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Abstract

This paper considers deterministic laws of motion that exhibit the
ergodic property. The virtues of studying such laws of motion in the space
of densities over the state space are shown. A complete characterization of
stationary ergodic processes in that space of densities is developed. The
asymptotic properties of the kernel estimators of the stationary density and
the law of motion in the density space are studied, and shown to hold under
weaker conditions than is currently available in the literature. Small
sample behavior for the estimators is subjectively shown to be good even when

optimal choices of the kernel and smoothing parameters are not exploited.
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1. Introduction

Very recently, there has been a surge of interest in economic circles concerning the philo-
sophical and empirical problem of stochastic versus deterministic explanations of some economic
processes. The resulting literature suggests that we may be able to see a truly deterministic process
as a stochastic one if only we chose to focus on a certain side of our models. The recent literature
popularizing the so-called chaotic explanations of economic behavior has in part been inspired by
a similar literature in the natural sciences (e.g. see motivations in Brock 1986, Brock and Dechert
1986, Brock, Dechert and Sheinkman, 1987, Brock and Sayers, 1987, & Sheinkman and Le Baron,
1987). In those studies, similarities were drawn between computer algorithms for pseudo-random

number generation and deterministic difference equations arising from economic models.

With the familiarity of ARMA models, there was a surprise generated by the result of Sakai
and Tokumaru (1980) that most trajectories of the difference equation popularly known as the tent
map:

T
T4l = —; Tt € [0, a]
a
- (1 - :Bg) .
(1-a)’

generate the same stochastic behavior (in terms of autocorrelation coefficients) as the AR(1) pro-

Tt (S [G, 1]

cess:
%41 = (2a — 1) + &

forii.d. ¢. A number of economists started investigating the possibility of generating determinis-
tically chaotic systems from simple economic models. The research program was very successful as
the results achieved by Grandmont (1985), Brock and Chamberlain (1984), Boldrin and Deneckere
(1987) -to mention only a few- have demonstrated. While the theorists are improving upon their
machinery and producing more deterministically chaotic models out of more familiar overlapping
generation models (Grandmont, 1985) and growth theoretic ones (Boldrin and Deneckere, 1987),
another branch of studies developed. A series of papers from the camp of Brock, Sheinkman,
LeBaron, Dechert, Sayers mentioned above started testing for deterministic chaos in regular data
sets relying on a dimensionality of correlation test. The theoretical development of that test was

again inspired by work in the natural sciences and then mathematically developed in Brock and
Dechert (1986).

In this paper, one hopes to deal with econometric issues arising from the question: what
kind of statistical inference can be made concerning models in which the variables of interest are
characterized by deterministic chaos? Assume that an economist wrote down a dynamic model

which gave a deterministic non-linear first order difference equation which he then claims explains
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the behavior of some economic variable. With the theoretical model generating the deterministic
chaos, and the tests of data suggesting that we could not distinguish between some stochastic
and deterministic systems, it would be difficult to ignore the possibility that those models may
perform well in estimation and forecasting. T'wo main problems stand out in defiance of econometric
investigation, though, the first being the unfamiliarity of the concept of estimation and inference
in deterministic models. The second major obstacle is the non-linearity of most of those chaotic
laws of motion. By a law of motion, one means an operator S: X — X that defines 7,41 = S(z¢).
X is referred to as the state of the system. This paper proposes to solve those two problems by
introducing an unorthodox tool of investigation. By analyzing the behavior of the deterministic
dynamic process in the space of densities over the state space ( referred to as the hyper-state
space), one can introduce a stochastic element through the initial condition for the law of motion.
Also, one will show that the corresponding law of motion in the hyper-state space will be linear
despite the non-linearity of the state space law of motion. Moreover, the estimation procedure will
be done independently of the functional form and parameter values of the model, and hence the
results should be robust to model mis-specification up to the result of chaotic behavior of the state

variable. One starts first by outlining what is now a standard procedure in economic theory.

It is natural that one would take the starting point of a maximizing agent as given. Another
natural step to take is to follow the vast majority of the modern macro economic literature and
make the model dynamic. By that one means setting up the maximization problem in such a way
that the standard results of dynamic optimization can be used to achieve fast and simple solutions.
The standard way to do this (Sargent, 1986 Ch.1) would be to copy the standard optimal control

representation
o]

max wg (e, )
)
s.t. zpp1 = ge(ze, 1e); VL
where u(.,.) is the return (utility) in period t, z and y are the state and control (state and choice)

variables respectively. It is standard in economic literature to then simplify the model and put

u(.,.) = Bul.,.); al.,.)=9(.,.); Vt.

The standard result of the dynamic optimization literature * gives a unique solution such
that

Yt = h(It)

This result is usually the most interesting to economists and is commonly referred to as the optimal

policy choice. For our purposes, the more interesting result is that that relation in turn implies the

* Bellman (1973) together with some simplifying assumptions (Sargent 1987, Chapter 1)
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law of motion for z:
Ze41 = 9(2e; h(2¢))) = S(z4).

Needless to say, some economists find it more direct to use the first order conditions of the original
optimization problem to arrive at the law of motion for the state or policy variable. It is well known,
however, that solving the first order conditions does not in general give a closed form solution for
the policy function. Regardless of the method of achieving the law of motion, this paper starts at
the stage where one would normally proceed to do some econometric estimation of the underlying

parameters of the model.

The basic idea of the literature on economic chaos is to analyze deterministic laws of motion
of the type discussed above where the (highly non-linear) law of motion gives rise to trajectories
that look very similar to stochastic ones. Since our treatment of economic chaos in the following
sections of the paper deviates significantly from the mainstream literature on the issue, it seems to
be wise to devote this last section of the introduction to an overview of that literature. Due to the
vastness of the literature at hand, a comprehensive survey would be lengthy, and arguably not of

great value for our purposes.

