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ABSTRACT

This paper develops a new method for approximating dynamic competitive
equilibria in economies in which competitive equilibrium is not necessarily
Pareto optimal. The method involves finding approximate equilibrium policy
functions by iterating on the stochastic Euler equations which characterize
the economy's equilibrium. Two applications are presented: the stochastic
growth model of Brock and Mirman (1971) modified to allow distortionary
taxation, and a model of inflation and capital accumulation based on Stockman
(1981). The computational speed and accuracy of this approach suggests that

it may be a feasible method for studying suboptimal economies with large
state spaces.



1. Introduction

Many central researéh questions necessarily involve the study of
suboptimal dynamic equilibria. For example, one might be interested in
studying the effect of a change in the income tax laws on the joint time
series behavior of investment, production, and asset returns under the
assumption of rational expectations. But because the wedge between private
and social returns induced by the tax policy means that the resulting dynamic
equilibrium is suboptimal, this problem cannot generally be studied with
methods which require the Pareto optimality of competitive equilibrium.

This paper develops a new method for approximating dynamic competitive
equilibria which can be applied to a wide variety of economic environments.1
Within the model economy, individual agents are assumed to make their
decisions in a privately rational manner. The result of this maximization is
a set of first-order necessary conditions or "stochastic Euler equations™ for
the individual’s problem; these conditions restrict the dynamic evolution of
the individual's choice variables. When combined with aggregate consistency
conditions, the stochastic Euler equations restrict the dynamic behavior of
the entire economic system. A dynamic competitive equilibrium, then, is a
set of functions that satisfy the stochastic Euler equations. The properties
of equilibrium can be explored by finding approximations to these equilibrium
functions. This paper presents a method for approximating the equilibrium
functions that solve the stochastic Euler equations. A virtue of this method
is that it is applicable to economies in which competitive equilibrium is not

necessarily Pareto optimal.



Approximate equilibria are computed by an algorithm which involves
discretization of the state space as in Bertsekas (1976) and Sargent (1980),
combined with iteration on the stochastic Euler equations. This paper
provides a detailed discussion of this method, and demonstrates its use by
application to two examples. The first example is based on the stochastic
one-sector neoclassical growth model of Brock and Mirman (1982) modified to
allow distortionary taxation. The second example is a model of a monetary
economy. Stockman (1981) takes the deterministic one-sector growth model,
imposes a cash-in-advance constraint on purchases of consumption goods and
investment goods, and characterizes the steady state levels of capital and
inflation under a constant money growth rule. The present paper approximates
equilibrium capital accumulation rules within a stochastic version of the
cash-in-advance model, where the uncertainty stems from random monetary
growth.

Vhile this paper is organized around two problems of capital accumulation
in the presence of distortions, the basic computational approach is
applicable to a wide variety of problems in which competitive equilibrium can
be characterized as a system of Euler equations. For example, this method
can be used to study overlapping generations (OLG) economies with long-lived
agents, as discussed in Baxter (1987). Because equilibria in OLG economies
are generally suboptimal, these equilibria cannot be studied using methods
that rely on the optimality of competitive equilibrium. Other types of
monetary economies that can be studied include those in which money is
introduced via the utility function or via an explicit transactions

technology. This methodology is also potentially applicable to the study of



economies in which subobtimality of competitive equilibrium is due to the
existence of monopoly power at the firm level, as in Blanchard and Kiyotaki
(1987); due to productive externalities of the types studied by Romer (1986),
Lucas (1988) and Baxter and King (1988); or due to incompleteness in asset
markets, as in Persson and Svensson (1987) and Svensson (1988).

The paper is organized as follows. Section 2 describes the method of
obtaining approximate equilibrium policy functions via iteration on Euler
equations. The presentation is organized around the stochastic one-sector
growth model with distortionary taxation, and highlights the conceptual
similarity between this method and the more familiar method of value function
iteration. The section concludes with the presentation of policy functions
computed for several example economies and evaluates the computational
accuracy of the approach. This is done by comparing approximate policy
functions to exact policy functions in the context of an example economy
possessing a closed-form solution for the policy function. Section 3
presents the results of applying this computational method to a stochastic
version of Stockman’s (1981) model of capital accumulation in a
cash-in-advance model. Section 4 contains concluding remarks and discusses

directions for future research.

