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MacDonald, G.M. and Slivinski, A.D.

A Positive Analysis of Multiproduct Firms in Market Equilibrium

An economy in which firms may choose to produce two goods
(diversification) or just one (specialization) is studied. Parameterizing
costs along the fixed/variable distinction most familiar from Viner's work, a
complete characterization of the model's equilibrium is provided; this
characterization may be summarized in a simple diagram. The ease with which
the model may be manipulated makes it a useful tool for analysis of a wide
variety of issues pertaining to environments permitting multiproduct firms.
This facility is illustrated through derivation of a diverse set of
predictions concerning the manner in which changes in the underlying exogenous
features of the economy affect the pattern of diversification and

specialization, as well as through explicit treatment of several extensions.

University of Western Ontario, London, Ontario, Canada.



Will a single firm produce a diverse set of products in market
equilibrium? Can some firms produce a set of goods having some but not all
elements in common with the collection selected by other firms? How does the
equilibrium assignment of products to firms vary with changes in the pattern
of demand, technological parameters, input prices, and so on?

These general questions have not gone entirely unaddressed. Early work
by R.G.D. Allen (1938), Hicks (1939), Samuelson (1947), as well as more recent
efforts by Laitinen (1980), analysed in detail the isolated behavior of firms
having access to an m-input/n-output production technology. The response of
profit maximal input and output choices to price changes was derived but the
restrictions imposed on such choices by the requirements of market equilibrium
were not explored. At the other extreme, the Arrow-Debreu-McKenzie (ADM)
general equilibrium model allows each producer a distinct production set, so
that firms might choose to produce many goods, and the collection of goods
produced by firms might overlap to some degree. However, the ADM model is a
very general one, and as such restricts the data very little. More recently,
the "contestability" literature (surveyed by Bailey and Friedlander (1982))
analyzes a setting in which firms produce more than one good. But due to the
different goals of that work, all firms are assumed to produce the same
exogenously specified set of goods.1 Finally, there is what might be termed
the "where there is sawdust there may be 'pressed logs'' approach, dating back
at least to Marshall (1920, pp. 321-22), in which joint products are the
result of unstructured technological complementarities.

Common to all these approaches is that while each produces partial

answers to some of the questions raised at the outset, none has sufficient



structure to characterize fully a market equilibrium in a manner which permits
derivation of a body of falsifiable predictions regarding the behavior of
firms in such an equilibrium. The contribution of this paper lies in
producing a characterization which can be analysed with appropriate rigor, and
which has predictive content sufficient for it to be useful empirically.

The structure of the model used to achieve this outcome is quite
unremarkable. Indeed, it can be viewed correctly as a multiple output
generalization of Viner's (1952) classic analysis, a restricted ADM model with
technological nonconvexities and firms which are small in comparison with
market demand, as in Sonnenschein (1982), or as a specialization of Baumol et
al.'s (1982) "fractional firm" competitive equilibrium.

More precisely, the approach taken is as follows. There are two goods,
and firms producing both are referred to as diversified, otherwise the firm is
specialized.2 In order for this distinction to have any content, it is
required that diversified firms do not merely operate as a collection of
contiguous specialized firms; they must differ in some more basic sense. A
very fruitful way to parameterize this distinction involves distinguishing
between fixed and variable costs, along the lines of Viner. Fixed costs, as
usual, refer to expenditures on inputs which do not vary with the level of
output; for example, fixed production inputs such as physical plant, or
nonproduction inputs such as accounting, ordering of materials, product
design, management and accounting, etc. In the early stage of the analysis,
fixed costs need not have much structure. Variable costs are the value of
variable production inputs and the cost of any other activities the level of
which depends on output. Given this bifurcation of total cost, the primary

issue becomes the existence, for either type of firm, of an advantage in



either category of cost. It is obvious that if, for example, the output
vector produced by a diversified firm could be supplied by two specialized
firms at lower fixed and variable costs, then no diversified firm producing
that output vector could operate in competitive equilibrium. Clearly the
cases of interest are those for which diversification is cost saving in one
category and not the other. The market outcome then hinges on a nontrivial
tradeoff, rendering the outcome amenable to analysis.

As indicated, the payoffs to the approach taken herein are that it is
very simple, and therefore easy to manipulate and extend; it offers numerous
predictions; and indeed it even sheds light on several policy issues. The
value of the analysis then follows in part from the current relative scarcity
of such tools.

The predictions which are extracted from the basic model may be
organized as follows. First, answers to the questions posed at the outset are
provided; in particular, the model can indeed generate a "mixed” equilibrium
in which diversified firms operate alongside one type of specialized firm.
Second, some more specific predictions about mixed equilibria emerge. Among
them: (i) variation in the pattern of demand for goods induces a negative
correlation between the number of diversified and specialized firms; (ii)
equal reductions in the fixed costs faced by all firms generate a greater
tendency towards output being produced by specialized firms; (iii) increases
in the price of a good-specific factor of production have no effect on the
structure of equilibrium; (iv) diversified firms will typically be larger than
specialized firms in the sense of total revenue, but will produce a lower
output of the good also produced by specialized firms. Third, with minor

elaboration still more predictions become available. Examples are: (i) a



formulation which implies diversified firms are at a disadvantage in terms of
variable costs yields the result that goods which are similar in terms of the
factor proportions specialized firms would use are more likely to be produced
in diversified firms instead; (ii) focusing on the structure of fixed costs, a
simple version of Rosen's (1982) internal theory of the firm implies that
diversified firms will hire more upper management and fewer supervisory
personnel than will specialized firms.

The structure of the paper is as follows. Section I contains the
material on cost functions relevant for specialized and diversified firms.
The structure of market equilibrium is the topic of Section II. Section III
details the basic theory's predictions and indicates the type of results
available from some extensions. Proofs of the Propositions are contained in
the Appendix. The algebra underlying many of the predictions is presented in

greater detail in MacDonald and Slivinski (1983).

I. Cost Functions

In this Section the cost functions for specialized and diversified firms
are presented. As usual, more implications can be obtained via explicit
analysis of the production technologies, but confining attention to the cost
functions suffices for the basic characterization results.

It is assumed that total costs comprise fixed and variable costs. The
former consist of expenditures on bookkeeping, upper management, ordering
materials, product design, and so on. The latter include the costs of
materials and factor services utilized directly in the production of output.
The operational distinction between fixed and variable costs is conventional.

Fixed costs are incurred because there are some factors which, while their



employment need not rise with the level of output, are required for positive
output.

First consider specialized firms. A specialized firm producing quantity
qj of good j is called type j and faces finite fixed cost Fj > 0.3 As
regards variable cost, the variable cost function Cj(qj) can be derived in the
standard fashion. For qj > 0, Cj(qj) is assumed positive, monotone
increasing and strictly convex with aZCj/aqj bounded away from zero. The
last assumption guarantees minimum average cost occurs at finite qj.

