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After more than a decade of quiescence, growth theory may once again be
entering a period of ferment. By the end of the 1960's, there was a general consensus about
how growth should be modeled, and this formed the basis for a great deal of empirical work
in growth accounting. This agreeable state of affairs was achieved by significantly -
narrowing the range of the questions that growth theory was expected to address. From
the point of view of early theorists, the two most interesting questions about growth were
dropped from consideration. How can one reconcile extraordinary, continuing, increases in
average per capita income with the notion of diminishing returns? What determines the
rate of growth of the population? Attention is once again turning to these issues.

During the 1960's the consensus view on these bothersome questions came to be
~ that each should be assigned an exogenous, exponential trend term. Then the economic ‘
analysis of the other features of an economy could proceed. From a practical point of view,
this finesse of the problems of endogenous per capita income growth and endogenous
population growth was probably useful. Important theoretical progress in the
understanding of dynamic models was made precisely because the most difficult questions
about growth were set aside. But because it ignored the fundamental questions and
concentrated on abstraction and formalism, growth theory came increasingly to be viewed
as a sterile exercise. From the point of view of policy advice, growth theory had little td
offer. In models with exogenous technological change and exogenous population growth, it
never really mattered what the government did. Partly in reaction, development branched
off as a separate endeavor, designed to offer the direct policy advice that growth theory
could not.

The irony underlying the disrepute that growth theory fell into is that economists
seemn to have missed the self—referential nature of the theory. Economics, like any science,
has a two sector technology. The final output good of economics, produced in one sector, is
correct answers to questions that non-economists care about. A separate investment sector

produces the intellectual capital that is the key input into the final output sector.



" Development for the most part took 1960's vintagé intellectual capital and has been
producing policy advice with it ever since. In contrast, growth theory gave up any pretense
of having anything to say about questions that a non-economist might care about and
concentrated on intellectual capital accumulation.

This capital accumulation now shows signs of a significant payoff. O'ne of the
major themes of this essay is that the substantive contribution of growth theory has so far
been quite small but the methodological impact has been far reaching and fundamental.
The methodological advances have had their greatest impact in macroeconomics, where
they can truly be said to have revolutionized accepted practice. To cite just one example
from the other chapters in this volume, in the years between 1970 and 1980, the discussion
of the theory of aggregate consumption moved from a point where it would have been
impolite tb mention Euler equations, to a point where it was impossible to carry on &
discussion Without them. By itself, this methodological impact has long justified attention
to developments in this area, but now may be an especially good time to tune into growth
theory. The second theme developed here is that the tools have developed to the point
wllére growth theory is on the verge of having something interesting to say about growth.

To develop these themes, much of this chapter is devoted to a self—contained
description of the methods used to study dynamic models. This description is a synthesis,
not a survey.! It takes advantage of hindsight, and interprets all of these methods in the
context of a unifying result from the mathematical theory of convex analysis. This result,
the abstract Kuhn-Tucker theorem, lies at the very heart of all equilibrium models of
growth, and for that matter of all of general equilibrium theory.

The plan of this chapter is as follows. Section II sets the stage with a description

of some basic facts about growth that a complete theory should be able to address. Section

1Anyone interested in a more detailed overview of the literature on growth up through the
1078's can consult Hahn and Matthews (1964), Stiglitz and Uzawa (1969), Burmeister and
Dobell (1970), Solow (1970), Hahn (1972), or Jones (1975).



II1, the bulk of the chapter, lays out the tools that an economist needs to appreciate
modern theories of economic dynamics, using illustrations along the way from models of
growth. Section IV gives a description of the theories developed over the last three or four
years that are the basis for the claim that we are now past a turning point and that

theories of growth are returning to the fundamental questions in the field.
Section II: Data

In an influential article on growth written in 1961, Nicholas Kaldor stated his
view that a theorist ought to start with a.summary of the facts that are relevant for the
problem of interest. This summary should be "stylized", he claimed, concentrating on
broad tendencies. One could then construct hypotheses to explain'these stylized facts. In
the formative stages of a body of theory, this kind of informal treatment of the data can be
quite useful, for without stylized facts to aim for, theorists would be shooting in the dark.
When Kaldor wrote, the basic elements of a theory of growth seemed to be up for grabs in
a developing debate between Cambridge, England and Cambridge, Massachusetts, and the
facts he set out bééame the target for economists of on both sides.

If, as is claimed in the introduction, growth is entering a similar phase where the
basic quesfions about growth are being re-examined, it may be useful to review and update
Kaldor's list of facts. To do this in a way that does not bias the outcome, it is important
not only to make sure that the facts have some connection with measured data, but also
that the list be as inclusive as possible. Different theories can often explain different
subsets of the facts. For example, depending on the set of countries one looks at, one can
conclude either that per capita income across countries is converging rapidly or that no
tendency towards convergence is present. (This point is discussed in greater detail below.)
As another example, Solow (1970) observes that his model of growth can explain five of the

six stylized facts described by Kaldor, but acknowledges that the sixth—the wide dispersion



in growth rates across countries—is something of problem for him. Subsequent advocates of
the neoclassical model have sometimes been less forthcoming, listing only five facts that a
model of growth should explain.

These are Kaldor's six stylized facts:

1) Output per worker shows continuing growth "with no tendency for a falling rate of
growth of productivity." (Emphasis in the original.) |

2) Capital per worker shows continuing growth.

3) The rate of return on capital is steady.

4) The capital—output ratio is steady.

5) Labor and capital receive constant shares of total income.

6) There are wide differences in the rate of growth of productivity across countries.

It is readily seen that these statements are not all independent. Let Y, K, and
L represent total output, capital and labor respectively. Let r denote the return on
capital. If Y/L is growing and Y/K is constant, K/L must also be growing. Thus, fact
2) follows from facts 1) and 4). If Y/K is constant and rK/Y is constant, then 1
must also be constant. Thus, 4) and 5) imply 3). With no loss in generality, one can
concentrate on 1), 4),5) and 6). Based on the kind of data exhibited below, 1), 4), and
6) may still be reasonable stylized characterizations of the data. On the other hand, there
is some evidence of a long run trend in factor shares.

In interests of being inclusive, this section adds five other features of the data

that seem to stand out:

7) In cross-section, the mean growth rate shows no variation with the level of per capita
income, while the variance in growth rates declines with the level of income.

8) Growth in the volume of trade is positively correlated with growth in output.



9) Population growth rates are negatively correlated with the level of income.
10) The rate of growth of factor inputs is not large enough to explain the rate of growth of
output; i.e. growth accounting always finds a residual.

11) Both skilled and unskilled labor tends to migrate towards high income countries.

Observation 7) can be discerned from the wider array of data that are now
available. Observation 8) has been noted in discussions of export lead development and
9) has been the focus of considerable study among demographers. However, since formal
theories of growth have until recently been silent on the determinants of population growth
and of international trade, they have not been considered relevant parts of the target that
growth theories should aim at. Given the recent development of theoretical tools and
models that can address these issues, this exclusion seems increasingly unjustified.

Observations 10) and 11) are not facts about growth that a statistician hired
to report on growth would identify. The game here is to set facts that theories can aim for,
but the theories themselves influence what we perceive to be relevant facts. The growth
accounting result, arising ultimately from the work of Robert Solow, indicates how deeply
~ the neoclassical model based on constant returns to scale has inﬂuenéed the way we look at
the world. O’b_servation 11) concerning migration may not éLppear to have any direct
bearing on theories of income growth; however, recent theoretical work by Rdbert Lucas
suggests that this may be a crucial piece of evidence in distinguishing between theories of
growth based on constant returns to scale and those based on increasing returns.

Tables 1 and 2 bear on Kaldor's first observation. Viewed from a long-run
perspective, there is no question that cumulative growth in output per worker has been
truly remarkable, and that the rate of growth increased over a long period of time. Table
1, taken from Maddison (1982) identifies the country with the highest level of output per
hour worked during different historical epochs and estimates the rate of productivity

growth for that country. The trend is clear, but the magnitudes may need some



amplification. Using the fact that the natural logarithm of 2 is0.69, it follows that a
productivity growth rate of 2.3% per year for the United States leads to a doubling of
output per worker every 30 years. Table 2 (using data from the same source), shows that
grdwth rates of this magnitude are not unique to the United States. It lists the factor by
which output per hour worked increased over the period 1870 to 1979 for 16 developed
countries. These magnitudes speak for themselves. Table 2 also introduces symbols used to
identify different countries in subsequent figures.

Figures 1 and 2 show the behavior of labor productivity in the United States in
more detail and addresses the perception that growth rates are falling rather than
increasing. Figure 1 shows the annual rate of change of output per man-hour for the
private busin_éss sector in the post-war era. (Data are from the Bureau of Labor Statistics,
published in the Monthly Labor Review.) Careful examination reveals a lower average rate
of labor productivity growth in the period since 1969. This reduction in the rate of
productivity growth has been the source of much concern and attention, and is indicative of
the kind of evidence that has lead to concern that growth rates are slowing. Because these
~ data are sensitive to business cycle variation that does not seem to impinge uniformly on
the two halves of the sample, it is not clear that one should yet draw strong inferences
~ about secular trends.

The data points in Figure 2 marked with boxes show the long run behavior of

labor productivity.2 For comparison, the figure also plots the growth of output per capita,

2The data for productivity used here attempt to track the private business sector data used
in the post war sample as closely as possible. For the post war period, the source is the
same as for Figure 1. From 1890 to 1950 data for the private business sector are taken
from Kendrick (1961). Prior to 1890, the basic data on output come from the work of
Robert Gallman, but must be retrieved from three different sources: summaries given in
Gallman (1966), augmented with raw data from Gallman's work sheets that is published in
Friedman and Schwartz (1982), and an estimate for growth during the decade of the 1860's
reported in Kuznets (1971). Data on employment are from Lebergott (1966). In this early
period, average hours worked per employee are assumed to have remained constant. To
the extent that average hours in this period fell, as they did in subsequent periods, the
reported rates of productivity growth are too high. Population data for the per capita
series are taken from Maddison (1982).



with point denoted by plus signs. Year to year variation is smoothed by taking 20 year
averages. Productivity alone does not tell the whole story. For example, the period 1919
to 1939 shows relatively strong growth in output per hour worked that masks a fall in
employment and hours worked during the depression. Similarly, the fall in productivity
growth at the end of the sample masks a sizable increase in the fraction of the population
at work. Using either series, the recent decline in productivity must be judged against the
background of a general upward trend. Judging from the variability evident in the data, it
is probably too soon to conclude that this trend has permanently reversed itself.

These impressions are reinforced by an examination of other developed countries.
The outstanding feature in the long run data is the unprecedented surge in growth after the
Second World War. There has been some recent slowing of growth compared to the 1950's
and 1960's, but only to levels that are still high by historical standards. Coﬁsequently, in a
test for trend in per capita income for 11 developed countries described in Romer (1986),
the evidence is in every case supportive of a positive trend; in most cases, the hypothesis of
no trend can be rejected at conventional significance levels.

Overall, the data offer relatively strong support for Kaldor's first fact. Unless.
one is willing to draw very strong inferences from the few most recent observations on a
relatively noisy time series and conclude that they represent a break with historical
patterns, there is no reason for a theory of growth to aim for falling growth rates and
stagnation.

Figure 3 bears on the constancy of the capital output ratio. Using data from
Maddison (1982), it reports the growth rate of capital per hour WOrked and of output per
hour worked for 3 time intervals and 7 countries. Each country is represented by a
letter listed in Table 2. The numbers refer to different periods: 1 is the period 1870 to
1913; 2 is the period 1913 to 1950; 3 refers to the period 1950 to 1979. (Like the other data
reported here, this sample includes all the countries and time periods for which data are

reported in the specified source. Maddison's study covers 16 countries, but these seven, for



the specified intervals, are the only ones for which capital stock data are reported.) For
the capital-output ratio to be constant, capital and output must grow at the same rate, and
a scatter plot of the growth rates should line up on the 45 degree line. Subtracting a
constant from each pair—the growth rate of hours worked—should leave each pair on the 45-
degree line. In the figure, they cluster around this line to a surprising extent. Q

Further evidence on this result can be offered. Let i denote the fraction of total
income devoted to investment and let § denote the depreciation rate on capital. Then the
equation for the evolution of the capital stock is K =iY — éK. Lét g denote the rate of
growth of output, g = Y/Y. If g, i, and § are constant, then the capital-output ratio will

converge to the value

K_ i
Y T &g
with dynamics that behave like e_(g+5)t. Table 3 reports average values for i, and g

from national income accounts data for the seven countries in Figure 3 for the period 1950
to 1981. The data used here are from Summers and Heston (1984) and cover a slightly
longer period than those from Maddison.3 An estimate of the magnitude of ¢ can be
derived as follows. Maddison (1987) reports an average ratio of total depreciation D to

income Y for a similar sample of industrialized countries of between 11% and 12%.

3The basic data are from the published source, but the actual data used here are go beyond
these in two senses. First, the published article gives data only through 1980, whereas the
data used here came from a tape that was updated to include 1981. Second, the estimates
of relative income for the African countries in the article and on the tape were recently
found to have been overstated to a significant extent. Thus, the data used here for African
countries are make use of a rough correction provided by Robert Summers. By the time
this chapter appears in print, a much more comprehensive revision of the basic Summers
and Heston data set will be available in the March 1988 issue of the Review of Income and
Wealth.



Using this value for D/Y, one can solve for ¢ from
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For the values of g and i for the countries reported in Table 3, this implies values of &
on the order of 3% or 4%. Using these two values for 6, the table reports estimates of the .
capital output ratiQ. For these values of & and for a value of g on the order of 3% or
4%, the time for K /Y to converge half-way towards its steady state value is around 10
years; foi' the 31 year interval considered here, this steady state approximation may not
be too misleading.

The interesting feature of the table is that the steady state capital-output ratios
are relatively sinﬁlar. There is a relatively large amount of va,riatibn in the investment
share i and the growth rate g, but thereis no systematic variation in the estimated value
of K/Y across countries. Note that this is result is stronger than the finding from Figure
3that K and Y increase in roughly equal proportions in a given country and time
period. Equiproportionate increases in Y and K could arise in a world where output
varies exogenously .and the investment rate stays constant, but Table 3 shows that the
investment share varies closely with the growth rate. The question suggested by these data
is why the' share of investment and the rate of growth of output move together in such a
way that the implied capital-output ratio shows little systematic variation.

These statements must be qualified to some extent because the findings are
weaker if one significantly increases the sample of countries considered. The conventional
wisdom is that the data for developing countries do not show a strong correlation between
growth and the share of output devoted to investment. Figure 4 shows why. It uses data
from Summers and Heston (1984), plotting the average investment share and the average
rate of growth of output for all 115 of the economies that they label (somewhat loosely) as

market economies. For 50 of these countries—those denoted in the figure with an "x"—data
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are available only for the period 20 year interval 1960 to 1981. For the other 65 countries,
data cover the interval 1950 to 1981. Seven of these countries, the ones from Figure 3 and
Table 3, are denoted with squares and are plotted from right to left in the order in which
they appear in Table 3. For clarity they are connected by a line. The remaining 53
countries with data for the period 1950 to 1981 are denoted with plus signs. The growth
rate is the average annual (continuously compounded) growth rate of gross domestic
product, valued at international prices. The investment measure includes investment by
both the private and government sectors.