2. The equilibrium Euler equation approach
The equilibrium Euler equation approach is illustrated within the basic
dynamic framework of the neoclassical model of capital accumulation under

uncertainty. In this model, individuals maximize expected utility:
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where B is a discount factor between zero and one, where the utility function
u(.) is assumed to be twice continuously differentiable, and where the
expectation taken at time zero is conditioned on the initial capital stock kO
and the initial value of the technology shock, Ao. Agents face a sequence of
resource constraints of the form

Atf(kt) + (1--6)kt < c, + kt+1 (2)
where At is a technology shock; kt is the capital stock, predetermined as of
the beginning of period t; f(.) is the production function, assumed to be
twice continuously differentiable; and & is the rate of depreciation of
capital. The technology shock, At’ follows a discrete Markov process with
state transition matrix II. Agents in this model are viewed as owning the
capital stock and directly operating the technology. In period t, they
receive output from production, Atf(kt), and there is undepreciated capital
left over after production in the amount (1-6)kt. They allocate this gross
output between current consumption, c,, and capital to be used in production

t

in the subsequent period, kt+ Thus the period t+1 capital stock is

1
determined at the end of period t, and cannot be adjusted after the period
technology shock At+1 is realized at the beginning of period t+l1. We shall
assume that there is a maximum sustainable capital stock so that stationary
distribution of capital is bounded.
The first-order necessary conditions for the consumer’'s problem are:
Du(c,)=PE {[A,,,Df (k,,,)+(1-8)IDu(c,, )} A, k., . (32)

E {lim BtDu(ct)k
t—o

+1) IAO'ko =0 (3b)



and the resource constraints, (2). Since this problem is recursive (i.e.,
does not involve time in an essential way) we let unprimed variables denote
period t, single primes denote period t+l, and double primes denote period
t+2. Making these substitutions, and using the resource constraint to
substitute for c, equation (3a) becomes:

Du(Af(k)+(1-86)k-k’)=BE {[A’'Df(k’)+(1-6)]Du(A’'f(k’)+(1-8)k’-k")}|A.k*. (4)
Under the assumptions imposed on this problem, there is unique function
relating the optimal choice of k' to the current level of k and the current
technology shock A; call this function h:

k' = h(k.A). (5)

To take a specific example, suppose that there are only two possible

realizations of the technology shock, At € {K; A}, and that At follows a
Markov process with transition function F. Graphed below are the functions

relating k' to k and the technology shock. One steady state (or fixed point)

with a constant level of k is at k=§; this is the level of capital that would

obtain if the economy turned out always to have the high realization of the

technology shock, At=x for all t (even though, each period, there is positive
probability that A=A in some future period.) There is a second steady state
with a constant level of k, at k=k, which is the level of capital that would

obtain if the economy always had the low realization of the technology shock,

At=A for all t. In addition, all the points in the interval (E; k) generally

have positive mass in the stationary distribution of k.
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Except under very special conditions on preferences and technologies, it
is not possible to solve (4) to obtain a closed-form solution for the
function h(k,A). We turn now to a discussion of two approaches to computing
approximations to the equilibrium policy function. The first is the approach
of stochastic dynamic programming and value function iteration. This method
relies on the equivalence between competitive equilibrium and Pareto optimum
in the economy under consideration. (Two examples of papers which use this
computational approach are Sargent (1979) and Greenwood, Hercowitz and
Huffman (1988).) The second approach is new, and involves iteration on a
stochastic Euler equation. This approach does not rely on the Pareto

optimality of competitive equilibrium.



2.1 Stochastic Dynamic Programming and Value Function Iteration

Since the problem described above has a recursive structure, it can be
studied using the methods of stochastic dynamic programming. Thus, the
problem can be rewritten as:

v(kt’At) = max u(ct) + BE {v(k At (6)

(o]

X t+1 ’At+1)} lkt+1 ’
t’t+l

subject to the constraint (2). The function v is commonly referred to as the
value function; it gives the value, in utility terms, of entering a period
with capital equal to kt and encountering the technology shock At’ assuming
that the agent makes individually optimal decisions. Equation (6) is a
functional equation in the unknown function v. Using (2) to substitute for

¢, in equation (4), we obtain:

vk .A) = Eax u(A f(k )+(1-8)k Kk ) + BEt{v(kt+1.At+1)}|kt+1.At. (7
t+1
Define the operator T by

Tv = max  u(A f(k)+(1-8)k Kk ) + BEt{v(kt+1,At+1)}|kt+1.At. (8)
t+1

Since the form of (8) does not depend on the time period, t, time subscripts
can be suppressed and (8) can be written:

Tv = max {u(Af(k)+(1-5)k-k’) + BEv(k',A*)}|k’.A (9)
"

where, as above, variables without superscripts refer to the current period
(t) and primed variables refer to the subsequent period (t+1).

Solving for the unknown function v involves finding a fixed point (in the
space of continuous functions) of the mapping T, i.e., finding the function v
for which Tv=v. Because the mapping T defined by equation (8) is a

contraction mapping, iteration on the mapping converges to the function v



which is the unique fixed point of the mapping. This indicates that
iteration on the mapping can be used as a computational approach to finding
an approximation to the optimal value function. The approximate nature of
the solution is due to the computational necessity of "discretizing the state
space”, i.e., choosing a discrete grid for k and A over which the value
function will be defined. Having done this, the computational problem
involves finding the value function defined on the (k,A) grid that solves the
equation Tv=v.