In what follows it is assumed that the level of output which minimizes
average cost for specialized firms is sufficiently small that any changes in
their aggregate product can be accommodated by entry and exit of firms
producing the average cost minimizing output. Under this assumption, the

number of specialized firms can be treated as a continuous variable. Should a

type j firm choose to operate, its behavior can be summarized by

F + CJ(q_)
- _ ) J J
q = argmin —M8M8 —— , (1)
J q, q
J J
_ i _
T ZF +C (3, (2)
J J J
C‘.
- J .
and AZ— 3 J=a, B. (3)
J —
q,
J

Observe that Xj equals both marginal and average cost in firms of type j.

Turning to diversified firms, a finite fixed cost F > 0 is assumed.
The variable cost function C(qa,qB) can be obtained in a fashion analogous to

the textbook specialized case by cost minimization given a multiproduct



technology. C(q ,qB) is assumed monotone increasing in each argument and
x

2
strictly convex; let 9C/3q. = C.(q ,q,) and 3 C/3q.dq, =C., for k=a,B. Two
y qJ j qa q qJ qk ik

B

other restrictions on C(qa,q ) parallel the treatment of specialized

B

production. First, it is required that for fixed qa/q average cost is

B’
minimized by a finite q,- Formally, for any k = qa/qB, let C(qa,k) =
C(qa,qa/k). It is assumed that for all finite k > 0, and q, > 0, aZC/aqi is
bounded away from zero. Second, and again for any finite k > 0, the average
cost minimizing level of q, is sufficiently small that the number of
diversified firms can be regarded as continuous.

It is clear that if the analysis is to proceed very far the relationship
between the total costs faced by diversified and specialized firms must be
structured to some extent. It can be argued that diversified production may
have an advantage or disadvantage in either cost category. For example,
simple production complementarities may generate C(qa,qB) < ZCj(qj), but
absence of advantages due to specialization in management may yield F > XFj.
The analysis can accommodate any combination of these inequalities, but the
more important restriction is based on the following considerations. By
definition a diversified firm has the capacity (plant and management skills
etc.) needed to produce both goods. It is required that the costs of that
capacity be part of F. 1In that case, if a diversified firm should choose to
produce an output vector close to that produced by a type j firm, the variable

costs differ little across firms:

3
vg >0, lim C(q ,q ) =C (q)). (4)
3 q, 20 o B J
J

Equation (4) permits straightforward evaluation of one of the diversified
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firm's options, namely a production choice much like specialization.

To reiterate the most important points, type j specialized firms produce

Ej at total cost of Cj and marginal cost Xj. Total cost functions for

diversified firms are F + C(qa,qB).
II. Market Equilibrium

In this section a complete characterization of the model's equilibrium
is provided. 1It is shown that depending on parameter values, equilibrium can
take one of three forms: (i) pure specialization--the configuration in which
no diversified firms operate, familiar from Viner and every undergraduate
text; (ii) pure diversification--the Hicks-Allen-Samuelson and contestability
case wherein there are no specialized firms; or (iii) mixed equilibrium
involving operation of diversified firms and exactly one type of specialized
firm. In this section attention is confined to demonstration of the above
claim, with predictions, extensions, etc. taken up subsequently (Section I1I).

The equilibrium configuration of firm types is obtained by making use of
the familiar result that for any given aggregate production of the two goods,
if a competitive equilibrium exists, the equilibrium allocation of production
across firms minimizes aggregate production cost.5

The analytical economy involved in making use of this result is
considerable. The economy can be treated as solving a very simple programming
problem, and the demand for goods can be suppressed. This latter feature is
particularly useful because it allows the laborious task of altering
preferences in order to make predictions regarding demand shifts to be
circumvented. In addition, in order to demonstrate that a proposed allocation

is not an equilibrium allocation, all that need be shown is that there is some

other allocation which produces the aggregate output vector more cheaply.



Finally, though the analysis requires several steps, the solution to the
programming problem may be summarized in a simple diagram, facilitating
applications and extensions.

To proceed with the aggregate cost minimization problem, let the
aggregate quantity of good j produced be Qj (exogenous), the number of type j
specialized firms be Nj’ and the number of diversified firms be N. Then the

programming problem is:

P: min N[F + C(q ,9 )] + L N T
N ,N ,N,q q a B JJ
a B o B

S.T.Nq  +Nq =Q, Jj=a,B;

Using asterisks to denote optimal values of the choice variables,
necessary conditions characterizing the solution to the cost minimization

problem are:

=0 if Nx > 0O,
F + C(q*,q*) - ¥ A g% (5)
a B i3 >0 if N%x = 0;
=0 if N > 0,
_ — J
C, - Maq v 3= o,B;  (6)
J Jj ] >0 if N* = 0.
J

=0 if q* > 0
J

C,(Q*.Q*) - k. s J o= a,B; 7
i o B i >0 if q*x =0
J
and Q, - Nxq* - NXg_ =0, j = o,B. (8)

J J JJ



In (5) - (8), Xj is the Lagrange multiplier associated with the aggregate
output constraint for good j.

Conditions (5) - (8) are familiar, (5) and (6) requiring all operating
firms to earn zero profits when outputs are valued at the shadow prices kj.
Expression (7) states that the qj are chosen to maximize profits given shadow

Prices kj. This same information, but as it applies to type j firms, is

embodied in 55 and ﬁj, and it is immediate from (6) that the solution involves

Ng > 0 only if Xj = Xj. This result is very useful in what follows, since

%
in order to establish whether Nj > 0, all that need be done is to solve P

>
with the added constraint Nj = 0, and ask whether Aj < Kj in this

restricted problem. Finally, (8) restates the aggregate production
constraints.

Before proceeding further, two preliminary results will be stated. They
simplify the subsequent analysis and illustrate the extent to which the
present model is in many ways simply a multiproduct analogue to the
traditional long-run competitive equilibrium model which has proved so useful
in the past. WNeither result is unique to the environment studied here, and in
general both will hold in any competitive equilibrium.6

Lemma 1: For almost all sets of parameter values, at most two

of N*, N; can be positive.7

A simple way to demonstrate this result is as follows. Holding qj fixed
(at q;, or indeed any other positive value), problem P reduces to a linear
programming problem with N and Nj as choice variables, and two linear
restrictions, (8). Then a solution involves non-zero values for at most two
of the choice variables except when a '"coincidence™ occurs. Even under such a

coincidence the minimum aggregate cost is achievable by allowing at most two



10

of the choice variables to be positive. (See Dorfman et al. (1958, Ch. 4,
Theorem 2 and Corollary to Theorem 3).
According to Lemma 1, three types of equilibria are permitted:
%
(i) Purely Diversified Equilibrium (D*)--N* > 0 and Nj = 0; Purely
%
Specialized Equilibrium (S*)——Nj > 0 and N* = 0; or (iii) Mixed Equilibrium
% % X . 8
of Type j (Mj)——N* > 0, Nj > 0 and le =0, j =a, B.
For the second preliminary result, let C*(Qa’QB) be the minimized level

of aggregate cost; that is

C*X(Q ,Q ) = NX[F + G(q*, q*)] + L N* T
e B a B i3

Lemma 2: C*(Qa'QB) is homogeneous of degree one in (QQ,QB).

