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ABSTRACT
This paper develops asymptotic prediction functions that approximate the
shape of the density of future observations and correct for parameter
uncertainty. The functions are based on extensions to a definition of
predictive likelihood originally suggested by Lauritzen and Hinkley. The
prediction function is shown to possess efficiency properties based on the
Kullback-Liebler measure of information loss. Examples of the application of
the prediction function and the derivation of relative efficiency are shown
for linear-normal models, non-normal models and ARCH models.






1. Introduction

Although prediction is often a primary goal of econometric research,
problems of predictive inference have received relatively little attention
in the Titerature. A glance at any econometrics text reveals only a few
pages devoted to problems of prediction, the major concern being with
problems of parametric estimation and inference. This neglect may stem from
the fact that no one frequentist technique is accepted as universally
appropriate for predictive inference. In practice the prediction problem is
approached by a diverse collection of techniques whose properties are not
always well understood. Recent papers by Fair (1980) and Brown and Mariano
(1983,1984,1985) have furthered understanding of some common procedures for
generating predictions, but a unified basis for evaluating them is still
missing. The Bayesian viewpoint provides a consistent theory of prediction
but implementation in complex problems is often difficult. Our objective in
this paper is to suggest a class of Tikelihood based prediction functions
that is widely applicable. The likelihood concept proposed has the
advantage that it puts predictive inference on a consistent footing, a role
similar to that played by the likelihood principle of estimation. The use
of a formal definition of predictive 1ikelihood also provides a reference
point for the interpretation of existing approaches to prediction.

The properties of commonly used prediction methods have been studied in
a number of papers that try to rationalize their performance in the context
of models with well defined characteristics. Bianchi & Calzolari (1980) and
Fair (1980) among others have studied the behavior of Monte Carlo predictors
of various sorts to ascertain the contribution of different sources of

uncertainty to prediction error. 1In a series of papers Mariano and Brown



have compared the asymptotic properties of deterministic predictors, which
replace structural disturbances by their expected values, with stochastic
predictors based on drawings of the disturbances. The latter include
straightforward Monte Carlo predictors as well as stochastic predictors
based on the use of sample period residuals.

The approach taken in the current paper is in the same spirit as the
research just cited. We emphasize accounting for the uncertainty due to
stochastic disturbances and, particularly, the uncertainty due to the use of
estimated parameters. In contrast to earlier research, however, we
emphasize obtaining analytic prediction functions that approximate the
entire distribution of future observations rather than focusing on the bias
properties of alternative point predictors. We do this because many
interesting econometric prediction problems are characterized by predictive
distributions that are non-normal, and, hence, not well characterized by the
mean and variance alone. Prediction functions that approximate well the
distribution of future observations will be important for obtaining accurate
confidence intervals or probability statements about predictions.

The basis for our approach to prediction functions is a definition of
likelihood due originally to Lauritzen (1974) and Hinkley (1979). Their
definition has been applied by Butler (1986) and Cooley, Parke and
Chib (1987). In this paper we extend the Lauritzen-Hinkley definition in a
way that permits direct application to more complex econometric probliems.

We also introduce the concepts of predictive consistency and first and
second order predictive efficiency. These are shown to be necessary to
discriminate among alternative prediction functions.

In the next section we review the prediction problem and the most



commonly used predictors. The Lauritzen-Hinkley definition of predictive
likelihood is presented. Our asymptotic likelihood prediction function is
presented in Section 3 and a convenient form for application is derived. We
introduce definitions of predictive consistency and efficiency based on the
Kullback-Leibler information measure in Section 4. Section 5 shows the
relationship between predictive 1ikelihood functions and mean squared error
prediction functions, while Section 6 extends the definition to cover the
use of consistent, but possibly inefficient parameter estimates. Finally,
the usefuiness of our prediction function is illustrated in the context of
regression models with non normal disturbances and autoregressive

conditional heteroskedasticity (ARCH) models.

2. Prediction Functions

Suppose interest centers on predictions of a random variable ¥; defined
over the space Y. The m data period observations (yt : t=1,...,m) are
denoted by Yq° The n future period observations that we wish to predict,
(yt ¢ t=m+l,...,m+n), are denoted by Y- The most informative possible
statement about the future is the density f(yflyd,o), where 8 is a vector of
true parameters contained in a paramter space 8. Knowledge of f(yf|yd,0)
permits one to make a variety of point forecasts (mean, median or mode) and
to construct confidence regions for predictions. Because # is unknown,
practical prediction procedures most often generate point estimates of Ye
based on point estimates of § and in some cases attempt to estimate the

second moment of Vg

We suppose that the model generating realizations of Yg can be

represented as



Y = 9(Xg5us,8),

where Xg is a vector of exogenous variables, and Ug is a vector of
stochastic disturbances. A predictor is defined by making specific
assumptions about Ug and 8. Mariano and Brown define the deterministic

predictor based on a consistent estimate 3d of 6 to be
A
Yf = g(Xf,O,od),

where the error term is set equal to its expected value. An alternative to

the deterministic predictor is the Monte Carlo predictor defined as

A
(2.1) Xf = g(xfn!f,od)?

where the u. represent draws from some specified distribution of u. and yc
represents the corresponding set of realizations of Ye A second form of
Monte Carlo predictor that is often used (Muench et al.(1974), Fair (1980))

is defined by draws of both error terms and coefficients

A
(2.2) If = g(Xf,gf,Qd),

where here éd denotes drawings from the asymptotic distribution of the
estimated coefficients.