Judging solely from the countries denoted with an x, there is no strong evidence
of a positive association between investment and growth. With the addition of the
countries denoted by a plus sign, for which data are available only since 1960, a positix're
association is once again appareﬁt, but it is not as tight as the relation observed among the
seven developed countries connected by the line. Moreover, both the x countries and the
+ countries tend to lie systematically to the right of the locus for the developed countries.
‘This suggests either that the process of growth for the developing countries differs
fundamentally from that for the developed countries, that investment tends to be
systematically underestimated in the less developed countries, or that the steady state
assumption used here is misleading. For example, countries with large recent additions to
their capital stock may have less depreciation than the steady state approximation would
suggest. In this case, gross investment could be smaller, but net investment could be
comparable to that in developed countries with similar growth rates. Overall, Kaldor's -
observation number 4), the constancy of the capital-output ratio, can still be judged to be a
useful target for theories of growth, but so also might the apparent departures from this
tendency for low income countries suggested by Figure 4.

Kaldor's fact number 5), the assertion that the share of capital in total income
has remained constant, has increasingly been disputed. Attempts to measure this share in

5 consistent fashion over time tend to show a fall in capital's share. Table 4 reports
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estimates from different country studies that are collected in Maddison (1987 ). There are a
number of judgmental issues that must be resolved in deciding what constitutes income to
capital, and different authors have taken different positions on how to handle them.
Consequently, the estimates are not comparable across countries and authors. Looking
only within countries, the trend is for the share of capital to decline from around 0.4 to
0.3. Of course, realistic standard errors for these estimates might be on the same order of
magnitude as this decline. The kind of problem that adds to the uncertainty is a
systematic and sizable reduction over time in the fraction of self-employed workers and sole
proprietorships, for whom it is particularly difficult to distinguish returns to capital from
returns to labor. Another source of uncertainty is the somewhat arbitrary methods for
imputing income on capital like housing that is outside of the corporate sector. Given this
uncertainty, Maddison argues that for some purposes it may not be too serious a distortion
of the data to use identical shares for different countries and to assume that the weights are
constaht over time. Nonetheless, after acknowledging the uncertainty involved, one must
give some credence to the assertion that capital's share is falling.

‘ Kaldor's fact 6), that growth rates differ substantially across countries, and the
- added fact 7), that the dispersion in the growth rates varies systemafically with the level of
income, are b‘éth ciearly evident from Figure 5. This figure plots the data for all 115
market economies from Summers and Heston. The horizontal axis measures fhe ratio of
per capita income in a country relative to that in the United States, with income in both
countries measured in 1960. One of the major contributions made by Summers, Heston,
and Kravis was to correct official exchange rates for departures from purchasing power
parity so that this kind of comparison of levels is meaningful. The vertical axis measures
the growth rate per capita income for each country in the subsequent interval 1960 to 1981.

The main result here is that the growth rate shows no systematic variation with

the level of income. For countries with any initial level of income, the average growth rate

is around 3% to 4%. The variance does seem to vary systematically, falling rapidly with
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per capita income, but this may at least partially refect the fact that the low income
countries are much more heavily sampled than the high income countries. In a sample
drawn from any distribution, the difference between the minimum and the maximium
values will be monotonically increasing in the sample size.

It is perhaps worth emphasizing that the range of growth rates of over 10% is
quite large. Over the span of a mere 21 years, the ratio of per capita income in the fastest
and slowest growing countries has more than tripled. If even one tenth of this variation in
growth rates is due to forces that government policy can influence, the potential long-term
gains from better policy are sizable.

The absence of any negative slope in this scatter plot is evidence against the
assertion that ‘that low income countries tend to grow more rapidly than high income
countries and that convergence in per capita income is taking place.# One can of course
select a set of countries where convergence has taken place. Figure 6 plots data for the
interval 1950 to 1981, the period when substantial convergence is typically alleged to have
taken place. Overall, for this smaller sample of 65 countries with data extending back to
- 1950, one finds the same pattern as for the larger sample in Figure 5, a_triangula,r shape
that is roughly symmetric about a horizontal line. This figure also plots two lines that
' intersect at the point corresponding to Italy. These lines allow one to make income
comparisons at the beginning and at the end of the period. The vertical line divides the
sample into countries on the right, which had a higher per capita income than Italy in
1950, and those on the left, which had a lower per capita income. The downward sloping
line divides the countries based on income comparisons at the end of the period. Countries
that lie above this line had per capita income in 1981 that was higher than that in Italy in

1981. It is downward sloping because there are two ways to end up richer than Italy. If a

4Another way to address the question of convergence is to consider changes over time in
the world distribution of income, an approach which was followed by Summers, Heston,
and Kravis (1984). Their finding that world inequality income did not decrease over in the
postwar years is another way to describe the result illustrated in Figures 5 and 6.
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country starts out poorer, it must grow more rapidly. If it starts out richer, it can grow
more slowly.

Although a selection criterion based on levels of per capita income at the end of |
the period seems suspect for purposes of testing for a downward slope, it is implicitly what
one uses when one specifies a sample of industrialized countries that we now think of as
" being industrialized. The countries which lie above the downward sloping line are almost
exactly the countries that Maddison (1982) studies and which Baumol (1986) subsequently
uses in his analysis of convergence. The only difference is that New Zealand, Luxembourg,
and Iceland have levels of income as high as those of Italy in 1981, but are omitted from
Maddison's study, presumably because they are so small. If one had picked developed
countries in 1950, Japan would not have made the list and countries like Argentina would
have.

Ex post, it is always possible to tell stories about why Japan should have been
included and why Argentina should not have been included, but this seems like a risky
methodology. Judging from Figures 5 and 6, there is no obvious reason for treating some
countries as being so different from the others that they must be excluded from the analysis
of questions like convergence. Even if one did conclude that somé truncation of the sample
is called for, for example because of concern about data reliability, the way to truncate the
sample without biasing the inferences is to use the the initial level of income rather than
the terminal level. By inspection, it is clear that regardless of the initial level of income
that is chosen (that is, regardless of where one chooses to draw a vertical line), the

remaining points will not have a negative slope.5

5Using different data, this point was made in Romer (1986), and is dismissed as
unimportant in a footmote in Baumol (1987). DeLong (1987) makes the same point, but
rather than starting in 1950, starts in 1870 as Baumol does. This makes little difference,
for all the action is in the post-war period. As is shown in Abramowitz (1986), even in
Maddison's sample of countries, the convergence with the United States takes place only
after 1950. From 1870 to 1950, the United States pulls steadily ahead of the other
countries, and even within the reamining set of countries, there is no tendency for income
to converge.
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Fact 8), the correlation between growth and trade for developed countries is well
summarized by the three panels of Figure 7. Over time and across countries, income
growth and trade growth are positively correlated, with trade growth varying more than
income growth. The data are drawn from Maddison (1982). Each panel represents a
different time period. The variation across countries in a particular period suggests the
kind of concern that is voiced in current trade disputes, that somehow increases in trade by
some countries may increase their rate of growth at the expense of growth in other
countries. In contrast, the variation over time suggests that in terms of growth rates, trade
may not be a zero sum game. The rate of growth in all countries may be positively related
to the rate of growth of world trade.

Fact 9) refers to a negative correlation between per capita.income and population
growth. Using data from Summers and Heston for the years 1960 to 1981, Figure 8 shows a
scatter plot of this relationship. A better test for the influence of per capita income on
individual decisions would look at fertility rates, which correct, for the age structure of the
population and subtract out the effects of mortality and migration, but the gross
(iorfelation shown in the figure will almost surely survive any such refinement.

This cross-sectional variation has a time series counterpart that is referred to as
the demographic transition. All developed countries have gone through a transition from
high fertility and mortality rates to low rates. This transition can either be interpreted as
the response of fertility to an exogenous change in mortality rates, as the common response
of both mortality and fertility to increases in income, o1 both. The cross-sectional
variation in population growth rates shown here is sometimes interpreted in these terms.
The suggestion is that it reflects an exogenous fall in mortality that took place to recently
and too rapidly for fertility to have yet responded, or that it is an example of a fall in

mortality that has not been accompanied by an increase in income.
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Fact 10) is an assertion about the growth accounting literature, which is far too
vast to summarize here. A useful overview of the work of the three key participants,
Edward Dennison, Dale Jorgenson, and John Kendrick, is given in Norsworthy (1984). A
recent, particularly transparent application of the methodology is given in Maddison
(1987); The basic reason for the persistent finding of a residual in growth accounting can
be seen from Figure 3. Let Y = F(K,L) denote the output from a constant returns to scale
production function of aggregate capital and aggregate hours worked. Let y = Y/L and
k=K /L denote output per hour worked and capital per hour worked. Then
differentiating with respect to time and using the assumption of competitive markets so

that r=1f/(k) gives

y_ 1K k

y Y k
For values of capital's share ﬂ\; on the order of 0.3 or even 0.4, there is no way to
‘match the data in Figure 3. Fitting a regression line of y/y on k/k to this data gives a
coefficient on k/k that is very close to one. For a country like J apan with capital and
output growth raﬁés of over 7%, a share parameter of even 0;4 will imply unexplained
growth of over 4% per year for nearly 30 years.

| This analysis also casts doubt on simple arguments that capital deepening in the

neoclassical model explains why low capital countries like Japan and Germany grew faster
and caught up with the leaders. This is typically identified as one of the great successes of
the model, but the numbers do not fit the story. If the growth of capital per worker was 4
percentage points higher in Germany than in the United States, the model would predict a
growth rate that is higher by 0.3 or 0.4 times 4 percentage points, or less than 2
percentage points. In fact, the growth rate is higher by the same 4 percentage points.

The difference between these two numbers is of course the same residual identified above



16

for Japan. One can argue about what accounts for this difference. A die-hard neoclassicist
could claim that the exogenous rate of technological change was higher in countries like
Germany and Japan, but this reduces the neoclassical model from a theory to a description
of the data. Countries that grow fast are countries with fast exogenous growth in the
technology. What ever it is, something other than neoclassical physical capital
accumulation was taking place.

One possible other factor is accumulation of skills and education, that is of
human capital as well as physical capital. To the extent that this kind of accumulation
takes place, the correct measure of labor input is not man-hours, but man-hours adjusted
for quality change due to better education, or on the job experience. There is sizable
variation in education and experience across individuals in the labor force that is reflected
in variation in earnings. In principle, this can be uéed to correct for quality change over
time. One can use the cross-sectional variation in wages, education, and experience
together with time series estimates of average experience and education in the labor force,
to construct an estimate of growth in quality adjusted labor input. There is considerable
latitude in how one goes about the details of this construction, with a corresponding
variation in resulting estimate of the unexplained residual. The consensus view seems t0 be
that in long-run data for the United States, there is still a sizable component of growth, on
the order of 1% or more, that is not explained by growth in capital or quality adjusted
labor input. Unless fast growing countries in Figure 4 like Japan, Germany, France, and
Italy had substantially more rapid growth in the level of education and experience than
that observed in the United States, they too will continue to have large residuals.

Evidence on fact 11) concerning migration flows is heavily influenced by the
constraints imposed on these flows. Historical evidence suggests that the unconstrained
flows into industrialized countries could be quite large. Greenwood and McDowell (1986)
report that during the late 1960's and early 1970's, quotas on immigration into the United

States favored migration of skilled workers and professionals. Attention then turned most
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naturally to consideration of the brain-drain. More recently, a policy shift in favor of
* applicants with refugee status, combined with legislative debates about illegal immigration
have focused attention on unskilled migrants. Potential flows from either source are

apparently large.

Section I1II. The Kuhn-Tucker Theorem and Dynamic Equilibrium Theory.

Growth is a general equilibrium process.r All markets and all participants in an
economy influence growth and are influenced by it. A growth theorist must therefore
construct a dynamic general equilibrium model, starting with a specification of preferences
and the technology, and specifying an equilibrium concept. To be able to say anything
about the properties of the model beyond an assurance that some equilibrium exists, the
theorist must be able to explicitly solve the model or at least give a qualitative description
of the solution.

Either explicitly or implicitly, the central tool that is used in the characterization
* of dynamic competitive equilibrium models is the Kuhn-Tucker theofem. It offers a
general procédure for reducing the problem of calculating a éompetitive equilibrium to the
problem of solving a maximization problem. All of the theory of growth can be understood
in terms of the application of this theorem to models with tractable functional forms for
preferences and the technology. To develop these claims, it is best to start with a simple
Irving Fisher type economy that has a finite number of choice variables and is assumed to
have perfect markets. Next, the procedure is for studying perfect markets equilibria is
extended to the kind of infinite dimensional space that arises in infinite horizon

maximization problems, covering the cases of both discrete time and continuous time.
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Section II1.4 concludes by showing how these techniques can be extended to equilibria that

do not satisfy all of the assumptions necessary for perfect competition.

Section I11.1 The Kuhn-Tucker Theorem In R™

Recall that a function f:R™ — R is concave if the cord connecting any two points
on the graph of f lies on or below the graph of f. Concave functions are central to the
theory of maximization because they allow a complete characterization of solutions to
maximization problems. For example, if the function f:R — R is differentiable, a point
x €R solves the problem of maximizing f(x) over all of R if and only if (x) = 0. That
is; f/(x) = 0 is a necessary and a sufficient condition for x to be a solution. This
maximization problem is unconstrained in the sense that x can be drawn from anywhere
in R. The Kuhn—Tucker theorem generalizes this complete characterization to concave
maximization problems with constraints on the feasible choices of x. To be a concave
problem, the objective function must be concave and the constraint set must be convex.

Consider a generic constrained maximization problem P:

P max f(x)
8.t x € £}
fl(x) Z Oa
fQ(X) Z 07
f,(x)20
To make this a concave problem, assume that fO’ fl, - fm are differentiable, concave,

real valued functions functions defined on a convex domain  C R™. One further
assumption is crucial in what follows, and it is convenient to give it a name. We will say

that problem P satisfies the Slater condition if there is a point X in the interior of Q
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such that fi(i) >0 for alli=1,..., m. Thisisan example of an interiority condition.
It says that there is at least one point in the interior of the set of feasible points.
Associated with the problem P, we can define a function L:Q x lR:I_1 — R by the

rule

L(x,A) = £, (x) + 2 A (x).
i=1

This function is typically called a Lagrangian. In the description of L, [R:l_1 denotes the
non—negative orthant in R™, so L(x,\) is not defined for a vector A which has a
negative component. Components equal to zero are allowed. The key property of this
function is that it is concave—convex. Holding X fixed, the function L)\(xj which sends

x to L(x,)) is a concave function. Holding x fixed, the function LX(/\) which sends A
to L(x,\) is a convex function.6 (Recall that a function g is convex if -g is concave.) A
concave-convex function is sometimes referred to as a saddle function because if x and A
are numbers rather than vectors, the graph of such a function would look like a saddle. A
point (%,A) is said to be a saddle point (or maxi—min point) of L if the following

inequality holds:
L(x,4) < L(%,A) < L(%A).

This says that for fixed \, ¥ maximizes L 5(x) and that for fixed %, A minimizes
L)A((/\).
For this kind of problem, it is possible to list three simple conditions that are

equivalent to the statement that a point (5(,5\) is a saddle point of L with X in the

6For proofs of these and other assertions made in the text, see Rockafellar (1972).
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J

interior of :

m
c1)  Diy(%) + Z ADf (%) = 07

If % were actually on the boundary of €, the derivative condition in condition C1 might
not hold, and would need to be replaced by a slight generalization. In practice, this is not
a problem. If Q imposed binding constraints on the choice of x, it would be better to

make this constraint explicit by describing it in terms of an additional constraint function
fm+1(x)

theorem is to get all of the binding constraints attached to a multiplier in the Lagrangian

>0 and giving it its own multiplier. The whole point of the Kuhn-Tucker

so that one can take derivatives as in C1.
. Condition C1 implies that X maximizes L 5\( -). Condition C2 ensures that X
satisfies the constraints and that ) is non-negative. Condition C3 implies that A
minimizes L)A{(-); since A; and f(x) must be non-negative, the smallest value the
summation involving A can take onis 0. Condition C3 makes sure that this minimum

is achieved. Given the non-negativity restrictions from C2, condition C3 can also be

written as:

C37) ALK =0for i=1,..,m

7Throughout, Df(x) will denote the derivative of a function defined on R" and Dif(x)

will denote the partial derivative of f with respect to its i'th argument. For functions
" defined on the real line, the usual prime notation for a derivative, f/(x), will generally be
used.
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Stated in this form, these conditions are sometimes referred to as complementary slackness
conditions.