First, one has to outline the definition of chaos and its interest to economists. Appropriately,
there is no one definition for chaos. The general agreement among scientists in different fields is to
use the term chaos to characterize dynamical systems with unstable equilibria where any conceiv-
able trajectory can be generated by choosing the appropriate initial condition. In economics, the
majority of the literature on chaotic systems seems to fall within one of two categories. The first
category constitutes the research program of searching for economic models that generate compli-
cated dynamics. This research program resulted in a plethora of economic models of various types
which generated chaos. To mention only a few, Grandmont’s (1985), generated chaotic business
cycles from standard overlapping generations macro-models. Day (1987) generated ergodic chaos
(which will be defined and fully analyzed in the following sections) from a Keynesian macro-model.
In general, as Brock (1988b, pp. 7-10) indicates in his summary of this research program, relaxing
some of the common assumptions in economic models e.g. allowing for high levels of discounting,
introducing regions of increasing returns to scale, incomplete markets, disequilibrium dynamics,...
etc. will readily result in chaotic behavior. This research program is therefore considered a success,

and it suggests very strongly that the possibility of having economic chaos cannot be ignored.

In the following sections, however, little reference will be made to that research program for a
number of reasons. The first reason has to do with the above mentioned likelihood of occurrence of
economic chaos. As we mentioned above, the usual understanding of chaotic behavior in economic

models is the existence of at least one initial condition that will result in any trajectory. The
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obvious weakness of such a definition after it is formalized is that it does not give us a notion of
the likelihood of occurrence of such chaotic behavior. More formally, what is the probability that
the modeled economic system starts at one of the initial conditions that lead to chaotic behavior.
With the exception of the work by Day and Shafer (1987), and Day and Lin (1987), it seems that
that problem is very rarely addressed in the economic literature. In this paper, we shall define and

completely characterize ergodic chaos, which deals precisely with that issue.

The second research program in the field of economic chaos which has been growing very
rapidly is the testing for chaos in economic data’ The basic idea of those tests as adopted by
Brock (1988a and 1988b), Brock and Sayers (1987), Sheinkman and LeBaron (1987), and others
was originally used in the natural sciences (Eckman and Ruelle, 1985). The basic concept rests on

observing a time series {z;}, and examining the quantity
Cm(e,T) = #{(t,9), 1 < t,s < T||=" - 2|| < €}/T7,

where
Tn=T-(m-1)
and
z:n = (zh'")zt—m-l-l)

This statistic clearly measures the frequency of observing the same pattern approximately repeat
in the data, thus giving a measure of correlation in the data. Then, a quantity d referred to as the

dimensionality of autocorrelation is defined as

d= lim lim lim ‘MCm(&T)l
mtoo €/0 T'too ln[e]

which is clearly approximated for a large m. The slope of In|C,,(¢,T)] with respect to Inje] is
then used (Brock 1988a and 1988b, Brock and Sayers, 1986, Sheinkman and LeBaron, 1987) to
test for the dimensionality of the model, which vaguely tests for the degree of complexity of the
model needed to represent the data. As this paper is being written, more work is being done by
those researchers to improve their tests and find their statistical properties. At this point in time,
however, it seems that that research program functions to primarily satisfy the curiosity of the
researchers regarding the possibility of certain time series being generated from low dimensional
deterministic processes. Since that is not one of the objectives of our current research, this research
program will not play a major role in shaping the following sections except for the motivation to

find estimation techniques that will be robust to the possibility of chaotic data generating processes.

* 1t is worth noting at this point that since the earlier version of this paper has been written, the
authors referred to below have replaced the expression testing for chaos by the expression testing for

extra structure.
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For our purposes, since the economic model in question remains generic, one starts by defining
the simplest possible economic model that is rich enough to demonstrate ;ll the interesting aspects
of our approach. The model is a non-overlapping generations model where each individual lives
for only one period and is succeeded by his son the moment he dies. The only product in that
economy is mangos, and a mango seed takes one period (generation) to grow into a tree and bear
one fruit, after which it dies instantly. A son inherits all the trees that his father planted, chooses
the number of mangos to eat and the number of seeds to plant. If a person decides not to plant a
seed, then that causes him some pain, either because of a bequest motive or because he would have
to eat the seed, which is not a pleasant experience. Notice that the family line can look like an
infinitely lived individual with infinite discounting of future utility, but the dynamics of the system

still stem from the bequest motive. The model, thus could be written as follows:
max U(Ct, Lt)
Ly

s.t. Lg S Cg
and Cpt1 = g(Ct, L)

where the first constraint is that the number of seeds (units of labor) thrown cannot exceed the
number of mangos eaten. The second constraint specifies the technology of growing trees, and drives
the dynamics of the system. To further simplify the system, we specify the Cobb-Douglas utility
function u(C, L) = CL which together with the first constraint will obviously give us C, = L;; Vt.
We then specify the technology that drives the system and study the behavior of consumption (our
state variable) in the state space as well as the density space. The discontinuities in the technology

can easily be explained by a soil corrosion argument.
Ct+1 = 2Lt mod 1

and, thus, our law of motion is

Cg.|..1 = 2Ct mod 1

2. Defining the corresponding law of motion in the hyper-state space
At this point, we shall take the result of the deterministic dynamic optimization problem
241 = S(24)

as our starting point. Although the law of motion for the state variable z is completely deterministic,
one could study the evolution of the economy over time within a probabilistic framework. For

although each infinitely lived individual’s behavior of z follows the law of motion S (which is
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assumed to be identical for all individuals), starting from an initial distribution of individuals in
the state space, the evolution of that distribution could have rather interesting characteristics.
Another way to look at that treatment is that it introduces a stochastic element through the
randomness of the initial condition of our difference equation as suggested by Richard Bellman
(1973). We are now ready to define the induced law of motion in the density space. We start by

defining a complete normalized measure space (X, S, p), i.e. p(X)=1. A transformation
S: X — X is non-singular if
Be$S; p(S(B)) =0, = u(B)=0.
For every non singular law of motion §,
I#P:D— D

defined by:

[Pi@aua) = [ s)iuta)

A 8-1(4)
where D is the space of all densities defined on X, i.e. the space of nonnegative L! functions on
X whose integral is 1 and P is called the Frobenius-Perron operator corresponding to S (Lasota
and Mackey 1985, pp. 36-37). The following properties of the operator P follow directly from the

definition:
a). P is a Markov operator.
b). P is linear.
¢). f S, =80So0...08, then the corresponding F-P operator is P, = P"

What property c). gives us is that as long as time is discrete, (or as long as there is a lower
limit on the time it takes an individual to make a decision), the sampling period and the decision
making period need not be identical (as long as the former is an integer multiple of the latter).