Although interest typically focuses on the first and second moments of
the distributions generated by (2.1) and (2.2), the entire distribution is
of interest as an approximation to f(yf;e). Indeed, the Monte Carlo

procedure described by (2.1), can be thought of as an attempt to capture the
density

(2.3) F(yes0)



by drawing the error terms. The second Monte Carlo procedure attempts to
weight the density (2.3) by drawings from the asymptotic distribution of the
sd’s:

n o 12(84-0)%/V(8,)

(2.4) [flypgg e 4470
The obvious drawback to (2.1) is that it ignores the uncertainty introduced
by using ﬁd, while (2.2) appears to take account of it, but does so in a way
that is difficult to judge without reference to some theoretical standard.
The procedures developed in this paper have a lot in common with Monte Carlo
methods. They involve corrections to forecasting densities to account for
parameter uncertainty and will typically be implemented by simulation but
they are motivated theoretically in the following sections.

An alternative to the approaches just discussed is to eliminate the
unknown parameters ¢ by the use of sufficient statistics. This is the basis
of the notion of predictive Tikelihood that was originally suggested by
Lauritzen (1974) and Hinkley (1979). The Lauritzen-Hinkley concept
recognizes the central importance of f(yf;a) for problems of prediction, but

uses sufficient statistics to eliminate the unknown parameter 6. Let S,, S

d’
and Sd+f be sufficient reductions of Yd’ Yf and their union respectively.

f

Sufficiency ensures that the density f(yd;e) can be factored as

Flygs0) = FlyglSy) F(Sy4:0),

where f(yd|Sd) does not depend on 8. The Lauritzen-Hinkley definition of
predictive 1ikelihood exploits the fact that Sd+f is a function of Sf and Sd
that does not depend on 4.



Definition 1 (Lauritzen-Hinkley):

The predictive likelihood function is

fygs0) F(S436)
F(Sq4¢:9)

Plik(yelyg) = FlygSylSq,p) =

This definition envisions treating p]ik(yflyd) as a likelihood function
for the future observations Y- In practical applications the plik could be
used to order future values by their plausibility and to obtain confidence
intervals for Y- This definition has been applied to several econometric
problems by Cooley, Parke and Chib (1987), but its applicability is limited.
There are some problems for which there is no sufficient reduction of the
data - probit models are one example. There are many other examples where
minimal sufficient statistics exist but have unworkably complex
distributions - Togit models are an exampie. In the next section we develop
an alternative definition that is applicable and easily implemented in these

situations.

3. Asymptotic Prediction Functions

The limitations of the preceding definition of predictive 1ikelihood
are not insurmountable. First, we know that maximum likelihood estimates are
asymptotically sufficient. These provide a solution to problems that do not
admit sufficient statistics. Second, we can replace the (often intractable)
exact distributions in the Lauritzen-Hinkley definition with asymptotic
distributions. In the appendix we show that, using a series of

asymptotically valid approximations, we arrive at definition in the



following practical form:1

Definition 2: The asymptotic predictive likelihood function is

A A A A
(3.1) PUK (veldg) = Flypify) « explwy(yesfy) + Wyplyesby) )

where

A 1 A A -1 s ’
W gsbg) = - 3 V¥gsby) Hlyg,esq) V(vgidy)
A A A 1 2 'R

V(yf;ad) is the log gradient function of f(yf;ﬁ) evaluated at Ye and 3d,

H(yd+f;3d) is the log Hessian of f(yd+f;0), and w(gd) is the O(m'l) bias in
A

the MLE Gd.

Despite a bit of notational complexity, (3.1) is a definition that can
be easily implemented for common econometric prediction problems. The first
and second derivatives of the log density are not usually difficult to
compute, and (3.1) can often be incorporated into a Monte Carlo simulation
strategy.

The elements of (3.1) have the following intuitive justification. The
first term on the right hand side of (3.1) is simply the prediction function
that would obtain if we knew the correct functional form of f(yf;e), but
substituted consistent estimates for the unknown parameters. We will refer

to this as the certainty equivalence (CEQ) prediction function (although it

1 The definition and subsequent development apply to models with
independent observations. Example 3 in Section 7 covers a case where a
simple extension to dependent observations is possible. A more general
extension would follow along similar lines.



should be noted that the term is wishful rather than descriptive as no
equivalence exists). It is, as noted in the previous section, the form one
is approximating via the Monte Carlo prediction procedures extensively
analyzed by Mariano and Brown.

The factor wl(yf;sd) corrects the certainty equivalence prediction
function for parameter uncertainty. It typically puts more probability in
the tails of a prediction function, where the log gradient V(yf;ad) is
largest. Loosely, this increase in the dispersion of the prediction
function relative to the CEQ density recognizes that Ye - §f will have a
greater variance than Ye - E(yf). We formalize this idea in this paper.

The two terms of wz(yf;sd) correct for two related problems. The first
adjusts for asymptotic bias of order O(m'l) in the m.1.e., and the second
adjusts for the possibility that the second derivative matrix is not
constant over Yg- Both elements could be derived by simply estimating the

expectation of a Taylor series approximation to g(yf;a) = 1og(f(yf;0)):
A A A 1 A , A A
9(yg3fq) - 9(yg30) = Velyes8y) (84-0) + 5 (64-6)"Helygsdy) (64-9).

The expectation of this is zero for a linear-normal model, but in general it

will not be.

