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Abstract

For the problem of adjudicating conflicting claims, we propose to
compromise in the two-claimant case between the proportional and
constrained equal awards rules by taking, for each problem, a weighted
average of the awards vectors these two rules recommend. We allow
the weights to depend on the claims vector, thereby generating a large
family of rules. We identify the members of the family that satisfy
particular properties. We then ask whether the rules can be extended
to populations of arbitrary sizes by imposing “consistency”: the rec-
ommendation made for each problem should be “in agreement” with
the recommendation made for each reduced problem that results when
some claimants have received their awards and left. We show that only
the proportional and constrained equal awards rules qualify. We also
study a dual compromise between the proportional and constrained
equal losses rules.

*I thank Patrick Harless, Juan Moreno-Ternero, and a referee for their helpful com-
ments. PCEAaverage2.tex
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1 Introduction

We consider the problem of allocating a social endowment of a single in-
finitely divisible resource among a group of people with incompatible claims
on it. A “rule” specifies for each such “claims problem” a division of the
amount available among the claimants (O’Neill, 1982). How to distribute
the liquidation value of a bankrupt firm among its creditors is the primary
application of the model, but taxation is also covered: there, the issue is to
determine how much of the cost of a public project each of its users should
contribute when users differ in their incomes. Alternatively, it could be on
the basis of the benefits they derive from the project, or on a combination of
incomes and benefits, that contributions could be based. In what follows, we
use language that is appropriate for the claims problem interpretation of the
model, and refer to the amount assigned to each claimant as his “award”.

Two focal rules in the literature (for surveys, see Thomson, 2003, 2006,
2015a) are the “proportional rule”, for which awards are proportional to
claims, and the “constrained equal awards rule”, for which awards are made
as equal as possible subject to no one receiving more than his claim. Neither
fully captures the intuition that many people have about how claims problems
should be solved however. Indeed, and although the proportional rule is
almost universally used, the feeling is common that some steps should be
taken in the direction of equality, especially when the amount to divide is
small in relation to claims. On the other hand, the insistence on equality
(subject to no one receiving more than his claim) embodied in the constrained
equal awards rule appears too rigid to many. Thus, some compromise should
be found between proportionality and (constrained) equality. Several have
been defined in the literature, and some have come out of axiomatic analysis.

For the two-claimant case, we propose here to simply average, for each
problem, the recommendations made by the proportional and constrained
equal awards rules. It is a common research strategy in the axiomatics of re-
source allocation to start with two agents, and we adopt it here: our intuition
is stronger in that case, as conceptual and technical issues having to do with
the treatment of groups do not arise. As for averaging, it is a meaningful
operation in the context of claims problems because the set of vectors from
which it is natural to choose for each problem is a convex set.

To add flexibility though, we allow the weights placed on these two recom-
mendations to depend on the claims vector, thereby obtaining a rich family



of rules.! It would be unreasonable to let the weights vary in some arbitrary
way however, and our first task is to identify the restrictions that the weight
function should satisfy for the resulting rule to enjoy particular properties.
We review most of the properties that have been important in the literature.
Some are in fact met by all members of our family. Some are met provided
some restrictions are placed on the weight function; we identify these restric-
tions and describe the resulting rules. Some are satisfied by no member of
the family. We also show that members of our family can easily be compared
in the Lorenz order.

The next question is what to do for more claimants. How should our
definition be extended to such situations? Our strategy here is to invoke
“consistency”, a versatile principle that has successfully guided the theory
of resource allocation in a wide variety of contexts. (For a survey of the
literature, see Thomson, 2012¢). Informally, here, consistency says that the
choice made for each population and each problem that this population could
face should be “confirmed” in the “reduced problem” each subpopulation
faces when the members of the complementary subpopulation have received
their awards and left the scene: the rule should assign to each remaining
claimant the amount it did in the initial problem. Multiple interpretations
can be given to the consistency of a rule. An important one is robustness
under partial implementation. Possible fairness underpinnings are evaluated
in Thomson (2012b, 2012c).

Of course, not all two-claimant rules have what can be called a “con-
sistent extension” to arbitrary populations. The two-claimant proportional
and constrained equal awards rules are members of our family, and when
the proportional formula is applied in general, that is, to problems involving
populations of arbitrary sizes, consistency is satisfied, as is well-known and
easily checked. The same is true if the constrained equal awards formula is
applied in general. But let us consider the next simplest case, when within
our family, the weights assigned to the proportional and constrained equal
awards rules are both positive but independent of the identity of the two
claimants involved and of their claims. It is equally easy to see that using
the same weights for any number of claimants does not deliver a consistent
rule. So, let us allow the weights to depend on the identity of the claimants
who are present and on their claims. Some new opportunities may arise then.

'In the context of a different model, compromises of this type have been studied by
Moulin (1987) and Chun (1988).



Moreover, in the search for consistency, there is no reason why one should
insist that an average of the proportional and constrained equal awards for-
mulas be used for problems involving more than two claimants. So, which
of our two-claimant rules have consistent extensions and what are these ex-
tensions? This is the question we ask next. Disappointingly, the answer is
that in fact, within our family, only the proportional rule and the constrained
equal awards rule have such extensions, and for consistency, one should apply
the proportional formula for each population or the constrained equal awards
formula for each population.

We also propose a way of compromising between the proportional rule
and the “constrained equal losses rule”, the rule that divides the endowment
so as to make the losses incurred by all claimants, that is, the differences
between their claims and their awards, as equal as possible subject to no
one receiving a negative amount. This case can be handled by standard
“duality” arguments, exploiting our earlier conclusions. Here, we find that,
within this second family, only the two rules that serve as points of departure,
the two-claimant proportional rule and the two-claimant constrained equal
losses rule, have consistent extensions. These extensions are obtained by
applying the proportional formula for each population or by applying the
constrained equal losses formula for each population.

Related literature. In an earlier paper, we proposed to compromise be-
tween the two-claimant proportional and constrained equal awards rules by
means of a different type of operation, namely by averaging, for each prob-
lem, parallel to the axis along which the larger claim is measured (Thomson,
2015b). (The only rules that are in common to the family defined here and
that family are the proportional and constrained equal awards rules.) We
found a non-trivial subfamily of the resulting rules that had consistent ex-
tensions.