Also, all limiting properties of the F-P operators corresponding to the different periods are the

same.

The F-P operator gives us precisely the behavior of the evolution of the density of the initial
states over time as the individual goes through the process of maximization which is summarized
by the law of motion S. One interpretation, thus could be that there are many individuals in
the economy, and as each of them changes his state variable by passing through the operator

S, the overall distribution over the state space moves according to P. Another interpretation
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would be that we would initially put some likelihood measure over the state space and knowing the
individual’s behavior, we could consistently put a measure of probability on where our representative
individual would be after n periods of time, or asymptotically. The distinction between these two

interpretations is important since it allows for vastly different uses of the F-P operator.

Our mango economy example simplifies things tremendously since we have S:[0,1] — [0,1]
and we could specify the measure to be Lebesgue measure. Making the extra assumption that
starting densities come from the space of continuous densities on [0,1] which is dense in the space
of all densities on [0,1], we could simplify the definition of the F-P operator since the Lebesgue and

Riemann integrals will coincide, and we can define:

d
Pia =2 [ f(o)as
Ss-1([0,z])

3. The definition of equilibrium and chaos

By abandoning the state space in favor of the hyper-state space, we need to be able to define
the counterpart to the most important features of the state space. The main four characteristics
of the state space that we naturally discuss are initial conditions, laws of motion, equilibria, and
chaos. The concept of initial condition is obviously substituted by that of initial density, and
the law of motion by the Frobenius-Perron operator discussed in the previous section. In this
section, we define the counterparts of equilibrium and chaos in the hyper-state space to complete
the framework. A natural notion of equilibrium, regardless of how we interpret the initial density,

could be defined as follows:
Weak Equilibrium: is defined by a stationary dt;,nsity f* such that

Pfx= f*

Strong Equiltbrium: is defined by an asymptotically stable with respect to ||.]| density f* such
that '

lim [P"f = f +]| = 0; Vf € D.

In a recent paper, Boldrin and Deneckere (1987) consider simple macro systems that exhibit
topological chaos. They also note that one of the drawbacks of topologically chaotic behavior is
that it might only be valid for a set of initial conditions that is of measure zero. The same argument

is used by Day and Shafer (1987), and Day and Lin (1987) to motivate studying ergodic chaos. For
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our purposes, we rigorously define the notion (Lasota and Mackey, 1985) of ergodic chaos. We say

a non-singular transformation

S:X—X

is chaotic if it is ergodic; i.e.
VA€ :57(A) = A; u(4) =0, or u(X\ A)=0.

This is clearly a natural concept of chaos since it states that the only invariant sets are trivial
sets, and thus, that as time progresses, one could not trace back the initial condition. Now, we are
ready to state the following theorem which describes chaotic behavior of X in the density space.
We define D to be the space of all non-negative functions in L! with unit norms whose support is
X . In statements of convergence Vf € D, it is understood that we only consider densities with no

point mass with respect to p.
Theorem 1:*
Given S: (X, S, u) — (X, S, u) p preserving, with u(X) = 1:

S 18 ergodic if and only if the limit

n-1

Z PEf(z)=1; a.e.
k=0

1
Hm —
ntoo N

VfeD

Proof of Theorem 1:

For the only if part , one starts by showing that there can be at most one stationary density for S
ergodic. Assume that f; and f; were both stationary densities of P, let g = fi — f2, then by the linearity
of P, Pg = g, and since g = g* — g~ (the positive and negative parts of g), g* and g~ are also stationary
functions for P (by proposition 3.1.3 Lasota and Mackey 1985, p.35). Let A = {z:g%(z) > 0} and let
B = {z:97(z) > 0}, then clearly, AN B = ¢ and u{A) > 0 and p(B) > 0. Since f; and f; are densities that
are different. It follows that

Ac S YA)c...cs™(4)

* This theorem is stated and proved in Lasota and Mackey(1985). The following proof draws
heavily on the proofs in Lasota and Mackey (1985) and Walters (1982).
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and

BcS™YB)c...c §~*(B)

Letting A* = U2 (S~ "(4) and Bx = U ,S~"(B), we have A+ and B#* being invariant sets, that are
non-trivial, i.e. S™1(As) = A+ and pu(A%) #1 or 0, and the same for B, but that violates the definition of
ergodicity by all invariant sets being trivial, hence we have a contradiction and there could be at most one
stationary density. Now, Lasota and Mackey (1985), Theorem 5.2.2 , pp. 85-86 proves the existence of the
Cesaro limit for P*f if 3 a unique stationary density, and we have the obvious result (since by above, the
only f: Pf = fis f =1, see proof of lemma 1 below):
1 n—1
lim =Y PF1=1

nfoo n :

k=0

It follows that there exists a unique Cesiro limit for P™ f. Since S is measure preserving, it is readily seen

that P1 =1 and hence, 1 has to be the unique limit, i.e. we have shown that:

lu—l .
;ZP f(z)—»l

k=0

which concludes the proof for the only if part .