4. Predictive Efficiency

Having proposed a candidate prediction function we now discuss how to
evaluate it. Most common methods of evaluating forecasting errors (e.g.
looking at mean-squared errors) are based on the first two moments. This can
only make sense to the extent that predictive densities are well

approximated by normal distributions. The non-normal distribution of the



forecast errors for many econometric models motivates us to adopt a measure
of predictive efficiency that is sensitive to the shape of the future
density as well as its moments. That measure, the Kullback-Leibler
information measure (Kullback(1959)), provides a natural metric for
evaluating candidate prediction functions.

In this section, we formalize the information measure of predictive
efficiency and then establish four results. First, we derive the
information efficiency for the CEQ technique. Second, we establish the
order of the relative efficiency gain that can be secured by adjusting the
functional form to account for parameter uncertainty. Third, we construct
an expansion useful for calculating the efficiency measure for particular
prediction functions. Fourth, we show that the predictive 1likelihood
approach yields unambiguous efficiency gains for an important class of
location parameter models.

The Kullback-Leibler measure for a particular realized prediction

function f*(yf;gd) can be written as:

(4.1) L(F,7%) = [ [alys0) - g*(vgs8)] F(y30) dyg,

where g(yf;a) = 1og(f(yf;8)) and g*(yf;sd) = ]og(f*(yf;gd)). To abstract
from the dependence of (4.1) on the particular realizations of Y4 and éd, we

will compute the expected information loss due to parameter uncertainty
A A
(4.2) I(F, %) = [ I(f,f*) £(0,:0) dby,

where f(@d;a) is the density of 3d.
The asymptotic properties of I(f,f*) will prove both workable and

interesting even though evaluating I(f,f*) may prove difficult for many



10

typical econometric app]ications.2 Predictive consistency will be defined

as
(4.3) 1(f,f*) » 0 as m ~ w.

This requires basically that Sd is consistent and that f*(yf;ad) converges
to f(yf;O) as 6d Bg. white inappropriate simplifications such as applying
a normal approximation to a nonnormal true density fail to achieve
predictive consistency, a variety of functions, including CEQ and
p]ika(yflyd), are predictive consistent.

Among predictive consistent functions, the first order predictive

efficiency is the scalar Al(f,f*) in the expansion
(4.4) I(F,%) = mIA (F,7%) + o).

We can derive the first order predictive efficiency for the CEQ function
under fairly general assumptions:

Proposition 1. We assume that: (i) The derivatives to order three of
g(yf;O) with respect to 8 exist, (ii) the derivatives to order two are
bounded by integrable functions, and (iii) the third derivatives are
uniformly bounded by a function with finite expectation. Then the CEQ first

order prediction efficiency is given by:

(4.5) A(FF) = - 3 trl V(8! E (Hye0) 1,

2 The expected value of I(f,f*) over the distribution of 0d
is typically about as difficult to derive as is the expected value of od

itself. For example, I(f,p11ka) can be derived precisely for linear-normal

models and models with nonlinearities in variables as in Cooley, Parke, and
Chib (1987).



where V(ad) is the asymptotic variance-covariance matrix of ml/z( Sd-ﬂ) and
EY(H(yf;o)) is the expectation over Y of H(yf;O).
Proof: Under these standard assumptions, we can expand
0 A A A A
I(f,f) = £ { (9(y30)-9(yg304)) Flygs8) F(8436) dyp db

as the sum of two expressions. The first,
A A A
LI T0E0 G40 Flyg0) Fa430) dvg oy,

equals zero because V(yf;o) is independent of 3d‘” and

{ V(ygs8) f(ye30) dye = 0. The second,
1 A , A A A
- 3 { { (84-6)" H(yg;0%) (64-0) flye;0) F(6436) dye dby,

where 6* is between 6 and 3d, converges (multiplied by m) to (4.5).3
End of proof.

We now turn our attention toward efficiency improvements that can be
secured by accounting for parameter uncertainty. Proposition 1 states that
ignoring parameter uncertainty leads to I(f,%) = O(m'l), and it will turn
out that the best improvement generally available is O(m'z). This bound on
relative prediction efficiency is meaningful (as are the well known bounds
on estimation efficiency) only if the class of alternatives is restricted by

suitable regularity conditions. We gain some insight into establishing

3 172, 4

This convergence requires that the variance of m™/ ~( od-a) converge
to the asymptotic variance V(0d). Exceptions to this technical condition,
which is also incorporated into the notion of an asymptotic mean squared
error, could be dealt with formally by truncating slightly the range of 3d’
Equivalently, we could have defined the average infomation loss (4.2) to be
with respect to the asymptotic distribution of gd‘

11



appropriate regularity conditions by considering a simple, but compelling
example of superefficiency. The superefficiency example motivates us to
require that any efficiency gain occur over a neighborhood N in the
parameter space rather than for just certain true parameters. Given this
last assumption, we show in Proposition 2 that the largest possible
efficiency improvement is O(m'z). We then contemplate the efficiency
improvement achieved by the particular case p]ika(yf|3d).

We begin by formally defining the predictive efficiency of f*(yf;ad)
relative to f(yf;ad) as

= A A A A
(4.6) I(F,f*) = - [ h(ygsby) Flyeso) F(6:0) dyg dog,
where h(yc;8,) is defined via
A A A
(4.7) 9*(¥g38q) = 9lygsby) + hlygsdy).

Note that the efficiency measures are additive in the sense that

I(f,f*) = I(f,?) + I(?,f*). The second order relative predictive efficiency

is the scalar xz(?,f*) in the expansion
A -2 A -2
(4.8) I[(f,f*) = m Az(f,f*) + o(m 7).