The iterative procedure begins by choosing an initial v function (defined
o Given Vo

apply the operator T yields a new v function; call this new function vlt

on the (k,A) grid) from the domain of T; call this function v

vy = Tvg = max  {u(Af(k)+(1-8)k-k’) + BEv,(k'.A") [k’ ,A}
o

where the maximization is over values of k in the chosen grid, and is
conditional on the current value of A. Subsequent iterations proceed in the
same way, generating a sequence of v functions, {Vj}' Because the operator T
defined in (8) is a contraction, this sequence of functions converges to the

true value function: limv, = v.
Jo=

Often the value function chosen as the starting point for the iterative
procedure is the zero function, vo=0. This choice of Vo means that the
sequence of functions produced by application of the operator T has an
economic interpretation as the sequence of value functions for finite
economies. Thus, vy is the value function for an economy with one period
left to go, Vo is the value function for an economy with two periods left to

go, and so forth. In this problem, the limit of the value functions for the



finite horizon economies is the value function for the infinite horizon
economy. We will return to this interpretation when discussing iteration on
Euler equations below, except that there we will be generating a sequence of
policy functions instead of a sequence of value functions.

If the economy under study satisfies the conditions of the second welfare
theorem, the optimal solution obtained by value function iteration may be
interpreted as a competitive equilibrium. In cases where competitive
equilibrium is not optimal, the approach outlined above is generally invalid.
It can be used only if there is a way to rewrite the competitive problem as
an optimum problem which properly reflects the constraints of the competitive
problem. The class of problems for which this is possible, however, is not
very large. Studying suboptimal equilibria generally requires a direct
attack on the first-order necessary conditions of the individual’s problem;

it is to this approach that we now turn.

2.2 The Equilibrium Euler Equation Approach

Unlike value function iteration, the method described here does not rely
on the second welfare theorem. For illustrative purposes, we consider the
the neoclassical model of capital accumulation described above, modified to
allow distortionary taxation in the form of an income tax with lump-sum
rebates of the proceeds of the tax. In this example, taxes can be functions
of the Markovian technology shock and the level of the aggregate capital
stock. Per capita aggregate capital will be denoted by K, and the agent’s

choice of capital will be denoted by k. The tax function is denoted T(K.A).
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The problem facing the representative agent in this economy is:

max E { ; Bt u(c, )} ALk (10)
{ct' kt+1} =0 ’ o0

subject to:

c, + kt+1 < (I-T(Kt’At))Atf(kt) + (1—6)kt + [T(Kt‘At)Atf(Kt)] (11)

K., = HK_. A) (12)
where all variables are as defined earlier. Equation (11) is the
individual’s resource constraint; the first two terms on the right hand side
are after tax gross output, and the last term is the lump sum rebate of the
government’s tax revenues. Equation (12) is agents' perceived law of motion
for aggregate capital, Kt' As before, it is convenient to suppress time
subscripts, and the arguments of the tax function are suppressed as well:
T should be read as 7(K,A). The first-order necessary condition for
maximization with respect to choice of capital is:

Du(c) =PE{[(1-7’)A'Df(k’')+(1-8)]Du(c’)}|A.k’
Using (11) to substitute for c, yields:

Du( (1-T)Af(k)+(1-8)k+T(A.K)f(K)-k') = (13)

BE{[(1-7")A’Df (k' )+(1-86)JDu((1-7")A'£(k’ )+(1-6)k’+T A’ £(K' )-k")} |A.k".

Individual maximization yields equilibrium decision rules of the form

k’' = h(k,A;K,H). (14)
In equilibrium, the capital agents choose to carry out of the period is a
function of capital brought into the period, k, and the current technology
shock, A. Individuals take as given the current level of the aggregate
capital stock, K, and condition on their beliefs about the law of motion for

aggregate capital as summarized by the function H.
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A rational expectations equilibrium requires, in the case of a single
representative agent, that the law of motion for kt+1 coincides the the
perceived law of motion for Kt+1:

h(k.A;K,H) = H(K,A). (15)
This condition is sometimes referred to as a "consistency condition", meaning
that individual’'s beliefs are consistent with the outcomes of the economy’s
equilibrium: in equilibrium, k (capital chosen by the representative agent)
must equal aggregate capital, K. Imposing this consistency condition on the
first order condition yields:

Du(Af (k)+(1-8)k-k’) = BE{(1-7')A’'Df(k’)+(1-6)]Du(A’f(k’)+(1-8)k’'-k")}. (16)
Finding the competitive equilbrium means finding the function h of the form
given by (15) which solves (16) and for which the implied function H is such

that h(k,A;K,H) = H(K,A). Below, we use the notation h(k,A) when referring

to equilibrium policy functions, functions for which h(k,A;K,H) = H(K,A).

2.3 An Iterative Approach to Approximating Stochastic Fuler Equations

This subsection provides a detailed description of the computational
procedure for computing approximate equilibrium policy rules.2 This
procedure is similar in spirit to the method of iterating on the value
function described earlier. As before, the first step is to discretize the
state space by choosing a grid for k and A. And as with value function
iteration, the method of iterating on Euler equations can be viewed as
generating a sequence of optimal policy rules for finite economies with the
horizon lengthening one period at each iteration. This perspective will be

used in the following discussion of the computational algorithm. Under this
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perspective, we view ourselves as working backward from the end of the
economy, in a manner similar to stochastic dynamic programming.