For the if part, let the Cesiro convergence to 1 be given, and assume that f* is a stationary density,
n—1

i.e. P*f¥ = f+ ,Vk, then limuteo 2 3 f* = 1 and thus, f* = 1, and hence, 1 is the unique stationary
k=0

density for P. Now, assume S is not ergodic; then 34 non-trivial s.t. $~1(A4) = A, and letting B = X \ A,

i.e. the complement of A with respect to X. we get S~1(B) = B. Now, let us write (by the linearity of P)
fx=Isf*+Ipfs=Plyf++Plgf*

then we have I f* = PIof* and Igf* = Plpf* where Iy (z) is the indicator function which takes the

value 1 if z € Y, and O otherwise. Letting f; = ]{‘I‘% and fo = ]-I-‘I"J;—, it follows that f; and f are two
A BI*

distinct stationary densities for P which results in a contradiction. Hence S has to be ergodic and the proof

of Theorem 1 is finished. u

To get an intuitive feeling for the origin of that result, notice that by the Birkhoff Ergodic
Theorem (Walters, 1982 p.34), it follows that with S u-preserving:

n—1
= H(8(a) — f+€ D ae.
i=0

and if S is ergodic, f# is constant almost everywhere, and hence, with a normalized measure space,
and since f* € D, it must be that starting from any f € D, the density converges to 1 a.e. The
result of the Birkhoff ergodic theorem obviously does not deal with the F-P operator but rather
with its conjugate, but Lasota and Mackey (1985, thm. 5.2.2) show that the same result is true for
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the Cesaro limit of the F-P operator if S is ergodic. This theorem is very powerful since it states
that given a maximization problem that yields a chaotic S mapping, regardless of what our priors
are, or regardless of the initial distribution of the agents in the state space, we should expect the
distribution of the individuals to be asymptotically uniform (with respect to the measure x4 which

we shall usually specify to be Lebesgue measure).

At this stage, we are ready to analyze the chaotic behavior of our mango economy. Figure
3a shows the trajectory of consumption. The driving technology , the diadic transformation, is
obviously Lebesgue measure preserving. From figure 1, it is clear that the state space has only two
steady state equilibria, namely 0 and 1, both of which are unstable. The trajectory of C does not
seem to show any short term periodicity. As a matter of fact, one can easily show that the diadic

transformation is chaotic. To show this notice that

s74(0,2) = o, ZJul3, 15

which gives:

| g
Pila)= 3" f £(s).ds

+=0 i
2-1 .
1 1+ z
=32.7(=")
1=0
and clearly, by a simple inductive argument:
133 it f
P"f(z)=-2—; Z f( ™ )-——»/f(s).ds=1 as ntoo
=0 0

uniformly in x Vf (again where we only consider f’s that do not have a point mass at a steady state).
Hence, the density converges strongly to the uniform density. Strong convergence implies Cesaro
convergence, and by Theorem 1, since the diadic transformation is Lebesgue measure preserving,
this process is ergodic. The speed of convergence to the uniform density starting from the density
f(z) = 2z is illustrated in Figure 3b.

4. A counter example to demonstrate the importance of

measure preservation and analysis in the hyper-state space

At this stage of the paper, we could not say anything about the chaotic behavior of transfor-
mations that do not preserve the measure we happen to choose. Since a measure will typically be
chosen for convenience (e.g. Lebesgue), there is no guarantee that the law of motion arising from

the economic model will preserve that measure. Also, we cannot see the reason for analyzing the
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hyper-state space. One reason that one may wish to analyze the hyper-state space is that one may
suspect that by putting probabilistic weights on the state space, one may be able to find interesting
behavior in some cases where the state space exhibits a multiplicity of unstable equilibria, and
hence may exhibit chaotic behavior. If one does not wish to assume that the process starts on a
stable manifold (which in general is of measure zero, and may not exist in many cases) or at a
steady state equilibrium, then we may be able to study the likelihood of the process being in any
particular region of the state space given an initial distribution. Again, we can interpret that initial
density as a probabilistic prior or as an actual distribution of agents when the process starts. The
case of the diadic transformation analyzed above clearly satisfied the condition of having multiple
unstable equilibria. In that case, however, the trajectory in the state space seemed to be sufficient
in detecting the chaotic behavior of the variable. To see how dramatic the difference between that
apparent behavior in the state space and actual behavior in the density space can be, let us change

our technology in the mango economy to:

R R 1
Ct+1"’ (I—Lg) ,LgE[O, 2]

1
Civ1=2L—1 ;L € (5,1]

This example is especially tailored to yield a transformation which looks essentially similar to the
diadic transformation in that the two steady states O and 1 are unstable. Moreover, looking at
figure 4a, it seems that the trajectory does not have a short period. Notice, however, that the
transformation here is not lebesgue measure preserving, and thus, the result of Theorem 1 does not
apply. Comparing figures 1 and 2, it is clear that the only change we introduced in figure 2 is the
slower speed of repulsion from 0. The result of such a minor change, however is remarkably strong,

for one can show* that Ve > 0:
1
i / P"§(s).du(s) = 0
nfoo
€

i.e. asymptotically, all the mass is on the stationary point 0. This result is especially strong; in more
general frameworks, we get a limiting distribution over the state space. Such limiting distributions
can be viewed as a generalization of Jovanovic’s (1986) framework with multiple equilibria. In his
framework, he considers systems with multiple equilibria, and notes that the identifications of the
system’s coefficients will not in general be achieved if we do not know which equilibrium the system
is in. He then proceeds to include the particular equilibrium as one of the parameters to estimate,
putting a measure on the equilibria under consideration. In our framework, we do not require that

the system be in any particular equilibrium in the state space. We can derive the weak or strong

* This is the example referred to as the paradox of the weak repeller in Lasota and Mackey
(1985).



El-Gamal : July 16k, 1988 18

equilibrium in the hyper-state space, and that will give us a measure on the entire state space which
we can in principle use to estimate the parameters of the model. As we shall argue in the section
on estimation, however, the parameters of the model are not necessarily of any interest to us since

most of the interesting dynamics can be derived from the law of motion in the hyper-state space.

