about beliefs”

yields a complete, continuous and compact type structure. So existence of such structures

(which we assume in some of our results below) is guaranteed. Some details are provided in

Appendix B.

We use the notation λa(ta) = (µa(ta), `a(ta)), with µa(ta) ∈ ∆(Sb × T b) and `a(ta) ∈ Lb.
Similarly for b.
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Fix an event E ⊆ Sb × T b and write

Ba(E) = {ta ∈ T a : µa(ta)(E) = 1}

as the set of types that are certain of the event E. This is the standard definition of certainty

(as 1-belief): the states of Bob are the strategy type pairs in Sb × T b, and Ann’s beliefs are

over Bob’s states. Note that Ba satisfies monotonicity: if Ann is certain of E and E ⊂ F

then Ann is also certain of F .

Fix E ⊆ Sb × T b and define the following operator

Ba
∗(E) = {ta ∈ T a : projSbE ∈ `a(ta)}.

We say that a type of Ann’s has a validated belief in an event E ⊆ Sb× T b if the type

belongs to the set

Ba
v (E) = Ba(E) ∩Ba

∗(E).

Appendix A provides a preference based characterization of validated beliefs.

3.2.1 Lists made of Subsets of Strategies Suffice for Breaking Ties

Before moving on, let us stress the following important property. The principle behind event-

rationality is that a player goes beyond her “frame of mind” to break ties. With a formal

type structure, the frame of mind is given by a type ta and its associated assessment µa(ta)

over Sb× T b (note that the list `a(ta) captures what’s is beyond the frame of mind). So one

could argue that we should consider lists over subsets of Sb× T b, thereby treating strategies

and types symmetrically. In fact, the inclusion/exclusion tension identified by Samuelson

(1992) could be interpreted as requiring that the player includes “everything else” in her

thought experiments.6

But it is redundant to include lists of subsets of Sb × T b for tie-breaking purposes: a list

` made of subsets Eb of Sb breaks ties between sa and σa if, and only if, a list ˆ̀ made of

subsets E of Sb × T b whose projections on Sb are given by the subsets Eb of the list ` also

breaks ties between sa and σa. This is obvious: types are payoff irrelevant.

6This logic is employed in BFK.
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Moreover, if one insists in using lists ˆ̀ of subsets of Sb × T b, the analysis below would

follow on exactly the same lines, defining validated beliefs using the operator

B̂a
∗(E) = {ta ∈ T a : E ∈ ˆ̀a(ta)}

in the place of the operator Ba
∗ , where ˆ̀a(ta) would denote the list of subsets of Sb × T b

associated with type ta. In fact, as we just argued, tie-breaking purposes would not restrict

the “type” component of the lists ˆ̀. In Appendix B we show that nothing relevant would be

changed in the analysis below. Thus, the seemingly asymmetric treatment of strategies and

types is irrelevant, as a symmetric analysis can be provided with the appropriate changes in

notation.

3.3 RCBER - Rationality and Common Belief of Event-Rationality

With type structures, a state for Ann is a pair (sa, ta) determining what she plays (sa) and

her state of mind (ta). We extend the definition of event-rationality to strategy-type pairs

as follows:

Definition 4. Strategy-type pair (sa, ta) ∈ Sa × T a is event-rational if

• sa ∈ BRa(v), for v = margSbµ
a(ta),

• for each F ∈ `a(ta) with F \ supp v 6= ∅ and mixed strategy σa ∈ ∆(Sa) with σa ∼supp v

sa, there exists a conjecture v′ ∈ ∆(Sb) with supp v′ = F \supp v such that πa(sa, v′) ≥
πa(σa, v′),

• Sb ∈ `a(ta).

Likewise for b.

Let Ra
1 be the set of event-rational strategy-type pairs (sa, ta). For finite m, define Ra

m

inductively by

Ra
m+1 = Ra

m ∩ [Sa ×Ba(Rb
m)].

Similarly for b.

Definition 5. If (sa, ta, sb, tb) ∈ Ra
m+1 ×Rb

m+1, say there is event-rationality and mth-order

belief of event-rationality (RmBER) at this state. If (sa, ta, sb, tb) ∈
⋂∞
m=1R

a
m ×

⋂∞
m=1R

b
m

say there is event-rationality and common belief of event-rationality (RCBER) at this state.
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In words, there is RCBER at a state if Ann is event-rational, Ann believes that Bob

is event-rational, Ann believes that Bob believes that Ann is event-rational, and so on.

Similarly for Bob. Believing that Bob is event-rational means that Ann is certain that

Bob only chooses strategies that are best responses to Bob’s conjectures that Ann considers

possible, and that Bob breaks ties using the sets of strategies in his list.

Note that for a strategy-type pair (sa, ta) to belong to Ra
m the following conditions are

satisfied. Strategy sa is a best response to v = margSbµ
a(ta), µa(ta)(Rb

m−1) = 1 and whenever

σa ∼supp v s
a, for each Eb ∈ `a(ta), there exists a conjecture v′ in Eb \ supp v for which

πa(sa, v′) ≥ πa(σa, v′). Notice that Ann is certain that the conjectures of Bob are of the

form v = margSaµ
b(tb), for tb ∈ projT bR

b
m−1, and knows that, for each such conjecture, Bob

breaks each tie using some v′ in Eb \ supp v. We show below that this flexibility implies

that the set of strategies compatible with RCBER are the ones that survive one round of

elimination of inadmissible strategies, followed by iterated elimination of strongly dominated

strategies.

3.4 RCvBER - Rationality and Common validated Belief of Event-

Rationality

Let R
a

1 be the set of event-rational strategy-type pairs (sa, ta). For finite m, define R
a

m

inductively by

R
a

m+1 = R
a

m ∩ [Sa ×Ba
v (R

b

m)].

Similarly for b.

The only difference with RCBER is that we use the validated belief operator instead of

the standard one.

Definition 6. If (sa, ta, sb, tb) ∈ Ra

m+1 ×R
b

m+1, say there is event-rationality and mth-order

consistent belief of event-rationality (RmvBER) at this state. If (sa, ta, sb, tb) ∈
⋂∞
m=1R

a

m ×⋂∞
m=1 R

b

m say there is event-rationality and common consistent belief of event-rationality

(RCvBER) at this state.

Because validated beliefs are stronger than standard beliefs, RCvBER ⊆ RCBER.

Note again that RCBER and RCvBER avoid the inclusion-exclusion tension. What a

type ta of Ann believes about Bob’s choices is given by the marginal of µa(ta) over Sb.

And a type that knows that Bob’s strategy-type pairs are in R
b

m is a type that assigns

17



positive probability only to the strategies that are consistent with R
b

m. So many of Bob’s

strategies can be excluded from ta’s consideration, without causing any contradiction in

the construction. The event-rational (sa, ta) resorts to the tie-breaking list `a(ta) to handle

counter-factuals, without having to believe that the counter-factuals are a real possibility.

4 Solution Concepts

4.1 Self-Admissible and Hypo-Admissible Sets

By construction, event-rationality implies playing admissible strategies. If we add common

belief of event-rationality, then the solution concept is that of a hypo-admissible set (HAS)

that we define below. We compare the HAS with several solution concepts that have been

proposed in the literature. But first a definition.