The regularity conditions we will introduce rule out certain instances
of superefficiency. Consider the example of a prediction function f*(yf;ad)
= f(yf;ea), where 6% is a fixed element of 8. This choice entails zero
information loss if 8 happens to equal 82, but not for any other true
parameters. It fails to attain even predictive consistency for ¢ # 62
because f*(yf;sd) = f(yf;oa) for all 3d regardless of the actual true

parameters. To rule out such cases, we require that the advantage of

12



f*(yf;ad) over f(yf;ad) be reasonably uniform for true parameters in a
neighborhood N (that does not shrink with increasing m). We incorporate
this requirement via the average of T(?,f*) over all true parameters § in N,

which we write as

(4.9) I, = - ££ Hh(yf;Sd) Flys0) dyf] F(0,:9) dd, dF .

A
Our strategy will be to show that TN can be negative only if I(f,f*) =
O(m'z) almost everywhere in N.

Assume that there exists an a such that

(4.10) [ Inys?)1? lyes) dye = 0%,
and
(4.11) [ hys®1* £lypsd) dye = o), k> 2.

These conditions are not restrictive because they are essentially if
f*(yf;O) is to integrate to unity. (See (4.17) below.) We will add to the

usual assumption

(4.12) { V(yg38)'V(ygs6) flygs0) dyg = 0(1)

a similar, but higher order requirement that

(4.13) [ Tgi0) Vg0 (y300)° £ly30) dyg = 0(1).

Proposition 2. If (4.10) is not met with @ > 2 almost everywhere in N,

then the largest term in an expansion of (4.9) will be unambiguously

positive.

13



14
Proof.4 To evaluate the integral (4.7) over the Cartesian product
A
N x 8, we will integrate first over N and then over 8. For a given 0d €9,

the integral over & ¢ N can be written as the sum of two terms:

(4.14) SASLIZEARCPURTS £(84:9) dF
- hyesdy) (VP 90E8) 1) #(yesby) dyp ) FB:9) aB.

Expanding the element in square brackets in the second term shows that term

to equal
(4.15) - [ Mugily) Vgby) fupdgdy [ 0y Df(G50)a0

; %{h(yf;ﬁd) [V(yg50,)24H(yg30,4)] Fye304)dye £ (84-8)2F(6,439)d7

plus terms involving third and higher powers of 3d-3.

We can rewrite the first term in (4.14) as
A A A
(4.16) { h(ygs8y) Flyesoy) dyg Nf £(0439) dF

where the second factor can be denoted P(N|3d).5 The first factor in (4.16)
is unambiguously nonnegative because f log(n/n*) m > 0 for any densities «
and n* with equality only for n* = 1 almost everywhere. The first factor is

also the leading term in a Taylor series for the unit integral requirement

For notational simplicity, we will use a scalar 4.

A
5 The notation P(Nlad) conditioning on 3d is not completely well
defined because § is not a random variable. It does, however, furnish a

convenient shorthand description of the process of integrating over N. The
same consideration motivates our use of the notation EN().



15

1 , which can be expanded as

A A
[ expihlygs8q)) Flygsdy) dvg

A 2 A
(h(ygs840)% + +++ 1 Flypsfy) dyg = 0.

N fr=—t

(4.17) [ h(yeify) +

Under (4.11), the remaining terms in (4.17) are o(m~2).
We can now combine (4.15), (4.16), and (4.17) to write (4.14) as the
product of P(led) and

A A A A A AAZA A 2/\
(4.18) V,(h) - COVy (h,V)-Ey(8,-F]8,) - COV, (h,Vo+H)-Ey((8,-8)°]0,),

A A A 2A _1 .
where EN(Gd—yled) and EN((Hd-ﬁ) |ad) denote the order m ~ terms in the
asymptotic conditional mean and variance of 3d'a over N and COVY(-) and

VY(-) denote integrals over Y- The covariance inequality together with
~-af2

(4.10), (4.12), and (4.13) implies that COVy(h,7) = O(n™*?) and
covy (h,724H) =
y(h, Vo) =
O(m'a/z). The two elements of (4.18) involving these factors are thus both

O(m-a/Z—l

) while the unambiguously positive element VY(G) is 0(m™®%). From
this, we deduce that the largest term in an expansion of (4.14) will be
unambiguously positive unless a > 2.

Integrating (4.14) over 6d € 6 will then produce (4.9). This last
integral will be dominated by the unambiguously positive instances of a < 2

A
if these have measure greater than zero over od € 0.

End of proof.

The proof of Proposition 2 gives some guidance in constructing

A
h(yf,ad). The unambiguously nonnegative term VY(ﬁ) should be as small as
possible and the covariances con(ﬁ,G) and COVY(G,92+Q) should be as large

as possible. The function, V(yf;gd) and V(yf;ad)2+H(yf;3d) are clear



candidates to form h(yf;gd) under these criteria. The asymptotic predictive
Tikelihood function, which is originally motivated on distinctly different
grounds, combines these two functions, weighting V(yf;gd) by the asymptotic
bias and weighting V(yf;ad)2+H(yf;3d) by the asymptotic variance.

A more direct approach to calculating the second order relative
efficiency of plika(yf|3d) and other prediction functions is possible if the
conditions in Proposition 2 are strengthened slightly. The main conclusion
of Proposition 2 is that reasonable candidate functions h(yf;ad) will be
well behaved after multiplication by m. In practice, h(yf;ad) will
generally be constructed by weighting a function of Y¢ by either the
variance or bias of 3d, both of which are proportional to m.