5. Characterizing chaotic behavior in non-measure preserving

transformations

Since we shall be interested in empirically analyzing the behavior of the density space , it
would be useful to know when a transformation preserves a certain measure using only the density

space behavior. The following lemma has been constructed to achieve such a result:
Lemma 1:

A non-singular transformation S:(X, S, ) — (X, S, s) with u(X) =1 is measure- preserving

if and only if 1 is a stationary density for P, the F-P operator corresponding to S. O
Proof of Lemma 1:

For the if part of the lemma, let 1 be a stationary density, then P1 =1 and VA € 9, since by definition

[Pias= [ fou

A 8-1(a)
we have
/ldpz / 1du
A 8-1(A)

but that simply says that u(A4) = u(S~1(A4)), i.e. that S is u preserving.

For the only if part, let S be measure preserving, then

u(4) = p(S7(4))
and hence

/ ldu = / 1du
A s-i(4)
but by the definition of the F-P operator,

/ Pldy = / 1dpu
A s-1(4)
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14

Hence, since this has to hold for all sets A € Im, P1 =1 a.e.[u], and since we are not considering sets of

measure gero, 1 is a stationary density for P. u

What this lemma together with the result of Theorem 1 state in terms of our economic in-
terpretation of the convergence of densities is that if the uniform density is a weak equilibrium,
then the underlying transformation is chaotic if and only if the uniform density is also a strong
equilibrium. However, this result still could be considered to be too restrictive since our charac-
terization of chaotic behavior will only apply in cases where the uniform density is stationary, i.e.
where the transformations preserve the chosen measure ( which will usually be Lebesgue measure).
The following theorem has been constructed especially to generalize that result and allow us to
define chaos in the density space under certain circumstances where the transformation in question
does not preserve our measure. The trick is to try to find a measure which that transformation

preserves and then go back to analyze chaotic behavior using the result of Theorem 1.

Theorem 2:

Given the probability space (X, S, u), let the non-singular S: X — X have the F-P operator
P, and let 3f > 0 such that Pf = f which has no point mass; i.e.

VA p(Ae) < e
ip | 1am=0
A

then S is ergodic if and only if Vg with no point mass, f is the Cesdro limit of P*g; i.e.

n

-1
kim L D> Prg=7f
k=0

ntoo n -

Proof of Theorem 2:

Given f* > 0 is a stationary density for P which has no point mass, we can define the measure v as

follows

u(A):/f*dp; VAe S
A
Clearly, S preserves v since P, f* = fx:

)= [frdu= [Pupsau
A A



El-Gamal : July 16**, 1988 15

= / frdu=v(S71(4)); VAES
s-1(4)
and hence, by Theorem 1, since S preserves v, S is ergodic [v] (i.e. all S invariant sets are of v measure 0
or 1) if and only if the uniform density with respect to v is the Cesiro limit of P?g for all g with no point
mass. For the if part of Theorem 2, we need to show that if f* is the Cesiro limit of P, then S is ergodic

[1]. But notice that the uniform density [v] corresponds to f * [u], since:
u(A)=/1du=/f*d/4; VAeQ
A A

and by the linearity of integration, and linearity of P, consider any initial density 7 > O with respect to u,
then both measures u and v are absolutely continuous with respect to the measure generated by integrating

7 with respect to u. Hence, there exists a corresponding density g with respect to v such that:
1 n—1 1 n-—-1
k -
[E3 Rroav= [ 1Y Phidu
4 k=0 4 k=0

and taking limits of both sides , and due to the absence of point mass, using bounded convergence, we can

take the limits inside the integration, and since

and using the definition of the measure v, we get

1 n~-1

Yim 2D Pl =1+
k=0

Hence, S is v ergodic if and only if f+ is the Cesiro limit of P}j for all j > 0 with no point mass. But

remembering that we were not interested in [v] ergodicity but rather in [u] ergodicity, notice that by the

definition of v:

V(A)=[f*du

it follows that f* > 0 is the Radon-Nikodym derivative of v with respect to g, and thus, u < v; and by that
absolute continuity, if S is ergodic [v], all invariant sets are of ¥ measure zero and hence of u measure zero
or of v measure 1, and hence their complements are of v and u measure zero. Hence, all invariant sets have

to also be of 2 measure O or 1, and S is ergodic [x] which completes the proof of the if part of the Theorem.

For the only if part, we follow the same proof strategy as that of Theorem 1. Since the ergodicity [u]
of S implies that P, has at most one stationary density (this claim is proved in the beginning of the proof
of Theorem 1}, and by f* being stationary, it follows that f* has to be the unique stationary density for P,,.
And by Theorem 5.2.2 pp. 85-86 in Lasota and Mackey (1985), it follows that f* is also the Cesaro limit for
P, |
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At this stage, we have the result that any non-singular process which is in a weak equilibrium
is chaotic if and only if the stationary density defined by that weak equilibrium is also the Cesaro
limit density for the corresponding F-P operator. Given a model which suggests the chaotic behavior
of the state or policy variable, we could characterize the behavior of that variable in the hyper-state
space. The economist does not have to even be able to solve for the closed form of the operator
S, as long as he could demonstrate its chaotic behavior. Another popular approach that non-
structural form econometricians might find appealing is to simply assume that a certain variable
can be explained by a deterministically chaotic law of motion and to proceed with analyzing the

behavior in the density space.

6. The framework for estimation

In the preceding sections, we derived a Markov process and characterized its law of motion in
the hyperstate space and we want to be able to estimate that law of motion. Since we are assuming
that the process is chaotic, and assuming the system has been running long enough, or that we
were lucky enough, let the hyperstate be currently in the stationary limiting density. This is not a
very uncommon practice in econometric investigations since estimation is usually done under the
assumption that the model is in equilibrium. This approach allows the state variable to oscillate
as long as the density is kept stationary. In other words, the weakness of the notion of equilibrium

in the hyper-state space makes the assumption of estimation under equilibrium weak.