These conditions are what one actually uses to solve problems like P, but for the
purposes of economic theory, it is useful to work directly with the notion of a saddle point.
The essence of the Kuhn—Tucker theorem is that saddle points of L are equivalent to

solutions to P.

Theorem (Kuhn—Tucker): Assume that fO, fl’ e fm are concave, continuous

functions from Q cR™ into R.8 Let the problem P and the function

L:Q x [er — R U {+x} be defined as above.

i) Sufficient Conditions for an Optimum: If (x,/\) € x [Rr_f_l is a saddle point of

L, then X is a solution to P.

i) NecevssaLy Conditions for an Optimum: Assume that the Slater condition
holds. Then if %€ isasolution to P, there exists a value A€ [er such that
(%,A) is a saddle point of L.
The theorem stated here is a special case of a result that can be generalized. For a proof
that uses a slightly weaker version of the Slater condition, see Theorems 28.2 and 28.3 in
Rockafellar (1970).
The components of A are referred to as Lagrangian multipliers, or more

suggestively as shadow prices for the constraints. The notion of price is quite appropriate

8There is a technical point here. Concave functions are always continuous on the interior
of the domain on which they are defined. The assumption of continuity here is necessary
only to ensure that these functions do not have any jumps on any boundary points in 2.
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here, for the difference between the maximization problem P and the problem of
maximizing L ;\(x) over x is precisely the difference between the problem faced by a
social planner and that faced by a competitive price taking agent. In the problem P and
in a social planning problem, the maximization problem must take explicit account of the
resource constraints on the choice variables. In contrast, at the market prices, a
competitive agent is assumed to act as if it is possible to purchase an unlimited quantity of
all goods. Similarly, at the prices A, someone solving the problem P is free to behave as
if the constraints f1 to fm could be violated in the process of maximizing L ;\(x) over X.
In each case, the prices convert a constrained maximization problem into an unconstrained
problem, with prices that are determined separa,tely:

- This similarity is indicative of a much deeper connection between saddle—points
for Lagrangians and equilibria for competitive systems. Formally, they are equivalent. A
general proof of this assertion is given in Romer (1988). Here, it is sufficient to show this
equivalence in a simple example that forms the basis for all of the growth models that
follow. The arguments in the general case are essentially the same.

Consider a two period economy with a representative consumer. For ease of
comparison with the dynamic models that follow, let U:[R_?_ i R take on the additively
separable discounted form, U(cl;c2) = u(c)) + fu(cy). The function u is assumed to be
concave.9 Let e > 0 denote the period 1 endowment in this economy and let f:R Ml R
be a concave production function for converting forgone consumption in period 1 into

consumption in period 2. Define an aggregate maximization problem for this economy

9Here IR2 denotes the strictly positive orthant in R2. This is used instead of the
++

non—negative orthant to accommodate functions like logarithmic utility that are widely
used in practice. What follows could easily be modified to allow for consumption equal to
Z€ro.
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(labeled P1 because it is the first in a series of similar problems) as follows:

P1 max u(cy) + Bu(cy)

s.te—c - k>0
f(k) —cy 20

cl,c2>0,k20.

This can be put in the form of the generic problem P by letting the choice vector x be a

triple (x,xyxq) = (¢].Cork), letting © be the domain [R_‘?_ L xR, in R3 letting

fo(x) = u(xy) + fu(xy), letting f,(x) = e—x; —xg, and letting f,(x) = f(xq) —x9. In

conformity with numbering scheme for problems, let L1:(2 x R™ —R denote the

Lagrangian associated with P1:
L1(x,A) = u(xy) + fu(xy) + A (ex;-x5) + /\Q[f(x?))—x2].

Associated with the aggregate maximization problem P1 are the problems for a
-~ price taking consumer and a price taking firm. Let PF(p) denote the firm's problem for
this economy when faced with given prices p € IREU and let II(p) denote the profits it

earns:

PF(p) T(p) = max pyf(k)—p k.
keR n

Let PC(p,m) denote the problem of the price taking consumer who also takes as given the
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profits 7 received from ownership of the firm:

PC(p,) maxzu(cl) + Bu(cy)
ceR
+

s.t. 7+ py(e-cy) =Pyt 2 0.

We will say that a pair (%X,p) is a competitive equilibrium if Xg solves PF(p), if (5(1,&2)
solves PC(p,7) when 7= TII(p), and if supply is greater than demand: e 2 5(1+§c3,

f(iq) 2 %

3 2

This is an example of an equilibrium with all trading in the initial period. The
problems of the consumer and firm as described as if they meet and arrange all trades at
time 1. This formulation is chosen only for the convenience of the theorist. There is an
equivalent formulation of the equilibrium in terms of the spot prices and securities returns
that people use on an everyday basis. For example, the interest rate in this two period
example will simply be‘ the ratio of the prices for the dated goods, r = py / Po- Throughout
this chapter, all of the equilibria will be described as if all trading took place at time zero,
with the understeinding that they can be converted into equilibria with spot prices and a
- large enough set of security returns.

| The next proposition shows that if the Slater condition holds (which is equivalent
here to assuming that f is productive and e is greater than zero), then saddle points of

L1 are equivalent to competitive equilibria. As always, this is subject to the qualification

that competitive prices are determined only up to a non-negative scaling factor.
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PROPOSITION 1: Assume that u and f are continuous, concave functions.
Suppose that e > 0 and that f(y) >0 for some y > 0. If (%,p) is a competitive
equilibrium, then (%,3p) is a saddle point of the Lagrangian L1 for some non—negative
scale parameter #%. Conversely, if (X,p) is a saddle point of L1, then (x,p) isa

competitive equilibrium.

The essence of the proof of this proposition is to apply the Kuhn-Tucker theorem
to all three of the problems P1, PC, PF. The necessary conditions for the maximization
problem P1 imply the sufficient conditions for the maximization problems PC and PF,
and vice versa. The details, which amount to keeping track of notation, are given in the
appendix.

For concreteness, the statement and proof are given in the contexﬁ of a particular
economy, but they can both be extended immediately to a more general setting. Under the
mild assumption that preferences can be represented by concave utility functions, this
proof can be generalized to apply in any economy where the equilibrium is Pareto optimal.
If there is more than one agent, the objective becomes a weighted sum of the individual
utility functions, and the problem is transformed into one of calculating one of many
possible Pareto optima.

In light of the equivalence between saddle points and competitive equilibria, it is
possible to reinterpret the Kuhn-Tucker theorem. The sufficient conditions from the
theorem embody the First Welfare Theorem; competitive equilibria are Pareto optimal.
The necessary conditions embody the Second Welfare Theorem,; for any Pareto optimal
quantities, there exist prices that decentralize these quantities as a competitive

equilibrium.



26

Section I11.2 Discrete Time Extensions of the Kuhn-Tucker Theorem

In a dynamic application of this kind of procedure, the possibility of an infinite
time horizon seems to remove a crucial upper end-point. -Depending on whether time is
discrete or continuous, the links between periods that arise from possibilities fc;r
intertemporal substitution show up in the first order conditions as difference equations or
differential equations. In a finite horizon model, the-upper end-point plays a special role in
establishing boundary conditions for these equations.

To see how these issues arise in a simple setting, consider a multi-period
extension of the growth model described in problem P1, but assume that the equilibrium
quantities are exogenously specified so that we do not need fo make any assumptions about
the form of preferences. Let the technology be as in the two period model, but extended
over more periods. To simplify the notation, let the initial endowment kO be given in
terms of the capital stock so that the initial amount of resources available for use is f(ko).

Then consumption in all periods t > 0 is related to the capital stock by

> 0.

fki) —c; —kyq 2

The evolution of k, is also limited by the restriction that it must be be non—negative for
all t. Even though this constraint is often neglected, it will become clear that this
restriction has important economic content.

Consider first a finite horizon problem so that t runs from 0 to T. Let the
values for consumption in periods 1 to T take on exogenously specified values Ty Ty

o Cp and consider the problem of maximizing consumption in time 0 subject to these
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constraints:

P2 max C
st f(ky)-c, ki 420 for t=0,1,..., T
kt >0 for t=1,..., T+l

>¢, for t=1,...,T.

o

t

k0=

ol

Solving this problem for the quantities is not of much interest. It usefulness will lie in
what it can tell us about prices. Since the problem fits into the form of the generic
problem P, its Lagrangian can be copied from the Lagrangian for P. Using boldfaced
letters to denote sequences, let ¢ = {Ct} =g and k= {kt}TJ'l denote the vectors of
quantities that must be chosen. In a T period problem, the constraint on Cp involves
kT 1 which must also be specified. This is where the non-negativity condition on capital
becomes relevant. Let A = {)‘t} tT denote the vector of multipliers on the constraints
linking periods, let. 7= {71;} ’ :1 and w= {7} tzl denote the multipliers on the

non—negativity constraints. Then L2 takes the form

L2(ck,A,mw) = ¢ + Aglf(k, ) cok;]

+ 2{ “Cpky ] + ok F wt(ct—ét)} + Ik

The first order conditions for this problem are straightforward. First, hold the
shadow prices fixed and maximize L2 over the quantities ¢ and k. Differentiating with

respect t0 ¢ gives )\0 = 1, with respect to ¢, gives w, = Ay Differentiating with
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respect to k, for te {1,2, ..., T} gives

The derivative with respect to kT +1 gives

’\T = 41

Consider next the complementary slackness conditions for minimizing L with
respect to A, 7, and w. Assuming that {(0) =0 and that ¢, >0 for all t, kt must be
positive forall t =1, ..., T. This implies that N = 0 over the same range. Assuming
that f/(k) is positive for all k, the initial condition Ay =1 together with the difference
equation for A then implies that ’\t is positive for all t. Then the complementary
slackness condition associated with A t implies that kt +1 must equal output minus

~consumption,
k, , = f(kt)—ct. (2)

Since. ’\t equals w,, it follows that Cy must equal St Finally, the equality TTe1 = ’\T
together with the complementary slackness condition T +1kT Rh 0 implies

k = 0.

’\T T+1
The equations for A and k are the only ones of any economic interest. The
shadow prices 7 and w are superfluous. Equations (1) and (2) form a pair of coupled,

first order difference equations. Generally, this kind of equation system requires two
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boundary conditions to pin down all of the values. They are the given initial value for kO
and the terminal condition ’\TkT 1= 0. The first is an example of an initial condition.
For obscure reasons, the second is called a transversality condition. In this problem, one
additional condition is need to pin down ¢, This is given by the condition ;\1 = 1. Taken
together, these conditions and the difference equations are just sufficient to determine the
values for A ¢ and kt for all t.

In this particular problem, it is intuitively obvious that the condition

k = 0 is satisfied by setting kT 1= 0. There is no reason to leave anything after

’\T T+1
everyone is gone. In more general problems, for example a problem where it is costly to
convert capital goods back into consumption goods, the case )‘T =0 and kT 17 0 can
also arise. The intuition for the zero price is clear. If capital is going to be abandoned
anyway, having more of it can not be of any value.

This kind of analysis does not offer a very interesting theory of quantity
determination, but conditional on the quantities, it determines the equilibrium prices A .
By converting the prices here, which have the interpretation of time zero prices, into the

kind of prices used by individuals in spot markets, it is straightforward to show that the

- gross rate of return on one—period bonds sold in period t is

This kind of problem has a natural extension to an infinite horizon. The
difficulty that the infinite horizon poses is that the absence of an upper bound for time at
first seems to remove the boundary condition XTET 1= 0. Because of the links between
periods implicit in the difference equations, the loss of one of the boundary conditions
would mean that none of the quantities and prices are determined. This indeterminacy,

sometimes referred to as the Hahn problem, is only apparent. It arises only if one does not
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take account of the non-negativity condition on k. In the complete markets equilibrium
concept used here, there is a second boundary condition and all prices and quantities are
determined.

To see this, let P3 denote the extension of the problem P2 when the upper
bound T is removed, so t runs from 0 to «. It takes some sophisticated mathematics
to be precise about what the definition of a Lagrangian is in an infinite dimensional space
and to prove a version of the Kuhn-Tucker theorem that applies in this context, but the
result is intuitively appealing.10 Subject an interiority or Slater condition, the Kuhn-Tucker
theorem still says that solutions to maximization problems ére equivalent to saddle points -

of a Lagrangian. In this case, the Lagrangian takes the form

L3(c.k,\,7w) = ¢ + /\O[f(ko)-cg—kl]

s}
+ E{At[f(kt)'ct_ktﬂ] + kgt wt(ct——(‘:t)}.
t=1 |

- The difference equations for k and A from this Lagrangian are exactly those from the the
finite horizon problem. The initial condition is still given by k.

Provided that (0) =0 and ¢, >0 forall t,it follows that k must be
strictly positive for all t. This makes it appear that the non—negativity constraint on kt
is never binding and can be dropped from consideration, but this is not quite right. It is
true that 7, =0 for all t. For any finite T, the non-negativity constraints on kt could
be dropped for all t between 1 and T, but this does not mean that the entire infinite

sequence of constraints can be dropped. To see why, suppose that f(k) takes the form

10See Ekeland and Teman (1976) for an general treatment of convex analysis and Kuhn-
Tucker theory in an infinite dimensional space. Araujo and Scheinkman (1983) apply this
kind of framework to derive necessary conditions for a continuous time problem. Romer
and Shinotsuka (1988) give an explicit derivation a Lagrangian for this kind of discrete

time model.
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f(k) = rk for some constant r and for values of k which can be either positive or
negative. This technology is like having a bank that offers deposits and loans at the rate
r. In this case, if all the non—negativity constraints are dropped, the initial value of <
can be made arbitrarily large by letting k, take on negative values that diverge to -w.

In a sense, the non—negativity constraint is binding at infinity. Corresponding to
this constraint, there is a complementary slackness condition at infinity:

lim \ .k =
foo t7t+1

0.

This is the transversality condition at infinity that serves as the second boundary condition

for this problem. Intuitively it is just the liﬁlit of the transversality coﬁdition |

;\TET R 0 for the finite horizon problem. It can be shown that this is a part of the

Kuhn-Tucker necessary and sufficient conditions in the same sense that 5‘T1;T 1= 0 isa

part of these conditions in the finite horizon problem. In a problem satisfying the Salter

condition this condition holds for any saddle point (k,A);1t if a pair satisfies this condition

plus the difference equations for k and A, then it is a saddle point of L3. _
Subject to the assumptions noted along the way (e.g. that f #(k) > 0 and that the

Slater condition holds), this shows that for the specified technology and sequence of

quantities for aggregate consumption starting at date 0, there exist prices that support an

uSpecifying what the Slater is here is complicated, because one must define an interior
point in an infinite dimensional space. For a general discussion of this issue, see Romer

and Shinotsuka (1988). For this particular problem, let (60,R) denote the optimal

quantities. If it is possible to construct a path ((”:0,12) such that EO < 60 and f{t > af<t
for some a > 1, this problem can be shown to satisfy the Salter condition in the relevant
sense. In the Solow-Swan model, this will be true as long as ¢, 18 bounded below from
-the maximum sustainable value for consumption, ¢ .. = mix (k) — k.
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officient allocation as a complete markets competitive equilibrium. The allocation is
officient in the sense that it maximizes time zero consumption taking consumption in all
subsequent periods as given. There are other equilibrium notions with the property that
equilibria need not be efficient. The one used in Samuelson's overlapping generations
economy (1958) is the canonical example. This kind of equilibrium cannot be computed
using the technique used here because it is not a complete markets equilibrium. In
Samuelson's model, private agents are assumed to be unable to trade in the entire set of
markets for dated goods. Only the government can do this. Accordingly, only the
government issues infinite lived, zero interest bearing bonds and earné a pure profit.
Private individuals and firms in this model would also issue such bonds if they could.