Therefore, consider an economy that will terminate at the end of period
N. In an N-period economy agents will plan to consume all of their capital
by the end of period N, setting kN+1=O regardless of the levels of kN and AN.
Thus, the equilibrium policy function relating k’ to (k,A) for an economy
with zero periods to go is the zero function: kN+1= O(kN'AN)=O' Now, step
back one period and consider the problem of the optimal choice of capital in
period N-1. This involves solving the period N-1 version of equation (16),

using the fact that kN+1= O(kN,AN)=O. Thus, the period N-1 version of (16)

is:

DulAy_ 1 f (eyy )+ (1-8)ky 1 Ky1 =
BE{[ (1-7y )A\DF (ky)+(1-8) IDu(Ay £ (ke )+ (1-6)ky ) } ke Ay - (17)

This is a first-order stochastic difference equation in k. Solving the
equation means finding, for each (kN-l’AN-l) pair, the equilibrium amount of
capital to take out of the period, kN' That is, the solution is a function:
kN=h1(kN_1,AN_1). Thus we will use the initial policy function, h,, together
with the stochastic Euler equation to generate a new policy function, hl'

A two step computational procedure is used to trace out the new policy
function, hl' The first step is to compute the "marginal value” of k’—-the
right hand side of (16)--for each (kN.AN_l) pair in the grid. This generates
a "marginal value matrix", call it MV(kN,AN_l). The second step is to find,
for each (kN-l’AN—l) pair, the value of k in the matrix which comes closest

to solving (17); i.e., the value of kN which comes nearest to solving
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Du(Af(kN_1)+(1—6)kN_1—kﬁ)=HV(kN,AN_1). This yields a function giving ky as a
function of Ay , and ky ., call this function h;: kg =h (ky ;.Ay ;). We
now have the equilibrium policy function yielding k’ as a function of (k,A)
for an economy with one period left.

Now, step back again, and consider the version of equation (16) that

applies to the economy in period N-2. This equation is:

Du(Ay_of (ky_g)+(1-8)ky_o-dy ;) = (18)
BE{[(1-7y_;)Ay_ Df (ky_;)+(1-8) IDu(Ay_, £ (ke )+(1-8)kyy_ -k)} ey ;. Ay o

This is a second order difference equation in k. But in the previous
paragraph, we discussed how to find the function kN=h1(kN_1.AN_1). We can
therefore use this function to substitute for kN in equation (18), obtaining

Du(AN_2f(kN_2)+( l—a)kN-z-kN—l ) =BE{[(1-T -1 )An_lDf (kN"l )+(1-6}]

Du(Ay_y £ (ky_y )+ (1-8)ky_;=hy oy Ay 1 D} oy_p Ay o - (19)

Now we have only a first-order difference equation in k. Proceeding as in
the first iteration, compute the right-hand-side of (19) to yield
MV(AN_2,kN_1) for every (AN-2‘kN—1) pair. Now, for each pair (AN—2’kN—2)
find the value of k in the grid which, when substituted for kN—l' comes
closest to solving (19). Call this function h2. (kN—1= 2(kN__2,AN_2)).

The way to proceed in the third and subsequent steps should, by now, be

clear. At step j. the policy function h is used to replace k" on the

j—1
right- hand side of equation (16), and the resulting equation is solved to
obtain a new policy function hj as described above.

Iteration continues until the sequence of functions, {hj} converges,

i.e., when hj changes only a small amount between iterations. Thus, one

might choose a tolerance level d and stop when
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ﬁ [hJ.(k,A) - hj_l(k.A)] <d.

In the applications presented in this paper, however, the iterative procedure
was run a fixed number of times (usually 100) and then terminated.3
To summarize, the computational strategy begins by choosing an initial

policy function, ho. Using ho to evaluate k" as a function of k' and A’,
equation (16) becomes a first-order stochastic difference equation
determining k'’ as a function of k and A; call this function hl(k,A).

However, this function is not the equilibrium function h. The iterative
process involves replacing the initial function h0 with the function h1
computed as described above; in the second iteration, evaluate k" using
k"=h1(k’.A’). Now, equation (16) is a new difference equation determining k'’
as a function of k and A; call this new function h2(k,A). Step j of the
iterative process involves replacing h

by hj— as the function determining

j-2 1
k", and solving (16) for a new function hj yielding k' as a function of k and
A. The iterative process stops when the sequence of functions {hj}
converges.