We observe a time series {z,,n > 1} which is a Markov process on (X, S, u). By the chaotic
assumption, and the above assumption of observing the process in equilibrium, it follows that the
process z,, is strictly stationary. For simplicity, we assume that the process takes values in R,
with o-algebra B which is the o- algebra generated by the Borel sets of R. The assumption that
the process is univariate will be relaxed in later research, but it seems sufficient as a first step
for the simplicity of exposition as well as the fact that most of the economic models generating
deterministic chaos are univariate. The existing results on estimation in Markov processes that will
be used in Theorems 3 and 4 below will require that one also makes the assumption that Doeblin’s
condition holds , i.e., that 3 a finite measure on B with A ( R ) > 0, and an integer v > 1 and
e > 0 such that V¢ € X,

Tr¥)(¢,A) <1-¢ VYA(4) <e

where Tr" is the n-period transition probability. It is clear that this assumption will not hold for
the deterministic law of motion that we have. The desired results can be easily recovered, however,
by taking a sequence of truly stochastic Markov processes which converges to our deterministic

process. The details of that procedure are outlined below in the proofs of Theorems 3 and 4



El-Gamal : July 16th, 1988. 17

(especially the proof of Theorem 4). Given the assumption of chaotic behavior of X, it follows
that there exists only one ergodic class with no cyclic subsets. Given these assumptions and
some technical conditions that will have to be adapted for our purposes, Prakasa-Rao (1983) and
Roussas (1969) prove consistency and asymptotic normality results for the kernel estimator of the
stationary density f, and consistency for the Frobenius- Perron operator which is clearly defined by
the conditional density p(z|z) in the continuous state version of the Chapman-Kolmogorov equation
(by the stationarity of f):

1) = [ (1) ()i

It is obvious, then, that forecasting the probability of the system being in some set at some point
in time can be performed by estimating the density at that point in time using the Chapman-

Kolmogorov equations, and then integrating the density over the set of interest.

7. Asymptotic Results

In the following statements, K is a symmetric, bounded kernel and h,, is the smoothing factor

in the kernel estimators. We observe (z,,...,2,+1) and estimate the densities of interest by:

i. the stationary density:

nmn-Zm“Xh

ii. the joint density:

ceoon_ 1 E" (2= Xj)\ g (2= Xj41)
In(z, ) = nh, j=1K( Vhn JE( Vhn )
and of course,

iii. the transition conditional density:

NNACY)
P =T

Recently, Gallant and Nychka (1987), and others have popularized the use of orthogonal
series polynomial expansions of the densities for what they called seminonparametric estimators.
One of the necessary conditions for the consistency of most of those seminonparametric estimators,
however, is that the estimated densities have to be in L?. The reason for this restriction is that
most of those series expansions (e.g. trigonometric, Hermite, and Legendre) form systems that do

not form a basis for L!, and hence, the respective estimators are not consistent for some densities
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in L'.* For that reason, one prefers to use the kernel estimators which are themselves densities and
thus form a basis for L!. Notice, however, that the results of the following two theorems will prove
consistency and asymptotic normality of the stationary density, and consistency of the estimate of

the transition density. It is well known, however, that the estimator of the stationary density is
biased.

We state the following set of assumptions varying in their strength for use in Theorems 3 and
4. Notice that the following set of assumptions are not mutually exclusive, and though restrictive,
there is still a large class of kernels and smoothing parameters that can satisfy all the conditions,

and thus, achieve the warranted properties proved in the following two theorems.
1.
Llim)|1o |2|K(z) =0
O

ii. [ 22K (z)dz < oo.

— 00
2.
i. nh, — 00 as n 1 oo.

ii. {an},{Bn}, {In} of integers tending to oo such that f,7,a;! — 0 and anh, — 0.
3.

i. f(z) is continuous.

ii. f, the stationary density is absolutely continuous, and satisfies:

1£(z") - f(z)| < M(z)|z - '|

iii. S, the deterministic law of motion, has at most a finite number of discontinuities.

Theorem 8:*

Given assumptions 1.i, 2.1 & 3.i,iii,
i T 1Blfala)] - ()ldz — 0

And given assumptions 1.i,ii, 2.i,i, 3.i,ii,iii,

* See Theorems 1, p.294, 5, p.312, and 6, p.317 in Devroye and Gyorfi (1985) for the respective

inconsistency results for the trigonometric, Hermite, and Legendre polynomial estimators.
* For a statement and proof of part i., see Basawa and Prakasa-Rao (1980, pp. 302-304), the

proof replacing the assumption of Doeblin’s condition holding by 3.iii is clear using an argument
similar to that in the proof of Theorem 4. The proof of part ii. provided here uses the results in
Basawa and Prakasa-Rao (1980, pp.305-308).
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#1. Vnhy|fa(z) — E(fa(2))) — N(0,0%(z)) Vz

where 0%(z) = f(z) [ K?(2)dz. O

Proof of Theorem 8 part 1.

We have the following general Central Limit Theorem ( this is a special case of Basawa and Prakasa-
Rao (1980), Theorem 2.5 p.305):

Theorem:

Given {z,}a Markov process satisfying Doeblin’s condition. Let u, 1 oo and let {L,} be a sequence

of uniformly bounded functions L: R — R such that
a. E|Ly(z1)|? = O(unn™1).
Let v,(z;) = Ln(%;) — ELn(2):
b. E|vn(z1)va(zi)| = O(u2n~2) uniformly in 1 < < n.
c. Elva(z1)vn(z;)vn(z;)| = O(u3n~3) uniformlyin 1<: <5< n.
d. nu;lvar(L,(z1)) — 0% < 0.
and suppose that 3 sequences of integers {a,}, {B.}, {7n} tending to oo such that

ﬂnqna;l —0

1

and apu,n~t — 0.

Then
Vai® Y lln(5) ~ BLn(z)] = NO,0?)