Samuelson's example is a caution that the assumption of complete markets is not
an empty assumption, even in the absence of uncertainty. It shows that there are other
equilibrium concepts that may be of interest, with equilibria that cannot be calculated
using the method described here. Interesting as they are at an abstract level, the issues
raised by these alternative equilibrium concepts have no obvious bearing on the theory of
long run growth. The Samuelsonian problem of inefficiency arising from chronic capital
over éccumulation has no apparent counterpart in the data cited in the beginning of this
chapter.

The best known example of a theory of growth with exogenously specified
quantities is the model identified with Solow and Swan. (Solow, 1956; Swan 1956) In the
simplest form with constant population, these models, both posed in continuous time,

assume that capital per capita k evolves according to the equation
k(t) = sf(k(t)) - &k(t)

where s is the saving rate, § is an exponential depreciation rate and f(k) denotes output

per worker f(k) = F(k,1) before allowance is made for depreciation. The function F(-)
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is assumed to exhibit constant returns to scale. Consumption is the residual,

c(t) = (1-8)f(k(t)).

Under standard assumptions on f and F, the differential equation for k has a stable
steady state. As is now quite familiar, exogenous population growth can be added to the
model to generate growth in total income with constant per capita income. Exogenous
technological change can be added to generate growth in per capita income.

Given this description of the evolution for the quantities, prices follow by exactly
the kind of analysis given for the discrete model above. In particular, one can give a
rigorous explanation for why f’(k(t)) is the instantaneous interest rate at time t. The
analysis is incomplete in the sense that preferences are not fully spéciﬁed, but conditional
on the specification of the quantities, it is a perfectly reasonable general equilibrium model,
one that can be readily taken to the data.

“One of the key contributions of the Solow—Swan analysis was the renewed
impetus it gave to the use of simple aggregate models along the lines suggested by Ramsey
(1929). Once Ra,rhsey's technology was recognized as a powerful tool, it was natural that
his preferences should be adopted as well. The key hurdle here seems to have been the idea
of 'discounﬁng. Ramsey denounces discounting as "ethically indefensible" on the first page
of his article, then proceeds to use discounting in the moét interesting parts of his analysis.
Samuelson and Solow (1956) reproduced and extended Ramsey's analysis, but they abided
by his admonition not to discount, and their analysis seems to have had little impact.
Koopmans (1965) and Cass (1965) are generally recognized as the key contributions in the
process of legitimizing discounting and taking the analysis out of the realm of tricks and
special cases needed to work with the undiscounted I{lodel.

Implicit in Ramsey's ambivalence about discounting is a sense that the objective

function in such a problem should reflect the preferences of the economist rather than the
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economy. What can be called his positive analysis allows for discounting, and he speaks in
this case of an infinite lived family, but he clearly had in mind a separate welfare analysis
that did not respect the preferences of such families. Even after backsliding had set in and
discounting was a firmly established practice, many papers in the 1960's seemed to retain
the view that the objective function ought to reflect a higher authority than the mere
consumer, God perhaps, or at least someone with a Ph.D. Macroeconomic applications of
these tools played were crucial in moving the profession away from this normative
interpretation of Ramsey models and establishing these models as positive models of
equilibria.12

The mathematical treatment of a model with discounted Ramsey preferenceg is
another application of the Kuhn-Tucker theorem. To see this in the discrete time case, add
discounted Ramsey preferences to the technology from problem P3. Then the aggregate

maximization problem for this economy is

o0} .
P4 max 2 ﬁtU(ct)
t=0

st f(k)k, ¢ 20 t=0,1,2, ..
k>0 t=12, ..

12Many papers from macroeconomics have used Ramsey preferences to calculate a
decentralized equilibrium that reflects the preferences of individuals. In a partial
equilibrium setting with constant interest rates, Lucas and Prescott (1971) showed that
these preferences could be interpreted as a description of a market demand curve without
invoking a representative agent. Of the papers that invoke a representative agent, three of
the most influential are Barro (1975), Hall (1978), and Lucas (1978).
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The Lagrangian for this problem is exactly what one would expect:13

0 ¢]

La(keAn) = 3 Blule)) + Al Ky yy ¢ + 1k
{0

 For sensible specifications of u(-) and f(-), the non-negativity constraint on k, is not
binding for any finite t. In this case the multipliers 7, are equal to zero for all t and
can therefore be ignored, provided one keeps in mind that the non-negativity constraint is
still binding at infinity. This is what gives the transversality condition at infinity. For
fixed shadow prices A, maximizing L with respect to ¢ gives c, asa function of /\t

and t, c()\t,t) = u’_l(/\t/ﬂt). If u(-) isincreasing, A, must be positive. ‘Then the
complementary slackness condition A t[f(kt)—k,G +1"Ct] =0 gives k,  in terms of A, and
kt' Differentiation of L with respect to kt gives the same equation linking shadow prices
in adjacent periods as did the problems P2 and P3. Taken together, these two equations,
one for k and one for )\ form a coupled system of first order difference equations in two

variables:

A= Ay /() | (3)
k, = 1(k,_;) = _pt) (4)

By comparison, this shows why the Solow-Swan model is easier. In that model,
these equations have a triangular structure; the second equation does not depend on the
first because ¢ is exogenously specified in terms of k. It can be solved independently. An
analogous case arises here if f(k) is linear so that f(k) is constant. In this case, the first

equation can be solved independently. If the utility function u is quadratic or of the

13For a derivation of this Lagrangian, see Romer and Shinotsuka (1988).
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1-o0
constant elasticity form u(c) = ¢ 1 with o€ [0,00)14, the second equation can readily be

- 1-0
solved.
The boundary conditions for these equations are the initial value for kO and the -

transversality condition at infinity,

lim Ak = 0. (5)
to tot+1 :

Terminology in this area is not well established. Equations (3) and (4) are
referred to variously as Lagrangian or Hamiltonian equations. In current usage, the térm'
Euler equations is applied most often to a transformed version of these equations. Solving
equation (4) for A, in terms of k and LT then substituting the re‘sult}irvlto the ﬁrét

equation yields a second order difference equation in kt’
BU (8(k )k, , (k) = U7 (ey_y)ky): (6)

The Eu’lsr equation (6) can be derived directly by assuming that the evolution
. equation for kt holds with equality, then substituting it into the objective function. This
équétion then follows by differentiation with respect to kt' Treating the problem this way
makes it seem as if all constraints can be transformed away so that the problem becomes
an unconstrained maximization problem; no constraints or multipliers are in evidence. For
finite horizon problems with fixed initial and terminal values for k—the kind of problem
typically studied by physical scientists—this transformation into an unconstrained problem

is possible. Hence, many treatments of dynamic maximization problems describe the

14The extra constant 1 in the numerator of this functional form has no effect on choices
made by the consumer, but is useful since in this form, the function converges to

u(c) = In(c) when o approaches 1. With this convention, this form makes sense for all
values in the indicated range.
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methods for solution in terms of the techniques from calculus for unconstrained
maximization; just set all the derivatives in.sight equal to zero. However, for infinite
horizon problems, substitution cannot remove the binding non-negativity constraint on
capital at infinity. To fully understand the transversality condition at infinity associated
with this constraint, it is essential to have available the full machinery of the Kuhn-Tucker
theorem for constrained problems. Viewed from the perspective of constrained

maximization problems, it is an obvious generalization of a complementary slackness
condition.

Actually proving that the transversality condition (5) is a necessary condition for
the problem P4 requires checking the assumptions for the Kuhn—Tucker theorem. In |
particular, it requires checking that the infinite dimensional versi~on of the S-later.interiority
condition holds. In models with no discounting, this condition can fail, and such models
can be used to construct counter-examples to the transversality condition at infinity. The
transversality condition will hold in any optimizing model where there is sufficient

discounting relative to the maximum rate of growth of capital in the economy. In

particular, if lim ﬁtkt =0 along any feasible path for capital, it will hold.1?
: t-w

Section II1.3 Continuous Time Extensions of the Kuhn-Tucker Theorem

The extension of the infinite horizon model to continuous time is comparable to
the extension of a model with discrete uncertainty to one with continuous random
variables. Essentially, sums are replaced by integrals and difference equations become
differential equatibns. Without covering the formal details, it is straightforward to give a

heuristic derivation of the continuous time Lagrangian or Hamiltonian equations.

15For a complete discussion, see Romer and Shinotsuka (1988).
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Write the continuous time maximization problem as

P5 max f°° U(c(t)) e Ptds
0

.. k(t) = f(k(t))—c(t) for all t20
k(t) >0 for all t20.

For simplicity, depreciation is hidden, but it could easily be made explicit. In the discrete
model, f represented gross output. Here it represents net output. The choices are entirely
a matter of convenience. In discrete time, one can convert from gross to net production by
the substitution g(k)= f(k) —k. In continuous time, an explicit depreciation rate can be
added by a substitution g(k) = f(k) + &k |

Letting bold face letters ¢, k, A, and < stand this time for functions defined on
[0,m), and using c(t), k(t), A(t), and (t) or ¢, k, A, and 7 for their values at a point in

time, the Lagrangian L5 takes the form

[0 9]

L5(c.k,A,7) =/£) {U(c(t))e_pt+)\(t)[g(k(t))—c(t)—-k(t)]w(t)k(t)} dt.

As in the discrete time problem, 7(t) will be zero for all finite t in any reasonable model,
so the term 7(t)k(t) will henceforth be ignored. For fixed shadow prices A, the operation
of maximizing L5 with respect to ¢ can be passed through the integral, and the
maximization can be done point by poinﬁ for each fixed t. It is then useful to define the

terms inside the integral other than A(t)k(t) as a new function H:IR:?_ —R:

H(k,\,t) = max U(c)e—_pt + Ag(k)—c)
c
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Thus,

max L5(ck,\) = f {H[k(t),A(t),t] — A)k() ).

C

To complete the calculation of a saddle point of L3, it remains to maximize L5
over k. Because H depends on k and k, one cannot simply maximize point by point as
one could with c. At each point one must trade-off the effect of increasing the level k
with the effect of increasing its rate of change k, which after all is the only way to increase
the level. To do this kind of maximization and make this trade-off explicit, one needs to
apply the tools of the calculus of variations. The basic result needed here is the first order
condition for maximizing an integral of the form [ M(k(t),k(t),t) dt with respect to a

path k(t). It is given as a differential equation,
Dy Mk(1) K(t),£) — g7 [DyM(K()k(t),)] =019
To apply this result here, define M as follows:

M(k,k,t) = {H(k,A(t),t) — A(t)k}.

The time dependence in M corresponds to the dependence of H on A(t) and on the

16This is also known as an Euler equation, or sometimes even as an Euler—Lagrange
equation. In classical notation this is often written as

%M(kkt)—ka—{ M(kkt)} — 0.

The notation used in the text is more explicit about what the tlme derivative refers to and
why the meaning would be so different if g— were replaced by % For a proof, see any

~text that covers dynamic optimization, for example Intriligator (1971) or Luenberger
(1969).



40

exponential discounting. The partial derivative of M with respect to k is simply A(t).

Then the differential equation becomes

A(t) = - Dy H(K(£)A(1),0). (7)

To derive the other differential equation, note that the first order condition for

the maximum over ¢ in the definition of H is
He) o Pt — '
u (C) e - /\7 (8)

which is analogous to the expression for ¢ derived for the discrete time model. This
implicitly defines ¢ as a function of A and t, which we can denote ¢(A,t). Substituting
this into the definition of H, then differentiating with respect to A and using the first

order condition (8) gives
DQH(k(t),)\(t),t) = f(k(t)-c(A(t),t))

If u(-) is strictly increasing, equation (8) implies that A(t) is positive. Then the

complementary slackness condition A(t)[f(k(t)-c(t)-k] = 0 implies that
k = DoH(k(t),A(t),t)- (9)

Equations (7) and (9) form a coupled system of first order differential equations.
The function H is called a Hamiltonian, and the equations are called Hamiltonian
equations. Like the analogous difference equations for the discrete problem, they require

two boundary conditions to completely specify the solution. As in the discrete case, one is
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given by the constraint on k at time zero, the other by the transversality condition at

infinity, 1im A(t)k(t) = 0.

t— o0

Compared to discrete time, which is conceptually simpler and lends itself more
readily to uncertainty, continuous time is to be preferred only for the ease with which non-
linear systems of differential equations can be characterized by geometrical means. In the
present form, the equations for k and A are non-autonomous; that is, they depend
explicitly on time. However, by a change of variable, they can be transformed into an
autonomous system of equations with no explicit time dependence that can be studied by
drawing pictures.

To do the change of variable, let 8(t) = e’ t)\(t) and define a new Hamiltonian

H(k,\) = max u(c) + 6(f(k)-c).
(¢

The variable 0 is called a current valued shadow price, as opposed to A which is a
present valued shadow price. H is called a current valued Hamiltonian, as opposed to the
preseﬁt valued Hamiltonian H. It has no explicit time dependence. The equation that

justifies the tei‘minology current and present valued is
H(k(1),A(8)t) = ¢ PH(K(),0(1)).

H and X are like discounted versions of H and 4.

By the formula for a change of variables and a simple substitution, the
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Hamiltonian equations can be restated in current value terms:

b(t) = pA(t) — D, (k(1).0(1)),
k(t) = D H(k(t),6(1))

This autonomous system can be represented in by a picture in a plane. Using language
taken from physics, this is known as the phase plane. At each point in the k-4 plane,
imagine an arrow that indicates the direction and speed of a poiﬁt following these
equations. This arrow will have components k and .

To characterize all of the arrows at all of the different points, it is useful to
identify two different lines called isoclines ("iso" for "same", "cline" for "slope"). The
first isocline is the locus of points such that # = 0, the second the points such that k =0.
If k ison the horizontal axis as in Figure 9, the k = 0 isocline denotes those points
where trajectories in the plane have a vertical tangent or slope. The # =0 isocline
denotes points where trajectories have a horizontal tangent. Their intersection, if any, is a
~ stationary point. -

To illustrate how these can be used, it is useful to describe the kind of analysis

" that Cass (1965) gives to the problem P5. Suppose that both (k) and u(c) satisfy
Inada conditions, u’(0) =/ (0) = w, u’(w) = () = 0. From the first order condition
for maximizing H with respect to c, it follows that u’(c) = 6, which can be inverted to
give c(f). From the properties of u, it follows that c(§) goes to zero as § goes to
infinity and vice versa. Substituting this into k = f(k)-c(6) implies that thek =0
isocline is a downward sloping curve in the plane that must have both axes as asymptotes.
The # =0 isocline is specified by the unique value of k such that f’(k) = p. From these
properties, it follows that the two curves must intersect at a unique stationary point as
shown in Figure 9. The arrows indicate possible directions for trajectories in the plane.

For example, starting from a point on the k = 0 isocline, an increase in k holding 4
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constant will cause k to become positive. Thus, the horizontal arrows to the right of this .
locus point in the direction of increasing k, arrows to the left, of decreasing k.

Judging from the pattern of arrows, it is evident that there will be two paths that
converge to the stationary point and two that diverge from it. The two convergent paths
are sometimes referred to as branches of the stable manifold. They contain the points of
economic interest. For any given initial value of k, there is a unique value of @ such that
(k,0) lies on the stable manifold. This determines the initial value 6(0) = A(0). Along
this trajectory, k(t) and 6(t) stay bounded, so e tk(t)ﬂ(t) = k(t)A(t) will converge to
zero. Because the transversality condition at infinity, the Hamiltonian equations, and the
initial condition characterize a saddle point of the Lagrangian L5; the stable manifold
describes both the optimal quantities and the competitive equilibrium quantities.