In the course of implementing this algorithm, the initial function h0=0
has been found to work well in the sense that convergence is quite rapid.
With ho=0, the sequence of functions {hj} generated by the iterative
procedure has a natural economic interpretation in much the same way as in
value function iteration discussed earlier. The sequence {hj} can be viewed
as an approximation to the sequence of equilibrium policy functions for
finite economies with j periods left to go. But computation is more rapid

still if the initial function ho is a positive, nondecreasing function of k

and A. The interpretation of a positive h0 is that the economy is required
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to end with a positive level of the capital stock. The reason is that
iterative scheme essentially involves exploiting the "turnpike’ property of
the finite horizon economy. Thus, loosely speaking, the nearer you are to
the turnpike when you start, the sooner you arrive on the turnpike (i.e., the
sooner the policy function converges to that for the infinite horizon
problem).

There do not appear to be any general theoretical results available which
give the conditions under which this procedure will converge to the infinite
horizon solution. The following subsection presents approximate policy
functions for a several examples of the distorted stochastic growth model,
including one example with a nonmonotonic, discontinuous tax function. The
algorithm is well behaved and converges even in this case. Based on
experimentation with a variety of economies, it is conjectured that the
iterative scheme described above converges for any economy which possesses a
turnpike property, in the sense that the limit of the sequence of equilibrium
policy functions for finite horizon economies is the equilibrium policy
function for an infinite horizon economy. However, this conjecture has not

yet been formally established.

2.4 Some examples

This section presents the results of applying the equilibrium Euler
equation approach to several specific examples of capital accumulation
problems in distorted economies. It begins by examining a special case of an
undistorted economy for which a closed form solution exists. The approximate

policy rules are compared to those computed from the closed form.
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Subsequently, an example of an economy with distortionary taxation is

presented.

A closed-form example

As an initial appplication of the approximation methodology, we study an
economy possessing a closed form solution for the policy function
k’ = h(k,A). This closed form is used to check the accuracy of the
approximation methodology. In this economy, individuals maximize an

objective function of the following form:

©

t
E 3 B In(c.)|A..k.. (20)
=0 t/ %0 %0

The production function is Cobb-Douglas and is subject to Markovian
technology shocks, A:

Af(k) = AX~. (21)
and there is 100% depreciation of capital in each period: &=1. Thus the
resource constraint is given by:

AK® {c+k’ . (22)
In this economy, the solution for the equilibrium path of capital is given
by:

k' = (aB)AK”. (23)

Figure 1 plots the exact equilibrium policy functions for this economy

with a grid containing 500 points for k and two points for A, with the

following parameter values: B=.95, a=.4, A=1.0, 2;1.2. On the graph there

is one policy function for each value of the technology shock, and one fixed
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point or steady state corresponding to each value of the technology shock.
Figure 2 exhibits the approximate equilibrium policy functions for this
economy, computed with the same capital grid of 500 points, and for 100
iterations. Figure 3 exhibits the approximate functions together with the
exact functions. As seen from Figure 3, the approximate function is
essentially indistinguishable from the exact function. To get a closer look
at the approximation error, Figure 4 graphs the approximation error
(approximate minus exact) against the capital stock for each of the two
policy functions. In the range of k containing the stationary distribution
for k (roughly .30 to .65) the average approximation error is less than 1%.
Convergence of the policy functions is quite rapid, and after only 20
iterations the approximate policy rule is visually indistinguishable from the
exact policy rule, in the sense that these functions are indistinguishable in
Figure 3. The initial function ho was a constant function close to zero.

Other examples

Figure 5 plots equilibrium policy functions for the economy described
above with the modification that depreciation is a more realistic 10% per
year. A notable feature of the policy functions is that they appear
approximately linear in the capital stock. There are two steady states, one
for each value of the technology shock; the upper one is at a level of
capital of 6.75, and the lower one is at a level of 4.98. The stationary
distribution of capital is contained in the interval (4.98,6.75). Figure 6
plots equilibrium policy functions for the economy with 10% depreciation, and

in which there is also a 25% tax on output (not including the undepreciated
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component of the capital stock). The tax rate is not state-dependent. In
this economy, the steady states are at 4.669 and 2.645. The upper steady
state in the taxed economy is 31% below that of the untaxed economy, and the
lower steady state is 47% below the corresponding steady state in the untaxed
economy. Thus a tax rate of 25% on output leads to a greater than
proportional decline in the stationary distribution of the capital stock in
this economy. Computation of the stationary distribution of capital is
straightforward, and would be preliminary to answering questions about
relative welfare in the taxed and untaxed economies.

Finally, Figure 7 graphs the equilibrium response of the economy with 10%
depreciation a particularly strange tax function: the tax is zero for
capital stocks between zero and 3.2 and between 4.4 and infinity, and is
equal to 30% for capital stocks between 3.2 and 4.4. This example is
presented to demonstrate that convergence does not depend on smooth or
monotonic tax functions. As one would guess, the tax depresses capital
accumulation in the range over which it operates. The fact that the
algorithm converges easily even in the presence of such a strange tax
function suggests that it may be possible to develop a theoretical proof of
the conjecture that convergence requires only fairly weak conditions on the

structure of the economy; i.e., the turnpike condition discussed earlier.

