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ABSTRACT

Nash Solution and Uncertain Disagreement Points

We analyze bargaining problems with known feasible sets but uncertain disagree-
ment points. We investigate the existence of solutions such that, under reasonably
restricted circumstances, all agents be as well off by reaching an agreement today as
they would be by waiting until the uncertainty is resolved. We use this requirement,
together with a few other commonly used conditions, to characterize the Nash solution.






1. Introduction.

A typical management-labor conflict can be described in the following general terms.
There are a number of feasible wage-benefits packages under discussion, over which
the two parties are negotiating. Some of them are more favorable to the management,
while others are more favorable to the workers. If the parties cannot agree on a contract
to sign, the workers will go on strike. Strikes are costly to both sides. The problem we
will address is that of predicting the compromise that will be reached, or, depending
upon the interpretation given to the model, of recommending a compromise to the two
parties. *

This problem has been the object of much attention. What distinguishes our
approach from the previous literature is that we will do away with the usual assumption
that the costs of the strike to the two parties are known. Although in practice, the
set of feasible wage-benefits packages is bound to be somewhat uncertain too, mature
industries where cost and demand conditions are fairly stable from year to year are
not uncommon. By contrast, strikes are rare events and predicting their costs is often
difficult.

Adopting the abstract formulation of the bargaining problem proposed by Nash
[1950],! we investigate the existence of solutions satisfying a list of standard prop-
erties together with a new property concerning possible uncertainty in the conflict
point. Specifically, we require that, under reasonably restricted circumstances,? the
two agents would be as well off by reaching a contingent agreement now as they would
be by waiting until the uncertainty is lifted and solving then whatever problem has

come up. In practice, we indeed often encounter situations where some flexibility ex-

1 . .
See Thomson [1988] for a review of the literature that arose out of Nash’s paper.

2 . . T y
For a formal presentation of this restriction, see Section 3.



ists as to when a compromise has to be reached. Qur axiom is designed to eliminate
this as a possible source of conflict. It is a very mild requirement, and yet, together
with a few other minimal conditions, it suffices to characterize the solution proposed
by Nash.?

This study is a complement to an earlier paper (Chun and Thomson [1987]) in
which we used a requirement in the same spirit but intended to give agents a strong
incentive to reach agreement before the uncertainty is resolved. That requirement
turned out to have unfortunate implications: when used in conjunction with other
very minimal requirements, not only is it incompatible with full optimality of the
compromise but also it essentially implies that the compromise be defined by means
of interpersonal comparisons of utility. Instead, the requirement used here allows us
to achieve full optimality as well as saves us from having to make utility comparisons.

Taken together, these two papers help identify the tradeoff between the strength
of incentives that solutions give agents to reach an agreement early on, their optimal-

ity properties and the comparability assumptions made on utilities in computing the

agreement.

2. Notation - Basic Axioms - Solutions.

An n-person bargaining problem, or simply a problem, is a pair (S, d), where S is a
subset of £" and d is a point in S, such that (1) S is convex and closed, (2) S lies
below some hyperplane with a positive normal, i.e., there exist p € %, * and c € ®,
such that for all z € S,pz < ¢, (3) S is comprehensive, i.e., for all z € S and for all

y e R, if y <z, theny € S, and (4) there exists z € S with z > d.

3

Although our example above involves only two agents, our result holds for an arbitrary number of
agents.

% Vector inequalities: given z,y € Rz 2Y,T2Y,T > Y. §R_’:,+ = {z € R"*|z > 0}.

- 2



S is the feasible set. Each point z of S is a feasible alternative. The coordinates of
z are the von Neumann-Morgenstern utility levels attained by the n agents through the
choice of some joint action. d is the disagreement point. The intended interpretation
of (S5,d) is as follows: the agents can achieve any point of S if they unanimously agree
on it. If they do not agree on any point, they end up at d. Let ¥ be the class of all
n-person problems.