Another possibility is to choose, for each claims vector, the path of awards
to consist of the union of a segment contained in the 45° line and a segment
to the claims vector (Thomson, 2007). Giménez-Gdémez and Peris (2014)’s
proposal is along the same lines. This formulation amounts to averaging,
for each problem, the recommendations made by the proportional and con-
strained equal awards rules parallel to the 45° line. (Again, the only rules
that are in common to our family and that family are the proportional and
constrained equal awards rules.)

One can also ask about compromising in the two-claimant case between



the constrained equal awards and constrained equal losses rules, and here too,
different types of averaging have been considered. It turns out that averaging
in the manner suggested here is incompatible with consistency unless either
all the weight is always placed on the constrained equal awards rule or all the
weight is always placed on the constrained equal losses rule (Thomson, 2007).
On the other hand, averaging parallel to the 45° rule, or for each problem,
parallel to the axis along which the larger claim is measured, lead to two
subfamilies of families that had been introduced as generalizations of the
Talmud rule, the ICI and CIC families (Thomson, 2008). These subfamilies
are the TAL family and its dual (Moreno-Ternero and Villar, 2006a,b).

Other ways of compromising between rules have been defined that are
not based on averaging operations. Following the axiomatic approach from
the outset, Moulin (2000) obtains a family of two-claimant rules that can
be understood as providing a compromise between the proportional, con-
strained equal awards, and constrained equal losses rules. Each member of
the family requires that awards space be partitioned into cones and that
within each cone, either the proportional rule or a “compressed” version of
the constrained equal awards or constrained equal losses rules be used. These
rules do not necessarily assign equal amounts to claimants with equal claims,
which is desirable in some situations. The only rules that are common to
our family and Moulin’s family are the proportional and constrained equal
awards rules. Extending Moulin’s rules to more than two claimants in a
consistent way however requires that the set of potential claimants be par-
titioned into ordered priority classes, and that within each class, one of the
following be used, the proportional rule, a weighted constrained equal awards
rule, or a weighted constrained equal losses rule. So, once again, and apart
from the extra freedom gained by dropping the insistence on treating equals
equally, the same rules emerge as the only viable candidates as the ones that
come out of our analysis here.

Recent contributions to the literature on claims problems concern the
impact of uncertainty in the data of the problem (Xue, 2015; Ertemel and
Kumar, 2015), the possibility that these data be integers (Chen, 2015), and
experimental testing (Cappelen, Luttens, Sorensen, and Tungodden, 2015).



2 The model and our two-claimant proposal

There is an infinite set of potential “claimants”, indexed by the natural
numbers, N. Let N be the family of all finite subsets of N and N? the
subfamily of two-claimant subsets. A claims problem with claimant set
N € N isanpair (¢, E) € RY xR, such that ) ¢; > E. An awards vector
of (¢, E) is a vector z € RY such that Y 2; = F and z < ¢. The deficit
in (¢, E) is the difference Y ¢; — E. Let CN be the class of all problems
with claimant set N. A rule on C¥ is a function that associates with each
(¢, E) € CV a unique awards vector of (¢, E). The path of awards of S
for c € Rf is the locus of the awards vector S selects for (¢, ') as E varies
from 0 to > ¢;. Let N € N and (¢, E) € CV. For the proportional rule, P,
for each i € N, claimant ¢’s award is Ac;, A being chosen, as in the next two
definitions, so that awards add up to E; for the constrained equal awards
rule, CEA, claimant i’s award is min{¢;, A}; for the constrained equal
losses rule, CEL, it is max{c; — \,0}. (Historical references are in O’Neill,
1982.)

Given a € RY, box[0,a] is the set {z € RY: 0 < < a}. Given
a,b,c € RY, seg[a,b] is the segment connecting a and b, and to exclude
b for example, we use the notation seg[a, b[. Also, bro.seg[a, b, c] is the
broken segment seg|a, b] U seg[b, ¢]. The simplex in RY is denoted AN,

We start with the two-claimant case. As a compromise between the pro-
portional and constrained equal awards rules, we propose a weighted average,
but we let the weights depend on the claims vector.? Let N € N2. Let i,
be the two members of N and A™ be the class of functions AV : RY — [0, 1].
Given AN € AV, and (¢, E) € CV, let S (¢, E) select as awards vector
for (c, E) the average of P(c, E) and CEA(c, E) with weights AV (c) and
1 — A¥(¢), namely

S (¢, E) = AN(¢)P(c, E) + (1 — AN (c))CEA(c, E).

Let SY be the family of rules so defined. The definition is illustrated in
Figure lafori = 1and j = 2. If for each ¢ € RY, AN(c) = 1, then S = P,
and if for each ¢ € RY, AV(c) = 0, then S = CEA. To extend the definition
to the domain |y 2 CY, we specify for each N € N? a function AV € AV,

Our superscript to AV indicates that the identity of the two claimants
may be taken into account in specifying the weights. This adds to the flexi-

2A standard convexity operator would use constant weights across problems.
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Figure 1: Compromising between the proportional and constrained
equal awards (or constrained equal losses) rules. Here, N = {1,2} and
c € RY is such that ¢; < co. (a) For the member of family SV associated
with AN € AV the path of awards for ¢ is bro.seg[(0,0), A\ (c)a + (1 — AN (¢))b, ¢],
where a = P(c,2c;) and b = CEA(c,2c1). (b) For the member of family 7
associated with AV € AN the path for c is bro.seg[(0,0), A\ (c)a + (1 — AN (c))b, d,
where a = P(c,ca — 1) and b= CEL(c,co — c1).

bility of our definition. Whether a claimant is a corporation or a household
for example can be taken into consideration. Altogether, we start with a col-
lection of rules indexed by two-claimant populations. Let S? be the family
of lists (S™)yenz, where for each N € N2, SV € SV,

We also offer a symmetric way of compromising between the proportional
and constrained equal losses rules. Again, let N € N2. Let i and j be the
two members of N. For each (¢, E) € CV, let

T (¢, E) = AN (¢)P(c, E) + (1 — \N(¢))CEL(c, E).