Definition 7. Say that ra supports sa given Qb if there exists some σa ∈ ∆(Sa) with ra ∈
supp σa and πa(σa, sb) = πa(sa, sb) for all sb ∈ Qb. Write suQb(s

a) for the set of ra ∈ Sa

that supports sa given Qb. Likewise for b.

This is a generalization of the definition in BFK of the support of a strategy sa, which

they denote su(sa). In particular, suSb(s
a) = su(sa).

BFK characterize rationality and common assumption of rationality (RCAR) by the

solution concept of a self-admissible set (SAS).

Definition 8. The set Qa ×Qb ⊆ Sa × Sb is an SAS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is admissible with respect to Sa ×Qb,

• for any sa ∈ Qa, if ra ∈ suSb(s
a), then ra ∈ Qa.

Likewise for b.

In particular, BFK show that the projection of the RCAR into Sa × Sb is an SAS.

Conversely, given an SAS Qa × Qb, there is a type structure such that the projection of

RCAR into Sa × Sb is equal to Qa ×Qb. BFK discuss the need for the third requirement in

the definition of an SAS. In particular, consider the weak best response sets (WBRS), which

does not include a restriction on convex combinations.
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Definition 9. The set Qa ×Qb ⊆ Sa × Sb is a WBRS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is not strongly dominated with respect to Sa ×Qb.

Likewise for b.

As Brandenburger (1992) and Börgers (1994) show, if common assumption of rationality

is relaxed to common belief at level 0 of rationality (RCB0R) (that is, believing E means

µ0(E) = 1, where µ0 is the first measure of the agent’s LPS), then the projection of RCB0R

into Sa× Sb is a WBRS. Conversely, given a WBRS Qa×Qb, there is a type structure such

that Qa × Qb is contained in (but not necessarily equal to) the projection of RCB0R into

Sa × Sb.7

We are now ready to introduce the solution concept of hypo-admissible sets (HAS).

Definition 10. The set Qa ×Qb ⊆ Sa × Sb is an HAS if:

• each sa ∈ Qa is admissible with respect to Sa × Sb.

For each sa ∈ Qa there is nonempty Q0 ⊆ Qb such that

• sa is admissible with respect to Sa ×Q0,

• for any sa ∈ Qa, if ra ∈ suQ0(s
a) and ra is admissible with respect to Sa × Sb then

ra ∈ Qa.

Likewise for b.

Note that the first two properties for a WBRS are equivalent to the first two properties

for an HAS and they are implied by the first two properties for an SAS. Hence, the SAS

and the HAS are always WBRS but the opposite does not hold. Moreover, an SAS is not

necessarily an HAS and an HAS is not necessarily an SAS. The differences between the HAS

and the SAS can be further illustrated by the following two solution concepts. The first

is S∞W , the set of strategies that survive one round of deletion of inadmissible strategies

followed by iterated deletion of strongly dominated strategies (Dekel and Fudenberg (1990)).

7See Section 11 in BFK.
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Definition 11. Let SW i
1 = Si1, for i = a, b be the set admissible strategies and define

inductively for m ≥ 1,

SW i
m+1 = {si ∈ SW i

m : si is not strongly dominated with respect to SW a
m × SW b

m}.

Let S∞W =
⋂∞
m=1 SW

a
m ×

⋂∞
m=1 SW

a
m.

The second is the set of strategies that survive iterated deletion of weakly dominated

strategies, the IA set.

Definition 12. Set Si0 = Si for i = a, b and define inductively

Sim+1 = {si ∈ Sim : si is admissible with respect to Sam × Sbm}.

A strategy si ∈ Sim is called m-admissible. A strategy si ∈
⋂∞
m=0 S

i
m is called iteratively

admissible (IA).

We then have that the S∞W set is both an HAS and a WBRS (but not an SAS) and

the IA set is an SAS and a WBRS (but not a HAS). The following game from Section 2

illustrates the various definitions.

L R

U 1, 0 1, 3

M 0, 2 2, 2

D 0, 4 1, 1

The IA set is {M}×{R}. It is an SAS but not an HAS, because although L ∈ su{M}(R)

and L is admissible, it does not belong to the IA set. Moreover, S∞W = {U,M} × {L,R}
is an HAS but not an SAS, because L is not admissible with respect to {U,M}. That is, in

a sense the SAS captures IA whereas the HAS captures S∞W .

4.2 Generalized Self-Admissible and Hypo-Iteratively Admissible

Sets

In Section 5 we show that HAS characterizes RCBER with E = S. With a view to obtain a

characterization of RCvBER and to relate it to the concepts presented above, we introduce

the following two solution concepts.
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Definition 13. The set Qa ×Qb ⊆ Sa × Sb is an SASPa×P b if:

• each sa ∈ Qa is admissible with respect to Sa × Sb,

• each sa ∈ Qa is admissible with respect to Sa ×Qb,

• for any sa ∈ Qa, if ra ∈ suP b(s
a) and ra is admissible with respect to Sa × Sb, then

ra ∈ Qa.

Likewise for b.

This is a generalization of the SAS, since the only difference is that the support suP b(s
a)

is with respect to an abstract set P b, not Sb. This means that the SAS is equivalent to the

SASSa×Sb .
8 Moreover, if Qa × Qb ⊆ P a × P b then an SASQa×Qb is also an SASPa×P b , but

the reverse may not hold. This means that for any P a × P b, an SASPa×P b is also an SAS.

Moreover, an SASQa×Qb Q
a ×Qb is also an HAS.

Definition 14. A set Qa × Qb is a hypo-iteratively admissible (HIA) set if there exist se-

quences of sets {W a
i }∞i=0, {W b

i }∞i=0, with W a
0 = Sa, W b

0 = Sb, such that for each m ≥ 0,

• each sa ∈ W a
m+1 is admissible with respect to Sa ×W b

m and belongs to W a
m,

• for any k, m, where k ≥ m, if sa ∈ W a
k+1, ra ∈ suW b

k
(sa) ∩W a

m and ra is admissible

with respect to Sa ×W b
m, then ra ∈ W a

m+1,

• there is k such that for all m ≥ k, W a
m = Qa.

Likewise for b.

The HIA sets resemble the IA set, with the only difference that one starts with a subset

of admissible strategies and always includes the strategies that are equivalent (in the sense

of suQ) to strategies that survive subsequent rounds. Moreover, the HIA can be thought

of as an analogue of the best response set (BRS).9 If we replace admissible with strongly

undominated in the definition of HIA then we get a BRS. Conversely, each BRS Qa × Qb

can be written as a modified HIA (just set W a
i = Qa and W b

i = Qb for all i ≥ 1).

8Note that if ra ∈ suSb(sa) and sa is admissible, then ra is also admissible. Hence, the third condition

for a SASSa×Sb is identical to the third condition for a SAS.
9Recall that Qa × Qb is a BRS if each sa ∈ Qa is strongly undominated with respect to Sa × Qb and

likewise for b.
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5 Characterization of RCBER

Propositions 1 and 2 below show that RCBER is characterized by the HAS set in a rich

type structure, and that RCmBER generates the SW a
m × SW b

m strategies, for each m, in a

complete type structure.