Proposition 3. Assume that (i) the derivatives to order three of

m h(yf;e) with respect to 8 exist (we will denote derivatives by
subscripts,e.qg. ho(yf;a) ), (ii) the derivatives to order two of m h(yf;e)
are bounded by integrable functions, (iii) the third derivatives of

m h(yf;O) are uniformly bounded by a function with finite expectation, and

(iv) (4.9) and (4.10) are satisfied for @ = 2. Then

(4.19) A (F.f%) =1 p? -y hy - 3 trl V(g hyp 1

where

2 . 2 2
h® = Tim [ m® h(y.;60)¢ f(ye;8) dy
Mo Y f f f

lim f m he(yes8) fyes8) dye
meo Y

hoo = Tim ['m h,, (ye;8) F(ye;8) dy and
0 = oy " eeVF f f

-1, . -1, .. . A
m Y is the O(m °) bias in od.

16



Proof. By expanding h(yf;0), we can write
2 A A A
“u [ [ hlygsty) Flygs) F(04:0) dyg ddy

as the sum of three terms

n h(ygs0) flygs0) dyg

m2

2

A A A
m ( -8)’ hﬁﬁ(yf;o*) (Gd-ﬁ) f(Yf;a) f(od;o) de dod,

N =

{
Y
{ hg(vei8) (84-0) F(yes0) F(64:0) dy, db,
/
Y

J
:
J
:

1

4 The first term can be approximated by 2 hz

where 6* is between 8 and 3
via the unit integral requirement (4.17) and assumption (iv). The other two
terms converge in probability to the terms in (4.19).

End of proof.

For the particular prediction functions p]ika(yflgd), the conclusion of
Proposition 3 can be expressed in another way that may be useful by
evaluating hz, ha, and ﬂaa° We record these results as Proposition 4 below.
One of these includes, as a special case, the classic location parameter

prediction problem where we know the form of the density for Yo but not its

Tocation.

A
Proposition 4. (a) If the bias in 3d is o(m'l) (perhaps, because ed

is corrected for bias), then Az(g,p]ika) can be written as:

(4.20) - & vec(H3!)’ ( Eyl[(vecHy) (vecH,)'] - Ey[V. eHeV ]

+ 2 Ey[Helgp - Ey[(Ve/0Vc )Vcl, ) vec(H3'),

where we are letting the arguments of Hd’ Hf and Vf be implicit for

17



18
notational simplicity.

(b) If, in addition, EY[Hf] and EY[(Vf'®Vf’)®Vf] are constant over 8, then

I -1 2 1 -1 -1 o,
(4.21) A, (F,p1ik?) = - § EyL (tr( H3' He 01 + g EyL Vg My He HY' Vel
A
(c) If H(yf;O) is globally negative semi-definite, then kz(f,p1ika) is
unambiguously negative.

Proof: Appendix B.

In Section 7 of this paper, we give some results for specific models
that illustrate the process of finding these expectations and applying

Propositions 3 and 4.

5. Mean Squared Error Prediction Functions.

The information efficiency measures proposed in Section 4 emphasize the
importance of correct functional form. In contrast, the most commonly used
technique for evaluating predictions - mean squared error (MSE) analysis -
is often used simply as a criterion for evaluating the forecasting error of
point predictions without regard for functional form (e.g. Baillie (1981)).6
Indeed, abstracting from nonlinear functional forms is regarded as a virtue
of the technique.

We can represent an asymptotic MSE analysis in the setting of a
particular functional form, thereby deriving a MSE prediction function that

approximates f(yf;o). We base our asymptotic MSE analysis on a point

We might add that mean squared error analysis rarely jnvg]ves any
attempt to actually minimize mean squared error. The focus is instead on
simply assessing the error in some point forecast.



A
forecast Y which is typically computed by simply setting unknown errors to
zero. Because mean squared error analysis is concerned with only the second

moment of yf-§f, the natural functional form is a normal density
A 1 A , -1 A
(5.1) g(Yf;od) x -5 (Yf'Yf) Vf (Yf'Yf),

where Vf is the variance-covariance matrix of Y- Dealing with parameter
A A
uncertainty requires the derivatives Df = ayf/aad. Treating Df as constant

over ye leads to the approximate first and second derivatives

A ~ |
(5.2) V(yf’ad) = (Yf‘Yf) Vf Df

1

(5.3) H v

g = DeVe D

Using (5.2) and (5.3), wl(yf;sd) becomes
(5.4 0) = -Liy,-y. vt vzl s (y -y

) W ygifg) = -5(yeye) Ve DelHy + DEVEDE] DRV (y-ye)-
If we ignore any asymptotic bias in 3d and treat Hf as constant over Yes
then the term wz(yf;gd) in (3.1) is constant over Yg- We can combine (5.1)
and (5.4) using the identity [Rao (1973, p. 33)]
(5.5 - Vil - vilocrng + oovilo ot - - vg - ognglo g
to form the mean squared error prediction function

A 1 A , _1 , _1 A

(5.6)  MSE(ye|0,) « exp(-5(ye-¥g) [V - DeHy DE] ™ (ve-ve)ds

which incorporates the variance Vf of Y¢ and an approximate variance
-DfHaID% due to parameter uncertainty, but fails to acknowledge both any
non-normality of f(yf;a) and any nonlinearity in the parameter uncertainty.