Let 7™ be the family of rules so defined. If, for each ¢ € RY, A (c) =1,
then T» = P: also, if for each ¢ € Rﬂf, AV(c) = 0, then T* = CEL. Let T2
be the family of lists (TV)yep2, where for each N € N2, TN € TV,

This second definition can be derived from our first definition through
duality (Aumann and Maschler, 1985). Two problems are dual if they
have the same claims vector but the endowment in one is equal to the deficit
in the other. The dual of a rule S is the rule that, for each problem, divides
the endowment in the manner in which S divides the deficit in the dual
problem:

Dual of rule S, S¢: For each (¢, E) € CV,

S4c,E)=c— S(C,Zci —FE).



It is easy to see that, for each AN € AV, SA and T are dual.

The concept of duality also applies to properties of rules: two properties
are dual if whenever a rule satisfies one of them, the dual rule satisfies the
other.

3 Properties

Although the rules that we proposed have geometrically simple paths of
awards, the family they constitute is rather large because our definition
includes no restriction on the weights placed on the proportional and con-
strained equal awards rules. The question of how to specify the weights can
be answered in two ways. A first answer is that it is up to the user of the
theory to choose them so as to express his or her relative preference for one
or the other of the proportionality and equality principles. The other is to
proceed axiomatically and to identify the restrictions implied by properties
of rules that are found desirable. This is the approach we follow in this
section. Given a property, we ask which of the rules in S? satisfy it. For
some properties, they all do; for others, none does; for some, it depends on
the weights; for each property in that last category, we identify the subset
of rules in 8? that do satisfy it. (Some properties apply non-trivially only
when the number of claimants is greater than 2; then, there is nothing to say
about 8% concerning them.)®> We only state as formal theorems our conclu-
sions pertaining to two properties for which the class of admissible rules is
particularly complex.

For each property except for anonymity, defined soon, a rule in S? satisfies
the property if and only if for each N € AN?, the component of the rule
pertaining to population N satisfies it. Thus, it is enough to understand
the issue for some N € N?2. For simplicity of notation, we then choose
N ={1,2}.

e Equal treatment of equals says that two agents with equal claims should

3The terminology concerning properties of rules is not uniform in the literature. In
each of the following pairs of terms or expressions, the first one is the one we use here
whereas the second one is used in the paper where the concept is proposed: the “%—
truncated claims lower bound” versus “securement”, “order preservation under endowment

variation” versus “super-modularity”, “homogeneity” versus “scale invariance”, “minimal
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rights first” versus “composition from minimal rights”, “composition down” versus “path
independence”, and “composition up” versus “composition”.



be assigned equal awards. It follows directly from their definition that all
rules in SV satisfy the property.

e Anonymity says that an exchange of the names of two agents in a problem
should be accompanied by an exchange of their awards. Let N € N? and
MY e AN, Obviously, S* is anonymous if and only if AV itself is invariant
under exchanges of the names of the members of V.

For rules in 8%, anonymity also means invariance with respect to the
replacement of agents by others. A rule in S?—let (A)yen2 be the list of
functions with which it is associated—is anonymous if this list satisfies the
following requirement. Let N, N’ € N? and r: N — N’ be a bijection. Let
c € RY and ¢ € RY be such that, abusing notation slightly, 7(c) = ¢’. Then,
it should be the case that AV’ (¢/) = r(AN(c)).

e Order preservation (Aumann and Maschler, 1985) says that awards
should be ordered as claims are (order preservation in awards), and that
so should losses (order preservation in losses). We return to N = {1,2}, and
do so until Section 4. For simplicity, let ¢ € Rﬁ be such that ¢; < ¢o. A rule
preserves order if its path of awards for ¢ lies on or above the 45° line and on
or below the line of slope 1 passing through c. It follows directly from their
definition that all rules in SV preserve order.

e The ﬁ-truncated claims lower bound (Moreno-Ternero and Villar,
2004) says that each claimant should be assigned at least the fraction ‘—]{”
of his claim truncated at the endowment. The property implies that for
each c € ]Rf , the path of awards for ¢ should include a segment of slope 1
emanating from the origin. The constrained equal awards rule is the only

rule in SV to have that feature, and it passes this test.

e Conditional full compensation (Herrero and Villar, 2002) says that if
an agent’s claim is such that by substituting it for the claim of each agent
whose claim is greater, there is now enough to compensate everyone, the
claimant should be fully compensated. Let ¢ € Rﬂf . The property implies
that the path of awards for ¢ should contain the segment from the greatest
point of equal coordinates that is dominated by ¢ to ¢. The constrained equal
awards rule is the only rule in SV to pass this test.

e Endowment monotonicity says that if the endowment increases, each
claimant’s award should be at least as large as it was initially: paths of
awards should be monotone curves. It follows directly from their definition
that all rules in 8% are endowment monotone.



e Endowment continuity, claims continuity, and full continuity say
that (a) for each claims vector, small changes in the endowment should not
lead to large changes in the chosen awards vector; (b) for each endowment,
small changes in the claims vector should not lead to large changes in the
chosen awards vector; and (c) small changes in the data of a problem should
not lead to large changes in the chosen awards vector.

It follows directly from their definition that all rules in S are endowment
continuous.

Let AN € AN. Then, S* is claims continuous, or fully continuous, if and
only if AV is continuous.

e Order preservation under endowment variation (Dagan, Serrano,
and Volij, 1997) says that as the endowment increases, changes in awards
should be ordered as claims are. Let ¢ € Rf be such that ¢; < ¢yo. This
means that the slope of the path of awards for ¢ (when defined) should be at
least 1. All rules in SV trivially satisfy the property.

e Claims monotonicity says that if an agent’s claim increases, his award
should be at least as large as it was initially. Let ¢,¢’ € RY be such that
co = ¢y and ¢ < ). Then, the path of awards for ¢’ should lie to the southeast
of the path for ¢, a parallel statement holding when agent 1’s claim is held
fixed and agent 2’s claim increases.

The following example shows that a rule in SV is not necessarily claims
monotonic:

Example 1 Letc = (1,4) andc = (2,4). Let \N € AN be such that \N (c) =
0 (thus, the path of awards of GAY for c is that of the constrained equal awards
rule), and \N(¢) = 1 (thus, its path of awards for ¢ is that of the proportional
rule). Let E = 2. Then, S* (¢, E) = (1,1) and S*" (¢, E) = (3,3): as
agent 1’s claim increases from 1 to 2, his award decreases from 1 to % (The

definition of S*" can easily be completed so that S is continuous. )

Let us see what it takes for a rule in SV to be claims monotonic. Let
co € Ry, Let C(cy) denote the locus of the point of intersection of the line of
slope —1 passing through (cy, ¢;) with seg[(0,0), (c1, c2)], as ¢; varies in [0, 3]
(Figure 2a). Let C'(c1) be defined in a parallel way.