It is the functions of time k,A:[0,0) — R that form a saddle point of L5, but
there is another sense in which the stationary point (k*,6*) € R where both # and k are
equal to zero is itself a saddle point. The dynamics around this point are described as
saddle point dynamics, because they are suggestive of the dynamics one would observe if
one rolled marbles down a saddle shaped surface. Formally, this can be captured by
linearizing the differential equations around the stationary point. A linear differential
equation system of 2 variables has the saddle point dynamics indicated here if one of its
characteristic roots is positive and one is negative, properties that can readily be verified
for this system.

Once the general methods have been set forth, this kind of analysis lets one sayb a
surprising amount about the qualitative properties of a fairly complicated dynamic
competitive equilibrium. Its evolution is described by a non-linear system of equations.
The solution determines the path for interest rates and profits of the firm. Alternatively, if
f(k) is interpreted as output per worker, f(k) = F(k,1) where F exhibits constant
returns to scale, the model determines the path of wages rather than the path of profits.

Savings and investment decisions by consumers and firms respectively are guided not just
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by current rates, but by expectations about the entire path of future rates. Stated in spot
market terms, both investment and savings decisions at each point in time depend on the
entire yield curve at that time. Moreover, the entire yield curve changes over time. If one
were to contemplate calculating this kind of system by equating some specification of
demand and supply curves for savings and investment at each point in time, this would
seem to be a hopelessly complicated task. Here it is a matter of a little calculus and
algebra, and remains so when the model is complicated. For example, it is a simple (and
instructive) exercise to work out how the dynamics change when the degree of
intertemporal substitution in consumption changes or when firms face adjustment costs so
that k is a non-linear function of foregone consumption. Another useful exercise is to
contemplate the effect of an announcement at time 0 that there will be an exogenous
increase iﬁ the capital stock (funded from outside the economy) at a future date T. Just
by using the fact that the price f(t) must be a continuous function of time even if k(t) is
not continuous, it is possible to infer that the yield curve tilts, with yields on near term
maturities increasing, and long term maturities falling, with the net effect that current

investment falls relative to investment before the announcement.
I11.4 Suboptimal Equilibria

If the approach described in the previous sections was applicable only to
equilibria that are full information Pareto optimal, it would be of limited value. In fact,
this method, or something very close to it, can be used in cases where the equilibrium is
suboptimal because of some violation of the perfect markets assumptions. Even suboptimal
equilibria maximize some kind of criterion. If one can add restrictions to the aggregate
problem or change the objective in a suitable way, the solution to the modified problem

may generate the outcomes observed in equilibrium.
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This observation has emerged in the context of several different problems in
economics. In contexts where agents have private information, the added restrictions take
the form of incentive compatibility constraints. Many applications of this methodology are
interested in contracts or mechanisms that are not competitive equilibria with price taking
agents, but Prescott and Townsend (1984) show that the solution to this kind of
constrained maximization problem can abe decentralized as a price taking equﬂibrium if one
extends the set of goods that are allowed in the model. In a model with differentiated
commodities, Hart (1980) observed that an equilibrium might not generate the correct
number of different types of goods, but taking the set of goods that are produced as a given
constraint, the equilibrium will pfoduce the optimal amount of each good that is produced.
In this case, if one knew the set of goods that would be produced in equilibrium, one could
calculate equilibrium quantities by writing down the problem of niaximizing welfare
subject to the given set of goods that can be produced and consumed. In dynamic models,
this kind of approach was implicitly used by Arrow (1962) in a model with externalities,
and by Brock (1975) in a model with money demand and inflation which acts like a tax on
money holdings. Brock (1977) also considered a growth model with pollution externalities.
No doubt, other e%amples of this kind could be cited.

What is important about this observation, is that it is operational. It describes a
prdcedure that can actually be implemented to solve for equilibria in a way that is
potentially as simple as the phase plane analysis given in the last section, and can
ultimately form the basis for empirical work. To make this point, it is useful to start once
again with a simple example, one that has some relevance for issues first raised by Alfred
Marshall (1961) about increasing returns that were external to individual firms.

Extend the two period period model P1 to allow for an externality associated
with the accumulation of capital. Let the total number of identical firms in the economy
be N, where N is assumed to be large. Let kj be t-he capital held by firm j andlet X

be the aggregate stock of capital,



46

N
K= 2 k17
=

To capture the external effect that total capital has on the production possibilities of firm
j, write production as f(kj,lC). The rationale for this formulation is based on the public
goood character of knowledge. Suppose that new physiéal capital and new knowledge or
inventions are produced in fixed proportions so that X is an index not only of the
aggregate stock of physical capital, but also the aggregate stock of public knowledge that
any firm can copy and take advantage of. Because each firm is only a vanishingly small
part of the total economy, it chooses kj to maximize profits taking the aggregate stock X
as given.

As always, a competitive equilibrium with externalities for this economy can be
stated in terms of the problem of a representative consumer and the problem of a
representative firm. The problem of the consumer is exactly the same as the problem

PC(p,7) given previously:

PC(p,7) | max_u(ey) + Bu(cy)
ceR
+

s.t. T+ py(e-cy) —Pgly 2 0.

The problem of the firm differs. Now PF(p,X) depends parametrically on the aggregate

stock X as well as on prices p:

17The use of a script letter X to distinguish aggregate quantities from firm quantities is
unavoidable because upper case and lower case letters have already been used to indicate
the distinction between total capital for a firm K and capital per worker k.
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PF(p,X) T(pk) = r}x{lg&g Pof(k,K)—D k.
+

For notational convenience, we will continue to maintain the assumption that the number
of consumers (and workers) is same as the number of firms. Under this assumption, the
market clearing conditioné for goods 1 and 2 are e-c{-k 20, f(k,IC)—c2 > 0, where e
denotes the per capita endowment of period 1 resources. The equilibrium expression for

the profits is « = II(p,k). To these conditions is added the equilibrium condition

N
L= 2 kj' Formally, a competitive equilibrium with externalities will be a price
=1

quantity pair such that the quantities solve the maximization problems given the prices
and the aggregate variable X, and such that all the equilibrium conditions are satisfied.

This notion of an equilibrium has been described taking the set of firms as given
and assuming that the firms earn profits. This simplifies the exposition, but is not
essential. The production function f(k,X) could represent the outkput per worker for a firm
with an underlying technology F(K,L,X) that exhibits constant returns to scale in the
variables K and L holding X fixed. Then the profits can be reinterpreted as payments
" to workers, and free entry of firms is allowed. Since the scale and nufnber of firms is
indeterminat'e; it is harmless to assume that the number of ﬁrms is equal to t_he number of
workers, and that they all produce at the same scale. Under this interpretation, X
remains the total stock of capital in the economy.

Relying on the intuition described in the beginning of this section, consider an
aggregate maximization problem that is restricted in the sense that a given level of

aggregate capital (and knowledge) X is imposed. For each assumed level of £, this defines

a different problem, so the aggregate problem, like the problems of the consumer and firm,
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is actually a parametric family of problems:

P6(X) clr,niz,k u(cy) + Bu(cy)

8.t. e—cl—k >0,

f(k,K)-c, 2 0.

2
Associated with P6(K) there is a Lagrangian L6, As before, let x denote the triple

X = (cl,cg,k) SO we can write:
L6 (x,A) = u(cy) + Bufcy) + A le-c;-k] + Ao[E(k,K)-Cq).

As long as f is a concave function of its first argument for each fixed X, this is a concave
problem and the Kuhn-Tucker theorem will apply. By exactly the same argument as for
Proposition 1, it will follow that any solution % to P6(X) will have associated with it
prices A such that (%,A) is a saddle point of L6y, and therefore solves the consumer's

~ problem and the ﬁrm's problem at prices \. This does not ensure that it is a competitive

. equilibrium with externalities for this economy because the equilibrium condition Nk = £
may‘ not be satisfied. However, it is a simple matter to pick X so that this condition holds

~as well.
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To see why this is so, consider the conditions C1, C2, C3 which characterize the

saddle point of the Lagrangian associated with the problem P6(X).

Cl: i) u’(xl) =M

ii) fu’(xe) = Aq

i) A) = Alef(xg,lC)
C2: A 20, e-c;-k 2 0, f(k,IC)—022 0
CS: Al[e—cl—k] =0, )\Q[f(k,lC)—c2] = 0.
Assuming that the utility function u(-) is strictly increasing, the multipliers 5‘i will be
positive. Then the constraints on the quantities must be binding; and can therefore be

substituted into Cl:i) to yield

‘(e—k
= = D, f(k,K).
At this point, the equilibrium condition X = Nk can be imposed by a simple substitution.

All that remains is to find a value k that solves the equation

e k — D f(k,NK). (14)
Working back from the solution k, it is easy to derive the quantities él, 62, and £ = Nk,
and the priées 5\1 and ;\2.

The fact that this does not give the socially optimal quantities can be clearly seen
from equation (14). The social optimum would recognize the true marginal rate of
transformation between periods le(k,Nk) + ND,f(k,Nk). In the equilibrium, each firm

has no incentive to take account of the second term. It reflects the positive effect that
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accumulation of its capital and knowledge has on the production possibilities of all other
firms. |

The general procedure that this illustrates is to start with a statement of a
parametric family of restricted aggregate maximization problems. The parameters in this
problem may be variables that are endogenously determined in the equilibriurr;, but for
calculating the equilibrium, they are treated as fixed when taking first order conditions.
Provided that this problem is concave for fixed values of the parameters, the Kuhn-Tucker
theorem will apply. Derive the conditions from the theorem that characterize the
quantities and shadow prices, and then substitute in the expression for the parameters of-
the problem in terms of the endogenous quantities. The order here is essential; one must
take derivatives first, then substitute in for the parameters. By the arguments of
Propositio.n 1, the quantities and prices that solve the resulting equations will form a sub-
optimal competitive equilibrium.

The idea of inserting an equilibrium condition into a first order condition and
then solving for quantities is an old trick in static tax analysis. What is surprising about
t’he.analysis here is the fact that it works even‘if f is not a concave function. For
example, f could be an increasing returns function f(k,X) = k%" with a+p> 1. All
that is required is o < 1. Even more surprising, it is as easy t0 do in an infinite horizon
dynamic model as in a static model.

To see this, consider problem P7, an extension of the Cass model with
productive externalities. Suppose that production for each of N firms takes the form
F(K,L,X) where F exhibits constant returns to scale in own capital K and labor L
taking the aggregate K as given. Normalizing by L in the usual way, define output per
worker f(k,X) = F(k,1,k), and assume for convenience that the number of firms is equal to

the number of workers, which is equal to the number of consumers and is held constant.
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Let K:[0,0) — R denote a path for aggregate capital and knowledge and define the

restricted social planning problem as

P7(k) max f°° u(c(t)) e Ptat

st k(t) = fk(t),k(t)]—c(t) for all £20
k(t) >0 for all 0.

The analysis here is exactly as for the two period problem. The conditions for
the saddle point are the Hamiltonian equations. Using the current valued formulation,

define

H(k,0,) = max u(c) - 6[f(k,X)-c].
c

The differential equations are then

b(t) = p6— D H(k(t),8(t),K(t))
k(t) = DoH(k(t),8(t),K(t))-

This is not yet an autonomous system that can be studied in the phase plane because of the
dependence on the exogenously given path K(t). But after the substitution of Nk(t) for
K(t) it is autonomous.18 For specific functional forms, the phase plane can immediately be
characterized. A

The easiest form of utility to work with is always u(c) = In(c) since in this case

the maximum over ¢ in the definition of the current valued Hamiltonian yields the first

18Gince the number of workers is assumed to be equal to the number of firms, there is one
worker per firm and the equilibrium condition is still £ = Nk.
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order condition 1/c = f. Let F have the log-linear form F(K,L,K) = KL% so f
becomes f(k,X) = k%", Inserting these into the Hamiltonian, differentiating to get the

differential equations for k and 6, then substituting K(t) = Nk(t) gives

_g_ _ aNnkmn—l’
k=N
If a+n isless than 1, this system has the same saddle point dynamics as the Cass model.
As before, growth stops when the private marginal productivity of capital is equai to the
discount rate; le(k,Nk) = p is the equation of the 9 =0 isocline, which is analogous to
the equation f/(k) = p for the model with no externalities. This shows that increasing
returns of the form F(X,L,Nk) = K&Llwcy(Nk)?7 are not by themselves enough to sustain
persistent growth. What is needed is that the private marginal product le(k,IC) ‘ot fall
too rapidly as k grows. Accordingly, the dynamics change when o+7 equals 1. When
this is true, this economy will exhibit unceasing growth provided that aN" is greater than
p. In the phase plane, there is no 9 = 0 isocline, hence no stationary point.

In fact, it is possible to explicitly solve the equations for this model and show
'that growth takes place at a constant rate. Since -#/6 > 0 is equal to the constant
g = aN"-p, we can write 6(t) = 0(0)e_gt. Then the expression for ¢ is c(t) = 6)(0)_16gt

and the equation for k becomes
k = N - g(0) LB,

Since this is a linear differential equation, its solution can be found in any text book.
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Using the fact that k(0) is given, the solution is

o) = O] 8 + (ko) — oy N1

The undetermined value 6(0) in this expression is determined by imposing the

transversality condition at infinity, lim e t6’(13)1{(’5) = 0. Since 6(t) grows like e_gt,

t-w

e Pt f(t) times the first term in the expression for k goes to zero for any choice of 6(0).

Since g-p = aN" the second term goes to zero only if
-1
6(0) = [k(0)(N"g)] .

It follows that both k and ¢ grow at the rate g = le(k,Nk)—p = aN'l-p.
- In the equilibrium represented by this solution, interest rates are constant,

r= le(k,Nk) = p+g. If we normalize initial capital so that X(0) = 1, exponential growth
in £ implies production possibilities for individual firms at each point in time of the form

egtKaLl"a. The wage rate grows at the the rate g, and labor and capital receive a
constant share 1—a of national income. The share of capital could be made to fall, and
the share of labor made to raise if the part of output due to private choices KL were
replaced by a constant elasticity production function.

It appears that this economy is observationally equivalent to one with constant
exogenous technological change at the rate g, but they respond differently to interventions.
It is best thought of as a model of endogenous technological change, and as such, the rate of
technological change will be influenced by any intervention. If a proportional tax 7 on
output is introduced, this will change the incentives to invest, which will affect not only

k(t) but also the aggregate path K(t). In the exogenous technological change model, the

analog of K(t) is exogenous and hence does not respond to the tax. The combined effect



54

here is to reduce the rate of growth from aN"-p to (1-7) aN"-p. For large enough values
of the tax rate, growth can even stop or reverse.

In this informal analysis, no explicit account is taken of the tax revenue, as if it
were simply thrown away. The results are the same if one does the more sensible balanced
budget tax exercise where the proceeds are rebated to consumers. The requires only an
additional parameter in the restricted aggregate maximization problem. Let P8(L,T)
denote a problem that depends on an exogenously specified path for aggregate capital X(t)

and a path of per capita transfers T(t) received by consumers:

PS(K,T) max fo ® yle(t)+T(t)] e Phdt

st k(t) = (1=n)fk(t),k(t)]—c(t) for all t>20
k(t) > 0 for all £>0. |

In addition to the previous equilibrium condition X(t) = Nk(t), this problem requires the
balanced budget condition 7f(k(t),Nk(t)) = T(t). Proceeding as above, define a current

- valued Hamiltonian, and take derivatives to get the differential equations

=0 - eIk ),
k= (1-r)k%" - - + T(1).