We say that a type structure is rich if for each type ta with `a(ta) = (Eb
1, ..., E

b
n) and

Eb
1 ) Eb

2 ) . . . ) Eb
n, there exists a type ta0 with `a(ta0) = (Eb

1, ..., E
b
n−1), and µa(ta) = µa(ta0).

Recall our notation: RCBER is given by
⋂∞
m=1R

a
m ×

⋂∞
m=1R

b
m.

Proposition 1. (i) Fix a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1R

a
m×

projSb
⋂∞
m=1 R

b
m is an HAS.

(ii) Fix an HAS Qa×Qb. Then there is a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉
with Qa ×Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m.

Proof. Throughout we keep the convention that for any two sets, E and F , E × F = ∅
implies E = ∅ and F = ∅. For part (i), if Qa × Qb = projSa

⋂∞
m=1R

a
m × projSb

⋂∞
m=1R

b
m

is empty, then the conditions for HAS are satisfied, so suppose that it is nonempty and fix

sa ∈ Qa = projSa
⋂∞
m=1 R

a
m. Then, for some ta, (sa, ta) is consistent with RCBER and sa

is admissible, by Lemma 2. Since ta believes each Rb
m, for all m, it also believes

⋂∞
m=1 R

b
m.

From the conjuction and marginalization properties of belief there is v = margSbµ
a(ta), with

support contained in projSb
⋂∞
m=1R

b
m, such that sa is optimal under v.

Let Q0 = supp v. We have that sa is admissible with respect to Q0 = supp v, which is

a subset of Qb = projSb
⋂∞
m=1 R

b
m. Suppose sa ∈ Qa, ra ∈ susupp v(s

a) and ra is admissible.

From Lemma D.2 in BFK, ra is optimal under v whenever (sa, ta) ∈ Ra
1.10 Because the

type structure is rich, there exists type ta0 with µa(ta0) = µa(ta) and `a(ta0) = Sb. Since ra is

admissible, we have that (ra, ta0) ∈ Ra
1. The same is true for all Ra

m, hence the third property

for an HAS is satisfied.

For part (ii) fix an HAS Qa × Qb and note that for each sa ∈ Qa which is admissible

with respect to Qsa ⊆ Qb, there is a v with supp v = Qsa under which sa is optimal.

We can choose v such that ra is optimal under v if and only if ra ∈ suQsa (sa) (Lemma

D.4 in BFK).11 Define type spaces T a = Qa, T b = Qb, with λa and λb chosen so that

10Lemma D.2 specifies that if F is a face of a polytope P and x ∈ F , then su(x) ⊆ F , where su(x) is the

set of points that support x. The geometry of polytopes is presented in Appendix D in BFK.
11Lemma D.4 specifies that if x belongs to a strictly positive face of a polytope P , then su(x) is a strictly

positive face of P .
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supp µa(sa) = {(sb, sb) : sb ∈ Qsa}, `a(sa) = {Sb} and v = margSbµ
a(sa) for the v found

above. Similarly for b. Note that the type structure is rich.

First, we show that for each sa ∈ Qa, (sa, sa) is event-rational. By construction, sa

is optimal under v = margSbµ
a(sa) and admissible. Hence, (sa, sa) is event-rational and

Qa ⊆ projSaR
a
1. Suppose (ra, ta) ∈ Ra

1, where ta = sa. Then, ra ∈ suQsa (sa) and ra is

admissible with respect to Qsa . From Lemma 2, ra is admissible. From the definition of an

HAS this implies that ra ∈ Qa and Qa = projSaR
a
1. Applying similar arguments we have

that Qb = projSbR
b
1.

By construction, each ta ∈ Qa puts positive probability only to elements in the diagonal

(sb, sb) which consists of event-rational strategy-type pairs, hence ta believes Rb
1 and (sa, sa) ∈

Ra
2. This implies that Ra

2 = Ra
1 and likewise for b. Thus, Ra

m = Ra
1 and Rb

m = Rb
1 for all m, by

induction. Since projSaR
a
1 × projSbR

b
1 = Qa×Qb we also have Qa×Qb = projSa

⋂∞
m=1 R

a
m×

projSb
⋂∞
m=1 R

b
m.

Proposition 2. Fix a complete structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then, for each m,

projSaR
a
m × projSbR

b
m = SW a

m × SW b
m.

Proof. Let T a0 be the set of types ta such that `a(ta) = {Sb}. From Lemma 2 we have that

(sa, ta) ∈ Ra
1 implies sa is admissible. Conversely, since we have a complete structure, if sa is

admissible then there exists ta ∈ T a0 such that (sa, ta) ∈ Ra
1. Hence, projSaR

a
1 = Sa1 = SW a

1

and projSbR
b
1 = Sb1 = SW b

1 . Suppose that for up to m we have that projSaR
a
m = SW a

m and

projSbR
b
m = SW b

m. Suppose sa ∈ SW a
m+1. Then, sa ∈ SW a

m = projSaR
a
m. Because sa is

not strongly dominated with respect to SW a
m×SW b

m, it is also not strongly dominated with

respect to Sa × SW b
m. Hence, there is a v with supp v ⊆ SW b

m under which sa is optimal.

We take (sa, ta), ta ∈ T a0 , with supp µa(ta) ⊆ Rb
m and margSbµ

a(ta) = v. Because sa is

admissible with respect to Sb, (sa, ta) is event-rational. Because ta ∈ Ba(Rb
m) and Rb

m ⊆ Rb
k,

1 ≤ k ≤ m, we have that (sa, ta) ∈ Ra
m+1 and sa ∈ projSaR

a
m+1.

Suppose sa ∈ projSaR
a
m+1. Then, sa ∈ SW a

m = projSaR
a
m and supp margSbµ

a(ta) ⊆
SW b

m = projSbR
b
m. Because sa is optimal under v, where supp v ⊆ SW b

m, sa is not strongly

dominated with respect to SW b
m and therefore sa ∈ SW a

m+1.
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6 Characterization of RCvBER

Propositions 3 and 4 below show that RCvBER is characterized by the HIA set and RmvBER

generates the IA set in a complete type structure, for big enough m.

Recall our notation: RCvBER is given by
⋂∞
m=1R

a

m ×
⋂∞
m=1R

b

m.

Proposition 3.

(i) Fix a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1R

a

m×projSb
⋂∞
m=1R

b

m

is an HIA set.

(ii) Fix an HIA set Qa×Qb. Then there is a rich type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉
with Qa ×Qb = projSa

⋂∞
m=1R

a

m × projSb
⋂∞
m=1 R

b

m.

Proof. For part (i), if Qa × Qb = projSa
⋂∞
m=1 R

a

m × projSb
⋂∞
m=1R

b

m is empty, then the

conditions for an HIA set are satisfied, so suppose that it is nonempty.

Set W a
m = projSaR

a

m for m ≥ 1 and likewise for b. From Lemma 2, all strategies

in projSbR
a

m+1 are admissible with respect to Sa × W b
m and, by construction, belong to

projSbR
a

m.