The argument is simply that a proportionate change in the aggregate
output vector is accommodated by an equiproportionate adjustment in the number
of operating firms and no alteration in q;. Such occurs because Qj enters the
conditions characterizing equilibrium only through (8).

In light of Lemma 2, all changes in the aggregate output vector will be

cast in terms of movements in Q = Qa/Q It is assumed that Qj > 0 for both

B
j» in which case 0 < Q < o,

The three results to follow provide a complete characterization of the
equilibrium structure of production. The basic approach is to determine which

type of equilibrium arises for a given set of parameter values through

examination of the shadow prices generated by the problem P for that set of

parameter values. For example, Ay < Kj implies Ng = 0 since no type j firm

could earn nonnegative profits when output is valued at Xj.

The notation "4" represents the relation "yields lower aggregate cost".
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For example, D <4 S indicates that the configuration N > O and Nj =0
produces the required aggregate output at lower aggregate cost than the
configuration Nj > 0, N = 0. The "equal aggregate cost™ relation is
represented by "0O".
Proposition 1 provides a ranking of the D and Ma configurations for the
various possible (Q,F) combinations.
Proposition 1:
(i) For any F < F_, D QM ;
(ii) For any F > Fa’ there is an unique Q > O, written Q(F,Fa),

such that Mu 4 D if and only if Q > Q(F,Fa);

and (iii) For any F > Fa' Q(F,Fa) > 0 if and only if for all qB > 0,

lim C (q , q ) <X . (%9a)
q-20 o «a B a
a

The logic of Proposition 1 is as follows. First, since only D and MOL

are being compared, the additional constraint N, = 0 is imposed on P. Then

B

the cost minimization problem permitting only diversified firms to operate,

called P, is solved and the shadow prices Xj obtained. For (Q,F) pairs

yielding A, > X,, aggregate costs could be reduced by allowing N, > 0;

that is, M 4 D. Otherwise D4 M or DOM.
a [ 2 [» 2
Proceeding in this manner, first suppose F = Fa and Q is large. Good B

is effectively no longer part of the problem, and diversified firms are for
all intents and purposes identical to type a firms. Thus problem P generates
Aq = Ng» and D O M.

Next, two facts concerning P. Fact one is that when Q is large, an

increase in F must raise Xa. This holds because if F is augmented q must
[¢ 3
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rise to spread the greater fixed cost, and marginal cost Cu(-) is increasing.
Fact two is that for any fixed F, a reduction in Q lowers xa. The
demonstration of fact two requires some calculation, but the argument is
simply that although an arbitrary reduction in qa/qB need not reduce Ca(°),

the reduction required to minimize the cost of producing a lower Q must reduce

Cq(*), and hence A, (from the equivalent of (7) in problem P).

The Proposition follows easily. That Ma O D when F = Fa and Q is large

has been shown. Facts one and two imply that any reduction in either Q or F

generates A, < A,, and thus D 4 M ,—-part (i) of the Proposition. On the

other hand, an increase in F yields A, > Xa. Thus for large Q and F > F_,

M <A D. Now retaining F > F , fact two requires that if Q is reduced
[¢ 4 [+ [s 3

falls, and the level of Q at which A, = X, is the Q(F,F,) of part (ii).

If reducing Q to zero does not produce Ay < Ay, Q(F, F,) is defined to be

zero. Part (iii) simply states the condition under which reductions in Q

10
allow Ay, = Xy to be achieved at Q > 0 for all F > F,.

Intuitively then, when Q is very large q_ is inconsequential, and the

B
comparison of D and Ma turns only on the relation between F and Fa. On the
other hand, when Q is very small, qa, is relatively slight, in which case,
loosely, production of good B covers the fixed cost for diversified firms.
In that case Qa should be produced by diversified firms irrespective of F;
that is, no type a firms will operate. For moderate Q, lower F always works
in favor of diversified firms, as does lower Q.
The next Proposition ranks D and M_, and is entirely analogous to

B

Proposition 1.
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Proposition 2:

D dAdM,;
B

there is an unique level of Q > O written

(i) For any F < FB,

(ii) For any F > F

B’

G(F,FB), such that Mg 4 D if and only if Q < Q(F,Fg);

and (iii) For any F > FB’ Q(F, FB) < o if and only if for all q, > O,

lim C (q ,q ) <X . (9b)
qB*O B o B B

Figure 1 depicts Q(+) and Q(e). Proposition 1 states that for any (Q,F)

pairs to the right of Q(+), Ma 4 D. Similarly, MB 4 D for (Q,F) pairs to

the left of Q(+¢) (Proposition 2). Though the analysis can proceed in any
case, it will be assumed henceforth that (9a) and (9b) hold. This restriction

confines the analysis to its simplest and most interesting case. In what

follows, points of intersection of Q(¢) and Q(+) will be important. That
2 2 . . . . . .
) C/aqa is bounded away from zero implies that such intersections exist. (9a)

and (9b) guarantee that any intersection occurs at 0 < Q < =,

Eigure 1
Two further points deserve emphasis. First, by construction, Q(F,Fa)

represents the (Q,F) pairs for which D O Ma, in which case while A\, may vary

B

along Q(*), Ay = A, must hold along it, and similarly, Ag = XB along

Q(+). Second, consider again the structure of production when the

alternatives are just D and Ma (i.e., N, = 0 is imposed). Given F, for

B

Q < Q(F, Fa)’ all diversified firms produce output in the proportion

q /qB = Q. Now consider raising Q, with Q < Q(F,F ) still. Since
(¢ [+
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diversified firms are the sole source of output, qa/q necessarily rises along

B
with Q. But once Q = Q(F, Fa), increments of Q are met with introduction of
type o firms and no change in the diversified firms' production vector. Thus

for all Q > Q(F,Fa), diversified firms produce outputs in the proportions

qa/qB = Q(F,Fa). Analogously, when Na = 0 is imposed, diversified firms
produce q,/qp = 6(F,FB) for Q < Q(F, Fg).
Now to proceed further, let F(FavFB) be the value of F for which

Q(F,Fy) = C(F,FB), noting that ;(FG,FB) > max{Fa,Fél}. Also, for

brevity's sake, let E be the notation for "equilibrium™; that is "E = Dx"
means, for example, that the equilibrium involves pure diversification. The
major characterization result may now be stated:

Proposition 3:

(i) For all Q, and all F > F, E = S%;

*

My

(ii) For Q > Q(F,F,) and F, < F < F, E

~ X
(1ii) For Q < G(F,Fﬁ) and Fg < F < F, E = Mg;

and (iv) All other (Q, F) pairs yield E = D¥*.