This derivation emphasizes that (5.6) can be regarded as in the same
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family as plika(yflgd), but subject to additional linearization. It is
straightforward to demonstrate that, for nonnormal or nonlinear models,
(5.6) does not satisfy even the predictive consistency criterion. Advocates
of the MSE approach might respond to this failure to converge to zero

information loss in large samples by substituting a quadratic loss function

for I(f,f*),

6. Inefficient Statistics.

In practical problems, interest will often center on data period
parameter estimates that are consistent and asymptotically normal, but not
asymptotically efficient. (Consider, for example, two stage least-squares.)

Let 9d be such an estimate with

ml/Z(yd-a) + N(0,V(8)),

where V(?d)-V(ad) is a positive semi-definite matrix. Let H, . denote Vél +

Hf, where me is a consistent estimate of V(?d). We can then extend our

asymptotic predictive 1ikelihood definition to cover prediction functions

based on 3d:

(6.1)  PUK (yelyg) = FlypsBy) « expl wylyesdy) + wylyesdy) ),

where

wl(.Yf;yd) = '% V(.Yf;yd) H(yd+f;yd)—1v(yf;yd)'

Wy 3Tg) = VUyesBgb(d,) - 3 trl HlygsBy) HlygsBy) ' .

This definition is further motivated in appendix A. This prediction function
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possesses many of the important features of (3.1), taking due account of the
fact that the estimate Ed is not asymptotically efficient.

In particular, p]ikc(yf;gd) may well secure an efficiency gain over the
corresponding plug-in function T = f(yf;yd) also based on the inefficient
estimates 9d. In terms of first order efficiency, direct extensions of
Propositions 1 and 2 show that kl(f,plikc) o Al(f,?) and that plikc(yf|yd)
is first order inefficient relative to p]ika(yflyd) to the extent that

A(FF) = - §trl E(Hyp0) (V(FQ)-V(8y)) 1.

is positive. Extensions of Propositions 3 and 4, however, would suggest
that the CEQ f(yf;ﬁd) may be second order inefficient relative to
p]ikc(yflgd). Thus, from a practical standpoint, if sufficient motivation
exists to favor calculation of only inefficient parameter estimates,
p]ikc(yf;ﬁd) still incorporates a useful adjustment for parameter
uncertainty.

7. Examples.

The definition of asymptotic predictive likelihood and the concept of
predictive efficiency developed above are useful only to the extent that
they sharpen our understanding of practical prediction problems. In this
section we consider examples that extend well known results for linear-
normal models to models with nonnormal disturbances and to ARCH models.

Example 1. Linear-Normal Model. Before considering more complex
models, it is helpful to examine the asymptotic efficiency concepts for a
linear regression model because Definitions 1 and 2 coincide and exact

information losses can be computed. We can write that model as

_ 2
(7.1) Y; = xiﬁ ey, £ - N(0,07),
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for regressors X3 parameters B, and known 02. Cooley, Parke and Chib

(1987) show that, for a single future observation, p]ika(yflad) LS

2

exp(-%e%/(02+12)), where the variance component 12 =0 xf(xéxd)'lx% corrects

for parameter uncertainty. The comparison between the two efficiencies

I(f,$) = % 12/02 and T(f,plika) = % 1og(1+12/02) can be put into the present

framework by expanding the second of these as % 12/02 - % (12/02)2 + eoe,

The first order asymptotic efficiencies equal % 1;Twm 72/02 in both cases.
Correcting for parameter uncertainty secures the second order efficiency
gain % ;12 m (12/02)2, which is reflected in the curvature of the log
function. That efficiency gain is likely to be most important for difficult
forecasting problems where the first order efficiency loss is also
important.

Example 2. Nonnormal Model. Suppose that the errors are drawn from a t
distribution with v degrees of freedom, where ¢ and v are known. (For the
variance to exist we require that v > 2.) The predictive 1ikelihood
function takes account of the relatively fat tails in the t distribution.

If we let ¢ denote (ym+1'xm+13d)/°’ then for a single future observation

(7.2) pUKA(yplBy) = 2 (1 + ¢Zw ) /2 L aplw (yg38g) + Wylygsdy) ),

where
A1 v+ e Hipe Xp
Wi¥eiby) = - 3 =3 7, 72 §
v (1+¢%/v)
and

(v+1) x¢ Hél X

2
1- .
” (1+§‘2/v)2 (1-¢%/v)

A
W (Yes84)
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The correction for parameter uncertainty wl(yf;gd) increases the dispersion
of the plik by adding to the density in the tails, where (2 is greatest.
Relative to the linear-normal model in Example 1, however, the true density
already has fat tails, and the denominator (1+§'2/v)2 in wl(yf;ﬁd) moderates
the extent of the correction in the extreme tails. The term wZ(yf;ﬁd) adds
a lesser correction for a nonconstant second derivative matrix.

Proposition 4 provides the information efficiency calculations for this

model. If we let T denote 1im m X¢ Hal x%, then

mro
A 1 v+4 -% v+l 1
Al(f,f) =91 — —_ 1-—¢T.
v v V+2
This figure ranges from the value of % ' for Example 1 (v==) to 1.95-% I for

v=2, revealing the extent to which fatter tails (smaller v) lead to a more

difficult forecasting problem. The second order relative efficiency

A . a
X, (F,p1ik%) = -

00—

[v+8]—% [v+1}2 [ (v-1) 3+6/(v+d) | o
— 1+ ———— | T

— -V
v

v (v+6) (v+6)2

is clearly negative so that the predictive likelihood correction for
parameter uncertainty lowers the information loss.