After imposing the equilibrium conditions, it follows as before that the growth rate is
a(1—r)N"-p.

The difference between exogenous and endogenous technological change is of
more than academic interest. For example, an analyses of the tax reform act of 1986
conducted in the context of a model with exogenous technological change, suggests that

reductions in tax distortions between the household and corporate sectors and between
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short lived and long lived types of capital could lead to efficiency gains on the order of 1%
of GNP per year. (Jorgenson, 1987) Since growth in this model is exogenous, removing
the investment tax credit and increasing the capital gains tax can have no effect on the
rate of growth of labor augmenting technological progress, estimated here to be on the
order of 2% per year. It therefore has no léng—run effect on the rate of growth of capital.
For comparison, suppose that the rate of growth of the technology in this model is
endogenous, and that the change in the investment tax credit or the capital gains rate léads
to changes in research and development and to venture capital availability that cause a
reduction of 0.1% in the rate of growth of technology from 2% per year to 1.9% per‘
vear. In an equilibrium where the real interest is 5% and aggregate GNP grows at 3% per
yearl (roughly the figures used by Jorgenson), the present discounted value of future GNP is
o—_(lj‘i‘(j = 50 times current GNP. A increase in GNP of 1% in all future pefiods due to
reduced tax distortions would give wealth of 01—0% = 50.5 times pre—teform GNP, an

increase in wealth worth half a year's GNP. But at the pre-reform interest rates, a fall in

the growth of output from 3.0% to 2.9% reduces the present value of future GNP to

1.01
0.021

nearly two years worth of GNP. As one should have suspected, even small growth effects

= 48.1 times pre—reform GNP, a loss compared to pre—tax reform situation of -

can swamp large increases in levels.

A reduction in the growth rate of 0.1% is quite significant from an economic
point of view, but it is quite small compared to range of variation in output growth rates
observed in the data, even among apparently similar industrialized nations. Compare for
example the behavior of the UK with that of J apaﬁ, or even of France, in the post-war
period as indicated in Table 3 and Figure 4.) Something causes these differences, and if

policy choices account for even a small fraction of the variation, the indirect effects of

19The 3% growth rate for output and capital follows from a growth rate of 2% per year in
labor augmenting technological change and a growth rate of 1% per year in total quality
adjusted labor.
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policy on growth rates may completely dominate the direct effects that we can quantify in
an exercise with an exogenous growth model.

One can argue about many of the specifics of this particular model of endogenous
technology, but the point here is that methods are available for treating this kind of issue.
At the risk of repetition, it is useful to emphasize how useful the methodology aoutlined here
is. It gives price paths for interest rates and wages; allows firms and consumers to make
their investment and savings decisions at every point based either on expectations about
the future or equivalently based on the entire array of securitiés returns that can be
observed; lets the rate of what looks like exogenous technological change actually depend.
on endogenous investment decisions, and assumes that individuals understand how this
dependence operates; describes an equilibrium that is not Pareto optimal and thérefore is
not the solution to a simple Pareto optimization problem; gives an explicit dynamic
formulation of one of Marshall's examples of external increasing returns; and permits a
balanced budget analysis of taxes with both direct effects on individual choices and indirect
effects on the rate of knowledge creation or technological change.

Finally, it is useful to point out why the full machinery of the Kuhn-Tucker
theorem is important in this approach to sub—optimal equilibria, and why the specialized
tools of dynamic programming and the Bellman equation do not readily apply. The
essence of this approach is the ability to specify an aggregate maximization problem that
depends on endogenous quantities. In dynamic models, quantities are naturally functions
of time, so the statement of the problem must depend on an entire path like X(t) or T(t).
This induces a form of exogenous time dependence into the problem that dynamic

programming is not well set up to handle.
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Section IV. Recent Models of Growth

The models of growth that have been proposed in the last few years, like all
general equilibrium models, can be characterized in terms of the assumptions they make on
preferences, the technology, and the equilibrium concept. In all but one case, the
equilibrium concept is a complete markets competitive equilibrium, or a complete markets
competitive equilibrium with externalities. The exception, the Marshall-Romer model,
uses a notion of monopolistic competition, but its dynamic behavior is identical with of a
model of competitive equilibrium with externalities.

In terms of the technology, all of the models assume the existence of an aggregate
production function F(-) that depends on a subset of the following list of inputs: services
from physical capital K, labor services L from a person with a mihimal level of schooling
and training, services from additional human capital H, and measure of the technology or
state of the art A. This production function can exhibit increasing returns or constant
returns. In all cases except the Marshall-Romer model, F(-) can be thought of as a
~ description of the.t,echnology available to a representative firm. In the exceptional case,
F(:).isa reduced'form that reflects elements of the technology and of the market structure
relating final goods producers and intermediate goods producers.

With the exception of the Barro-Becker model, all of the models use standard
discounted Ramsey preferences and assume that the population growth rate is exogenously
given. Becker and Barro extend the specification to give parents preferences over both

consumption per child and the number of children.

V.1 The Arrow-Romer Model
The model of endogenous technological change described in the last section is a

special case of the model in Romer (1983) and (1986). The technology depends on physical
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~capital K, physical labor L, and technology A. The production function F(K,L,A)
exhibits constant returns in K and L taken alone, and therefore exhibits increasing
returns when all three variables are taken together. Equilibrium is possible because K
and L are the only factors that receive explicit compensation; A is like a public good.
Movements in A are induced by assuming that private investments in capital induce
increases in public knowledge A. For simplicity, the movements in A are assumed to
take place one for one with movements in K, so the analysis can concentrate on a model
with a single state variable.20

Previous attempts at making technological change endogenous were made during
the 1960's, but the presence of increasing returns always limited progress in the theory.
(See for example Shell 1967, Phelps, 1966, von Weizsacker, 1966.) The issue of aggregate
increasing returns seems unavoidable in any discussion of endogenous technological change
if one interprets technology in terms of the variable A: disembodied knowledge about
* things like mathematics, physics, chemistry, engineering, or manufacturing processes, that
s contained in books, designs, blueprints, copyrights, patents, etc. These kinds of
knowledge can be used repeatedly at essentially zero marginal cost, and in this sense, A is
quite different from the skills H that are embodied in workers. A clear example of goods
A and H that serve the same function is to think of H as the skills of an expert, A asa
computer programmed expert system that makes the same decisions. The expert system is

expensive to create, but essentially costless to replicate.

20The suggestion that innovation might move together with investment in physical capital
is not entirely hypothetical. Schmoookler (1966) presents detailed evidence from a several
industries that patents are closely correlated with investment in physical capital. The
patents follow investment with a lag and the number of patents in technologically
unrelated areas, e.g. track and non—track patents for railroads, show the same
co—movement with physical investment. These pieces of evidence suggest that the
causation may not merely run from exogenous discoveries to new invesment.
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If one acknowledges the existence of this kind of input, increasing returns follows
directly. One should be able to double output by doubling all tangible inputs and
replicating all existing productive activities with no change in the underlying knowledge
A. Once one allows A to vary as well, there must be increasing returns to scale. Whether
or not it is actually possible to double all factors, this argument shows that it is
mathematically impossible for all factors of production to be paid their marginal products.
With increasing returns, this would more than exhaust total output. Models constructed
during the 1960's resolved this by assuming that A came from the sky or perhaps from the
National Science Foundation, and therefore did not need to be compensated in the market.
The suggestion here is that A is a side effect of investment, but still does not receive
~ direct compensation. Compared to the exogenous descriptions, this makes accumulation of
A responsive to economic incentives. An alternative that accomplishes the same thing is
explored in section IV.5 below; it supposes that A is compensated out of monopoly
profits.

Arrow (1962) used the formulation considered here, assuming that improvements
in the aggregate technology are the result of investment in physical capital.?! He attributes
* the inspiration to Kaldor (1961). However, Arrow restricts attention to the case where the
aggregate elaéﬁicity of output with respect to capital and knéwledge (n+ain the example
worked out above) is less than one. As a result, there is still a steady state. Arrow keeps
growth going by adding exogenous population growth, but this is not completely
satisfactory. Population growth becomes the only driving force in the model, and plays a
role analogous to exogenous technical change in the Solow model. The growth rate of per

capita income increases directly with the growth rate of the population and goes to zero if

21Arrow added an irrelevant fixed coefficients technology on top of his external effect. The
result is a paper that is difficult to read, and easy to misunderstand. Many economists
seem to have the mistaken impression that this paper is concerned with on the job learning-
by-doing by workers. Levhari (1966,1967) and especially Sheshinski (1967) offered simpler
versions of Arrow's analysis that captured the essentials, but these papers seem to have
received relatively little attention.
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population growth goes to zero. Neither savings rates, nor taxes can influence the growth
rate. A permanent increase in the share of output devoted to investment, arising for
whatever reason, has no permanent effect on the rate of growth.

Arrow's restriction to steady state analysis seems to have been made largely for
technical reasons. One of the issues is how to make sure that the integral defined over
[0,0) in the objective function converges. If growth took place at a rate that was too fast,
this could diverge. The second issue has to do with the equilibrium theory for the model.
Arrow gives heuristic arguments about how the quantities he derives can be supported as a
competitive equilibrium, but does so only for steady state gfowth p‘aths. Thus, for
example, the interest rate he derives is a number rather than a function of time. Brock’
(1975) and (1977) contain analyses of dynamic models with inflation and pollution
distortions respectively, and these papers apply the equilibrium analysis to the entire path
for the economy, not just to the steady state. The equilibrium analysis is heuristic and
does not consider increasing returns and endogenous growth. Romer (1983) offered the first
general formulation of the equilibrium theory behind this kind of model, with a statement
- and proof of a result like Proposition 1 above for dynamic models.

Romer (1983) and (1986) actually go beyond the suggestion given above that the
" exponents « and 7 in the aggregate production function k %" can sum to 1. Under a
modification of the technology for converting consumption goods into investment goods,
these papers show how a sum greater than 1 can be accommodated. In this case, explicit
solutions are not possible, but the equilibrium can be studied using phase plane analysis.
The rate of growth can be monotonically increasing over time as opposed to decreasing, as
it must ultimately be when a+7 is less than 1, or constant, as is the tendency when the
sum is equal to 1. In this sense, the model can capture even the long-run trend behavior of
growth rates demonstrated in Tables 1 and 2. The analysis also shows that when the
sum is greater than 1, the resulting increasing marginal productivity of capital can

overturn standard convergence results. Capital and investment might flow from countries
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with low per capita income and capital to more developed countries.

V.2 The Uzawd—LucaS Model

Using a different model, Lucas (1988) makes a similar, but empirically more
relevant point about the effects of increasing returns on flows between countries.

Incréasing returns can lead to pressure for migration even if there is full mobility of capital
between countries.22 The basic model depends on the variables K and H, and builds on an
earlier model of Uzawa (1965).23 This kind of model can be thought of as allowing for
physical labor L as well as human capital H provided these two inputs are good
substitutes. In particular, if they are perfect substitutes, H can simply be taken to be the
sum of tangible and intangible human capital.

The input H resembles physical capital more closely than it does labor L or
the technology A. In contrast to L, it is possible to increase H by investment, just as it
is possible to increase K. In contrast to A, if one wants to replicate a productive activity,
it is necessary to incur a cost to produce more H (i.e. train additional workers). The
model is therefore a two capital good model, and it specifies two different sectors where
investment can take place. The key sector for determining the rate of growth is the sector
for producing new human capital. The specific technology assumed for the accumulation of
H is linear in H, and this simplifies the analysis a great deal. If H1 is the amount of

human capital devoted to the production of consumption goods and H2 is the amount of

22 ucas's paper actually considers two different models. The second is discussed below.

23zawa's original interpretation of his model was one with endogenous accumulation of
technolgy A Ttather than of human capital H. Lucas proposed the interpretation used
here in terms of human capital.
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human capital devoted to the production of new human capital, then H is given by
H = 8,

Consumption goods and physical capital are produced in the first sec)tor
according to a production function F(K,Hl). In the Uzawa formulation, this function
exhibits constant returns to scale. Lucas suggests that there are increasing returns to scale,
with external effects that are associated with human capital H. By analogy with the
previous formulation, output can be written in the form F(K,H,¥), where in equilibrium,
the aggregate stock of human capital ¥ is given by ¥(t) = NH(t). The externalities in the
Arrow-Romer model arise from an indirect link between production of physical capital X
and the teéhnology A, which can be copied and used by all. In contrast, Lucas emphasizes
direct interaction effects of human capital, of the kind that would arise from conversations
between colleagues and co-workers. In his formulation of the model, Lucas makes the
externality depend on the average level of human capital rather than the total amount as
uséd here, but_ as long as the population is held constant, these specifications are
equivalent.

To write down the aggregate maximization problem for this economy, it is
notationally convenient to define a variable, u in Lucas's notation, that is equal to the
fraction of total human capital that is devoted to the production of physical goods. Thus,

u(t) = H(t)1 JH(t). The relevant parametric maximization problem for calculating
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equilibria in this model is

PY(%) max fO ® y(c(t)) e Pt

s.t. K(t) = FK(t),u(t)H(t),¥(t))—c(t),
(1) = by,
H, (1) + H(t)y < H(t),
K(t) > 0.

O _ u(t)>

Calculating an equilibrium proceeds just as for the previous models. Taking the path for
H(t) as given, write down the Hamiltonian for this system, which will depend on the two
capital stocks or state variables K and H, and two multipliers or co-state variables. The
maximum in the definition of the Hamiltonian will be over the choice of the control
variables c(t) and u(t). Differentiate to get Hamiltonian equations, then substitute in
the equilibrium condition ¥(t) = NH(t).

| This model does generate unbounded growth, but does not rely on the aggregate
increasing returns to do so. In Uzawa's original formulation of the model with no
increasing returns and no external effects, there is also unbounded growth. What makes
this possible are the assumptions of constant returns in the investment sector, combined
wifh the aséumption that all inputs can be accumulated so that there are no fixed factors.
The form of constant returns in the human capital sector is particularly simple, H= éHQ.
This equation obviously exhibits no dinﬁrﬁshing returns, and one accumulation equation of
this type is enough to keep things going. If H grows without bound, its effect on the
output equation is like the effect of exogenous technological change in the Solow model or
exogenous population growth in the Arrow model; it raises the marginal productivity of

physical capital over time, inducing physical capital accumulation. The asymptotic
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dynamics are essentially determined by the linearity of H in terms of H. Combined with
constant elasticity utility functions, this makes the model behave like the other models we
have seen with linear production and constant elasticity utility. If the model starts from
the correct ratio of K to H, it will grow at a constant rate forever. Starting from a
different ratio of K to H will give transitory dynamics associated with the adjustment of
the ratio towards the value consistent with aggregate growth at a constant rate. Growth
approaches the constant rate asymptotically.

All of these are features that the Lucas model shares in common with the Uzawa
model. What the presence of increasing returns in the production of physical goods does is
change the implications of the model for wages. In the Uzawa model, K and H grow at
the same rate. There is no deepening of physical capital relative to human capital, so .the
rental rate on both types of capifal is constant. Payments per worker increase because
human capital per worker increases, but the quality adjusted wage, for example the wage of
a high school educated male with no work force experience, will be constant over time.

‘Once increasing returns are added, this is no longer true. The ratio of K to H will
increase over time, with something resembling capital deepening taking place. Quality
adjusted wages will increase over time.