3. Anticipated inflation and the capital stock in a cash-in-advance economy
In a paper with the above title, Alan Stockman (1981) presented a model
in which higher expected inflation leads to a fall in the capital stock. The

adverse effect of inflation stems from the fact that the model’'s economic
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environment requires that money be accumulated in advance of purchases of
investment goods so that inflation acts as a tax on investment. In his
paper, Stockman characterizes the steady state of the economy under a
constant rate of monetary growth and no uncertainty elsewhere in the model.
Abel (1985) studies a version of Stockman'’s economy which has been linearized
about the steady state. He develops expressions relating the
near-steady-state speed of adjustment in the economy to preference parameters
and the monetary growth rate.

Using the computational methods developed in this paper, we can assess
the quantitative effects of money growth on capital by looking directly at
numerical approximations to the equilibrium policy rules, obviating the need
for linear approximations of the sort used by Abel. In particular, we are
not constrained to studying deterministic money growth, and the productive
environment can easily be generalized to allow technology stocks and
distortionary taxation of output as in the economy of Section 2 above. Thus,
we may ask the questions: (i) given reasonable parameters for preferences,
technology, and the stochastic process for money growth, what is the
quantitative effect of money growth and anticipated inflation on the steady
state level of the capital stock? (ii) quantitatively, what is the welfare
loss associated with inflation? (iii) what is the marginal welfare loss from
inflation (i.e., is 7% inflation much worse than 6% inflation)?, and (iv)
what is the joint stationary distribution of money and capital? After
describing the model, we shall present a first attempt at answering some of

these questions.
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3.1 The model
This model is identical to that in Stockman (1981) except that money
growth is permitted to follow a Markov process. The representative

individual is assumed to maximize

® t
E { tzo B u(ct)}lko.mo (24)

subject to two constraints-—a resource constraint and the cash-in-advance
constraint:

£(k,) + (m,_ (140 ))/p, - c, -k, + (1-8)k, - (ni/p,) = O (25)

(mt_1(1+wt))/pt 2 c, - kt+1 + (1—6)kt (26)
where w, denotes the random lump-sum monetary transfer paid out at the
beginning of period t, mtEmt_1(1+mt) is the post—transfer nominal money
holdings at the beginning of period t, and mi is "money demand"”, the amount
of money held at the end of period t. The random monetary growth rate O, is
assumed to follow a discrete Markov process with state transition matrix II.
The force of the cash-in-advance constraint (26) is that both consumption and
investment must be paid for in cash out of money carried over from the
previous period plus current period monetary transfers. Let A and u be the

Kuhn-Tucker multipliers for the constraints (25) and (26). The first-order

conditions for this problem are:

Du(e,) = A, + n, (27)
BN o [DE(k ;) + (1-6)] + Bu  ,(1-8) = A +p, (28)
P e (1/Pyyg) + By (/P yy) = A (1/p) (29)
£(k,) + (m,_ (140 ))/p, - c, -k, + (1-0)k, - (n/p,) = O (30)

(me_y (140 ))/p, 2 [e, = kyyy + (1-8)k Ju, = 0. [.120. p20. (31)
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The multiplier A may be interpretated as the marginal utility of wealth, and
the multiplier 1 may be interpreted as the marginal utility of real cash
balances. Under conditions guaranteeing that the nominal rate of interest is
always positive, which we shall impose, the cash-in-advance constraint (26)
always holds with equality, so that the multiplier u is always positive.
Under these assumptions, (29)-(31) can be solved to yield the fundamental
dynamic equation of the system:

Du(c) = E {B%(p'/p")DEf (k" )Du(c") + B(1-8)Du(c’)} ok’ (32)
where unprimed variables denote the current period (period t), single primes
denote next period (period t+1), double primes denote period t+2, and triple
primes (which will occur below) denote period t+3. Because the
cash-in-advance is assumed always to bind, consumption is equal to:

c = f(k) + (1-6)k - k’, (33)
and the price level is equal to:

p =mn/(c + k' - (1-8)k), (34)
so that (32) becomes

Du(f(k)+(1-6)k-k’) =

E {ﬁsz(k')(1/(1+w"))(f(k")/f(k’))Du(f(k")+(l—5)k"— k''") +
B(1-8)Du(f(k’)+(1-8)k’-k")}|w.k’ (35)
Thus, the basic equation of the system is a a third-order nonlinear
stochastic difference equation in k. As before, we seek a solution in the
form of an equilibrium policy function k’=h(k,w) yielding next period’s
capital stock, k', as a function of the current capital stock, k and the
current realization of the monetary transfer, w, given the state transition

matrix II.
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3.2 Computation of Equilibriqm

Despite the fact that this equation is one order higher than the one
studied in the last section, it can be attacked in exactly the same way. In
the model of the last section, an initial function, ho. was chosen giving
kN+1 as a function of kN and AN. This function was used to evaluate terms in
k" in equation (16), that economy’s analogue to equation (28). In this
environment, we must specify a pair of initial functions, h0 and h_1 that
will be used to evaluate k" and k’’’ in equation (28). Thus, in the first
iteration, let

k" = ho (k' 0")

k'’ = h_l(k".w" .