Suppose that for some k, m, where k ≥ m, we have that sa ∈ W a
k+1 = projSbR

a

k+1,

ra ∈ suW b
k
(sa) ∩W a

m and ra is admissible with respect to Sa ×W b
m. This implies that for

some ta, (sa, ta) ∈ Ra

k+1, where supp margSbµ
a(ta) ⊆ W b

k and list `a(ta) contains at least all

sets W b
p , for p ≤ m. Because the type structure is rich, there exists type ta0, with `a(ta0) that

contains all sets W b
p , for p ≤ m, and nothing else. Moreover, ta0 is identical to ta in all other

respects. Since ra ∈ suW b
k
(sa), ra is optimal given margSbµ

a(ta0). Moreover, ra is admissible

with respect to Sa ×W b
p , for p ≤ m.

All these imply that (ra, ta0) ∈ Ra

m+1. The third condition is satisfied because projSa
⋂∞
m=1 R

a

m×
projSb

⋂∞
m=1 R

b

m is nonempty and the strategies are finite.

For part (ii), fix an HIA set Qa×Qb, with sequences of sets {W a
m}m=n′

m=0 , {W b
m}m=n

m=0 , where

W a
n′ = Qa and W b

n = Qb. Construct the following type structure. For each m ≥ 1, for each

sa ∈ W a
m, find the measure v(sa,m) with support on W b

m−1 such that ra is a best response

to v(sa,m) if and only if ra ∈ suW b
m−1

(sa). This is possible because of Lemma D.4 in BFK.

Type ta(sa,m) has a marginal v(sa,m) on Sb, the list `a(ta(sa,m)) = {W b
0 , . . . ,W

b
m−1} on Lb

(omitting W b
m−j if it is equal to W b

m−j−1) and assigns positive probability only to strategy-

types (sb, tb(sb,m− 1)), for sb ∈ W b
m−1. Finally, assign to each sa ∈ Sa type ta(ra, 0) which

is equal to ta(ra, k), for some ra ∈ W a
k , k > 0. Similarly for b.
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We now show that RCvBER generates the HIA set. For m = 1, we show that projSaR
a

1 =

W a
1 . Suppose that sa ∈ W a

1 . Because sa is admissible and a best response to v(sa, 1), we have

(sa, ta(sa, 1)) ∈ Ra

1 and sa ∈ projSaR
a

1. Suppose ra ∈ projSaR
a

1. Then, ra is a best response

to some measure v(sa, k + 1), k ≥ 0, for sa ∈ W a
k+1 and ra ∈ suW b

k
(sa) ∩ W a

0 . Because

(ra, ta(sa, k + 1)) is event-rational, ra is admissible. Therefore, by the second property for

an HIA set, ra ∈ W a
1 . Moreover, by construction, for each sa ∈ W a

1 , (sa, ta(sa, 1)) ∈ Ra

1, and

similarly for b.

Assume that for up to m, projSaR
a

m = W a
m and for each sa ∈ W a

m, (sa, ta(sa,m)) ∈
R
a

m. Similarly for b. Suppose that sa ∈ W a
m+1. By construction, sa is a best response to

v(sa,m + 1), which has a support of W b
m = projSbR

b

m, and it is admissible with respect

to Sa ×W b
m. Moreover, `a(ta(sa,m + 1)) = {W b

0 , . . . ,W
b
m} and type ta(sa,m + 1) assigns

positive probability only to types (sb, tb(sb,m)) ∈ R
b

m, for sb ∈ W b
m. This implies that

(sa, ta(sa,m+1)) ∈ Ra

m+1 and sa ∈ projSaR
a

m+1. Suppose ra ∈ projSaR
a

m+1. By construction,

the only measures that have support which is a subset of W b
m are measures that are associated

with strategies sa that belong to W a
k+1, where k + 1 > m. Hence, (ra, ta(sa, k + 1)) ∈ Ra

m+1

and ra is a best response to some measure v(sa, k + 1). By construction, ra ∈ suW b
k
(sa).

Moreover, ra is admissible with respect to Sa ×W b
m. Hence, by the second property for an

HIA set we have that ra ∈ W a
m+1.

Proposition 4. Fix a complete type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then, for each

m,

projSaR
a

m × projSbR
b

m = Sam × Sbm.

Proof. For m = 1, Lemma 2 and a complete structure imply projSaR
a

1 = Sa1 . Suppose that

for up to m we have that projSaR
a

m = Sam and projSbR
b

m = Sbm. Suppose sa ∈ Sam+1. Then,

sa ∈ Sam = projSaR
a

m. Because sa is admissible with respect to Sam×Sbm, it is also admissible

with respect to Sa×Sbm. Note that Sbm ⊆ . . . Sb1 ⊆ Sb and take ta such that margSbµ
a(ta) = v,

`a(ta) = {Sb, Sb1, . . . , Sbm}. Because sa is admissible with respect to Sa×Sbm, we can choose v

such that suppv = Sbm and sa is best response to v. Therefore, suppµa(ta) = R
b

m. Take any

set Sbi ∈ `(ta) with Sbi \ Sbm 6= ∅ and mixed strategy σa such that σa ∼Sbm sa. Suppose there

exists no measure v′, with suppv′ = Sbi \ suppv, such that πa(sa, v′) ≥ πa(σa, v′). Then, σa

weakly dominates sa on Sbi , which implies that sa is not admissible with respect to Sa × Sbi ,
a contradiction. Therefore, (sa, ta) is event-rational and ta ∈ Ba

v (R
b

k) for all k ≤ m, which
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implies that (sa, ta) ∈ Ra

m+1 and sa ∈ projSaR
a

m+1.

Suppose sa ∈ projSaR
a

m+1. Then, sa ∈ Sam = projSaR
a

m and there exists ta such that

(sa, ta) ∈ R
a

m+1 and supp margSbµ
a(ta) ⊆ Sbm = projSbR

b

m. Because ta ∈ Ba
v (R

b

m), Sbm ∈
`a(ta). Hence, we have that sa is admissible with respect to Sam × Sbm and sa ∈ Sam+1.

6.1 Comparison with BFK

BFK’s LPS-based approach uses the following construction. Let L+(X) be the space of fully

supported LPS’s over X, that is, the space of finite sequences σ = (µ0, . . . , µn−1), for some

integer n, where µi ∈ ∆(X) and
⋃n−1
i=0 supp µi = X. In addition, the measures µi in σ are

required to be non-overlapping, that is, mutually singular. A lexicographic type structure is

a type structure where λa : T a → L+(Sb× T b), and similarly for b. An event E is assumed

by type ta of Ann if and only if there is a level j such that λa(ta) assigns probability one to

the event E for all levels k ≤ j, and assigns probability zero to the event for all levels k > j.

Yang (2009) uses a weaker notion that allows the levels higher than j to assign positive

(and strictly smaller than 1) weights to the event. The use of lexicographic beliefs is to be

contrasted with our use of standard beliefs.