A solution is a function F: L — R such that for all (5,d) € X, F(S,d) € S.
F(S,d), the value taken by the solution F when applied to the problem (S5,d), is
called the solution outcome of (S,d).

The following notation and terminology will be used frequently. Given (S,d) € L,
IR(S,d) = {z € R™|z>d} is the set of individually rational points of (S,d). PO(S) =
{z € S| for all z' € R™,2’' > z implies z' ¢ S} is the set of Pareto-optimal points of
$§. Similarly, WPO(S) = {z € S| for all ' € R",z' > z implies ' ¢ S} is the set
of weakly Pareto-optimal points of S. (S,d) € T is smooth at z € S if there exists a
unique hyperplane supporting S at z. Finally, given 4 C R", comp{A} is the smallest
comprehensive set containing A.

Next, we define the solution introduced by Nash [1950].

Definition. The Nash solution, N, is defined by setting, for each (S,d) € &, N(S,d)
to be the maximizer of the product [, (z; — d;) in IR(S, d).

We are interested in solutions satisfying the following axioms.
Pareto Optimality (P.0). For all (S,d) € £, F(S,d) € PO(S).

Symmetry (SY). For all (S,d) € ¥ and for all permutations 7 : {1,...,n} — {1,...,n},
if § =n(S) and d = n(d),® then F;(S,d) = Fj(S,d) for all i,j = 1,...n.

= W(S) = {.'E' € ER”la:: = Zn(;) for some T € S and for all 1 = 1,...,n} and 7!'(d) =

. 3



A positive affine transformation is a function \:R™ — R", given by @ € R}, and

b € R", such that for all z € R", A\(z) = (a171 + b1,...,8nZn + bn).

Scale Invariance (S.INV). For all (S,d) € £ and for all positive affine transformations
A R™ — R F(A(S), AM(d)) = MF(S,d)).

Independence of Non-Individually Rational Alternatives (LN.LR). For all (S,d) € Z,
F(S,d) = F(comp{IR(S,d)},d).

Pareto Continuity (P.CONT). For all sequences {(S”,d")} C £ and for all (5,d) € %,
if PO(S v ) converges to PO(S) in the Hausdorff topology and d” = d for all v, then
F(S¥,d") converges to F(S,d).

P. 0 requires that the solution outcome should exhaust all gains from cooperation.
SY says that since the only information available on the conflict situation is contained
in the mathematical description of (.5, d), there is no ground for favoring one agent at
the expense of others if (S, d) is a symmetric problem. S.INV says that the solution
outcome is defined only up to positive affine transformations of the utilities. It implies
that the compromise is reached without interpersonal comparisons of utility being
made. I.N.ILR® states that the non-individually rational alternatives are irrelevant
to the determination of the solution outcome. It is a natural requirement since both
agents can guarantee themselves their utilities of the disagreement point. Finally,
P.CONT requires that a small change in the Pareto-optimal set cause only a small
change in the solution outcome. These are very weak conditions satisfied by most

well-known solutions.

(i) )i=1,...,n-
6 Introduced by Peters [1986Db).



3. The Main Axiom.

Here, we introduce and discuss our main axiom which we will designate by the technical

name:

Restricted Disagreement Point Linearity (R.D.LIN). For all (S§,d"),(S%,d?) € T and
forall o € [0,1],if S* = §? = S, aF(S,d')+(1—a)F(S,d?) € PO(S) and S is smooth
at both F(S,d') and F(S,d?), then F(S, ad' +(1—a)d?) = aF(S,d*)+(1—a)F(S, d?).

(Note that (S, ad® + (1 — a)d?) is a well-defined element of X.)