Unknown error distribution parameters such as 02

2

and v also present
interesting forecasting problems. If ¢° in Example 1 is unknown, a direct
analysis of the sampling distribution of ¢ = (yf-xfﬁd)/s, where s is the
sample period estimate of o, shows the appropriate prediction function to be
of the functional form of a t distribution. Definition 1 yields precisely

2

this result using a x“ distribution for the sample variance s2 (Cooley,
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Parke, and Chib (1987a)). The advantage of plika(yflsz) is that only
g(yf;e) and its derivatives are needed because Definition 2 is based (see
Appendix A) on the asymptotically valid normal approximation mo(sz-az) g
N(0,2). For the simple model Y - N(O,oz) that abstracts from uncertainty
about 8,

Pk (yels?) & - 1 y¥/s? - 4 ()1 (yE/sP-1)2.

This function is identical to the first two terms in a series expansion of
the logarithm of a t density for Yes expanding - % (v+1) 1og(1+(y%/sz)/u)
about - % (v+1) Tog(1+1/v). The correction for parameter uncertainty in
p]ika(yf|sz) thus captures the essential features of a t distribution.

The information efficiency calculations for this model are a special
case of those for Example 3 below. We simply note here that p]ika(yf|sz)
will be second order efficient relative to the CEQ f(yf;sz) to the extent
that a t distribution is more appropriate for (yf-xfﬁd)/s than is a normal
distribution.

Example 3. The most interesting features of models with unknown error
distribution parameters can be demonstrated in the context of the
autoregressive conditional heteroscedasticity (ARCH) model. Following Engle
(1980), we emphasize the essential aspects of this model using a simple ARCH

model without regressors

yt -~ N(09ht)’

where ht = 7@ for z, = (l,yi_l,...,yg_p) and a = (ao,al,...,a ). (The

p
function ht follows Engle’s notation and is not related to h(yf;e).) This

model emphasizes the dispersion of the future density rather than its mean.



The predictive 1ikelihood function again approximates the functional

form of a t distribution'7 For one period ahead (so that f denotes m+l),

2 -1 ' 2 2
. A 1Y¢ 1 Z¢ M 2 [ Vg
1og(p11ka(yf|ad)) x -5 —-g——% 1" - 1¢.

—H

In this approximation to a t distribution, the "degrees of freedom"
2
he
2, W1, 2

f d+f °F
will be proportional to the data period sample size because Hd+f grows at

N j—

Vm =

rate m, but will also depend on the particular Ze vector. That vector
appears in both the numerator h% = (zf&d)2 and in the denominator, which
essentially equals V(zfad). If, for example, the elements of &d are
negatively correlated so that H&if has negative off-diagonal elements, Vi
will be smaller (and the correction for parameter uncertainty will be
greater) for a vector Ze with a single large element than for Ze with more
equally sized elements.

The formal information efficiency calculations also reflect the

dependence of Vg ON Zg. The first order information efficiency is

i -1
M(F. ) =172 v,

where v_ = Tim m'1

Vi depends on Zg. Proposition 3 shows that
mo

We are omitting the term wz(yf;ad) on two grounds. First, the
asymptotic bias is not known for the ARCH model, making an analytic

A
implementation impossible. Second, the two terms in wz(yf;ed) cancel for
Example 3 and will largely offset in this case as well

Our calculations are all conditional on the last few values of y
Phillips (1979) notes, this introduces a minor dependency between the

distribution of 3d and the Tast few values of Yi-

i As
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A, (F,p1ik?) = - 23/2 v]?

The efficiency gain from correcting for parameter uncertainty thus depends
on both the data period sampie size and the particular vector Ze.
Predictive 1ikelihood forecasts two or more periods ahead for an ARCH

model recognize that the variance of y depends on the realization of

m+2
Ymel® This dynamic aspect of the problem is incorporated into

m+n 2
ag. 1A 1\ Ymel 1, 1,
Tog(p1iki(yelag)) « - 7 Z? 2 88 Zpfgp e
i=m+1 M+

where { is the n x 1 vector with elements €5 = (y§+i/hm+i-l)2/hm+i ,

i=l,...,n. If n =2, theny appears (via zf) in both the 2 x 2 matrix

m+1

and Yy

be a function of the entire range

Zg H&if ze and in hm+2' This joint predictive density for y_ ;

thus directs that the dispersion for Ye2

of values for y weighted by their predictive 1ikelihoods.

m+l
8. Conclusijons.

The asymptotic predictive Tikelihood approach analyzed in this paper is
closely related to Monte Carlo forecasting approaches discussed in Section
2. Monte Carlo procedures account for parameter uncertainty by drawing
coefficients from an asymptotic distribution. The predictive likelihood
approach, on the other hand, suggests a correction to the forecasting
density. The correction can be implemented easily via stochastic simulation
with a weighting determined from the correction terms in Definition 2.
Consequently, although the calculations in the examples seem cumbersome,

implementing these prediction functions via simulation is quite feasible.



The information measure of predictive efficiency derived in Section 4
help to identify the effects of various specification and estimation issues
on predictive accuracy. Predictive consistency requires the correct
functional form for the model. First order efficiency rests on the
efficiency of the estimated parameters. Asymptotic estimation bias and
corrections for parameter uncertainty affect second order efficiency.

This is one explanation of why parameter uncertainty appears not to matter

much in practice in most applications and is usually neglected.