The cross-sectional implication of this model is that wages will be higher in a
more developed country even if there is free capital mobility. To see why, consider two

countries, and suppose that aggregate output takes the form
P(K,H ) = KPR,

Here, K% and Hl—a represent the usual private marginal productivities of non—human
and human capital; %" and %¥ represent possible external effects. Lucas focuses on the
case of human capital externalities, but the point here is symmetric in the arguments H

and K.
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Let K Hb’ K . H s denote the quantities of inputs in a big country b and a

b7
small country s. If interest rates are equalized across the two countries, this implies

that

ntoa-lyl—oty _ g0+t a—lyl-otyp

aKb b - S )

In a model with constant returns, i.e. where production is homogeneous of degree 1, the
interest rate is homogeneous of degree 0; an increase in the scale of both arguments K and
H leaves the interest rate unchanged. Since the production function here is homogeneous
of degree 1+7n+¢ > 1, the interest rate is homogeneous of degree 7+¢ > 0. It follows that
the ratio of K to H cannot be the same in the two countries. If it were, the interest rate

would be higher in the big country. Rather, interest rate equalization implies

Ky Ks
»:re >

But from this, it follows that wages in the big country will be higher for two reasons. The
~ scale effect increases wages because the wage rate will also be homogeneous of degree

n+e > 0. The higher ratio of non—human capital to human capltal in the b1g country will
raise the wage even more. All that matters for this argument is that increasing returns be
present, that is, that oneof n or ¢ be bigger than 0 and that n+a and ¢+l-o be less
than 1. It does not matter which good is associated with the positive externality.

In the neoclassical model, differences in income between different countries must
be a reflection of differences in the capital-output ratio, which implies large differences in‘
the rates of return to capital across countries. To emphasize just how large, suppose that
the coefficient on capital is .4 and consider a country in Figure 5 with per capita income

of one tenth that in the United States. Using the formula y = k'4, it follows that capital
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in the United States must be larger by a factor 102'5 and interest rates must be lower by
a factor 1017 Tt would take an unbelievably high tax rate on foreign capital or
probability of expropriation in the less developed country for investment in the United
States to be sensible if this were the only reason for the income differential. Going outside
of the model proper, the income differential might be a reflection of differences in the
technology in use in the two countries, but in this case there would seem to be comparable
profits from exporting the technology to the small country. In this kind of model, the
persistence of large income differentials seems to imply that there are large, persistent,
unexploited profit opportunities.

The Uzawa model explains income differences with no unexploited profit
opportunities.' Low income countries have less of both K and H, but in the same ratio-as
high income countries. In a sense this goes too far. There is little evidence of
overwhelming barriers to capital flows, but there are binding constraints on migration.
The Lucas model reaches an intermediate conclusion. Rates of return to capital can be
equalized across countries, but if they are, payments to human capital will be higher in the
~ high income country, and workers would be better off if they could move there.

If increasing returns are present and if barriers to flows of both capital and labor
* are removed, both capital and workers would move to the high income region. This may
seern implausible at first, until one contemplates the distribution of capital and workers
within a country where no barriers are present. In fact, they are not spread evenly across
the available land, as a constant returns model would imply. As Lucas emphasizes, they
are highly concentrated in a few locations, cities. In less developed countries where
communication and transportation are costly, this process of concentration in just a few
locations or even a single location is even more pronounced than it is in developed

countries.
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IV.3 The King-Rebelo Model

Following up on Lucas's interpretation of the Uzawa model in terms of human
capital, King and Rebelo (1988) argue that the version of this model with no increasing
returns or externalities is of interest on its own. They focus on the variables H and K
and assume that F(H,K) exhibits increasing returns. This is useful, they argue, because a
stochastic version provides a tractable framework for analyzing aggregate time series data
that can accommodate both short-run business cycle variation and long-run trend behavior.
Virtually all other theoretical frameworks for data analysis do not treat one of these
sources of variation in the data seriously. Traditional business cycle models remove the
trend behavior by some ad hoc means. Growth models average out the business cycle
variation. |

The full force of their argument is apparently directed at macroeconomics. For
the study of growth theory, throwing out the high frequency variation in the data may be
inefficient, but there is little evidence that how one does this will prejudice the conclusions
one draws. Regardless of how one chooses to smooth the data, the long-trends are clear. In
contrast, the inferences for business cycle frequencies are more delicate. The answers to
important questions about business cycles are often highly sensitive to how one de-trends
the time series. Moreover, most of the variation in aggregate data (measured in the sense
of the magnitude of the matrix X‘X in a regression equation) comes from the trend
behavior of the series. Throwing away the trends may sacrifice more information that
throwing away the high frequencies.

One of the attractive properties that King and Rebelo emphasize about a
stochastic version of the Uzawa model is that it can generate aggregate time series that
have a unit root, i.e. are stationary in first differences. This is in contrast to the result for
the Solow model with exogenoué exponential technological change, in which aggregate

series are stationary after exponential detrending. Now these two alternative methods for
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detrending data can be treated symmetrically from a theoretical point of view as well as
from an econometric point of view.

Ultimately, it must be true that economists should aim for a single aggregate
model that can explain both business cycles and growth, and Rebelo and King provide a
useful challenge to those who believe that this completely infeasible given the (;,xisting
tools. The issue is no longer whether this is possible, but rather whether it is yet time to
mount an attack on the basic questions in macroeconomics and growth theory on a
combined front or whether it will be more productive to continue the fights on two
separate fronts. The costs and benefits are clear enough. From a rigorous point of view,-
the battles must ultimately converge. From a practical point of view, combining the two
endeavors t00 soon risks diverting our attention away from growth models and macro
models that have rich implications but are harder to work with. Since economics is
fortunate enough to lack a central command structure, we will no doubt continue to see

both styles of work.
IV.4 The Krugman-Lucas Model

The second model in the Lucas paper is very similar to a model that was first
worked out by Paul Krugman (1988). These models place less emphasis on the details of
growth and more on the interactidn of growth with trade. The key point here is that
increasing returns can dramatically overturn the usual presumptions about the positive and
normative effects of trade.

As described by Krugman, the model is stated in terms of labor L and the
technology A, and assumes that aggregate production F(L,A) exhibits increasing returns.
Like the Arrow-Romer model, the benefits of increases in A are enjoyed by all, so the

increasing returns are external. Since there is no capital, A cannot be a function of
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investment. Here, it is assumed to depend on previous output, which is equivalent to
making it depend on labor inputs. The twist on the model here is that there are many
possible goods than can be produced, each with its own level of the technology Ai' For
simplicity, output of good 1 is y;, = AiLi’ and the technological coefficient Ai evolves

according to a linear differential equation in previous production:

A = -by;
Lucas uses an equivalent formulatioh in terms of labor L and the human capital H.
Output of good i depends on the amount of human capital (%/L;) per worker in the i
industry and multiplied by the amount of labor devoted to production of this good.

Human capital ¥ grows with previous output, but the effects are purely external. In
either form, this captures what most economists think of when they describe learning by
doing.

“The implications for trade and welfare follow from the fact that the decisions
about production made in the market will depend only on the relative magnitudes of the
input coefﬁcients,;-Ai or ¥ / L, in different countries, with no regard for the leaning or -
growth coefficients .61. Suppose for simplicity that there are two goods. The good in which
a country has cost advantage relative to a trading partner may not be the good with the
high rate of learning, i.e. a large 5i. Under appropriate assumptions about preferences, it
will be better to be in an industry with rapid learning and rapidly increasing output. In
this case, opening a country to trade, which can lead to specialization in the industry with
a slow rate of learning, can make a country worse off than it would be under autarky,

where domestic production of both kinds of goods will take place.

24Krugman actually allows Ai in one country to depend on output in the foreign country

as well as in the home country so there are international spillovers from the learning by
doing. So long as domestic output has a stronger effect than foreign output, the qualitative
results described here will hold.
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This model has an obvious appeal at a time of increased tension over patterns of
trade. It also suggests the direction that models of growth must pursue if they are to have
any thing to say about growth and trade. There must be more than one good in a model,
and there must be some reason to trade. The model of inéreasing returns, dynamicé, and
external effects used here is simple and effective for pointing out the potential for conflict
that is present if there are are increasing returns, but it needs to be elaborated before it can

address the kinds of questions about issues like private savings and investment.
IV.5 The Romer-Marshall Model

One model that tries to introduce many goods and maintain an explicit dynz;mmic
model of accumulation is Romer'(1987). This model differs from the others that
contemplate increasing returns because it does not rely on external effects to support a
decentralized equilibrium. Rather, it uses a model of monopolistic competition.
.Nonetheless, the dynamic equilibrium can be computed using the safne techniques as for
the externality and tax distortion models.

This model is based on the second of two sources of external economies cited by
Marshall (1961). He suggested that trade among different firms offering unique specialized
goods causes a form of increasing returns that is external to individual firms. The degree of
specialization, or equivalently, the number of different firms that are available at any point
in time or location, is limited by the presence of fixed costs. In this model, these different
goods are assumed to be intermediate inputs into production, and the technology is such
that having more available goods is useful. Surely a large part of what distinguishes Silicon
Valley from a cross-roads in Nebraska is the set of specialized goods and services
immediately available for sale at each point. If you wanted to set up a business to produce
new computer chips, land in Nebraska would be cheaper, but just try to find a firms nearby

with the right equipment for baking, etching and testing silicon
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wafers. If there were no fixed costs, we could imagine little infinitesimal versions of such
firms spread smoothly over the entire surface area of the United States (or the world).

Although Marshall choose to describe specialization in terms of a competitive
equilibrium with externalities, it is now clear that a more rigorous way to capture‘the
effects he had in mind is in a model with fixed costs. In an equilibrium with non-negative
profits, price must exceed marginal cost to be able to recover these fixed costs, so the
model must therefore contemplate some form of market power.

Models of price setting behavior are always more difficult to describe than models |
of price taking behavior, but the basic idea can be described heuristically. Suppose that
output of aggregate consumption goods can be written as a function Y(x,L) that depends
labor L and on a list of intermediate inputs x = {xi}i:0 that is potentially inﬁnitely

long. This input list describes all the inputs that could conceivably be used in production.

One simple form for Y 1is

o

Y(xL) = Ll_az x4,
=1

This functional form is attractive primarily because of its sir.nplicity.25 At any point in time
only a finite number of goods X will be available for use by such firms, but ‘the list of
potential goods is unbounded. Because Y is a constant returns to scale production
function, the industry that buys goods x; and labor and sells final output Y will be a
conventional competitive industry. What is important about this form of production is

that it captures the idea that there is a large and continually growing variety of inputs into

production and that these inputs are not close substitutes. Increasing the quantity of one

95\When this functional form is used to describe preferences, it is commonly referred to as
the Dixit-Stiglitz preferences, based on their article of 1977. A continuous form of these
preferences was used by Joseph Ostroy (1973). For the use of this form as a production

function depending on intermediate inputs, see Ethier (1982).
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input does not reduce the marginal productivity of the others. This implies that increasing
the set of available inputs is always useful. |

To avoid issues about integer constraints, it is easier to take a continuous version
of this kind of production. Thus, suppose that the range of goods can be drawn from the

entire real line, so x(i) is now a function defined on [0,0) and output Y takes the form

Y(x,L) = LI fo ® x()%di.

As before, the set of values for which x(i) is greater than 0 will be finite at any poiﬁt in
time. For simplicity, we can denote this set as an interval [0,M]. To see how output
in_crea,ses with the range of inputs that are available, suppose that all intermediate inpuﬁs
could be produced at a constant cost of 1 measured in terms of forgone resources. Then

7, units of resources could be used to produce an input list x; =7/M for all i between 0

and M. This would yield output
v = LImem(z/m)® = Liezem e

Holding the amount of initial resources Z constant, output could be increased indefinitely
by increasing the range of different specialized inputs that are used.

What keeps this from being relevant is the presence of fixed costs. Producing
new goods is assumed to involve a fixed cost, and this limits the feasible range of goods
that can be produced. Average cost curves will then be U-shaped, and for simplicity are
assumed to be the same for all the different types of inputs. Ultimately, one would like a
formulation that distinguishes new inputs from old inputs, but for the purposes here, it is
easier to preserve the symmetry among the inputs. The fixed costs in the production of the

goods X; mean that the firms supplying these goods will not be price takers. A firm
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selling an intermediate input i will be the only firm producing that input, and will
explicitly face a downward sloping derived demand for the input from the competitive
firms that produce the final output goods. The equilibrium will be one in which entry of
additional firms producing additional intermediate inputs continues until profits for all
firms are zero. Civen some level of the resources Z devoted to the production of
intermediate inputs, the equilibrium will have positive output for a finite range of inputs of
length M. By symmetry, the same quantity X of each of these inputs will be produced.
Given an explicit functional form for the cost function for producing x, the values for M
and % can be explicitly calculated in terms of Z by solving the profit maximization
problem for each of the individual monopolists and then allowing entry until zero profit is
achieved.

Suppose that we choose units so that 1 is the average cost of producing a unit of
x from forgone consumption 7 that is achieved in equilibrium. Then Z, X, and M are

related by X = X, = 1%[ for all i, and output still takes the form
1 o ¢l—amroql—a _
Y=L""M(Z/M)"=L" "Z"M" ". (15)

Now ask what would happen if the quantity of Z were to double. Consideration of the
zero profit conditions shows that twice as many intermediate goods producing firms would
enter, demanding twice as much of the primary resource, with the per firm quantity X and
the average cost I%I left unchanged. (This simple result follows from the additive
separability of the production function in the different intermediate goods.) Thus, the
equilibrium quantity of goods M is proportional to Z. If we choose units such that X is
also equal to 1, then we have M = Z. Thus, the reduced form expression for éggregate
output in terms of the primary resource Z and labor L is

Y =1L""%. (16)
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This equation, describes a kind of reduced form production function. It relates
final output to L and to the amount of resources Z devoted to production of |
intermediate goods. It closely resembles the previous descriptions of aggregate output as
an increasing returns to scale function of capital and labor. This resemblance ;:xtends to
the interpretation of this kind of function in terms of externalities.

Suppose that the good Z merely represents cumulative forgone consumption, ie.
resources that could have been consumed but were instead devoted to prodﬁcing goods X..

1

Thus, the evolution equation for Z is
7Z7=Y —c. . ' (17)
Suppose preferences take the usual discounted form in continuous time.

f°° u(c)e—ptdt.
0

The social planning problem for this economy would be to maximize these preferences
subject to the constraints imposed by equations (16) and (17), but the monopolistically
competitive equilibrium described here will not support this optimum for reasons that
appear to be very similar to those for the equilibrium with externalities. One can show
(and a demonstration takes more than just the kind of hand waving offered here) that in
this equilibrium, agents forgo current consumption in favor of future consumption as if
they take account of the direct effect that this has on butput—that is taking account of the
term Z% in equation (15)—but without taking account of the indirect effect this has on the
range of goods produced M. In this sense, it is is just like the externality model where

agents choose K(t) taking K(t) as given.
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Using this intuition, it is possible to explicitly solve for the dynamic equilibrium
with monopolistic competition. Mathematically, it turns out to be identical to problem
P7 solved in section I1L4. Formally, one chooses a path for Z(t) to maximize utility
taking a path for M(t) as given. One then imposes the equilibrium condition that
M(t) = Z(t). Note that this is just what one would expect from the previously noted result
in Hart (1980). The monopolistically competitive equilibrium may not get the set of goods
that are produced right, but is optimal taking the set of goods as given.