In the case where hO = h_1 = 0, where 0 is a small positive number,we retain
our earlier economic interpretation of the iterative process as finding
equilibrium policy functions for a sequence of finite horizon economies (with

the terminal condition that the economy end with a level of capital equal to

4

6.)  As before, the first iteration involves finding, for each (k,w) pair,

the value of k’ that solves (35), conditional on the functions ho and h—l'
This gives a new value of the equilibrium policy function, call it h1: k' =
hl(k,w). For the second iteration, we replace the function h__1 with the
function ho. and we replace the function ho with the newly calculated
function, hl' Thus, we view ourselves as stepping back one period in time,

and evaluatingvk" and k'’’’ by:

k"

hl(k’.w')

k!l’

hy(k",0").

Iteration continues in this way until the policy function h converges.



The increased order of the difference equation does not mean that
computation of equilibrium policy functions is significantly more time
consuming. Recall that the computational strategy involves fixing k’ and o,
and computing the right-hand-side of (35), which we can think of as the
marginal value of k’ conditional on w. The second step is to find a value of
k that makes the right-hand-side of the equation equal to the left-hand-side.
The only effects of having a high order system are (i) to increase slightly
the amount of arithmetic involved in computing the marginal value of k’, and

(ii) to carry along an additional hj function at each step.

3.3 The Quantitative Effects of Inflation on Capital Accumulation

The time interval is taken to be a year, and parameter values for the
economy were chosen as follows: a=.40, a number roughly consistent with
estimates of capital’s share in GNP; B=.95, implying a steady state real
interest rate of about 5%; o=1 which is logarithmic utility; and, unless
stated otherwise, 6=.10 implying a 10¥ annual rate of depreciation of
capital.

As a check on the computational accuracy of the program, we computed the
equilibrium policy function for a closed form example which is essentially
identical to that of Section 2.4. With 100% depreciation (6=1) and a
constant money growth rate v, the equilibrium policy function has the form:

k' = [“32 } K*. (36)

(1+w)

Figure 8 plots exact and approximate policy functions for this special case,

with the constant money growth rate equal to -.05. This rate was chosen by
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setting (1/(1+w))=p: i.e.. the money supply contracts at the rate of time
preference. This is the optimal rate of monetary growth, and the result of
choosing this monetary growth rate is that the equilibrium of the
cash-in-advance economy is identical to the equilibrium of the undistorted
economy studied in Section 2. (Notice that when (1/(1+w))=B., the equilibrium
policy rule (36) becomes k’=aBkQ, exactly the equilibrium policy rule (23) in
Section 2.4.) Thus another check on the cash-in-advance computer program is
provided by setting (1/(1+w))=pf and comparing the results to those computed
with the programs for Section 2. This check can be used even for economies
with less than 100% depreciation of capital. Finally, in economies with
deterministic money growth, Stockman provides the following equation
implicitly determining the steady state level of capital:

DE(K) = B~ 2(1+0) (1-(1-6)B).

This equation can be used to check that the algorithm delivers the correct
steady state with deterministic money growth. All of these checks were
carried out for a variety of parameter values, and the approximation error in
each case was found to be very small.

Figure 9 graphs the equilibrium policy function for the economy with 10%
depreciation and two possible values for the monetary growth rate: w1=.03
and w2=.07. The average steady state inflation rate is 5%, a figure roughly
consistent with recent U.S. experience. The states are serially independent;
every element of the state transition matrix is equal to .5. (In U.S. data,
however, inflation is more persistent; we consider an example of persistent
inflation below.) As seen from Figure 9, there is a single equilibrium

policy function for this economy despite the fact that inflation is
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stochastic. The reason is that the states are independently distributed over
time, and examination of equation (35) shows that only conditional expected
inflation is important for capital accumulation. Since the states are
i.i.d., conditional expected inflation is invariant to the current state.

For comparison, the upper line in Figure 9 is the equilibrium policy function
for the same economy except that capital and consumption goods may be
obtained by barter; the cash-in-advance constraint is removed from the
problem. The steady state capital stock in that economy is 4.98; in the
cash-in-advance economy the steady state capital stock is 4.19, a level of
capital which is 16%4 below that of the barter economy. Steady state utility
is 11% lower in the cash—-in-advance economy relative to the barter economy.

The average rate of monetary growth in this economy is 5X%. If the
monetary growth rate was a constant 5% rate, the steady state capital stock
would be 4.25. Thus there is a sense in which there is an additional loss
because of the stochastic nature of money growth and inflation.

Figure 10 plots the equilibrium policy functions for an economy with the
same parameters as above, except that money growth is either .02 or .11. The
probability of staying in the same monetary growth state is .95 (i.e, the
probability of 2% monetary growth next year conditional on having 2% monetary
growth this year is .95). These parameter values were chosen to simulate an
economy which experiences either high inflation or low inflation, and in
which the inflation rate is very persistent. In this example, the expected
duration of the current inflation rate is 20 years (expected duration is
(l—p)_1 where p is the probability of staying in the same state next year.)