RCAR in BFK is characterized by the SAS and RmAR (m levels of mutual assumption)

produces the IA set in a complete structure, for big enough m. Since RmcBER generates the

IA set as well, it is important to know what is the relationship between RCAR and RCvBER

in terms of the solution concepts they generate. The following Proposition and examples

show that RCvBER generates a strict subclass of SAS, hence it is a more restrictive notion

than RCAR. However, as we show in the following section, RCvBER and RCBER are always

nonempty in a complete, continuous and compact structure, unlike RCAR. Let Aa and Ab

be the set of Ann’s and Bob’s admissible strategies, respectively.

Proposition 5.

(i) Fix a type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉. Then projSa
⋂∞
m=1 R

a

m×projSb
⋂∞
m=1 R

b

m

is an SASAa×Ab.

(ii) Fix an SASQa×Qb Q
a×Qb. Then there is a type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉

with Qa ×Qb = projSa
⋂∞
m=1R

a

m × projSb
⋂∞
m=1 R

b

m.
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Proof. For part (i), if Qa × Qb = projSa
⋂∞
m=1 R

a

m × projSb
⋂∞
m=1R

b

m is empty, then the

conditions for SASAa×Ab are satisfied, so suppose that it is nonempty. By definition of event-

rationality and Lemma 2, each sa ∈ Qa = projSa
⋂∞
m=1R

a

m is admissible with respect to

Sa × Sb and Sa ×Qb.

Suppose sa ∈ Qa, ra ∈ suAb(s
a) and ra is admissible. This implies that for any ta,

(sa, ta) ∈
⋂∞
m=1 R

a

m implies that supp margSbµ
a(ta) ⊆ Ab and ra is optimal under v =

margSbµ
a(ta) (Lemma D.2 in BFK). Because ra is admissible we have that (ra, ta) ∈ R

a

1.

For each m ≥ 2, (sa, ta) ∈ R
a

m implies that ta has a validated belief in Rb
m−1. Because

projSbR
b
m−1 ⊆ Ab and ra ∈ suAb(s

a), we have that (ra, ta) ∈ Ra

m and ra ∈ Qa.

For part (ii) fix an SASQa×Qb Q
a×Qb and note that for each sa ∈ Qa which is admissible

with respect to Qb, there is a v with supp v = Qb under which sa is optimal. We can choose v

such that ra is optimal under v if and only if ra ∈ suQb(s
a) (Lemma D.4 in BFK). Define type

spaces T a = Qa, T b = Qb, with λa and λb chosen so that supp µa(sa) = {(sb, sb) : sb ∈ Qb}
and supp µb(sb) = {(sa, sa) : sa ∈ Qa}; and `a(sa) = {Sb} and `b(sb) = {Sa} for all sa and

sb.

By construction and applying similar arguments as in the proof of Proposition 1, we

have that Qa = projSaR
a

1 and Qb = projSbR
b

1. Moreover, each type ta ∈ Qa puts positive

probability only to elements in the diagonal (sb, sb), which consists of event-rational strategy-

type pairs, hence ta has a validated belief inR
b

1. Since all types only consider the list {Sb}
as possible, we have that R

a

m = R
a

1 and R
b

m = R
b

1 for all m, by induction. Since projSaR
a

1 ×
projSbR

b

1 = Qa ×Qb we also have Qa ×Qb = projSa
⋂∞
m=1R

a

m × projSb
⋂∞
m=1 R

b

m.

In words, for a given type structure, the strategies compatible with RCvBER form a sub-

class of all of the SAS, and there is a class of SAS (the Qa×Qb sets that are SASQa×Qb) whose

strategies are compatible with RCvBER for some type structure. Because an SASQa×Qb

Qa × Qb is an SASAa×Ab but the converse is not true, Proposition 5 does not provide a

characterization of RCvBER. It does show, however, that RCAR, which is characterized by

SAS (BFK, Proposition 8.1), is less restrictive than RCvBER.

In fact, the following game provides an example of an SAS that is not an SASAa×Ab and

cannot be generated by RCvBER for any type structure. Hence, RCvBER generates a strict

subclass of SAS.
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L C R

U 1, 1 2, 1 1, 1

M 2, 2 0, 1 1, 0

D 0, 1 4, 2 0, 0

Note that all strategies except for R are admissible and that {U} × {L,C} is an SAS

but not an SASAa×Ab . The reason is that D and M are in the support of a mixed strategy

(assigning weight 1/2 to each) that is equivalent to U given that Bob plays his admissible

strategies L and C, but not given the set of all strategies Sb. Since D and M are not included

in {U} × {L,C}, this is not an SASAa×Ab .

We now argue that {U} × {L,C} cannot be the outcome of RCvBER. First, note that if

this were the case, the types of Ann included in RCvBER should assign zero probability to

Bob playing R. Note also that U is a best response only when Pr(L) = 2
3

and Pr(C) = 1
3

and, for these conjectures, also M and D are best responses. Is it possible that M and D

are excluded because types playing these strategies are not {L,C}-rational or Sb-rational?

No, because M and D are admissible with respect to both {L,C} and Sb. Hence, under

RCvBER, for any type structure, whenever U is included, M and D are included as well.

In the following game all strategies are admissible, hence an SAS is equivalent to an

SASAa×Ab .

L C R

U 1, 1 2, 1 1, 1

M 2, 2 0, 1 1, 5

D 0, 1 4, 2 0, 0

The same arguments show that RCvBER cannot produce {U}×{L,C} which is both an

SAS and an SASAa×Ab but not an SASQa×Qb . Hence, we cannot have a tighter characteriza-

tion in terms of Proposition 5.

As a last comparison note that, from the proof of Proposition 4, a type of Ann that is

event-rational and has (m + 1)-th order validated belief of event-rationality in a complete

type structure, necessarily has the sets Sb0, Sb1, ..., Sbm in the type’s tie-breaking list. This

gives the intuition behind how RCvBER generates the IA set. In comparison, in BFK a
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type ta of Ann that is rational and satisfies (m + 1)-th order assumption of rationality in a

complete type structure, necessarily satisfies

∀k ≤ m,∃j,
⋃
i≤j

supp µi = Sbk

where (µ0, ..., µn−1) is the list of marginals over Sb associated with type ta.

7 Possibility Results for RCBER and RCvBER

Since the games are assumed to be finite, Propositions 2 and 4 suggest that RmBER and

RmvBER generate the S∞W and IA sets, respectively, for m large enough. However, an

epistemic criterion for S∞W and IA has to be the same across all games and therefore

independent of m. Below we show that RCBER and RCvBER are nonempty whenever

the type structure is complete, continuous and compact (and recall that the universal type

structure (Mertens and Zamir (1985) and Appendix B) satisfies these properties), hence

providing an epistemic criterion for S∞W and IA.

Proposition 6. Fix a complete, continuous and compact type structure 〈Sa, Sb, La, Lb, T a, T b, λa, λb〉.
Then RCBER and RCvBER are nonempty.

Proof. First note that from Propositions 2 and 4, the sets Ra
m × Rb

m and R
a

m × R
b

m are

non-empty for each m ≥ 1.