Thi§ axiom can be motivated on the basis of considerations of timing of social
choice. Consider agents today, who, tomorrow, will face one of two equally likely prob-
lems (S, d') and (5, d?), having the same feasible set, but different disagreement points.
The agents have two options: either they wait until tomorrow for the uncertainty to
be lifted and solve then whatever problem has come up, or they consider the problem
obtained by taking as disagreement point the average of d* and d® and solve that
problem today. Now let F be a solution satisfying P.0, let z = ${F(S,d')+ F(S,d*)}
and y = F(S, &'2'—43) (see Figure 1). Futhermore, suppose that z € PO(S) and = # y.
Then, if for some 7, z; > y;, it follows that for some j, z; < y;, so that at least two
agents have conflicting interests concerning when it is best to reach agreement. Im-
posing R.D.LIN prevents any such conflict of interests. (Note that if z ¢ PO(S), then
T # y might not cause disagreement, since y > z would then be possible.)

The smoothness assumption, which may appear technical, has a very natural eco-
nomic interpretation: it simply says that utility transfers are possible at the same
rate in all directions (see Aumann [1985] and Peters [1986a]). If a solution outcome
z is a Pareto-optimal point where PO(S) is not smooth, then it could be a forced

compromise: an agent who has conceded along PO(S) until z might have been willing
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to concede further at the same rate, but he cannot do so since the rate changes dis-
continuously. Suddenly, concessions become relatively more costly to him. Our axiom
does not apply to situations where solution outcomes are so forced. (The situation

is analogous to that which occurs in optimization theory when a corner solution is

obtained.)

U

bl d

Uy

Motivation for the axiom of Restricted Disagreement Point Linearity.
Figure 1.

A stronger version of the axiom R.D.LIN was introduced by Chun and Thomson
[1987] under the name of disagreement point concavity (D.CAV)? D.CAV requires,

under much more general circumstances, unanimity of all agents in wanting to solve

7 D.CAV. For an (S‘,dl),(S2,d'2) € X and for all @ € [0, 1], it St = §% = S, then
F(S,ad! + (1 — a)d?) 2aF(5,d") + (1 — a)F(S, &).

6
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the problem before the uncertainty is lifted. (Using the notation appearing in the
statement of R.D.LIN, unanimity is required even if S is not smooth at either F(.S,d")
or F(S,d?), and even if aF(S,d') + (1 — a)F(S,d?) ¢ PO(S).) The reason why it is
desirable that agents reach a contingent agreement today is that postponed agreement
evaluated today, aF(S,d')+(1—a)F(S, d?), will typically be Pareto-dominated, even
if the solution satisfies Pareto-optimality.

Axiom D.CAYV, in conjunction with very minimal requirements, characterizes a
new family of solutions, which generalize the Egalitarian solution [Kalai, 1977]. Un-
fortunately, the members of this family suffer from the same two limitations as the
Egalitarian solution. The first one is that they sometimes select weakly dominated
outcomes, that is, they do not guarantee full optimality of the solution outcome. The
second is that they are based on interpersonal comparisons of utility. Given that
the axioms used together with D.CAV to obtain this characterization are very weak
requirements, it follows that, if one wishes to recover full optimality and avoid the
delicate conceptual and practical issues raised by utility comparisons, the requirement
of disagreement point concavity has to be weakened. The main result of the present
paper is that a theory compatible with full optimality and free of interpersonal com-
parisons of utility can indeed be developed without overly weakening the incentives
that solutions give agents to reach an agreement today. Of all the well-known solu-
tions satisfying full optimality that are free of interpersonal utility comparisons (the
Nash solution, already mentioned, the Kalai-Smorodinsky [1975] solution, the Perles-
Maschler [1981] solution), only the Nash solution satisfies our timing axiom together
with the other minimal requirements listed earlier.

We close with two remarks indicating the robustness of our result. Indeed, we



are certainly not claiming that our R.D.LIN axiom is the only natural way to weaken
D.CAYV, and in the remarks following the theorem, we indicate two other appealing
ways of doing this. However, in each case, we are led once again to a characterization of
the Nash solution. Second, similar results can be obtained starting from the axiom of
concavity with respect to the feasible set, dual to D.CAV, that Myerson [1981] had used
to characterize the egalitarian and utilitarian solutions. Equally natural weakenings
of the axiom once again have led to characterizations of that same solution. These

results can be found in Peters [1986a] and Chun [1988].