Now, following Basawa and Prakasa-Rao (1980), Theorem 2.6, p. 306, let u,, = nh,, and let

L"(z)=K( h )

z—z
n

Then, it is clear that the assumptions of Theorem 3 part ii. satisfy all the conditions of the above theorem,

and by the definition of f,, the desired result follows directly. One point has to be dealt with, however, and

that is the satisfaction of Doeblin’s condition which is clearly violated in our case. This problem can easily
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be solved by considering the estimator of the process z{* defined by the transition density

oy B —m?(2'-Sm(z))?/2

z'|z) = —=e
pm(2'|Z) V2
which obviously satisfies Doeblin’s condition. Using Kushner’s (1984) Theorem 6, p.156-158 reproduced
below at the end of the proof of Theorem 4, we can see that the sequence of corresponding stationary
densities f,, converges to f pointwise, and the results of Theorem 3 follow by considering f, to be the
estimator of fas(n) where M(n) is chosen for each n to be large enough so that the difference between the

warranted density and the approximating one converges to zero after normaligation by \/n. u

This theorem gives us asymptotic results for the kernel estimator of the stationary density
in terms of the consistency a.e. and asymptotic normality around its mean. We would like to
have similar results for the conditional density function defining the Frobenius-Perron operator.
We start with the weaker results in Theorem 4 which are mainly due to Roussas (1969). The
results of Roussas, however, require the continuity of j(.,.) and ’thus, the continuity of p(.|.). In our
deterministic law, however, the transition function G(z'|z) = } p(z"|z)dz” is a heavyside function
which has the value O for all z' < §(z) and then jumps to t—}—l‘: value 1. The conditional density,
thus, is a Dirac delta function at the value S(z). In the proof of Theorem 4 below, one uses the
result of Roussas for continuous 7 and then takes a sequence of stochastic Markov processes that
weakly converge to our deterministic process. This technique of defining deterministic systems as
the weak limit of stochastic processes will be of great interest in the analysis of our same methods

of estimation for some stochastic systems.

Theorem 4:*

Given assumptions 1.1, 2.1, 3.1,ili and defining the estimate of G(.|.)

G.(z'|z) = /p,,(:c"]x)dz"

— 00

we have the result: Vz € X,6 > 0,34 with u(A) <6 and

sup |Gn(2'|z) — G(2'|z)| — 0 in probability Vz',z
z'¢A

* This theorem with the extra assumption of the continuity of j(.,.) and a stronger result of
convergence of the sup for z € X is stated in a different form without proof in Prakasa- Rao (1983),
and proved in Roussas (1969), the proof provided here uses results from both sources and replaces

the assumption of continuity of 5(.,.) by continuity of S except at a finite number of points.
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Proof of Theorem 4 :

We start by proving the result for 7 continuous. By the definition of f,, 7, & pn, we have:

tH " ___}_'zz"_'zz" 1 z) — z‘zzll
Pn(2"l2) - pla"le) = 315 l7n(2,2%) = 5(2,2")] + 55 () = S ()li(=, 27)

but by the definition of G

Gale'le) = G(#1a) = [ (pala"le) - pla"]))ds"

and using the above equality together with the obvious fact that

z’ oo

/j(z,z")dz"ﬁ /j(z,z")dz"=f(z)

-0 =00

and using the triangle inequality, and taking sup over all x’ ,we get:

U ! 1 7 N " " _}__ z) — z
wup [Ga('|2) ~ Gl<1e)| < = sg,p_[o [n(e )lds" + 75 1(2) = ol

Taking plims of both sides, and using the facts that the LHS is non-negative, and that the first term on
the RHS converges in probability to 0 Vz by Roussas (1969) lemma 3.3, and the second term converges in
probability to 0 by its L' convergence to 0 (Theorem 3 above), the LHS converges to 0 in probability.

Now, we need to replace the assumption of the continuity of j(.,.) by that of the continuity of S
except at finitely many points. Start by considering a sequence of stochastic processes with the transition
density

pm(2'|2) = _\/%c—m’(z'—sm(z))’/'l
where S,, is a sequence of continuous functions converging to S. It is clear that that sequence of normal
transition densities converges to the Dirac delta function at S(z) which is the true p(z'|z). Moreover, for all
finite m, p,, are continuous. Assuming for the moment that f is the continuous stationary density for all the

Pm’s (this delicate point of the proof will be treated shortly), then the sequence of joint densities j,, defined

by jm(z,2") = pm(z'|z) f(z) are also continuous. By the constructed convergence, IM such that
sup |Gu(2'|z) — G(2'|z)] < €/2
z'¢A

Now, taking the sequence of estimators Gy, to estimate Gs instead of G, we can use the triangle inequality

to write

sup |Gp(z'|z) - G(z'|z)] <
z'¢A
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sup |Gn(2'|z) — Gp(z'|z)| + sup |[Gu(2'|z) — G(2'|2)]
o' ¢A <'¢A

but , by the above result from Roussas, the first term on the RHS converges in probability to zero. And by
construction, the second term of the RHS converges to zero completely, we conclude that the LHS has to

converge in probability to zero which is the desired result.

One detail in the above proof remains to be checked; the sequence of stochastic processes ( which
are still ergodic), each have a stationary density f,,, and we need to be able to show that the sequence of
those stationary densities converges pointwise to f. The following result is due to Kushner (1984, thm. 6,
pp. 156-158), it is stated here without proof. Since it is easier in the approximation literature to consider
a sequence of stochastic processes z¢ weakly converging as ¢ | 0 to a deterministic diffusion process z, we
consider the limit to be the deterministic Markov process that agrees with z at all integer values of time.

Consider the following assumptions:

A.0 The limiting diffusion process z(.) corresponding to our deterministic law of motion at all integer

time points gives a unique solution on [0, co) for all initial conditions zo to the Ité equation:

dz = b(z)dt + o(z)dw

A.1 The diffusion limit z(.) has a unique stationary density f which defines a unique invariant measure.

A.2 The pair {zf, £{} is Markov Ve > 0 and let z§ = zo where the initial condition z§, £§ has the
stationary distribution defined by the measure v¢(.), then z¢(.) = z¢(.), the process with z; as its initial

condition. Let u¢(.) be the marginal measure for {z§, £ }.