The logic here is straightforward. (Refer to Figure 2.)

Figure 2

~

Part (i) is fairly simple. Consider F = F, and suppose Q is such that

Q(F,Fy) = Q(F,Fg) = Q. For this (Q, F) pair, problem P generates

Xj = X5, j = a, B, by construction. Thus all firm types can coexist. Now

consider raising Q, say through an increase in Qa. This change could be

accommodated via pure entry of type o« firms, or entry of diversified firms
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~

producing 9e/qp = Q accompanied by exit of type B firms, or any of a myriad

of other combinations. All leave Xj = Xj. Thus if F = F, all firm types

can coexist irrespective of Q--the "accident" excluded in Lemma 1. Now

for F > F, could a diversified firm exist alongside specialized firms?

~

Clearly not, for when shadow prices are Xj and F = F, there is precisely

one production vector for which diversified production yields zero profits,
with all others generating negative profits. Any increase in F then implies
negative profits for diversified firms.

Now, combining Propositions 1 and 2, all points in the region labelled

D* generate shadow prices Ay < Xj; when the constraint N, = Ng = 0 is

imposed (Problem P). Thus aggregate cost could not be reduced by introducing

either type of specialized firm, and D* must be the outcome. But when

F >F > F, for example, if Q is large, so that aggregate production is

skewed towards production of good «, P yields A, > X, and Ag < XB'

Thus costs could be reduced by introducing type o firms, and allowing

diversified firms to produce in the proportions qa/qB = Q(F, Fa). Such

a change could not yield entry of type B firms because Ag < KB

*
still holds (Q(F, Fy) > Q(F, Fg)). Thus M, is the result. When

~ X
F>F>Fg, low values of Q generate Mg by a similar argument, thus

establishing (ii) - (iv).
The intuition behind the complete characterization is clear. If
diversified firms face low fixed costs, they alone will produce, almost

irrespective of the proportions in which output is required. But for greater
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fixed costs, if the required aggregate output is particularly skewed towards
good j, it is more efficient to allow diversified firms to produce in less
extreme proportions by permitting type j firms to operate. As fixed costs

rise still further, the range of outputs diversified firms might produce in

equilibrium narrows, vanishing entirely when F = ;.

Figure 2 also illustrates the unifying features of this analysis.
E = 8% is the familiar competitive equilibrium of the undergraduate text,
while E = D* represents the situation studied in the Hicks-Allen-Samuelson
work and contestability literature. The mixed equilibria E = M;, while
possessing a Ricardian flavour, do not appear to have been analysed previously.

The next Section puts the model to use.
III. PREDICTIONS

As stated at the outset, the goal is to produce a simple framework--much
in the spirit of the familiar competitive model--that can be manipulated with
ease and rigor, and which can be adapted for analysis of specific issues.
Moreover, the structure must be capable of producing testable restrictions.
This Section demonstrates that these goals are indeed met.12

The setup required to obtain the basic characterization results was
quite unadorned, and the implications which can be gleaned from it are derived
first. Next, elaborations of the model are pursued. These extensions are not
comprehensive analyses. Rather, they are suggestive illustrations of the ways
in which the model can be extended to handle broader issues. The extensions
follow the fixed/variable cost dichotomy exploited above, and obtain new

predictions by placing more structure on these components of cost.
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Predictions from the Basic Model

Results from the basic model are of two varieties. The first are of the
"snapshot"” type; that is, all parameters constant, what features is
equilibrium expected to possess? The main result has already been stated.

The S, D, and Mj configurations are the only outcomes consistent with
equilibrium. Most interesting, from both the theoretical and empirical
standpoints, are the Mj structures anticipated when aggregate production is
skewed towards good j. When E = M;, efficiency implies that firms will not
all produce the same level of good j (excepting measure zero cases), though
firms producing good j' all do so at the same rate. This result is unusual as
a theoretical point because such intra-industry (defined by goods)
heterogeneity is usually predicted only in models where firms are assumed
heterogeneous from the outset. Empirically, a positive cross-industry
correlation between the coexistence of diversified and specialized firms, and
inter-firm output variation, is implied.

Two other results involve comparison of firm types when E = Hj. First,

> <
diversified firms will produce q; < Ej as Cjj > 0, with qj < Ej

therefore being the leading case. Second, the restriction

s
j
— (—) >0 (10)
3%  C
i3

is sufficient to imply that diversified firms are larger than type j firms in

the sense of total revenue: quj + Mgy > Xjﬁj. Though qj < ﬁj

typically, the additional revenue earned via sale of good j' more than

compensates unless ij is too large; a possibility ruled out by (10).
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Further analysis is simplified by imposing the restriction

X qcC >0; j=a,B . (11)
k=a,B k jk
Inequality (11) requires that an equiproportionate increase in the qj raise
diversified firms' marginal cost for both qj; convexity of C(+) alone implies

that (11) must hold for at least one j. Given (11), it is readily established

that Q(F,F,) and G(F,Fﬁ) are as drawn in Figure 3(a):

aQ :19)
— < 0 and — > 0.
9F oF

The second type of result available for the simple model is the standard
comparative statics variety. Without adding more structure, the available set
of parameters comprise Q, F, Fj and the prices of variable factors (previously
suppressed in C(qa,q

B

Results on Q and F can be obtained directly from Figure 3(a).

) and CJ(qj)).

Eiggre 3(a,b)

For given Q, a sufficiently small F always guarantees E = D* (point A).
But for greater F, the range of output ratios diversified firms might produce
in equilibrium narrows, at some stage excluding the given Q. At that point
some good j (j = & in the Figure, point B) will be produced by type j firms;

*
E = Mj. Still greater F (say point C) implies that even production in the

~

proportions Q cannot sustain diversified firms, and production of good j' will

be undertaken by type j' firms; E = S*.

In contrast, changes in Q for given F have no impact on the structure of
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production if F < min{Fj} (point A, E = DX) or F > F (point C, E = S%),

Under those circumstances F is too extreme for the structure of production to

be influenced by the output ratio at which diversified firms would produce,

though other variables (e.g. N*) would be. Otherwise (Fj < F < F) changes

in Q are relevant, and, as discussed above, generate entry of type j firms
when Q is skewed sufficiently towards good j. It should be emphasized that
type j firms play a "fringe" role with respect to changes in demand for good j
when E = M?. Take j = a. When Qa rises or falls, type a firms bear all of
the adjustment, the number and output composition of diversified firms
remaining unaltered. This result, in conjunction with the generally smaller
size of type j firms, squares well with the known stylized facts on
intra-industry adjustment. On the other hand, when QI3 varies, the number of
diversified firms responds in the same direction, with the number of type o
firms moving in the opposite direction. Overall, as Qa and QI3 fluctuate, the
numbers of diversified and type a firms are predicted to be negatively
correlated, with the magnitude of the correlation inversely related to the
variance in demand for good « relative to the variance in demand for good B
since changes in demand for good B generate alteration in the numbers of both
types of firms.