Theorem 1 Let N = {1,2}. (a) A rule S in SV is claims monotonic if
(i) there is a function f: RY — Ry such that for each ¢y € Ry, the locus
K(cy) of the point k(cy,ca) = (c1,¢1) + f(c1,c2)(—1,1) as ¢ varies in [0, ca]

9



lies on or below C(cy) and on or above the 45° line, and is such that for each
pair c1, ¢ with ¢; < ¢, the slope of seg[(0,0), k(c1,c2)] is at least as large as
the slope of seg[(0,0), k(c|, c2)] (Figure 2b), and

(ii) for each pair co,cy € Ry with 0 < ¢y < ¢, and for each ¢; < co,
flei,dy) > f(er, o) (Figure 3a).

Now, given ¢ € RY with ¢; < ¢y, the path of S for ¢ is bro.seg[(0,0), k(c1, ¢2), c].

(i’) and (ii’) are two statements parallel to (i) and (i), obtained by ex-
changing the roles of the two coordinates.

Given ¢ € RY with ¢ > ¢o, the path of S for ¢ is defined in a symmetric
way.

(b) If the rule is claims continuous, for each co € Ry, the function f(.,cs)
1S continuous.

For an intuitive description of the result, it will help to introduce one
more concept. We say that a curve is visible from below from the origin
if for an observer standing at the origin, and thinking of the curve as opaque,
no part of it would hide any other part of it; also, the segment from the
origin to each point in the curve lies on or below the curve. The limit case,
when the curve contains non-degenerate segments lined up with the origin, is
allowed. For a curve that is strictly visible from below from the origin,
there is no such segment. The slope requirement on k simply means that for
each co € Ry, the locus K (cz) is visible from below from the origin.

Proof: (a) Statement (i) is necessary and sufficient for the path for (¢}, ¢2)
to indeed lie to the southeast of the path for (¢, ¢p) if ¢f > ¢;. Statement (ii)
guarantees that for each ¢; € R and each pair ¢, ¢, € Ry with ¢; < ¢y < d,
agent 2’s award when his claim is ¢, is at least as large as his award when
his claim is e¢.

(b) We omit the straightforward proof. O

For the proportional rule, for each co > 0, K(c2) = C(cg) (visibility is
strict) and for the constrained equal awards rule, K (c2) = seg|(0,0), (¢a, ¢2)]
(visibility is nowhere strict). In Figure 2b, seg[p, q| illustrates the fact that
K (c9) need not be strictly visible with a second example. For an example
violating claims continuity, consider the function f such that the graph of the
resulting locus K (¢y) consists of the subset of C'(c2) that has as endpoints the

origin and some arbitrary point a, excluding a, and seg[(9592, 4192) (¢, ¢,)].

e Homogeneity says that for each problem and each o > 0, multiplying
the data defining the problem by « results in a new problem whose chosen

10
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Figure 2: Identifying the two-claimant rules that are claims monotonic.
Here, N = {1,2}. Fix ¢ > 0. (a) The curve C(c2) is an upper boundary for
the locus K(c2), a set that contains all the kinks of the paths of awards of S for
(c1,c2) as ¢; varies in [0,c2]. A lower boundary is seg[(0,0), (c2,c2)]. The locus
K (c2) should be visible from below from the origin. (b) This panel shows a typical
locus K(c2). It has three parts, a strictly concave part, from the origin to p, a
segment lined up with the origin, seg[p, q], and a slightly convex section, from ¢
to (c2,c2). It also shows the paths of awards for three claims vectors, (ci,c2),
(c},c2), and (¢, ca).

11
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Figure 3: Identifying the two-claimant rules that are claims monotonic
(Part 2). Here, N = {1,2}. (a) Given cg, ¢ with co < ¢}, this panel shows possible
shapes for K (c2) and K (c}). For claims monotonicity to hold when agent 2’s claim
increases from ¢y to ¢, K(c4) should lie to the northwest of K (ca), as it does here.
(b) This panel shows the paths of awards for (¢}, c2) and (¢}, c}).

awards vector should be obtained by multiplying the chosen awards vector
of the initial problem by a.

Let AN € AN. For $* to be homogeneous, it is necessary and sufficient
that for each a > 0, its path for ac be obtained by subjecting its path for ¢
to a scale expansion of factor a. This holds if and only if AV (ac) = AV (c).

e Claims truncation invariance (Dagan and Volij, 1993) says that for
each problem, replacing each claim that is greater than the endowment by
the endowment should not affect the chosen awards vector.

Equal treatment of equals, which each rule S € SV satisfies (see above),
and claims truncation invariance together imply that for each ¢ € Rﬂ\: ,

(1) the path of awards of S for ¢ contains seg[0, (22ic mitici)] 4

Indeed, for an endowment that is no greater than the smaller claim, both
truncated claims are equal, and by equal treatment of equals, awards are
equal then. When c¢q,cy > 0 and ¢; # ¢, the constrained equal awards rule
is the only rule in SV satisfying (). Moreover, this rule is claims truncation

invariant. Thus, it is the only rule in SV that is claims truncation invariant.

4This is only a necessary condition. For necessary and sufficient conditions, see Thom-
son (2006).
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e Minimal rights first (Curiel, Maschler, and Tijs, 1987) says that we
should be able to solve each problem in either one of the following two ways:
(a) directly; (b) in two steps, by first assigning to each claimant his “minimal
right”, namely the difference between the endowment and the sum of the
claims of the other claimants, or 0 if this difference is negative, and then,
after having revised all claims down by the awards of the first step, applying
the rule to divide what remains of the endowment. This property is the dual
of claims truncation invariance, so its analysis can be easily derived from our
previous analysis of that property.

The issue can also be addressed directly. If a rule satisfies equal treatment
of equals and minimal rights first, then for each ¢ € Rf , its path of awards
for ¢ contains the segment [seg[(c; — 28k ¢, — M) o] When 0 < ¢y, ¢y
and ¢; # ¢y, this segment is non-degenerate and this inclusion never holds
for a rule in SV.

e Composition down (Moulin, 2000) says that if the endowment decreases,
we should be able to obtain the new awards vector in either one of the
following two ways: (a) directly, that is, ignoring the initial awards vector;
or (b) using the initial awards vector as claims vector.