Appendix A

Motivation for Predictive Likelihood Definitions

In situations where sufficient reductions of the data do not exist, we
can exploit the fact that well-behaved maximum 1ikelihood estimates are
asymptotically sufficient (Cox and Hinkley (1974, p. 307)). Replacing the

A A
sufficient statistics Sd and Sd+f in Definition 1 by the MLE’s 8d and 8d+f

leads to the alternative definition:

A
Flygs0) F(By0)
A
F(84,e:0)

. 1 A A A
(A.1)  plikl(ye|8y) = Flye84l0,,c) =

A A
where f(od;e) and f(0d+f;0) are exact finite sample distributions of the
MLE’s. For econometric problems of any complexity these exact finite sample

distributions are intractable. This consideration leads us to:

a, A
f(.Yf;o) f (8d;0)
a. A
fo(o 6)

’

.1 2 7
(A.2) Plik(ygloy) = .
d+f’
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where fa(-;-) denotes an asymptotic density. 3d+f in the denominator of
(A.2) is determined jointly by 9d and Ye Just as Sd+f in Definition 1 is a
function of Sd and Y- The predictive likelihood value measures the joint
compatibility of Ye and 3d with a common 3d+f‘

A further simplification eliminates the need to compute 3d+f for each

possible Yg- We can relate Sd and 3d+f via

A3)  V(Yairsfiie) - V(yaies2)" = H(ya.e38) (84 c-0.) + 0 (n /2y
(R-3)  Vlyg,e30g4p)" - Waarifa)" = HUgu30) gup-fq) + Oplm )
Using the fact that V(yd+f;0d+f) = 0 and V(yd;ed) = 0 (by the definitions of

6d+f and ﬁd) and the independence of Y4 and Yeo
(A8) 8, =08, - [HY.:0)1! Viyesd)' + 0 (n¥?)

: d+f = %d Ydaf Y% p '

We will use the asymptotic distributions

A.5 A§.;0) = - L (8 "H(y.30) (8 (-9 -0
(A.5a) 97 (0430) = - 5 (64-¥4-0)"H(yy30)(84-¥4-9),
A.5b 38, .:8) = - L (8 "My, . -38) (8 6
(R-5D)  9%(8g,p30) = = 3 (8445 ¥app0) HUYg,g30) (B, p¥g,570)

where ¥ is the O(m'l) bias and ¢d+f = wd + o(m'l). We match these quadratic

forms with a Taylor series approximation to g(yf;a):
A A A
(A.6) 9(yg30) = a(yesby) - V(yei0y)(64-9)

+ 3 (B4-0)Hlygdg) (84-0) + 0 (n%/2).

N f—t

Finally, substituting (A.4) into (A.5a), adding (A.6), and subtracting

(A.5b) leaves three terms that are not constant with respect to gt

1 A -1 Y
2 V(Yf;ad) H (yd+f;0) V(Yf;ed)
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A 1 A . A A
+ V(Yf;od)wd + 2 (0d_0) H(Yf;od)(od'o)

A
The first is the basis for wl(yf;gd) using the estimate H(yd+f;0d) of
A
H(yd+f;8). The second and third terms yield wz(yf;od) via the estimate -
A - A A
Hlygsdg) ™ of EL(84-0)(84-0)'].
Equation (6.1) requires a suitable joint estimate ad+f based on 9d and

Yg- The analytic tractability of the approximate density
F3(8.,8) « exp(-3(7,-0)'v:1(3,-0)
d’ Pi-20% m‘d
suggests letting the joint estimate yd+f be computed by maximizing
. 0 - La _avla
g(od,Yf’o) = g(Yfaa) - 2( d_o) Vm ( d-e)

over 8 for fixed Y¢ and ad' An asymptotic expansion similar to (A.3) shows

that

-3/2

(A.8) Bypp =0y + [Vél-u(yf;vd)]'IV(yf;zd)' + 0 (m ).

(6.1) follows from the previous analysis with (A.4) replaced by (A.8).

Appendix B

Proof of Proposition 4

We would like to apply Proposition 3 for

(B.1) h=3VH v+ 2tr

) 1
2 Vfdef'F T2

4 -
For simplicity, we are letting the function arguments be implicit. Let Z =

1 -1
+f = Hg

The term % hz equals % Z'E[A] Z, where

-1 _ -
vecHd , and note that Hd + op(m 1).



(B.2) A = (V'eV’)(VeV) + V'eV’'®(vecH)’ + (vecH)eVeV + (vecH)(vecH)’.

Note that VHV'/VHV = Z’(V'eV’)(VeV)Z (Neudecker (1969)).8 Generalizing
Pfanzagl (1973, p. 997], E[(V’@V')V]o can be written as

E[(V'eV’)(VeV)] + E[(V'®V’)(vecH)’] + E[(vecH)(VeV)] + E[V'eHeV]

so that

(B.3) E[A] = E[(vecH)(vecH)'] - E[V'&HeV] + E[(V’@V')V]a .
The term 3 tr[ V(6,) hy, 1 equals 5 Z'E[B] Z , where

(B.4) B = 2(vecH)(vecH)’ + GoV + V'eG’ + F

and G and F denote the third and fourth derivative matrices.

Differentiating E[H] twice yields

E[H]GO = E[F] + E[GeV] + E[V'®G’] + E[(vecH)(vecH)’] + E[V'eHeV].
E[B] thus reduces to
(B.5) E[B] = E[ (vecH)(vecH)’- V'eHeV ] + E[H],,.

Subtracting twice (B.5) from (B.3) yields (4.19). Parts B and C are
immediate consequences of (4.20).

End of proof.

8 There are several possible arrangements of higher order derivatives.
We are working with arrangements that are compatible with a square fourth
derivative matrix.
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