Increments to Fj are also not difficult to handle. Again consider

jJ = a. Recall that the diagram developed above was constructed from Q(F,Fa)

and G(F,FB). As depicted in Fig. 3(b), the latter is not a function of F.,

and so remains fixed as F varies. Now recall that Q(F,Fa) is the locus of
[+

(Q,F) pairs for which pure diversification yields A\, = X,, and that given F,

Ka rises with Q under pure diversification. It follows that when F rises,
@

and X& along with it, a greater value of Q is required to achieve Ay = Ay
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under pure diversification: Q(F,Fa) shifts to the right. Consequently, the
X X
D* and MB regions expand, S* contracts, and the MQl region may do either.
* *
Ambiguity as regards the change in Ma occurs because Ma loses some area to D%

but gains some from S* (point A is an example). Note that at point A, type B

firms are the casualties of an increase in F , which is somewhat
[

counter-intuitive. The explanation is that when F is not far from ; (the
level of F for which all firm types can co-exist) an increase in Fa renders
optimal the expenditure by type B8 firms of F - F[3 required for a type B firm
to begin producing good «; that is to become diversified.

Turning to factor prices, there are numerous experiments which can be

performed. An interesting and suggestive route is to suppose

C(q ,q ) =Irdq + x(q,q9), (12)
a B jij a B

where rj is the price of a good j specific factor Xj’ éj is the exogenous
factor/output ratio for xj, and x(+) is the cost of all other variable
factors.13 (12) would be an appropriate specification if, for example, xj
were a material input not used in the production of good j'.

The formulation (12) is easily shown to be sufficient for the result
that a change in rj has no effect on the structure of production. Such occurs

because under (12) acj/arj, = 0 and acj/arj = éj irrespective of the output

vector. Thus (for j = «) in terms of the diagram, Q(F, FB) does not shift

with rj because the value of A arising from pure diversification does not

B

change (though ka does, so as to achieve "zero profits' at the same qa/q ),

B

in which case Ag = KB for the same (Q,F) pairs. Q(F, F,) does not

shift either because both K; and the value of Xa implied by pure
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diversification increase equally. Thus an increase in the price of a good
specific input is predicted to have no effect on the structure of production.

Elaborations

Fixed Costs

Thus far the fixed costs F and Fj have been taken to be independent
parameters. However, given the activities in which firms engage, it is not
unreasonable to suppose F and Fj to be related in some fashion. 1In this
subsection two examples of such interrelations are examined.

First suppose fixed costs comprise expenditures « on a pure public
input (eg. accounting) which all firms utilize in the same quantity, and the

cost Kj of a product j specific input (eg. product design). Then

F=w+1c«,
J

and changes in w or Kj induce simultaneous movements in F and Fj'

Consider an increment to Ka' Both F and FOL increase as a consequence,
the latter inducing Q(F,Fa) to shift to the right just as in Figure 3b.
Straightforward calculation demonstrates that if (Q,F) lay on Q(F, Fa)
initially——DDMa—~then the new position of Q(F, Fa) is to the right of the new

15

(Q,F) pair if (but not only if) Ca is convex; that is D 4 Ma. Thus while

an increase in K, may lead to various outcomes as F changes (M, replacing D

B
for example), depending on the intial (Q,F) pair, such a change can never

involve Ha replacing D, and frequently implies the opposite.

Along the same lines, an increase in w (equivalent to larger Kj for

both j) shifts Q(F,Fa) to the right and Q(F,F

B) to the left. If both Cj are

14
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convex more diversification is implied in the sense that if DEIMj initially,
then D ¢ Hj afterwards. Putting the changes together in the diagram produces
the following. An increase in w can only lead to one of (i) E = S* being
replaced by E = M; or E = DX; (ii) E = M; being replaced by E = D*; or (iii)
no change.

This argument has numerous applications. For example, a familiar story
is that increments to the "extent of the market" foster the development of
factors specialized to, or more specifically suited for, production of the
good in question. If these factors are of the fixed variety, the theory here
suggests that balanced (i.e., Q not varying greatly) increases in the extent
of the market which reduce m (or both xj) do indeed foster specialization.
The development of customized computer software seems a good illustration.

Recent attempts to eliminate regulation also provide a setting to which
this reasoning may be applied. When removal of regulations simply lowers the
costs of being in business at all, = or Kj, greater specialization is a
clear tendency. Or if deregulation permits reduction in duplication of
paperwork which is not much related to the product mix, reducing F relative to
Fj’ greater diversification is implied. The latter characterization is often
argued to typify much banking and insurance regulation. That deregulation
generates banks which offer a wide variety of services is thus exactly what
would be expected on the basis of the above analysis.

Another interesting specification of fixed costs can be obtained by
explicit modelling of the internal structure of the firm. The material which
follows is closely related to Rosen's (1982) analysis of hierarchies.

Assume that operation of the technology which produces good j requires a

fixed amount ﬁj of nonproduction activities (again, management accounting,
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etc.) Rj’ and that Rj is produced using direct supervision--the number of
supervisors on a production line being denoted sj——and upper management, with
m representing the number of upper level managers.

Following Rosen, the technology for producing Rj is taken to be of the
form Rj = g(m)f(m,sj), where for convenience g(+*) and f(+) do not vary across
goods. The notion here is that part of the management activities in the firm
involves m and Sj interacting in some manner, and the other part does not.16

Managers are available at price w per efficiency unit, and the price per

efficiency unit of supervisors is normalized to unity.

The results which may be derived are typified by the following special

case:
g(m) = m,
f(m,s.) = ms,.
J J
Given this specification, a type j firm solves the cost minimization
subproblem

min wm + s
m,s J

which has solution (bars denoting optimal values)

=H
I

h
.= (2R /w)
J J

and
)

2
= (W R_/4)
J J

w|
[
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It follows that the minimized level of fixed costs is

where A = 2/’ + 2'%.

Turning to diversified firms, part of the problem involves the
allocation of efficiency units of management across product lines. Letting t
represent the fraction of management time devoted to interaction with

supervisors on the good a technology, the diversified firm's subproblem is

min wnm + I s
t,m,s ,s j
[+ ]
2
S.T. tms =R
o o

2
and (1-t)m s|3 =R .