An ingredient in the characterization of the subfamily of SV of rules
satisfying composition down is the following characterization of the entire
family of rules satisfying composition down (Lemma 1).

Consider a network of

(a) continuous and weakly monotone curves in RY emanating from the
origin and such that,

(b) given any point in RY, there is a curve in the family passing through
it;

(c) following any one of these curves up from the origin, if we encounter
a point at which the curve splits into branches, these branches never meet
again.

A family of curves satisfying these three conditions constitute a weakly
monotone (from (a)), space-filling (from (b)) tree (from c).

We state the following lemma for an arbitrary population N € A but we
will need it only in the two-claimant case.

Lemma 1 (Thomson, 2006) Let N € N.
(a) A rule on CV satisfies composition down if and only if there is a

weakly monotone space-filling tree in RY such that, for each ¢ € RY, the
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path of awards of the rule for c is obtained by identifying a branch emanating
from the origin and passing through c, and taking the part of it that lies in
box|0, c].

(b) If the rule is claims continuous, all branches of the tree with which it
15 associated are unbounded.

We return to N = {1,2}. Figure 4a shows a few branches of such a tree
and a claims vector ¢ € RY that belongs to more than one branch. There
is more than one branch because of a split above ¢ (at ¢’), but all branches
passing through ¢ coincide in box]0, ¢|]. Given any such branch, the path for ¢
is the part of it that lies in the box.

Figures 4b illustrates what is required for a rule in SV to satisfy compo-
sition down.

Consider a continuous, weakly monotone, and unbounded curve C! below
the 45° line that is visible from below from the origin and let C! be the class
of all such curves. Let C? be the class of curves defined in a parallel manner to
the way we defined C!, by exchanging the roles played by the two coordinates.

Our next result is that a rule satisfying composition down is entirely
specified once a pair C* € C!, C? € C? is given, together with, for each
i € N, a partition D' = {DF' DI®FA} of O satisfying certain properties.
The statement of the theorem includes instructions on how to derive from
these objects the tree with which the rule is associated. Informally, each curve
(' serves as a boundary between a region of awards space in which branches of
the tree are those of the proportional rule and a region in which branches are
those of the constrained equal awards rule. Thus, for each given claims vector,
there is actually no compromising between the recommendations made by
the proportional and constrained equal awards rules. It is only across claims
vectors that compromising occurs. The partition { D’ DI°FA} gpecifies, for
each point of C?, whether it should be considered as a point of the first region
or as a point of the second region. For a curve C? that is strictly visible from
the origin, there are no restrictions on its partition; it can be chosen in some
arbitrary manner.

Theorem 2 Let N = {1,2}. (a) A rule in SV satisfies composition down
if and only if there are C* € C! and C* € C? and for each i € N, a partition
D = { D' DICEAY of C* satisfying the following requirements:

Let x € C. If x does not belong to a non-degenerate segment in C* lined
up with the origin or parallel to the first axis, x can be assigned to either D'*’
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or DYCFA_If x belongs to a non-degenerate segment in C that is lined up
with the origin, and it is assigned to D', then so should all other points of
the segment that are closer to the origin. If x belongs to a non-degenerate
segment contained in C* that is parallel to the first axis, and it is assigned to
DCFA then so should all other points of the segment whose first coordinate
1s smaller.

A symmetric statement holds for the curve C?.

Now, the rule is obtained in the manner described in Lemma 1 from the
weakly monotone space-filling tree whose branches are the following:

(i) For each a > 0, (ia) a branch consisting of seg[(0,0), (a,a)] together
with the half-line {x € R : for some t > 0,2 = (a,a) +t(1,0)}, if this half-
line does not intersect C'; otherwise, when the intersection is non-empty—it
is a (perhaps degenerate) segment s—and in s, there is either a point a of
mazimal first coordinate that belongs to D'CF4 or a point B of minimal first
coordinate that belongs to DT; then (ib) in the first case, a branch consist-
ing of seg[(0,0), (a,a)] and seg[(a,a),a] and in the second case, a branch
consisting of seg|(0,0), (a,a)] and seg[(a,a), B].

(ii) For each r € AN such that the ray in direction r is on or below C*,
(iia) this ray is a branch if it only intersects C' at the origin; otherwise,
the ray intersects C* at more than one point—the intersection is a (perhaps
degenerate) segment s—and in s, there is either a point o of maximal first
coordinate that belongs to D' or a point B of minimal first coordinate that
belongs to DYCFA: then (iib) in the first case, seg[(0,0),a] is a branch, and
in the second case, seg[(0,0), 5[ is a branch.

(iii) All branches obtained from C? by exchanging the roles played by the
two coordinates should be included.

(b) If in addition, the rule is claims continuous, then in each of the regions
into which the non-negative quadrant is partitioned by the 45° line, it coin-
cides with either the proportional rule or with the constrained equal awards
rule.

Without the visibility properties (i) and (ii) imposed on C* and C?, the
“treeness” of the family of curves generated by following the instructions of
Theorem 2 would be violated, which in turn would lead to a violation of com-
position down. It is easy to see that in the two-claimant case, composition
down implies claims monotonicity (Thomson, 2006). Example 1 illustrates
a violation of the latter property and because of this logical relation, it illus-
trates a violation of the former as well. To see this, note that the paths of
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Figure 4: Composition down. (a) Illustrating Lemma 1: this panel shows a
typical tree from which the paths of awards of a rule satisfying claims continuity
and composition down are generated. (b) Illustrating Theorem 2. For a rule in SV
satisfying composition down, there are two curves C' € C! and C? € C? from which
a tree is constructed with which the rule is associated. Here, C! is only weakly
visible from the origin because it contains a non-degenerate segment, seg[p, q|, that
is lined up with the origin; on the other hand, C? is strictly visible.

awards for ¢ and ¢ defined there cross at ¢ = (1,2): S(¢,2) = S(¢,2) = ¢.
Thus, if S satisfied composition down, we would have that for each £ < 2,
S(c, E) = S(S(c,2),E) = S(¢, E) = S(S(¢,2),FE) = S(¢,E): for endow-
ments no greater than 2, the paths of S for ¢ and ¢ should coincide, but they
do not.