¥

4. The Results.

Next we present our main result.

Theorem. A solution satisfies P.O, SY, S.INV, LN.ILR, P.CONT and R.D.LIN if

and only if it is the Nash solution.
Proof. 1t is obvious that IV satisfies the six axioms. The proof of the converse statement

is divided into five steps.

Step 1. S.INV and P.CONT together imply the following property.
Continuity with Respect to the Disagreement Point (D.CONT). For all sequences
{(8¥,d*)} C T and for all (S,d) € T, if S¥ = S for all v and d” — d, then F(S”,d") —
F(S,d).

P.O and I.N.I.R together imply

Individual Rationality (I.R). For all (S,d) € T, F(S,d) € IR(S,d).
We omit the straightforward proofs of these results.

Step 2. Let F be a solution satisfying P.0, LR and R.D.LIN. Also, let (S,d) € £ be

8
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a polygonal problem such that S is smooth at F(S,d). Then for all z € [d, F(S,d)|,
F(S,z) = F(S,d).

Proof. Let (S,d) € L be a polygonal problem satisfying the hypothesis of step 2 and
z €)d, F(S,d)[ be given. First, note that (S,z) € . Let & €]0,1[ be such that z =
ad+(1—a)F(S,d), and {a”} C]0,1[ be such that a” < a for all v and o — &. Also,
let z¥ = 2=2¢ for all v. Note that z” €]d, F(S, d)], and therefore (S,z") € T for all v.
As v — oo, ¥ — F(S,d), and by LR and the fact that F(S,d) € PO(S), F(S,z") —
F(S,d). Since S is a polygonal problem which is smooth at F(S, d), for v large enough,
S is also'smooth at F(S,z”) and aF(S,d) + (1 — a)F(S,z") € PO(S). Therefore, by
R.D.LIN, F(S,z) = F(S,a”d + (1 — a¥)z") = a"F(S,d) + (1 — a*)F(S,z"). Since
F(S,z¥) — F(S,d) as v — oo, F(S,z) = F(S,d).

Step 3. Let F be a solution satisfying P.0, SY, S.INVand LN.LR. Also, let (S,d) € &
be a polygonal problem. Suppose that there exist p € ®7, and ¢ € R such that, for
all a € WPO(comp{IR(S,d)}), ap = c. Then F(S,d) = N(S,d).

Proof. Let (S,d) € T be a problem satisfying the hypothesis of step 3. Let § =
comp{IR(S,d)} and ¥'(S,d) = maz{z € S|z; = d; for all j # i}. Then there exists
a positive affine transformation A such that A(d) = 0 and ;(6(S,d)) = e;, where ¢; is
the i** unit vector, for all 7. Since X(S,d) is a symmetric problem, we have, by P.0
and SY, F(X(S,d)) = N(X(S,d)). Now, by S.INV, F(S,d) = N(5,d). By IL.N.LR, we
conclude that F(S,d) = F(S,d) = N(S,d) = N(S,d).

Step 4. If a solution F satisfies P.0, S§Y, S.INV, LN.LR, P.CONT and R.D.LIN, then
for all polygonal problems (S,d) € L, F(S,d) = N(S,d).

Proof. The proof is divided into three cases.

Case (i). § is smooth at F(S,d). Let d' € [d, F(S,d)[ be such that (S,d") satisfies

= 9



the hypothesis of step 3. Since S is smooth at F(S,d), such a d' always exists. By
step 3, F(S,d') = N(S,d"), and by step 2, F(S,d) = F(S,d'). Since ;gzg:zn =

n%;):ﬁ;ﬂ = Wg:—?_-%—l—l, we conclude that F(S,d) = N(S,d).