Solution of this problem gives (asterisks denoting optimal values)

_h2 %
[2(Z R, ) /wl ,

mX =
J
o 2 B Hh
s* = E' (w /4T R ) ,
J J J
and
_ 4 _ %A
t*x = R /IR
a J
Then
% h
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Now what does this example imply for cross firm comparisons? Focussing

%
on the E = Mj case for which nontrivial cross firm comparisons are possible,

*x *

since F > Fj is necessary for E = Mj (Proposition 3) it follows that my > ﬁj

%
and sj < éj. That is, diversified firms are predicted to be more top heavy

in the sense of utilizing fewer supervisors and more upper management.
Analysis of the components of F and the Fj yields other conclusions. An

especially interesting one is that an increase in nonproduction requirements

Ej raises F less than it does F;, producing the same result as increases in

Kj of the previous example: greater diversification. A variety of
institutional and technological changes can be given this parameterization.
For example, the availability of robotic techniques, even if they offer no
direct decline in cost per unit of work, may impact on nonproduction
requirements by changing the level of monitoring required to obtain given

work. 7 Since introduction of robotics would only be undertaken if cost

saving, the decline in ﬁj generates a greater tendency towards E = S* and

E = M? quite apart from any different productive attributes robots might
possess.
Variable Costs

More predictions can also be obtained by imposing additional structure
on variable costs. To illustrate this possibility, a simple model is analysed
which incorporates the notion that goods whose production utilizes similar
factors of production in ways not too dissimilar, will tend to be produced
together in diversified firms. The goal is to provide a simple and refutable
hypothesis which also explains why automobiles and trucks are produced

together, or radios and amplifiers, or indeed even the now defunct pairing of

bicycles and sewing machines.
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An appealing notion is that for those goods which would be produced in
specialized firms using similar factor proportions, the compromises (absence
of specialized machinery, etc.) which might require diversified production to
use more variable factors than specialized production are less important. As
a consequence, it is those goods which are more likely to be produced in
diversified firms. Put differently, a technological change which operates to
exaggerate differences in factor proportions will mitigate against diversified
production.

There are several ways this idea may be formalized. A straightforward,
albeit restrictive, one is to suppose that if goods o and B are produced in
a diversified firm, the variable factors utilize the same production
technologies as are available to the specialized firms, but that the
diversified firm operates the technologies using identical factor proportions;
not unlike producing j in the morning and j' in the afternoon with the same
tools and workforce. Obviously, this restriction to equal factor proportions
implies greater use of variable factors by diversified firms whenever
specialized firms would, given factor prices, choose distinct factor
proportions.

To consider the issues raised above, assume there are two factors, x1
and xz, with prices rl and rz. Letting x; be the amount of factor i used in

the production of good j, assume that the technologies can be written

[¥e]
li

f(xl, x2)
o «
and

= h(ax1 bxz)

18 B’ °%p
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where a and b are positive constants, f(¢) and h(+) are concave and twice

continuously differentiable, and for all numbers ¥, and Y,

£ (y ,vy) h (y ,vy)
17172 1712

>
f (y ,y) h (y ,vy)
271 2 271 2

that is, given factor prices, firms specializing in the production of good o

. 1, . . . . .
will be x —-intensive. Now consider an increase in a, and adjustment of b,

such that for any given q the minimum cost of producing q_ is fixed. It is

B’ B

easy to check that for given da > O,

where Qé is the cost minimizing level of x&. A given da thus rotates

the entire isoquant map for good B clockwise, but leaves unchanged the cost
functions for both types of specialized firms for all output levels. However,
because the factor proportions used by a diversified firm are always
intermediate with respect to those used by specialized firms, costs rise under
the restricted technology, again for all output levels.

Given this setup, it may be shown that a reduction in a implies the S
region becomes smaller. That is, goods for which specialized firms would tend
to use more similar factor proportions are more likely to be produced by
diversified firms.

This simple setup can be used to analyse other issues. For example,

differential tax or subsidy treatment of factors depending on their use (e.g.,
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steel in automobiles) can exaggerate or ameliorate the disadvantage
diversified firms face which was used to generate the above prediction.
Suppose good a (in unrestricted production) is more xl—intensive than good B
given factor prices. Then a subsidy to x2 in the production of good a can
virtually eliminate the diversified firm's disadvantage, yielding diversified
production where none was viable previously. The degree of specialization in
the economy is another avenue through which distortions arise.

Finally, non-convexities in production typically do not have observable
consequences, as cost-minimization implies they will not be observed even if
present. However, in the present context non-convexities are of some
interest. The reasoning is as follows. It is easy to show that the
underlying isoquants for good j can be to some degree non-convex and still,
given equal factor proportions, yield a technology for the diversified firm
which is convex. As a consequence, diversified firms may operate factor
proportions such that one (at most one in the two good case) of the
technologies is non-convex. As such, overall efficiency may imply what appear
to be inefficiencies within the diversified firm. This notion provides an
alternative, and efficiency-based, view of the observed inefficiencies

underlying the literature on X-inefficiency.
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FOOTNOTES

Comments from David Donaldson, Ig Horstmann, Boyan Jovanovic,
Peter Lloyd, Michael Parkin, Charles Plott, Ed Prescott, Sherwin Rosen,
Chris Robinson, Hugo Sonnenschein, and the referee are gratefully
acknowledged. This paper is a revised version of Economics Research
Center/NORC Discussion Paper 83-21, December 1983. The Social Science and
Humanities Research Council of Canada provided no assistance of any kind.

b Of all the contestability material, the work of Baumol et al. (1982,
Ch. 9) is the most closely related to the present analysis. Therein firms are
permitted to choose a set of goods to produce, and a condition is provided
which is necessary and sufficient for the (otherwise exogenous) symmetric
outcome to be supported in equilibrium. That this condition is indeed a
relevant restriction is shown by means of a two good numerical example in
which the condition fails and the equilibrium is asymmetric.

2The analysis to follow does not distinguish between firms and plants.
Doing so--indeed viewing firms as efficient "agpregates” of plants much in the
same way as plants aggregate output--appears to be a profitable direction for
extension of this type of analysis. 1In fact, the programming problem studied
below is exactly that which would be solved by a monopolist choosing the least
cost collection of plants to operate. Applications to multinational firms is
immediate.

3Throughout, the subscript j will index « and B. Also, j' will
indicate which of « and B is "not j". All summations, unless indicated

otherwise, add over j = «,B.
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4 i >
If lim C(q ,q ) -C (g ) =v <OV q , where v is a constant,
q, %0 o B J J J J
J

then vj can simply be included as part of F, or deducted from Fj provided one
of F+vj > 0 or Fj—vj > 0 holds. That vj, taken to equal zero in the text,
does not depend on qj is the relevant restriction.

5'l‘he reader will note that the cost structure analyzed contains
nonconvexities at the firm level, which is why it is necessary to demonstrate
(as is done in the Appendix to MacDonald and Slivinski (1983)) that an
equilibrium exists. Given existence, that production is aggregate cost
minimizing in the absence of externalities is trivial.

6Baumol et al.'s Propositions 9D8 and 9D2 are analogous to lemmas 1 and
2, for example.