Again, because for two claimants a rule satisfying composition down also
satisfies claims monotonicity, from the curves C! and C? and their partitions
D' and D? associated with the rule as explained in Theorem 2, one should be
able to recover the loci K (¢p) for ¢; > 0 and K (cq) for co > 0 associated with
it as explained in Theorem 1. It is easy to see that for each c; > 0, K(c2)
is just like the example described at the end of the paragraph following the
proof of Theorem 1. It consists of a subset of the locus K(c2) = C(cq) of the
proportional rule, from the origin to some point a, together with a subset
of the locus K(c2) = segl(0,0), (¢2, c2)] of the constrained equal awards rule,
from a point b whose coordinates add up to those of a, to (cg,¢2) itself, a
being included in the first component of this union if and only if b is not
included in the second component of the union. For ¢, > ¢y, two points a’
and b’ can be identified that play a role analogous to that played by the
points a and b, but the coordinates of @’ add up to at least the coordinates
of a, as they should for claims monotonicity with respect to agent 2’s claim
to hold. The loci K(c1) for ¢; > 0 are determined in a symmetric way.
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For a rule in SV to be anonymous in addition to satisfying composition
down, C' and C? should be symmetric of each other with respect to the 45°
line and so should their partitions D and D?. For a rule in S? to satisfy these
two properties, the same pair of symmetric curves and symmetric partitions
of these curves should be used in RY for each N € N2

The statement of Theorem 2 is tedious, but the example of Figure 4b
should convey the intuition. The curve C? is strictly visible from the origin,
and no vertical line intersects it at more than one point, so there are no
restrictions on how it is partitioned. On the other hand, the curve C! contains
a non-degenerate segment lined up with the origin, seg[p, ¢|, and a half-line
parallel to the first axis, L = {x € R%: for some t € Ry, z = ¢+1t(1,0)}. As
a result, if the path for some y € seg[p, ¢| is chosen to be the path of P, that
is, if y € D', so should the path for each claims vector between p and y.
Similarly, if the path for some m € L is chosen to be the path of CEA, that
is, if m € D'YF4, 50 should the path for each claims vector between ¢ and m.

Proof: (of Theorem 2) Let S be a rule satisfying composition down.

Step 1: There is no ¢ € ]Rf such that the path of S for ¢ has a kink
unless it is the path of CEA.

Suppose otherwise: there is ¢ € RY such that the path of S for ¢ has
a kink—Ilet us call it a. Since S satisfies equal treatment of equals, ¢ #
c2. Without loss of generality, suppose 0 < ¢; < ¢o. Then segla, ¢] is non
degenerate. Let z be a point of its relative interior. Note that x < ¢. By
composition down, the path for x is bro.seg[(0,0),a,x]. This path has a
kink, namely a, whose coordinates add to twice the smallest coordinate of c,
namely c;. By the definition of the family SV, if the path for x has a kink, the
sum of its coordinates is twice the smallest coordinate of x, namely x; < ay.
This contradiction concludes the proof of Step 1.

Step 2: Below the 45° line, award space is partitioned into two regions
bounded by a curve C! € C!. For each ¢ above C!, the path of awards of S
is that of the constrained equal awards rule. For each ¢ below C*, the path
is that of the proportional rule.

To see this, let ¢ below the 45° line be such that the path for c is that
of CEA. Then, for each ¢’ in the cone spanned by the path for ¢ such that
¢y > co, the path for ¢’ is that of CE'A. Indeed, if it were that of P, the paths
for ¢ and ¢ would have a non-trivial intersection (a cycle would be created).
Now, for each cs > 0, consider the set V(cy) of values of ¢; for which the
path for (¢, cq) is that of CEA and for each ¢y, let v(c2) be the supremum
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of V(cy). Tt is easy to check that the graph of v is a curve in C.

A curve C? can be constructed in the same manner above the 45° line,
with symmetric properties.

(b) If for some co > 0, 0 < v(cy) < o0, the tree associated with S has
a finite branch, and therefore, by Lemma 1, S is not claims continuous.
This implies that to obtain this property, the rule should coincide above
the 45° line with either the proportional rule, or with the constrained equal
awards rule. The same statement holds below the 45° line. These choices
can be made independently above and below the 45° line, but if anonymity is
imposed as well, they have to match; we end up with either the proportional
rule or the constrained equal awards rule. U

e Composition up (Young, 1988) says that if the endowment increases,
we should be able to obtain the new awards vector in either one of the
following two ways: (a) directly, that is, ignoring the initial awards vector;
(b) first assigning the initial awards, revising claims down by these awards,
then adding to them the awards vector that results by applying the rule to the
problem in which claims are these revised amounts, and the amount to divide
is the increment in the endowment. The conclusions concerning this property
are obtained by duality from the ones we just reached for composition down.
(Composition up is the dual of composition down.)

The only rules in SY for N € N? to satisfy the property are obtained by
duality from the ones identified for composition down.

e Lorenz comparisons (Hougaard and Thorlund-Peterson, 2001; Moreno-
Ternero and Villar, 2006b; Bosmans and Lauwers, 2011; Thomson, 2012a)
Next, we ask when rules in SV can be Lorenz ranked. Informally speaking,
rule S Lorenz dominates rule S’ if for each problem, its distribution of awards
is more in favor of agents who receive the least (under order preservation of
awards, these are the agents with the smallest claims). Formally, S Lorenz
dominates S’ if for each problem (c, E) € CV and, letting z = S(c, E) and
¥ = 5'(c,F) and calling £ and &’ the vectors obtained from x and z’ by
rewriting their coordinates in increasing order, we have Z; > 7/, Z; + T >
T + 74, and so on.

Let N € N?2. Given two rules S and S’ defined on C", S Lorenz domi-
nates S’ simply if for each ¢ € Rﬂ\rf , the path of awards of S for ¢ is everywhere
at least as close to the 45° line as the path of awards of S’ for c¢. Let AV and
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Zo A

Figure 5: Lorenz domination between members of SV and 7. Here,
N = {1,2}. (a) If AN(c) < A'M(c), the rule S Lorenz dominates the rule §*
for all problems with claims vector c. (b) If AN (¢) < AN(c), the rule 7" Lorenz

dominates the rule T* " for all problems with claims vector c. (c) Each rule in SV
Lorenz dominates each rule in 7%. This is true no matter what c is.