Case (ii). S is smooth at N(S,d). Let {d*} C [d, N(S,d)[ be a sequence of disagree-
ment points such that d! = d and d¥ — N(S5,d). Since S is smooth at N(S,d), there
is ¥ such that for all v>7, (S, d") satisfies the hypothesis of step 3. Thep, for all v2>7,
(a) F(S,d”) = N(S,d). On the other hand, from case (i), if F(S,d) # N(S,d), then
(b) F(S,d) should be a Pareto-optimal point of S, whose supporting hyperplane is not

unique. {a) and (b) cannot be satisfied together without contradicting D.CONT.

Case (iii). If neither case (i) nor case (ii) occurs, we approximate the problem (S, d)
by a sequence of polygonal problems, {(S¥,d")}, such that S” is smooth at N(S5¥,d"),
d¥ = d for all v and PO(S”) — PO(S). By P.CONT and the fact that N satisfies

P.CONT, we obtain the desired conclusion.

Step 5. If a solution F satisfies the six axioms, then F' = N.

Proof. Since an arbitrary problem (5,d) € T can be approximated in the Hausdorff
topology by a sequence of polygonal problems whose Pareto-optimal set converges to
PO(S), we conclude by P.CONT that F(S,d) = N(S,d) for all (S,d) € X.

Q.E.D.

Remark 1. In the Theorem, R.D.LIN can be replaced by the following axiom intro-
duced by Livne [1986b]:

Weak Disagreement Point Linearity (W.D.LIN). For all (S1,d!),(S?%,d?) € T and for
alla € [0,1],if S? = S%? = S and F(S5,d!) = F(S,d?) = z, then F(S,ad' +(1—a)d?) =

x.



This says that if, for a fixed feasible set, two given disagreement points result in
the same compromise, then any disagreement point obtained by randomizing between

them also results in that compromise.

Remark 2. In the Theorem, R.D.LIN can be replaced for 2-person bargaining prob-

lems by the following axiom:

Disagreement Point Quasi-Concavity (D.Q-CAV).® For all (S1,d'),(S?,d?) € T, and
for all & € [0, 1], if S? = §? = S, then Fy(S, ad' +(1—a)d?) > min{F;(S,d"), Fi(S,d?*)}

for all 7.+

This says that, for a fixed feasible set, the utility to each agent of the compromise
reached for any disagreement point obtained by randomizing between any two given
disagreement points is at least as high as that reached from the worse one of these
disagreement points.

In fact, P.O and D.Q-CAV together imply W.D.LIN. However, it remains an open

question whether the Nash solution satisfies D.Q-CAYV for bargaining problems with

more than 2 persons.

Remark 3. We noted earlier that concavity-type conditions on the feasible set have
been used in the literature. One of those axioms used for the characterization of the
Nash solution is a certain condition of Restricted Additivity (R.AD).° In fact, R.AD

and S.INV together imply R.D.LIN. However, intuitively, R.D.LIN is a significantly

A related axiom was introduced by Peters [1986b] under the name of “linearity ”.
9 R.AD. For al (S}, d"), (8%, &) € %, it d! = d? = d, F(S',d) + F(S2,d) € PO(S" +
52) and (Sl,d) and (Sz,d) are smooth at F(Sl,d) and F(Sz,d), respectively, then F(Sl +
S?,2d) = F(S',d) + F(52,d).

This axiom, introduced by Peters [1986a), is closely related to Aumann’s [1985] Conditional Additivity.

11



weaker condition than R.AD.1°

5. Concluding Comment.

Most axiomatic studies of the bargaining problem have been concerned with the re-
sponsiveness of solutions to variations in the feasible set. Recently, however, several
* papers have focused on the role played by the disagreement point (Chun and Thom-
son [1987], Livne [1986a,b], Peters [1986b] and Thomson [1987]). This change of focus
has been extremely enriching, since these papers have led to new characterizations of

well-known solutions as well as to the introduction and the characterizations of new

families of interesting solutions.

40 The relation between R.D.LIN and R.AD is similar to the relation between D.CAV and its
counterpart concerned with uncertain feasible sets. (See Chun and Thomson [1987].)
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