7Specifically, "for almost all" excludes measure zero events in the

parameter space. Technically the (F,FQ,F ,Qa,Q ) vectors for which a

B

positive can achieve the minimum

B

configuration permitting all of N, N and NB
[+ 2
5
level of cost are confined to a four-manifold in R+.
8 .
The same configurations, but without claim that they are equilibrium

configurations, will be denoted by the same notation, absent asterisks.

9
Q(F,Fa) is defined by the system

F+C(q,q)-Xq ~-Aq =0,
B B

o
~
Ne
a
>

~

0}
kgl

il
>

c ,
B(q“ qB)

and Q(F,F ) =q /q ;
@ a B
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the last equation implied by Q, = Nq, and Qg = Nqg when Ny = 0 as in P.

0 . .
The restriction 9(a) is stronger than required. Though tedious, the

analysis can proceed unchanged if 9(a) holds only for qBG[O,&B] where

R F + C(0,q )
q = argmin —————— and F is as defined below.
q q
B B

11
Though Q(+) and Q(+*) may be nonmonotonic in F, as depicted in

Figure 1, it is straightforward to check that convexity of C(qa,qB) implies

~

they may intersect at only one value of F; F(Fa’FB) is unique.

2 .
1 The primary focus of attention here is the structure of production.

* * %
Predictions on changes in N , Nj’ qj, etc., can be derived straightforwardly.

13 j
C'(q,) =r.8.q, + x(q ,9,) with q., = O.

%3 i%5% T X% 35

AResults can of course be obtained for cost structures more general

than (12). For example, if CB(qB) is not affected by changes in r . an

~

increase in ry raises F (i.e., causes S* to shrink) if and only if specialized

production is more X, -intensive than is diversified production when F = F.

5Convexity of Ca merely ensures Q(F,Fa) is not "too flat™.
6Here the split of management time across these two activities is
ignored. The specification
g(Em) f[(l—E)m,sj], 0<E<1
can be accommodated.
Of course monitoring, in the sense of checking for unintentional (?)

shirking via breakdown, might rise with the utilization of robotics.
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APPENDIX

Proof of Lemma 1

The strict convexity of C(e) implies that all operating diversified

X X % %
firms produce the same q = (qa,qB). Given q , P becomes:

*
min NC +NC + N[F + C(q )]
N,N ,NB aa BB
a

*
subject to N q_ + Ng = Q. j=a,B
J J J

As an LP problem in 3 variables with only two constraints, it follows that

except for a measure zero set of (QQ,Q ,F,FQ,F ) values, at most two of

B ]
*x % %
N ’NG'Nﬁ can be positive. (Dorfman et al., 1958, Ch. 4, Theorem 2 and
Corollary to Theorem 3.) (QED)

Proof of Lemma 2

X %X X
For any Q = (Qa'QB)’ Qj >0, j=a,B; if N ,Nj,q solves P, and if t >

0, then
% < * % % % Ck
C (tQ) = tNaQa + tNBQB + tN [F + C(q )] = tC (Q)
% * X %

Thus, C [tQ/t] £ (1/t) C (tQ), so tC (Q) £ C (tQ) also.

(QED)
Proof of Proposition 1

%
(i) Suppose, by way of contradiction, that F £ Fa and Na > 0. Then

from (3) and (6) it follows that A, = X,, while (2) and (3) imply

F+C(q ,0) ~-Xq £0
[+ 3 a a
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C(+) being strictly convex implies that for any q;

C(g ,0) =C(q) +C ()(@ -q9) -C (qd)q + A (A.2)
a a a a B B

%
for some A > 0. Combining (A.1l) and (A.2) with q = q Yyields

% % % * % B *
0O2F+C(g)+C(q)(@-gq)-C(q)qg -Xq +A
a @ a 8 1§ a a
% X x % *x % X
=F+C(g)+(C(g)-X)3 -C(q)g -C(q)lg +A
@ a o a @ B ]
* x % x %
>F +C(q)-C(q)g -C(q)q
a a B B
* %
since A >0 and C (q ) 2A =X , from (7).

[ [+ [+ 3

X %
However, (7) also implies that Cj(q ) > Xj only if qj = 0, so that this last

expression in fact equals

*

* *
F + C(q ) - Xaqa - XﬁqB

and this being negative contradicts (5).

(ii) Consider the problem

P min N[F + C(Q/N)]
N

which has the FOC:

F + C(Q/N) - CQ(Q/N)Qa/N - C_(Q/N)Q,/N =0 (A.3)

B B
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which can be re-written as:

F + C(Q/N)
C (Q/N) + C (Q/M)(Q /Q ) _—
« B B a Q /N
«

F + C(Q /N,0)

F + C(Q/N) a a
and > 2 X
Q /N Q /N a
s 2 o]
Also, differentiation of (A.3) yields
dc (Q/N) QQ
B a 2
= [(c ) -¢c ¢ 1]
dQ NL 21 11 22

[0 2

2 2
which is negative by the convexity of C(+), as L = Qacll+2QaQBC12+QBCZZ > 0.

Thus, as Qa > o, CB(Q/N)QB/Qa - 0, so that for some QQ sufficiently large,

Co(Q/N) > X, .

Differentiation of (A.3) also gives

dc (Q/N) c C - (Cc )
a 22 11 12

dQ NL

a

Thus, if there exists any Q, for which C,(Q/N) < A\,, then there is a

unique Q, such that Ca(ﬁﬁlN,QB/N) = Ay. Consider now Q, 2 0. If Q,/N > O

also, then Ca(Q/N) i Ca(o’QB/N)'
Suppose, by way of contradiction, that Q,/N - a > 0. Note that the

solution to P yields, for aggregate costs
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F + C(Q/N)]
Q /N B
B

N[F + C(Q/M)] = [

which must therefore converge to:

~ ~

F + C(a,(Q /Q )a)
B a

[ — 1Q as Q » 0
[+ 2
(Q 7Q )
QB Q°l a
" F + C(0,q9 ) " N
Let q = argmin[——— ], and N = Q /q ,
qB qB B B

~ ~ A

and note that N firms producing (QQ/N,QB/N) will also produce the bundle

(QG'QB)' with total costs

~ - A -~ EN

N[F + C(Q /N,Q /N)] - N[F + C(0,Q /N)] as Q ~» O
a B B a

and

~ PN

N[F + C(O,QB/N)]

I
——
o)

F + C(O,aQB/Q ) .
[ ] Q , by def. of q
& B

n

~

a(Q /Q )
B a

A A

F + C(a,aQﬂ/Q )

<[ — 1Q, since C > 0.
B a
aQ /Q
B «a
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-~

Thus, Qu/N » a > 0 cannot be cost-minimizing so C4(Q/N) - C,(0,Qp/N) as

Qe ® 0. So, if C4(0,Qp/N) £ X,, let Q, be the unique value of Q, which

PN

yields Cy, = A,, and if not, let Q, = O.

MQD“Q/QB<Q/QB1
t , = .