We first show that Ra
1 is closed. Note that T a is compact. For any sequence (san, t

a
n)

in Ra
1, we have san ∈ BR(van), where van = margSbµ

a(tan). If (san, t
a
n) → (sa, ta), then van →

va = margSbµ
a(ta), implying that sa ∈ BR(va). Also, because Sa is finite, we have sa = san

for large n, so sa ∈ BRa(van). Further, because Sb is finite, we can choose a subsequence

with supp van = supp vak for all indices n, k and a fortiori supp va ⊂ supp van. Let σa satisfy

σa ∼supp va s
a. If supp va = supp van we have σa ∼supp van s

a. Hence, for each Fi ∈ `a(ta),

there exists vi with support equal to Fi \ supp va, such that πa(sa, vi) ≥ πa(σa, vi). If

supp va 6= supp van, then because sa ∈ BRa(van) and σa ∼supp va s
a , it must be that there

exists η ∈ ∆(Sb) with πa(sa, µ) ≥ πa(σa, η) and supp η = supp van \ supp va (η can be taken

as the conditional of van on supp van\supp va). Now put η′ = αη+(1−α)vi for some α ∈ (0, 1),

note that supp η′ = Fi \ supp va and that πa(sa, η′) ≥ πa(σa, η′). That is, (sa, ta) ∈ Ra
1, so it

is a closed subset of the compact space Sa × T a.
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Consider Ra
2 = Ra

1 ∩ [Sa×Ba(Rb
1)], and pick a convergent sequence (san, t

a
n) therein, with

limit (sa, ta). Because Rb
1 is closed and λa is continuous, we have lim suptan→ta µ

a(tan)(Rb
1) ≤

µa(ta)(Rb
1). Hence µa(ta)(Rb

1) = 1 because µa(tan)(Rb
1) = 1 for every n. Also, event-rationality

follows from an argument similar to the argument above, and we conclude that Ra
2 is compact.

Inductively, Ra
m is compact for all m. It follows that

⋂
m≥1R

a
m 6= ∅ because the family

{Ra
m}m≥1 has the finite intersection property: for any finite list {m1, . . . ,mK} of positive

numbers, let mk be the largest. Then we know that Ra
mk
6= ∅ and it is included in

⋂K
k=1 R

a
mk

.

We also have compactness of the sets R
a

m. Pick a sequence (san, t
a
n) in R

a

m converging to

(sa, ta), and without loss of generality focus on a subsequence with `a(tan) = `a(tak) for all

n, k. It must then be that `a(tan) = `a(ta). Repeat the argument in the first paragraph of the

proof to conclude that (sa, ta) is event-rational because (san, t
a
n) is event-rational for each n,

and projSbR
b

m−1 ∈ `a(ta), so (sa, ta) ∈ Ra

m. Hence we have a nested sequence of non-empty

compact spaces, so by the finite intersection property, we have
⋂
m≥1R

a
m 6= ∅.

The same arguments apply to b.

8 Conclusion

Let us summarize the contributions of the paper. (1) We define a new notion of rationality,

named event-rationality, and provide preference basis for it. The preferences of event-rational

players are represented by a pair (µ, `), where µ is a probability measure and ` is a set of

events used for breaking ties. We require that the set of all strategies of the opponent is a

member of `, and as a result obtain that event-rational players play admissible strategies.

(2) We define and provide decision theoretic foundations for a new notion of “believing”,

named validated belief, which relates to the preference representation of event-rationality.

(3) We provide epistemic conditions for two well-known solution concepts in game theory,

S∞W and IA. We do so by constructing the set of states where “rationality and common

belief of rationality” obtain, using event-rationality as the notion of rationality, and (for

the IA case) validated belief as the notion of belief. The epistemic characterization of IA

solves a well-known and much-studied problem in a novel way. And, importantly, it does not

require the use of incomplete or discontinuous type structures. (4) We develop new solution

concepts, HAS and HIA, that are induced by RCBER and RCvBER, respectively, for any

type structure, not necessarily complete. (5) Finally, we show that RCvBER can be used to
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justify a strictly smaller class of solutions than BFK’s RCAR, thus showing that RCvBER

and RCAR are not merely isomorphic conditions written in two different languages.

A Preference Basis

We develop below preference foundations for event rationality and validated beliefs, using

the idea that a decision maker is represented by a list of preferences. Alternative foundations

can be provided. Indeed, in an ealier version of this paper we provided foundations based

on Manzini and Mariotti (2007).

Let Ω be a state space and A the set of all measurable functions from Ω to [0, 1]. For

simplicity, assume that Ω is finite (modulo technical details, the considerations below carry

through in a more general state space). A decision maker has preferences over elements of

A. We assume that the outcome space [0, 1] is in utils. That is, all preferences considered

below agree on constant acts over an outcome space, so the Bernoulli indices are uniquely

defined and omitted from the analysis that follows. For x, y ∈ A, 0 ≤ α ≤ 1, αx+(1−α)y is

the act that at ω gives payoff αx(ω)+(1−α)y(ω). Unless otherwise noted, we assume that a

preference relation % satisfies completeness, transitivity, independence and has an expected

utility representation.

Definition 15. x %E y if for some z ∈ A, (xE, zΩ\E) % (yE, zΩ\E).

Note that for preferences satisfying the aforementioned axioms, (xE, zΩ\E) % (yE, zΩ\E)

holds for all z if it holds for some z. An event E is Savage null if x ∼E y for all x, y ∈ A.

For a given %, the set N(%) ⊂ Ω denotes the union of all non Savage null events according

to %.

Fix a game and the resulting set of available acts B. An act x ∈ B is event-rational if

there exist a preference % and a list ` = {F1, ..., Fk}, with Fi ⊂ Ω for i = 1, ..., k such that

• x % y for every y ∈ B,

• for each Fi ∈ ` with Fi \N(%) 6= ∅ and act y ∈ B with x(ω) = y(ω) for all ω ∈ N(%),

there exists a preference %′ with N(%′) = Fi \N(%) such that x %′ y,

• Ω ∈ `.
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Therefore, the definition of event-rationality is identical to that of the main text.

Consider a decision maker represented by a list of preferences {%i}ki=0 with N(%i) ∩
N (%0) = ∅ for i = 1, ..., k and N(%i) = Ω \N(%0) for some i.12 The interpretation is that

N(%0) is the theory of the decision maker, and the list {N(%i)}ki=1 represent probability-

zero gedankenexperiments, used to break ties. Formally, given a list of preferences {%i}ki=0

satisfying the aforementioned two properties we define an induced preference relation over

acts, %c, as follows:

Definition 16. x %c y if and only if either

• x %0 y and x 6= y on N(%0) or

• x = y on N(%0) and x %i y for i = 1, ..., k.

Note that %c is incomplete but transitive. An act x is %c-rational if x %c y for every

y ∈ B.

Proposition 7. An act x is %c-rational if and only if it is event-rational.

Proof. By definition, if x is %c-rational, then it is event-rational under %=%0 and ` =

{F1, ..., Fk}, with Fi = N(%i) ∪N(%0) for i = 1, ..., k.