A.3 3¢p > 0, and for all nonrandom initial conditions (z, £)=(z§, £5 and € > 0, there exists T.(z, £) ,

a transient time which may | oo as ¢ | 0, such that
{z:0 < € < €0, t > Te(z,8),1,8}
is tight.
Theorem: (thm. 6, Kushner (1984), pp. 156-158)

Given A.0, A.1 and A.S; {uc(.)} 1s tight. Moreover, if A.2 holds, then u¢(.) = u(.).

We thus have the convergence of the stationary densities to f, and the proof of Theorem 4 is completed.

The results of Theorems 3 and 4 give us all the necessary ingredients for statistical inference.

With the consistency and asymptotic normality of the stationary density estimate (Theorem 3),
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and the consistency of the transition function (Theorem 4), we can forecast the probability of the
system being in some set at some point in time. Moreover, with the estimate of the transition
function, we can forecast the evolution of densities starting from an initial density other than the

stationary one, and hence examine the short term effects of redistribution policies.

8. Unoptimized small sample behavior of the estimators

It is a common practice to test the small sample behavior of estimators whose asymptotic
robustness has been established. In this section, we start by estimating the stationary density, the
cross-period joint density, and the transition density for the trajectory of the diadic transformation
depicted in Figure 3.a. In order to qualitatively evaluate the performance of the estimator under less
than perfect circumstances, the estimation was performed using the Kernel which takes the value
0.5 on the interval [-1,1], and vanishes outside that interval. This is the grand father of all kernel
estimators that was referred to as the naive density estimator by Fix and Hodges (1951). There
was no attempt to use the literature on the optimal choice of the smoothing factor, it was taken to
be n~9-7%, The estimated stationary density is shown in Figure 5.a, and the estimate is within one
standard deviation of its true value (the uniform density) using the asymptotic normality result of
Theorem 3, part ii. The joint density is depicted in Figure 5.b, and it clearly outlines the diadic
transformation. The transition density also clearly shows the diadic transformation although the
peaks are more ambiguous because of the irregularity of the estimated stationary density. For a
sample of only 100 observations, however, and with unoptimised choices of the kernel and smoothing

parameters, the estimator is relatively successful.

A second simulation was performed and the three densities of interest were estimated for
the trajectory of the diadic transformation with shocks that is depicted in Figure 6. The reason
for performing this simulation could be motivated by the proof technique used for Theorem 4*
where one considered a sequence of stochastic systems converging to the deterministic system of
interest. More generally, one would be interested in testing whether the techniques developed here
can be successfully used in stochastic systems where the deterministic component dominates the
stochastic component. The trajectory in Figure 6 was generated using z;,; = (2z;+r) mod 1 where r
is distributed uniformly on [0,0.001]. The estimated stationary density, joint density, and transition
density are shown, consecutively, in Figures 7.a, 7.b, 7.c, and it is clear that the dominance of the

diadic transformation over the shock component was depicted.

9, Conclusion

* See last step in proof of Theorem 4 above
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4

In this paper, we have mathematically developed the law of motion for the hyperstate space,
and characterized that law of motion for deterministically chaotic processes. The simple example

of the non-overlapping generations mango economy was used to illustrate the various concepts.

By characterizing the chaotic behavior in the density space, we have justified the estimation
and forecasting of the density of the state variable. By estimating and forecasting those densities,
one extracts more information from the data than one would using mechanisms that only estimate
its conditional expectation. By further estimating the transition function (F-P operator) in the
hyper-state space, one can analyze short term effects of redistributive policies. In other words, if
the policy makers were to change the distribution of the state variable in the economy without
altering the individuals’ maximization problem, we can forecast the evolution of that distribution

using the estimated transition function.

For the estimation mechanism, we suggested the kernel estimator for the law of motion and
the stationary density of the process. Consistency and asymptotic normality results were proved,
and then, a small sample simulation was performed for the mango economy example which yielded

satisfactory results.

The theory about the relation between the law of motion in the state space and the F-P
operator holds for any complete measure space. Generalization of the results of the estimators to
the multivariate case where the space X is a subspace of R? is direct. The consistency result for
the stationary density in the multivariate case are available in the literature of kernel estimation.
The asymptotic normality result can also be achieved using the multi-variate version of the central
limit theorem used in the proof of Theorem 3, part ii. For the consistency result of the transition
function, one can adjust the results of Yakowitz (1979) in the same manner used in the proof of
Theorem 4 above. The proof strategies are generally the same as those used in this section, and
results are potentially stronger (Yakowitz proves convergence of his estimator with probability one
which is stronger than the result of Roussas (1969) that was adapted for Theorem 4).

Another generalization that was alluded to in the proof of Theorem 4, and the simulation
in Figures 6 and 7 is the usefulness of our simple techniques for some stochastic systems. We can
utilize the fact that a stochastic control problem could give a dynamic solution whose behavior
in the hyper-state space is very similar to that of a deterministic system by estimating the law of

motion for the latter.

A test for chaos can easily be developed using the result of Theorem 2 since, under the null,

the estimated F-P operator should have the estimated stationary density as the unique stationary

For instance, see Devroye and Gyérfi (1985), thm. 1, p. 148, proved on pp. 156-159
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density. Necessary and sufficient conditions for that uniqueness are not hard to find, and thus,
we have all the necessary components for a test of ergodicity of a time series. If it is maintained
that the data generating process was deterministic, then that also constitutes a test of chaos.
Progress towards the development of that test has been made in El-Gamal 1988, and Domowitz

and El-Gamal 1988. Further progress along that line of research is expected soon.
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Figure 1

The Diadic Transformation
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Figure 3.a
Trajectory Of The Diadic Transformation
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Figure 5.a
Estimated Stationary Density
For The Diadic Transformation
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Figure 5.b
Estimated Joint Density
For The Diadic Transformation
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Figure 5.c

Estimated F-P Operator (Conditional Density)
For the Diadic Transformation
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Figure 7.a
Estimated Stationary Density
For The Diadic Transformation With Shocks
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Figure 7.b
Estimated Joint Density
For The Diadic Transformation With Shocks
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Figure 7.c
Estimated F-P Operator (Conditional Density)
For the Diadic Transformation With Shocks
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