AN e AN In Figure ba, z = S’\N(c, E) is closer to the point of equal coordi-
nates on the line of equation t; + t; = E (the point e) than 2’ = S’\/N(c, E).

1. For each AV and A"V € A", it is always true that for each particular ¢ €
RY, either for each E € [0, ¢;], S" (¢, E) Lorenz dominates S’\/N(c, E), or
for each E € [0, ¢, S’\/N(c, E) Lorenz dominates S*" (¢, E). As ¢ varies,
the domination could be reversed. However, given ANV, AN € AN, $*" Lorenz
dominates S if and only if AV < \'N (Figure 5a).

2. By a similar argument, T Lorenz dominates 7% if and only if
AN > X'V (Figure 5b).

3. It is also easily seen by inspection that each rule in S» Lorenz domi-
nates each rule in 7V (Figure 5c).

4 Extending the definition from two claimants
to arbitrarily many claimants

The rules defined in the previous section are two-claimant rules and the ques-
tion arises as to how to extend them to more claimants. Thus, we are now
looking for rules defined on C = [y CY. We proceed axiomatically and
invoke a principle that has played a fundamental role in addressing this type
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of issues in a great variety of literatures. Starting from our two-claimant def-
inition, we require its extension to general populations to pass the following
test: for each problem and each subpopulation of the claimants it involves,
consider the problem faced by this subpopulation in which the endowment is
the sum of the amounts that have been awarded to them (equivalently, the
difference between the endowment in the initial problem and the sum of the
awards to the members of the complementary subpopulation). We refer to it
as the “reduced problem relative to the subpopulation and the awards vector
chosen for the initial problem”. We require that in this reduced problem, the
rule assign to each claimant the same amount as it did in the initial problem:®

Consistency: For each N € N, each (¢, F) € CV, and each N’ C N, if
Tr = S(C, E), then TN = S(CN/,ZN, ZL’Z)

Our next theorem says that the only rules in &% that have consistent
extensions to C are the proportional and constrained equal awards rules.
These extensions are the variable-population versions of these rules.

Theorem 3 The only rules on C that coincide, for each two-claimant popu-
lation N € N, with a member of SV, and are consistent, are the proportional
rule and the constrained equal awards rule.

The proof exploits the fact that consistency of a rule implies that for
each population of claimants N € A and each claims vector ¢ € RY for that
population, the projection Iy of its path of awards II onto the subspace RY’
pertaining to a subpopulation N C N is a subset of its path of awards IT" for
the projection cys of ¢ onto RN, Moreover, if the rule is endowment contin-
uous, Il and II" actually coincide. The question that has to be addressed
is the converse. Suppose that the choice has been made of how to solve two-
claimant problems, so that paths of awards are known in the two-claimant
case. Now, given a population N of size greater than 2, and a claims vector
c € RJI , is there a path for ¢ with the property that for each two-claimant
subpopulation N’ of N, its projection onto the two-dimensional coordinate
subspace RN coincides with the path chosen for the projection cy: of ¢ onto
that subspace?

A rule is conversely consistent if for each claimant set, each problem
that these claimants may face, and each awards vector for this problem, if this

5The central result on consistency for claims problems is due to Young (1987).
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vector is such that for each two-claimant subpopulation, its restriction to the
subpopulation is the choice the rule would make for the associated reduced
problem, then the rule chooses it for the initial problem: For each N € N,
each (¢, F) € CV, and each award vector x of (¢, F), if for each N C N
with |[N| = 2, xnv = S(enr, Dy @i), then z = S(¢, E). The Elevator
Lemma (Thomson, 2007, 2012c) asserts that for each pair of rules on C, if
one is consistent, the other conversely consistent, and they coincide in the
two-claimant case, then in fact they coincide in general.

Proof: We already know that the proportional and constrained equal awards
rules satisfy the requirements of the theorem. Conversely, let S be a rule on C
satisfying these requirements. We show that either S = P or S = CEA.

Step 1: S is anonymous. This is because (i) on C?, S satisfies equal
treatment of equals, and (ii) equal treatment of equals in the two-claimant
case and consistency imply anonymity (Chambers and Thomson, 2002).

Thus, there is a single function A: RZ — [0,1] such that for each N €
N? and each ¢ € RY—to fix notation, let N = {i,j} and suppose that
0 < ¢; < ¢;—the path of S for ¢ is bro.seg[0, A(c)P(c,2¢;) + (1 — Xe))(1 —
CEA(c,2¢)), c].

If a rule is endowment monotonic in the two-claimant case and consistent,
then it is endowment monotonic in general (Hokari and Thomson, 2008)¢, and
therefore endowment continuous in general, since endowment monotonicity
implies endowment continuity.

Thus, the projection implication of consistency described earlier can be
invoked. In particular, the projection of the path of the rule for a claims vec-
tor involving three claimants onto the subspace pertaining to a two-claimant
subpopulation coincides with the path for the projection of that claims vector
onto that subspace.

Step 2: For each c € R? of unequal coordinates, A(c) € {0,1}. We
argue by contradiction. Without loss of generality, we can take N = {1,2}
and ¢ € RY such that ¢; < ¢;. Because 0 < A(¢) < 1, the path for ¢ has a
kink—Ilet us call it z—and x; < ¢;. Let us call the path II3. We introduce
a third claimant, claimant 3, set c3 = %, and consider the claims vector
(c1,09,c3) € R:{:’z’?’}. Let II; be the path of S for (¢;,c3). We show next that

the path of S for (c1, ¢s, c3), II, can be recovered from I3 and Ily, which have

6Using these authors’ terminology, endowment monotonicity is “lifted” by consistency.

21



2 2

co . co |

S3 Sz

I I

A 15° w1 e CNAe s T e

452 VR
s \ , S :
s /A, e g o
/ "
3

/& o7
T3

(a) (b)

Figure 6: Illustrating Cases 1 and 2 of the proof of Theorem 3.

to be its projections unto R¥2} and R}, We then deduce the path for
(ca,c3), 111, by projecting II onto R1?3} and we show that II; violates what
we know the paths of a rule in 82 look like. We distinguish three cases.