First, suppose Qu > 0. Let Qa > Qu and suppose, by way of
contradiction, that D 4 MQ. This implies that if one solves P with the added

~

restriction Ng = 0, the solution is Ny = 0, q = Q/N. Thus, q4 > 0 is

~

implied, so that C, (Q/N) = A, £ K,.

ax =

Solving P for aggregate a production at Q, < Q, must yield C, = A,

by definition. Since N, = 0 in the above, however, N must be the solution

dc
[+ 3
to P given Q , and since — > 0, it can't be that C (Q/N) £ X .
a dQ a a
a

PN

Thus, D 4 M, is not possible for Q, > Q-

Now suppose that Qa < Qu and Ma 4 D. Necessary conditions for the

solution of P with the constraint NB = 0 to have Ny, > 0 is that
Cald) 2 A\, = k. Diversified firms then produce Qy = Qu — Nydy < Qu» and

Qg- Solving P with Q = (Qq»Qp) must yield N = N, while if Q = (Q4,Qp),

P yields, say N.

dc
[ 3
Since Q < Q < Q , it follows that, since — > 0 again,
a a [ d

~

a
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Co(Q) = C(Qy/N,Qp/N) < C,(Qy/N,Qp/N) < Cq(Qy/N,Qp/N) = X,.

contradicting the requirement for N, > 0. Thus, My 4 D cannot hold.

Let Qu = 0. Then Qa < Qu is impossible, so it need only be shown that

Ma 4 D for all QG. Suppose not, so that in solving P with N 0,

B

PN ~ -~ ~

No = 0 results. Then N must solve P also, and C,(Q/N) = A, £ A

a is

-~

necessary. But Q, = 0 only arises when in solving P, CL(Q/N) > X\ is always

the result. Thus, Mu 4 D must hold.
(iii) This follows readily from the way in which Qn was defined in (ii).
(QED)
The proof of Proposition 2 is entirely analogous to that of 1, and so is
not provided.

Proof of Proposition 3

~

The existence of F(FQ,FB) is demonstrated first. Let N(Q,F) indicate

the solution to P, when QG/QB = Q and diversified firms' fixed costs are F.

Then Q(F.Fa) is defined by

F + C(Q/N(Q,F), 1/N(Q,F)) - X,Q/N(Q,F) - Ca(Q/N(Q,F), 1/N(Q,F))/N(Q,F) = 0

Since Fy + C(Qq,0) - XAaqq = 0, it follows that:

(F-Fg) + C(Q/N,1/F) - C(§4,0) + Xo(Ty - /W) - Ca(Q/N,1/M)/N = 0

Then, using the Taylor approximation
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C(3q,0) = C(Q/N,1/N) + Cu(Q/N,1/M) (g, -~ Q/N) - CR(Q/N,1/M)/N + A

and the fact that C,(Q/N,1/N) = X,, it follows that

F-F =A.
@

Thus, A > 0 as F » Fa. so that strict convexity of C(+¢) then implies that

(Q(F,Fy)/N(Q,F), 1/N(Q,F)) = (q,,0) so that Cg(Q/N,1/N) » C2(q4,0) < Ag
by (9b), and also, Q - =,

Rearranging the definition of Q yields:

F + C(Q/N,1/N)

cB(Q/N,l/N)

a
1/N
F + C(O.QB(F))
> — -7NQ
(F) *
q
B
and also,
CB(Q/ﬁ,l/ﬁ) F + C(q (F),0)
> _Z - X
Q a
q (F)
[+ 1
. F + CJ(q.)
where q (F) = argmin [-———————2-] for j = «,B.
j q,
J

The first term on the RHS of both of these inequalities is unbounded as

F 2 o, since ij 2 ¢ > 0. If Q is bounded above as F - =, then the

first inequality implies C2 is also unbounded above. If, however, Q - o,
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then the second inequality implies C2 2 o, Thus, it must be that for some

F', CR(Q(F',Fo)/N(Q(F' ,Fu)F'), 1/N(Q(F',Fy),F')) = Xg.

A similar argument establishes the existence of an F" at which

Co (Q(F",FR)/N(Q(F",Fg),F"), 1/N(Q(F",Fg),F")) = K,.
Recalling that C,(Q/N,1/N) = X, and CB(ﬁlﬁ,l/ﬁ) = KB, it follows that

(Q(F",Fg)/N(Q,F"), 1/N(Q,F")) = (Q(F',Fo/N(Q,F'),1/N(Q,F')) by strict

convexity of C(+), and so,

G(F“'Fﬁ) = Q(F.’FQ) = 6 and F" = F! = ;_

~ o~

Note that this implies that this (F,Q) pair is unique, since if there

LN

were another such pair, say (F,Q), then the fact that

Cj(Q/ﬁ(Q,F), 1/N(Q,F))

~

again implies that (Q/N,1/N)

Xj for j = a,B,

(Q/N,1/N), but then

i

~ ~ -~ -~
~

F+C(Q/N,1/N) - X,Q/N - Xg/N = 0 implies F = F, also.

The assertions in the Proposition can now be proved.

~ % %

(i) Let F 2 F, and suppose E # S . Then N > 0 implies, from (5), that
* X *

F + C(q ) - kaqa - kBqB =0

and (6) requires Aj £ Kj for j = a,B. Since F+C(Q/N,1/N) - A, Q/N - XB/ﬁ
= 0 by definition, and using the fact that
* * ~ %

C(q ) = C(Q/N,1/N) + C,L(Q/N,1/N)(q,-Q/N) + CB(Q/W,l/ﬁ)(qB—l/ﬁ) + A

and that Cj(Q/N,1/N) = Tj, subtraction yields

~ %* *
(F — F) + (\y - Xg)qq + (\g - Xgdqp = A > O
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which is impossible, as every term on the LHS is non-positive.

% ~
To prove (ii), (iii) and (iv) we first show that E = S 2 F 2 F.

* ~
Suppose then, that E = S and F < F. (6) and (7) then require that

x
Cijlq ) 2 Ay = X; for j = o,B.

x x * x
But q = (0,0) 3 Cy(q ) < \j, while q, > 0 and qg = 0 implies

*
qq = 9o and so Cg(q,,0) 2 Xg a contradiction of (9b). A similar argument

% * * ~
implies qo > 0, so that Cj(q ) = Xj, for j = «,B, so that q = (Q/N,1/N),

in fact. But then

~ ~ ~ b 4 * *x
F + C(Q/N,1/N) - XQ/N - Xg/N > F + C(q ) ~ Xoq - Xpag 2 O

~ o~

contradicting the definition of (F,Q).

~ o~

Now, note that since it was established at the outset that (F,Q) is

the only intersection of Q and Q, and that Q » » as F » F,, it must be that

Q(F,Fy) > G(F,FB) for all F > max{F,,Fg}. The rest of the proposition

then follows from Propositions 1 and 2.

(QED)
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