The upper steady state, corresponding to the policy function for 2% current
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monetary growth, is at a capital level of 4.26. The lower steady state,
corresponding to the policy function for 11%¥ current monetary growth, is at a
capital level of 3.95. In this model, the stationary distribution of capital
is not a point, as it was with i.i.d. money suppl& growth rates. Instead,
the stationary distribution of capital is contained in the interval
(3.96,4.20). As in the examples of Section 2, the equilibrium decision rules
are very close to linear. This suggests that for some applications the
linear approximations used, for example, by King, Plosser anmd Rebelo
(1988a,b) may be good approximations to the exact decision rules, and they

have a definite advantage in terms of speed of computation.

4. Conclusions

This paper has developed a new method for obtaining equilibrium policy
functions by means of iteration on stochastic Euler equations. The chief
advantage of this method is that it can be used to study economies in which
competitive equilibrium is not Pareto optimal. Previously, such economies
could only be studied if the problem could be recast as a fictitious
planner’s problem, rendering the problem amenable to study by means of value
function iteration. This new method is computationally fast and accurate, as
demonstrated in Sections 2 and 3.5

Vith this new technology in hand, we can quantitatively evaluate a much
wider range of theoretical economies. Our hunch is that the class includes
any model whose equilibrium are characterized by a set stochastic Euler

equations and which possesses a kind of turnpike property. Thus, the

stochastic neoclassical growth model with distortionary taxation which was
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the focal point of this paper could be generalized to allow variable labor,
other kinds of tax policies, productive externalities, and additional sources
of randomness such as preference shocks or labor augmenting technical change.

But the applications are not limited to neoclassical capital theory. For
example, one could study economies whose equilibria are suboptimal because of
(i) monopolistic market structure; (ii) absence of complete markets, perhaps
due to private information, or (iii) money introduced via money in the
utility function or via an explicit transactions technology.

Another application of these methods is to the study of stochastic
overlapping generations models with agents who live for realistic lengths of
time. Because the state space in such a model is very large (the state
variables include the beginning-of-period wealth positions of everyone alive
in the economy) it is essential that the computational algorithm is one which
runs rapidly for economies with small state vectors. The results presented
here are encouraging. Thus, while the economic structure of the OLG economy
maps neatly into the framework developed here (see Baxter (1987)), the next
step in this line of research is to determine whether applications of these
methods to this problem is computationally feasible.

Another use of this method is as a check on the computational accuracy of
the sort of linear approximation methods currently used in studying
equilibrium business cycle models. The fact that many of the decision rules
computed in this paper are so nearly linear suggests that, for many
applications, linear approximations will work well (and run many times
faster!).

Finally, it is important to address the question of how to evaluate the

"fit” of a model constructed and simulated along the lines developed in this



28

paper. One method, popular in the study of real business cycle models,6
begins by choosing key parameters from microeconomic studies and the national
accounts, together with parameters for the stochastic processes of the
exogenous shocks. Then, moments of the simulated time series are compared to
a subset of the moments of actual time series. The model is said to fit well
if the moments match up in a sense chosen by the researcher. But many
researchers prefer an evaluation procedure grounded in classical statistical
theory and are consequently uncomfortable with this informal approach. In a
recent paper, Singleton (1988) discusses econometric methods for evaluation
of real business cycle models. The methods he discusses are also applicable
to the class of models for which the methods in this paper were developed.

An important component of future work in this area is statistical evaluation

of the empirical adequacy of these models along the lines suggested by

Singleton.
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Footnotes

1This paper develops in more detail the computational strategy outlined
in Baxter (1987). That paper presented a Markovian representation of
equilibrium in overlapping generations models with long-lived agents,
together with an algorithm for generating numerical approximations to
equilibrium decision rules in that economy. To keep the size of the state
space small, the computational algorithm was developed and discussed in the
context of the stochastic one-sector growth model.

2The computer code to execute the algorithm described in this paper was
written in Fortran. The programs were run using Microsoft Fortran Version
3.31 on IBM-compatibe personal computers. On an IBM Personal System 2/ Model
80, the computation time for 100 iterations with a capital grid of 500 points
and two values of the technology shock was about six and a half minutes.

3By a variety of reasonable convergence criteria, the functions presented
in this paper have generally converged after 40 iterations.

4The cash-in-advance constraint guarantees that money is valued in a
finite horizon economy since without holding money, one literally cannot eat.
In other monetary economies——the OLG economy, for example—-this is not the
case. In order to ensure that the limit of the finite horizon economies
converges to the infinite horizon equilibrium with valued money, it would be
necessary to impose a terminal condition requiring positive money holdings.

Informal "horseraces" suggest that this method is significantly faster

than value function iteration when studying economies for which value
function iteration is a valid computational approach.

6See for example, Kydland and Prescott (1982, Hansen (1985), and Prescott
(1986).
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