Conversely, let x be event-rational under %̂ and ` = {F1, ..., Fk}. If x 6= y on N(%̂),

then x %c y using %0= %̂. So let us focus on acts in C = {y ∈ B : y = x on N(%̂)}. Let

m = #Ω\N(%̂), and note that the set C can be identified as a convex in [0, 1]m, with x ∈ C.

For each i = 1, ..., k where Ei = Fi \N(%̂) 6= ∅, let Bi = {r ∈ Rm
+ : r|Ei � x|Ei}, where x|Ei

denotes the vector x restricted to states in Ei. Note that Bi ∩ C = ∅, because otherwise

there would exist an act y that is outcome-equivalent to x and strictly preferred to x for

any preference %′ with N(%′) = Ei, contradicting event-rationality of x. Because Bi is also

convex, by the separating hyperplane theorem there exists αi ∈ Rm with αi · r > αi · y for

all r ∈ Bi and y ∈ C. Take rε ∈ Rm
+ with rε(ω) = x(ω) for ω /∈ Ei and rε(ω) = x(ω) + ε for

ω ∈ Ei and ε > 0. Then rε ∈ Bi. Letting ε→ 0, we have rε → x and we obtain αi ·x ≥ αi ·y
for every y ∈ C.

Also, αi can be chosen to satisfy αi(ω) > 0 only if ω ∈ Ei. Otherwise, say that αi(ω
′) > 0

and ω′ /∈ Ei. If y(ω′) = 0 for every act in B, then αi(ω
′) can be set equal to zero without

12One can think of conditional preferences, as in Luce and Krantz (1971), Fishburn (1973) and Ghirardato

(2002).
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loss. If x(ω′) = 0 and there exists y ∈ C with y(ω′) > 0, then it cannot be the case that

Fi = {ω′} for any i = 1, ..., k. So set y(ω) = x(ω) for every ω 6= ω′ and y(ω′) > x(ω′), with

y ∈ C. Such a y exists because Ei 6= Ω \ N(%̂) (if it was equal, then ω′ would not exist)

and there is no Fi equal to {ω′}. Then αi · rε > αi · y, for the rε constructed above. But as

ε→ 0, rε → x and αi ·x < αi · y by construction. This contradicts αi · rε > αi · y for all ε. In

the case that x(ω′) > 0, change the rε above by having rε(ω′) = 0, while keeping the other

values. Then as ε → 0, we must get αi · rε < αi · x, another contradiction. So the support

of αi is contained in Ei.

Moreover, because for each y ∈ C there exists %′ with N(%′) = Ei and x %′ y, it must be

that α(ω) > 0 if ω ∈ Ei. If not, then there is ω′ ∈ Ei with αi(ω
′) = 0, and there is no other

α′i with α′i(ω
′) > 0 that would separate Bi and C. Now take the original rε and y ∈ C with

y(ω′) > x(ω′). Such a y must exist, for otherwise there would exist the required α′i. But

there is no %′ with N(%′) = Ei and x %′ y, a contradiction. So it must be that αi(ω) > 0 if

and only if ω ∈ Ei.
Normalizing αi yields a probability distribution νi with supp νi = Ei for which x is

a better response than any y ∈ C. Let %i be the preference relation represented by the

underlying Bernoulli index and νi. The construction above is true for every i = 1, ..., k.

Setting %0= %̂ and collecting the list {%0,%1, ...,%k} it follows that x is %c-rational.

In what follows, for ease of notation, we use Ni = N(%i) for i = 0, ..., k, x �iE y to

denote that x is preferred to y according to %i conditional on E (according to Definition

15), and x =0E y to denote that x(ω) = y(ω) for all ω ∈ N0 ∩ E 6= ∅. The notions of beliefs

we use in the main text are as follows.

Definition 17. Event E is believed under %c if N0 ⊂ E.

Definition 18. Event E has a validated belief under %c and i if E = N0 ∪Ni.

In words, the decision maker believes an event E if she believes it according to her theory;

and she has a validated belief in it if it is equal to the union of N0 and some Ni. Note that

it may well be that i = 0, so the decision maker may have a validated belief in the event

E = N0. Note that in the text we “validated” a belief with events that describe strategies

only. Here we do not make this distinction for ease of exposition. It is straightforward to

consider a product state space Ω = Ω1 × Ω2 and define belief for events on Ω and validated

beliefs as those that are validated by the projection of an Ni to Ω1.
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We now define a notion of conditional %c-preference that is consistent with tie-breaking

ideas.

Definition 19. Say that x �cE y under i if

• x �0E y or

• x =0E y, x �iE y and x %j y for every j 6= i.

Say that x �cE y if x �cE y for some i. Note that x �cE y under i and x =0E y necessarily

mean that i > 0.

Definition 20. An event E is nontrivial under %c and i if

• there is a pair x, y with x �cE y under i, and

• if ω ∈ E is such that there is no pair x, y with x �cω y, then there is a pair x, y with

x = y on N0 such that x �cE(ω) y under i, where E(ω) = E ∩ (N0 ∪ {ω}).

Definition 21. An event E satisfies strict determination under %c and i if for all x, y,

x �cE y under i implies x �c y.

The following Lemma characterizes validated belief with respect to nontriviality and

strict determination.

Lemma 3. There exists i such that E has a validated belief under %c and i if and only if it

is nontrivial and satisfies strict determination under %c and i.

Proof. By nontriviality, E∩N0 6= ∅, for otherwise there would exist no pair x, y with x �cE y.

Assume by way of contradiction that there exists ω̂ ∈ N0 \ E. Also, let ω′ ∈ E ∩ N0. Set

x(ω′) = 1 and zero otherwise, and set

y(ω) =


a if ω = ω̂

b if ω = ω′

0 otherwise

where a > v0(ω′)(1−b)
v0(ω̂)

, 0 < b < 1, and v0 is the conjecture associated with %0. Then,

conditional on E, the payoff of x is equal to 1 whereas the payoff of y is b < 1, so x �cE y;

But the unconditional payoff of x is equal to v0(ω′) whereas the payoff of y is av0(ω̂)+bv0(ω′),
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so y �c x, contradicting strict determination. Hence N0 ⊂ E. Therefore, if for all ω ∈ E
there exists a pair x, y with x �cω y, then E ⊂ N0, and we conclude that E = N0 ∪Ni, with

i = 0.

If there is ω ∈ E for which there is no pair x, y with x �cω y, then ω /∈ N0. By nontriviality,

there is a pair x, y with x = y on N0 with x �cE(ω) y under i, meaning that x �iE(ω) y, which

in turn means that ω ∈ Ni and i 6= 0. Hence we must have E ⊂ N0∪Ni. Similarly to above,

assume by way of contradiction that there exists ω̂ ∈ Ni\E. Also, let ω′ ∈ E∩Ni. Construct

x and y as follows: x = y on N0, and on Ω \ N0 x and y are as above, with a > vi(ω
′)(1−b)
vi(ω̂)

.

Strict determination is again violated, so we must have N0 ∪Ni ⊂ E, and we conclude that

E = N0 ∪Ni with i > 0.