Case 1: A(c1,c3) = 1 (Figure 6a). This means that Il is the path
of P for (c1,c3), namely seg[(0,0), (¢1,c3)]. Let 5 the point of Iy of first
coordinate z;.

The path II consists of two segments, (i) a segment whose projection
onto RIL2 s seg[(0,0), 2] and whose projection onto R} is seg[(0,0), 4],
and (ii) a segment whose projection onto Rt} is seg[z, (c1,¢)] and whose
projection onto R{%3} is seg[B, (c1, ¢3)],

The path II; is the projection of II onto R¥?3}. Tt too consists of two
segments. Since xy + x9 = 2¢q, then x9 = 2¢; — x1. Also, (3 = iilxl = 2c3.
The coordinates of the kink in II; are x5 and (85. By definition of the rules
in 8%, they should add up to twice the smallest coordinate of (cy,c3) which,
since c3 < ¢ < ¢o, is ¢3. However 2¢; — x1 4+ 2¢3 = 2c¢3 implies 1 = 2¢q,
which contradicts the fact that z; < ¢;.

Case 2: A(c1,c3) = 0 (Figure 6b). This means that Il is the path
of CEA for (cq,c3), namely, since c¢3 < ¢;, bro.seg[(0,0), 3, (¢1, c3)], where
B = (c3,c3). Let a be the point of II3 of first coordinate c¢3 and « the point
of seg|p, (c1, ¢3)] of first coordinate x;.
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Thus, using the fact that c; < x;, we deduce that II consists of two
segments, (i) a segment whose projection onto R{%? is seg[(0,0),a], and
whose projection onto R{'} is seg[(0,0), 8], (ii) a segment whose projection
onto R{V2} is seg[a, 7], and whose projection onto R:3} is seg[3, 7], and (iii) a
segment whose projection onto R{V2} is segz, (c1, ¢2)], and whose projection
onto R13} is segly, (c1, ¢3)].

The path II; is the projection of II onto R¥?3}. Tt too consists of two
segments. They are seg[(0,0), (a2, c3)], a segment whose slope is not equal
to 1, since ay # c3, and the segment seg|(az, ¢3), (2, ¢3)], which is parallel to
the second axis. This second segment is the union of the projections of the
two segments described in (ii) and (iii) above. Given the definition of the
rules in S?, the inclusion of a segment parallel to the second axis in the path
for (cq,c3) is possible only for CE A, but then the path should begin with a
segment of slope 1, which we have just shown in not the case, a contradiction.

Case 3: 0 < A(c1,c3) < 1 (Figure 7). Then, II, still has a kink—let
us call it y. By the choice of ¢3, y; < x1. Let a be the point of II3 of first
coordinate y; and [ the point of Il of first coordinate x;.

The path II consists of three segments, (i) a segment whose projection
onto R{L2 s seg[(0,0), a] and whose projection onto R{1?} is seg[(0,0), y],
(ii) a segment whose projection onto Rt} is segla, 2] and whose projection
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onto R{M3} is segfy, 4], and (iii) a segment whose projection onto R{b? is
seg[z, (c1, ¢2)] and whose projection onto R{M3} is seg[f, (1, ¢3)].

The path II; is the projection of IT onto R{%3}. It too consists of three
segments. This contradicts the fact that the paths of rules in S? never have
more than two segments.

Step 3: For each ¢ € ]Ri of unequal coordinates, A(¢c) = 1 or
for each ¢ € R?, A(c) = 0. Suppose by contradiction that there are
Co, Chs Coy ey € Ry with ¢y # ¢ and ¢ # ¢ such that A(co,¢)) = 1 and
A(cg, ) = 0. If two of g, ¢, ¢, ¢y are equal, say ¢y = ¢, let ¢ = (cy, ¢, ) €
R123} Here, we deduce, as in the analysis of Case 2 so we omit the details,
that the path for (c1,c3) consists of a segment whose slope is not equal to 1
and a segment parallel to one of the axes. This is incompatible with the
way the paths of rules in §? are defined. If ¢y, cf, ¢y, ¢y are all distinct, let
¢ = (co, ) € Rf’z} and ¢ = (cp,¢)) € ]Rf”ﬁ‘}. Let (co, ¢, ) € Ril’z’g}.
Because A(c) = 1, then (i) A(¢),cy) = 1 as well. Let (¢, ci, ) € Rf’?’A}.
Because A(cjg,cy) = 0, then (ii) A(c), ) = 0 as well. (i) and (ii) are in
contradiction.

Step 4: Concluding. For each N € N? and each claims vector ¢ € Rf
of equal coordinates, the paths of awards of P and C'EA coincide with
seg[(0,0), c], which is also the path of S for ¢. Then, using Step 3, we
conclude that on 8%, either S = P or S = CEA. Since S is consistent and
both P and CE A are conversely consistent, if follows by the Elevator Lemma
that for any number of claimants either S = P or § = CFEA. OJ

By duality, we also obtain a characterization of the family of rules that
coincide for each N € N2, with a member of TV, and are consistent.

Theorem 4 The only rules on C that coincide, for each two-claimant popu-
lation N € N, with a member of T, and are consistent, are the proportional
rule and the constrained equal losses rule.

5 Concluding comments

We have proposed a simple way of compromising between two principles that
are focal in the theory and practice of resource allocation, when fairness is
a concern, the principle of proportionality and the principle of equality. As
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we documented in the introduction, in the context of the adjudication of
conflicting claims, notions of proportionality and of equality, of awards or of
losses, can be expressed in multiple ways. Additional families of rules that
can be thought of as further generalizing the proportional, constrained equal
awards, and constrained equal losses rules have come out of recent axiomatic
work (Ju, Miyagawa, and Sakai, 2007; Harless, 2015; Stovall, 2014; Flores-
Szwagrzak, 2015; Chambers and Moreno-Ternero, 2015). Consistency has
played an important role in most of these developments. The present study
should contribute to a further understanding of this property in the context
of this model, and in particular the extent to which it allows departing from
either the proportional or constrained equal awards, or constrained equal
losses rules. We have seen that here, the answer is essentially negative, even
if the averaging is allowed to depend on the claims vector.

We simply advocated the rules studied here on the basis of the intuitive
appeal of their definition. An open question is whether they can be given
interesting axiomatic justifications.
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