In the equilibrium for this model, growth takes place at a constant exponential
rate. This rate of growth is too low relative to the rate a social planner could achieve and
increases with any intervention that increases savings. The main value of this model is -
that it offers a different interpretation from the previous one relying on growth with
spillovers of knowledge. What keeps growth going and avoids the problem of diminishing
returns to capital accumulation is the continual introduction of new goods. The models
can be related in the sense that the fixed cost in the introduction of a new good could be
research and development costs needed to produce the knowledge A required to make the
physical good. Thus, for producers of final output, one can still think of knowledge as an
input into his pro&uction, but now it comes embodied in new inputs, and can no longer be
copied for free. In the aggregate, savings still has social benefits that are larger than the
private beﬁeﬁts, but here the distortion arises because of departures from price taking, not
from externalities or true spillovers. For comparisons across regions or countries, the
relevaﬁt measure of the area over which one firm's actions affect other firms is no longer
defined by how far knowledge can travel (the effect emphasized in the Arrow-Romer model
and the Krugman version of the learning by doing model), nor by the necessity of direct
contact between co-workers and colleagues (as in the Lucas models). Rather, it is

determined by transportation costs and by how far goods can travel.
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‘This model has immediate implications for trade. Removing barriers to trade
increases total output in each country, and more importantly, raises the returns to savings
and the amount of savings in each country and therefore raises growth rates in each
country. Compared to the learning by doing models of Krugman and Lucas, it is more
suggestive of the gains from trade than the potential for conflict. Nonetheless, if
transportation costs are high, there is still some potential for conflict or rivalry. If all
goods produced anywhere can be traded worldwide, all regions benefit equally from the
introduction of goods in any location. As a result, advanced countries have no natural
advantage over less advanced countries, and the latter should tend to catch up with the
former. On the other hand, if there is a significant range of goods that are t0o expensive to
transport and trade outside of a limited area, developed areas will tend to have a built in
advantage over the less developed areas. Under these circumstances, convergence will fail.
Starting from symmetric positions for two different countries, the country that cén first

take the lead may have a permanent advantage over the other.
V.6. Endogenous Population Growth and Preferences for Children

All of the models so far neglect population growth as an endogenous variable.
The key issue in modeling population growth is how to value the tradeoff between more
goods per person and more people. In the optimal planning literature of the 1960's and
1970's, three different strategies for dealing with the a growing population were suggested.
Let Ct denote aggregate consumption at time t, and let Nt denote the population. A
planner could maximize the discounted sum of a utility function depending on C "
U= Eﬂtu(c t) ignoring the size of the population. Alternatively, the planner could
maximize some notion of average utility, letting u(-) depend per capita consumption
rather than aggregate consumption, U = E‘ﬂtu(ct /N;). Finally, the planner could

maximize some notion of total utility received by individuals, multiplying individual utility
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u(Ct/Nt) by the population N, U = EﬁtNtu(Ct/Nt).

For the qualitative features of a model in which the path for N ¢ is taken as
given, the choice does not matter very much. However, once population growth is allowed
to be endogenous, these different specifications matter a great deal. Consider the thought
experiment of holding aggregate consumption C, constant and freely choosing N, for
each of these specifications of the objective function. In the first case, Ny has no effect.
In the second, it is optimal to drive Nt to zero. In the third, it is optimal to drive Nt to
infinity (so long as u(-) is strictly éoncave.) When production is added to the model,
these conclusions are modified only slightly. The first case becomes like a model of a profit
maximizing slave owner who sells output C » Additional bodies are valuable as long as
they are net producers of output. In the second and third cases, N ¢ will generally tend
towards 0 or o asymptotically. As long as the question of how people should be valued
is put in moral or ethical terms, it is hard to know how to come t0 any resolution of this
question. Maybe population really "ought" to goto 0 or .26

As macroeconomists pushed the equilibrium interpretation of Ramsey‘type
models, emphasizing the idea that the objective function comes from the preferences of
- individuals, the treatment of population growth took on a more scieﬁtiﬁc flavor. Nerlove
(1974) was one of the first economists to suggest that the emerging theory of household
decision making be used to examine choices about fertility, and that this anaiysis could be
applied to questions about long-run growth. Razin and Ben-Zion (1975) gave one of the
first explicit treatments of this approach. To do this, they had to face the same questions
about functional form raised above, but in doing so, they were guided by evidence on the
preferences of parents. Their solution was to take the second form, so that what mattered
was the average utility of future generatibns. By itself, this would imply that families

would choose to have very few children, but they also added the idea that parents get

26See Pichford (1974) for a defense of the second form for the objective function. Meade
(1955) was influential in convincing economists to use the third formulation.
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direct utility from the presence of children. If n, represents the reproduction rate of the

family, the utility Ut of the parental decision making unit at generation t takes the form
_ o7 . . . . :

Uy V(ct,nt) + pU 41 U, 41 18 the utility of each of the children in the next generation.

Thus, consumption ¢, ; per child (or 'really per parental decision making unit) rather

t+
than consumption C 1 is what enters in Vitl Because of the recursive form used here,
this says that parents care about the utility from per capita consumption of all of their

descendants. Solving forward gives an implicit form of preferences for the head of a family

at time 0,
\f
Uy = Zﬁ V(Ct/Nt’nt)'

Population does not go to zero because the direct value of children to parents from the
term n, in V(Ct’nt) offsets the increases in per capit'a quantities that reductions in family
size would permit.

Robert Barro and Gary Becker extend this analysis to allow for the possibility
~ that having more children has value that goes beyond the direct consumption value.
(Barro and Becker, 1986; Becker and Barro, 1987). In effect, they argue that parents may
" care not only about whether or not their children are successful and happy (i.e. have
Cy /N ; large), but also about how many happy and successful children they have. What
they propose is an intermediate solution between case two above, which discounts
u(Ct /Nt)’ and case three, which discounts Ntu(Ct/ Nt)' Suppose, they suggest, that a

parent receives utility of the form

_ X
Ut = V(Ct) + ﬁnt Ut+1’

27A1l of the analysis here abstracts from the fact that it takes two parents to raise a family.
Treating this issue seriously requires more than multiplication by a factor of 2, because
marriage leads to links between different families. For a exploration of the implications of
these links, see Bernheim and Bagwell (1988).
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where Y can lie between the values 0 and 1 which represent the two extreme forms of
the objective function described above. In principle, their formulation can also
accommodate a direct effect of n, on current utility v(-), but much of their analysis
ignores this effect since it is no longer needed to keep n, from going to zero. When these

preferences are solved forward, they imply infinite horizon preferences of the form
U, = ZﬂtNxv(c )
0 t At

where ¢, = C " /N ‘. is per capita consumption. In the special case where the growth rate-of

the population n can be taken to be a constant, this reduces to -

Ug= 3, (BN (cy). | (18)

Both the Barro and Becker and the Razin and Ben-Zion formulations introduce a
positive effect of n,, but it makes a difference how this dependence enters. In the Barro-
Becker preferences, changing the rate of reproduction is mathematically like changing the
discount rate, and this can lead to important effects on growth that are not present in the
Razin and Ben-Zion model. To see this, confront the preferences in equation (18) with a

linear technology that depends only physical capital Kt' Thus,

Restated in per capita terms, this becomes

¢, = pky-nke g | (19)
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If n istreated as a constant, it is a simple matter to use the techniques from
section I1I to maximize the objective (18) subject to the constraint (19). Call this problem

P9, and let L9 denote the associated Lagrangian:

Differentiating this expression with respect to kt’ it follows that the multiplier A will
grow at the rate n/p. The first order condition for per capita consumption becomes

vi(e,) = /\t(ﬂnx)-t. Thus, v/(-) will fall over time and ¢, will increase if the inequality

I-x
D <1
ppo

is satisfied. This suggests that whether or not there is accumulation and vgrowth on a per
capita basis depends on the size of the value n, that now must be determined
endogenously. This effect can lead to an interesting connection between per capita income
growth and population growth. A value of the population growth rate n that is low will
Jead to unlimited accumulation and growth in per capita terms. A value that is too high
will cause dissavings.

This kind of possibility is exploited by Tamura (1988) in a paper that has a more
complicated technology depending on human capital accumulation instead of physical
capital accumulation, and which takes account of the fact that there are important time
costs to raising children. Thus, the larger is the human capital of the parents, the higher is
the cost of a child. In that model, the determination of the population growth rates
{nt} tZO depends on the initial stock of human capital per person. If it is too low, it is

optimal to have high values of n, and therefore and to dissave. If the initial stock of
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~ human capital is above some critical level, it is optimal to have the growth rates n, be
small and to accumulate more and more human capital per capita. Thus, depending on the
initial conditions, one family or country might be stuck in a permanent state of low per
capita income with no per capita income growth and high population growth, while another
might be in an equilibrium with low population growth and high per capita income growth.
This description is suggestive of the observed pattern of cross-sectional variation in
population growth rates and the level of per income (recall Figure 8) and justifies further

work with this form of preferences.



V. Conclusion

The facts described in section II do not exhaust the set of observations that are
relevant for growth; nor do the models described in section IV exhaust the set theoretical
issues that are relevant. For example, observations about the growth rates of individual
firms and industrial organization are directly relevant for any model with increasing
returns or spillovers of information; these observations are modeled in Prescott and Boyd
(1988). Growth driven by the creation of new goods and invention are closely related to
the legal status of patents, issues that are modeled in Judd (1985). Interactions between
product innovation and population size are considered in Schmitz (1986). The fact that
some goods disappear as others are introduced is unquestionably a feature of long run
growth, one that is captured in'Stokey (1986). The fact that goods can be ranked, with
some of them introduced only after their prerequisites are available, is modeled in
Vassilakis (1986).

Even within the restricted set of facts considered in section II, none of the models
described in section IV is dominant. They emphasize different issues, and only after more
‘experience with the models and the data will it become clear what the most important
issues are and how they can be combined into a single model. As they stand, the models
merely suggest how theory can begin to address the questions suggested by these facts:
What explains growth rates that over the course of a century have increased per capita
output by a factor of 10 or more in the most advanced economies in the world? Does a
high rate of investment cause a high rate of growth or vice versa? Why are growth rates so
different in different countries? What influence does international trade have on growth
rates? Why has fertility fallen so dramatically in some countries but not in others? Why

does labor try to move towards capital instead of vice versa? And most important of all,



what policies influence the rate of per capita income growth in a country?

These are the kinds of questions that someone who is not an academic economist
would like to have answers to, and if economists are to earn their keep, they must
ultimately be able to address them. Twenty years ago, very little explicit attention was
given to these questions, but this does not mean that the growth theory of this era was
useless. As suggested in the introduction and in the double entendre in the title, growth
theory was engaged in intellectual capital accumulation. Because of the insights developed
into the connection between equilibrium theory, constrained optimization, and convex
analysis, there now exist tractable general equilibrium models that economists can use for
thinking about these questions and for analyzing data in an attempt to answer them. More
and better models will no doubt follow, as will a consensus about what are the right

ANSWETS.
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Appendix: Proof of Proposition 1.

i) Competitive equilibrium implies saddle point.

Suppose that (%,p) is a competitive equilibrium. Since X is a solution to PC(p,n)
and since the Slater condition holds for this problem, we can apply the necessary conditions
from the Kuhn—Tucker theorem to conclude that there exists some %> 0 such that (%,7)

is a saddle point of the Lagrangian LC for PC(p,n):
LC1(x,7) = U(leXQ) + A+ f)1<e_xl) - pQXQ]-28
Thus, (%,%X,) maximizes LC ;Y(x). Similarly, we can (trivially) invoke the Kuhn-Tucker

theorem for the problem of the firm to conclude that 5(3 maximizes the Lagrangian

LF(p), where
LF(x) = Dof(xq)—D1X3-
- This will still be true if we replace p by p. Since L1(x,7D) = LC(x,7) + 7LF(x), it

follows that X maximizes Llf)(-). Since % minimizes LC,(7) over non—negative

scalars, it follows that

Ar + 131(6—5‘:1) - 1325(2] = 0.

28Implicitly, the function LC1(x,7) depends on the value of p that is used in the
definition of the problem PC1(p). For notational simplicity, this dependence is
- suppressed.



Combined with the fact that

7= 1(p) = yf(%y) — by,
this implies that

:Y[f)g(f(i3)_§(2) + 131(6‘5(1‘5(3)] =0
Since the expression on the left hand contains all the terms from L1(%,3p) containing 7D,

¥ minimizes L1.(-). Then (%,7D) is a saddle point of L1{x,\).

ii) Saddle point implies competitive equilibrium |

Now suppose that (%,p) is a saddle point of L1(x,A). From the definition of L1, the
constraints on the problem must be satisfied. Thus, e—icl —5<3 >0, f(i{3)-5<2 > 0. This
implies that supply in each market will be greater than demand. It remains to show that %
solves PF(p) and PC(p,7), where « = II(p). By the sufficient conditions from the Kuhn-
Tucker theorem it is sufficient to show that there is a value 7 such that (%X,7) is a saddle
 point of LC(x,fy)'.. and that % maximizes LF(+). Since LC(x,1) + LF(x) is equal to

. Ll();,f)), and since LC,y( -} depends on only the first two components of x, whereas LF(+)
depends on only the third component of x, it follows immediately that X maximizes

chy:l(') and that X maximizes LF(-). Since p minimizes Ll.(-),
T+ f’l(e"il) - f’giz = f’g(f(i:;)"iz) + ﬁl(e“il“ig,) =0,

so =1 minimizes LC;{(-). Thus, (%,1) is a saddle point for LC. o



Table 1

Productivity Growth Rates for Leading Countries

Average Annual
Growth Rate of GDP

Leading Country Interval per Man~Hour (%)
Netherlands 1700-1785 -.07
United Kingdom 1785-1820 5

United Kingdom 1820-90 1.4

United States 1890-1970 2.3

Source: Maddison (1982)



Table 2

Increases in Output Per Man-Hour

Output Per Man-Hour

Country ~ Symbol 1870 1979 Ratio
Australia A 1.30 6.5 5
Austria T 43 5.9 14
Belgium B 74 7.3 10
Canada C .64 7.0 11
Denmark D .44 5.3 12
Finland L .29 5.3 18
France F .42 7.1 17
Germany G 43 6.9 16
Italy I .44 5.8 13
Japan J A7 4.4 26
Netherlands N 74 7.5 10
Norway W .40 6.7 17 -
Sweden S 31 6.7 22
Switzerland Z .55 5.1 9
United Kingdom K .80 5.5 7
United States E .70 8.3 12

Source: Maddison (1982). Country symbols are used in Figures 3 and 7.



Table 3
Investment, GDP Growth, and the Capital-Output Ratio

Investment GDP Capital-Output Ratio

Country Share (%) Growth (%) Depreciation Rate
6= .03 0= .04

Japan 31 74 3.0 2.8
Germany 28 4.7 3.7 3.3
Canada 28 4.2 3.9 3.4
Italy 26 4.4 3.6 3.1
France 25 4.2 3.5 3.1
United States 24 3.0 3.9 3.4
United Kingdom 17 2.1 3.4 2.8

Source: Summers and Heston (1984).



Table 4

Estimates of the Share of Capital In Total Income

' v Share of
Country and Authors Interval Capital (%)
Japan:
(Ohkawa and Rosovsky, 1973) 1913-38 40
1954—64 ' 31
United Kingdom: /
(Matthews,Feinstein, - 1856173 41
Odling-Smee, 1982) 1873—1913 43
1913-51 33
1951-73 27
United States: ,
(Kendrick, 1961) 1899—-1919 35
| 191953 25
(Kendrick, 1973) | 192953 29

Results collected in Maddison (1987).



Post War Productivity Growth

8.07%

7.0%

6.0%

5.0Z%

4.07%

3.07%

2.0%

1.0%

0.072

—1.0% -

—2.07% -

—3.0% R—

A
V

. r
58

e . — e
1949 1854 18 1964 18968 18

T ° T T

74

197¢ 1884



Long Run Income and Productivity Growtl
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Growth Rate of Output Per Hour Worked
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Average Annual Per Capita GDP Growth
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Growth Rate, 1360-1981

Growth vs. Rank for Per Capita GDP
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Growth Rate, 1950—-1981

- .Growth vs. Rank for Per Capita GDP
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Annual GDP Growth
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Population Growth Rate, 196081

Population Growth vs. _Per Capita GDP
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FPhase Plane for the Cass

Model
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