Conversely, assume that E = N0 ∪ Ni for some i. Let x = 1 on N0, 0 otherwise and

y(ω) = 0 for every ω. Then x �c0 y and x �cE y under i. For the second condition, if i = 0,

then E = N0 and there does not exist ω ∈ E such that there is no pair x, y with x �cω y.

If i 6= 0, pick ω ∈ Ni (so ω /∈ N0). Set x = y on N0, x(ω) = 1, y(ω) = 0 and x = y = 0

elsewhere. Then x �cE(ω) y, so nontriviality is satisfied.

Finally, let x �cE y under i. If x �0E y then x �0 y, implying that x �c y. If x =0E y,

x �iE y and x %j y for every j 6= i, then x = y on N0, x �i y and x %j y for every j 6= i,

which again means that x �c y. So strict determination is satisfied.

Corollary 1. An event E is believed under %c if and only if it satisfies strict determination

under %c and i = 0 and there exists a pair x, y with x �cE y under i = 0.

B Type Spaces

We now show that the by now standard construction of all hierarchies of beliefs about

beliefs generates a complete and continuous type structure. Because the types consistent

with event-rationality are mapped to both probability measures and lists, we need to adapt

the standard construction. One route is to follow Epstein and Wang (1995) and work with

more general beliefs about beliefs. Another route, followed bellow, is to construct an auxiliar

complete, continuous and compact type structure, using the standard construction, and then

use it to construct the desired type structure.

Let ∆∗(X × Li) be the space of all probability measures over X × Li (endowed with the

weak∗ topology) for which the marginal on Li is a mass point, for i = a, b.
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Let Ωa
1 = Sb × Lb and T a1 = ∆∗(Sb × Lb). Inductively set Ωa

k+1 = Sb × Lb × T bk where

T ak+1 = {(µa1, ..., µak, µak+1) ∈ T ak ×∆∗(Ωa
k+1) : margΩak

µak+1 = µak}.

Likewise for b. Then the standard arguments in the literature show the existence of compact

spaces T a∗ and T b∗ , with T a∗ homeomorphic to ∆∗(Sb × T b∗ × Lb) and T b∗ homeomorphic to

∆∗(Sa × T a∗ × La).13 In fact, let T a∗ be the projective limit of the spaces (T ak )∞k=1. T a∗ is

compact as it is a product of compact spaces. Construct T b∗ similarly. Then Theorem 8 in

Heifetz (1993) shows that for each tower (µak)
∞
k=1 there exists µa ∈ ∆(Sb × Lb × T b∗ ) with

margΩak
µa = µak for all k ≥ 1. In particular, the marginal of µa on Lb is a mass point, so

µa ∈ ∆∗(Sb×Lb× T b∗ ). Conversely each µa ∈ ∆∗(Sb×Lb× T b∗ ) gives rise to a tower (µak)
∞
k=1

given by the list of marginals. So there is a bijection λa∗ : T a∗ → ∆∗(Sb×Lb×T b∗ ). Theorem 9

in Heifetz (1993) ensures that λa∗ is a homeomorphism, likewise for b. So we have constructed

a complete, continuous and compact auxiliar type structure

〈Si, Li, T i∗, λi∗〉i∈{a,b}

with λi∗ : T i∗ → ∆∗(Sj × T j∗ × Lj) for j 6= i = a, b. Note that λi∗(t
i
∗) = µ(ti∗)⊗ δ`(ti∗) where δx

is the point mass at x.

Now set T i = T i∗ (carrying the same topology, so T i is compact Hausdorff) and λi(ti∗) =

(µ(ti∗), `(t
i
∗)), for i = a, b. The assignment λi∗ 7→ λi is a bijection and preserves continuity: λi

is continuous if and only if λi∗ is continuous. Indeed, let tiα → ti in T i. This is a converging

net in T i∗, so λi∗(t
i
α)→ λi∗(t

i), or µ(tiα)⊗ δ`(tiα) → µ(ti)⊗ δ`(ti). But δ`(tiα) → δ`(ti) in the weak∗

topology if and only if `(tiα)→ `(ti). So (µ(tiα), `(tiα))→ (µ(ti), `(ti)), or λi(tiα)→ λi(ti), for

i = a, b. A similar argument establishes that λi∗ is continuous if λi is continuous. Moreover, λi

is injective and surjective. Hence it is a homeomorphism, as a continuous bijection between

compact Hausdorff spaces. So the type structure

〈Si, Li, T i, λi〉i∈{a,b}

with λi : T i → ∆(Sj ×T j)×Lj for j 6= i = a, b just constructed is complete, continuous and

compact.

It is important to emphasize a conceptual point here. The two players form beliefs about

beliefs about what is relevant for rational choices. That is, Ann has beliefs over Sb×Lb, and

13See for instance Mertens and Zamir (1985), Brandenburger and Dekel (1993) and Heifetz (1993).
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these beliefs are given by a conjecture over Sb and a list ` ∈ Lb (or, equivalently, a point

mass over Lb.) What is relevant for event-rational choices is precisely the conjecture and

the list. But Ann does not know what Bob’s beliefs are, and the hierarchies of beliefs about

beliefs constructed above yield a type structure as the one we use in the paper.

B.1 Lists over Types

We argued in the text that lists over strategies suffice for the analysis. Indeed, it is redundant

to include subsets of types in the tie-breaking lists, as types do not play any role in breaking

ties. Also, provided that we consider a rich list of subsets of types, such lists would not

interfere in the constructions in the text that used validated beliefs. Let us now show how to

obtain a type structure with rich lists over strategies and types from a given type structure.

Let the type structure 〈Si, Li, T i, λi〉i∈{a,b} be given. For i 6= j = a, b, let F(T i) denote the

space of all closed subsets of T i, endowed with the Fell topology.14 Say `i(ti) = {E1, ..., Ek},
with Er ⊂ Sj for r = 1, ..., k. Let Er = {sj1, ..., sjm} and construct Er = {({sj1}×K, ..., {sjm}×
K ′) : (K, ...,K ′) ∈ (F(T j))m}, for r = 1, ..., k, where (F(T j))m denotes the product of m

copies of F(T j). Note that Er is compact whenever T j is Hausdorff. Finally, put ˆ̀i(ti) =

{E1, ..., Ek} as the extended list. Repeat the procedure for all ti and i = a, b, to construct

the type structure

〈Si, L̂i, T i, λ̂i〉i∈{a,b}

where λ̂i = (µi, ˆ̀i) and L̂i is the space of extended lists (as the one constructed above) of

subsets of Si × T i.
Now, for any closed subset F ⊂ Sj × T j, we have

F ∈ ˆ̀i(ti)⇔ projSjF ∈ `i(ti).

That is, extended lists do not interfere with statements about validated beliefs. Extended

lists do not interfere with breaking ties either. So the arguments in the text apply to the

corresponding type structure with extended lists with no change (other than notation).

14See for instance Molchanov (2005) for definitions of topologies on spaces of subsets. The nice feature of

the Fell topology is that F(T i) is compact whenever T i is Hausdorff. When T i is compact metric, the Fell

topology coincides with the standard Hausdorff metric topology.
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