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Abstract

The prevailing methodology of economic modelling of decision making under uncer-
tainty referred to as “rational expectations” assumes the maximization of expected payoff
where some ad hoc assumption about the formation of those expectations is made. Whether
a simple weighted average of past values (Nerlove (1958)) or the true distribution in equilib-
rium(Muth (1961) and Lucas and Prescott (1971)) is used to form those expectations, there
seems to be little justification from probability theory for such procedures. This paper uses
techniques of statistical mechanics that were adapted to information theory by Shannon
(1962) and more recently to cognitive science in what Smolensky (1986) calls “Harmony
Theory”. We justify the use of those methods from the developments of the foundations
of probability theory by Bernoulli, Bayes, Laplace, Jeffreys, and Jaynes; briefly tracing the
evolution of Bayesian inference and the development of the maximum entropy formalism.
The generation of heat baths for continuous state spaces is shown to give the same asymp-
totic distribution as the maximum entropy formalism. This yields a biologically feasible
method of achieving initial distributions of relevant unknown variables. The Harris ergod-
icity of the heat bath is also shown to make the computation of expectations of functions of
those variables easy and inexpensive due to von-Neumann and Birkhoff type ergodic theo-
rems. Finally, annealing schedules in continuous state spaces are shown to converge to the
mode of the distribution of those variables whose use in decision making is briefly argued
to be a more “real” model for most economic agents even though it might not be “rational”
in the Bayesian sense.

Keywords: Rational Expectations methodology, parallel distributed processing, cogni-
tive systems, chaotic algorithms, simulated annealing.






El-Gamal: February 1°t, 1989 2

1. Introduction

There is little doubt that the most dominating method of economic modelling of decision
making under uncertainty for the past two decades has been that of “rational expectations”.
That method’s development is well studied in the economic literature, and therefore, no
attempt to survey that development will be made in this paper. It is of interest, however,
to see how the first steps towards the development of that paradigm were taken. The
consensus among economists seemed to be that generalizing the method of maximizing
payoff in deterministic settings to the stochastic setting can best be made by letting the
agents maximize expected payoff. The problem that naturally arose out of that concept
was the way to form expectations of unknown future variables. The initial response was to
simply take some weighted average of past values of that variable as the agent’s estimate
of the relevant expectations. This method was viewed by many as truly ad hoc, and hence,

a more systematic method for the formation of expectations was required.

Almost all economists will agree that the definition of rational expectations due to
Muth (1961) was the first popularly known attempt at such a systematization of the for-
mation of expectations, and that it inspired most of the work that followed although the
exact definition of Muth’s was not necessarily uniformly used. Muth’s main idea was that
“...expectations, since they are informed predictions of future events, are essentially the
same as the predictions of the relevant economic theory”. Most subsequent work took the
view that that justifies taking the mathematical expectation of the relevant variables using
the true distribution of those variables in equilibrium. It is the view of this author that that
procedure is no less ad hoc than the method of taking some arbitrary convex combination

of past values.

There is no foundation in probability theory or cognitive science for the use of the

rational expectations hypothesis. The next section will quickly review the development of
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probability theoretic foundations from Bernoulli, through Bayes and Laplace to the con-
temporary work of Jeffreys and Jaynes which discusses the choice of initial (or prior) dis-
tributions that a rational agent will use in decision making under uncertainty. If the reader
is skeptical about Bayesian foundations of probability theory and prefers the frequentist
approach (in which case he/she is in very good company), one can still argue against the
use of the true (or - as a frequentist would say - objective) probabilities obtained from the
equilibrium conditions of the theory. One can first urge the reader to refer to the studies
by Jeffreys (1967) and Cox (in Levine and Tribus 1979) for a philosophical critique of the
frequentist approach. Since this is not the arena for such a debate, however, we raise an-
other objection to the rational expectations hypothesis, namely, that from what we know
in cognitive and neural science, there is no justification of such a hypothesis. One major
criticism that one can launch is the very serial nature of the computation of expectations a
la rational expectations which makes it virtually impossible to take place in a human brain
whose comparative advantage lies mainly in performing jobs that are of a highly parallel
nature. The other major criticism that we wish to raise in this paper is the independence
of the distribution used from the amount of information the agent has. This latter criticism
obviously does not apply to models that take into account asymmetric information, but it
seems that those models also introduce that asymmetry in a rather ad hoc fashion. We
would like to have a systematic procedure by means of which the presumed distribution of
the unknown variables is determined from the amount of information that the agent has.
This will obviously lead us into the realm of information theory where Shannon (1962)
adapted the notion of entropy from statistical mechanics and used it as a measure of infor-
mation. Later, Jaynes (see papers in Rosenkrantz 1983) developed what came to be known
as the maximum entropy formalism which offers the natural basis for a consistent choice of

initial distributions (priors) of agents based on their respective knowledge.

This paper has the modest objective of circumventing the objections in the previous

paragraph by providing an algorithm which is physically feasible, and which results in the
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maximum entropy distribution of relevant unknown variables. The results that we shall
achieve are generalization of recent results in cognitive science by Smolensky (1986), and
Geman and Geman (1984) to continuous state spaces. We shall introduce a variant of
the energy function in statistical mechanics which Smolensky called a “harmony function”,
and then we shall show that a “heat bath” (the algorithm that we shall assume to take
place in the human brain, and we use that name due to an old tradition in statistical
mechanics) converges to the maximum entropy distribution. We also demonstrate that
the heat bath exhibits the statistical property of Harris ergodicity which allows us to use
von-Neumann and Birkhoff type ergodic theorems to easily compute expectations by taking
time averages from the heat bath, thus avoiding the previous criticism that expectations
are hard to compute in the human brain. Our final objective is to offer an alternative
for theorists who find expected payoff as an unacceptable objective function. Expected
payoff has been shown to miserably fail almost all experimental tests, and it is technically
questionable since expectations need not exist and even if they exist, they may not be in
the support of the distribution in which case it is very unreasonable to maximize expected
payoff. One can argue that the majority of economic agents are not even aware of what a
stochastic structure to a problem means. They simply know some relevant variables and
do not know others, and we argue that they would proceed in much the same way they do
when they see blurred road signs or characters in a word, namely by trying to “complete
the picture” by choosing the most likely values for those unknown variables. Statistically,
this will correspond to using the mode of the maximum entropy distribution. We show that
the result of Geman and Geman (1984) which shows that lowering the “temperature” in
the heat bath at a slow enough rate will yield convergence to the mode of the maximum
entropy distribution. There is another added dimension of realism in that latter procedure
since the agents are even relieved from the burden of having to compute time averages that
is required for “real expectations” (the name we give to the formation of expectations using

the maximum entropy distribution).
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The paper will only attempt to establish the plausibility and prove the validity of the
mathematical concepts involved without attempting to apply “real expectations” to any
particular economic models. One of the advantages of the proposed modelling methods is
its ability to accommodate for learning as you play in experimental settings where it is not
clear how fast the participants actually learn the structure of the game. Another of the main
targets of this research is the ability to efficiently and cheaply be able to simulate decision
making on parallel computers, a program whose full advantage should be realized once we
know how to model whole economies as parallel processors thus introducing two levels of
parallelism. But now, let us begin with the objective at hand. Section 2 will briefly trace
the development of probability theory and justify the maximum entropy formalism. Section
3 will then introduce a variant of Smolensky’s (1986) version of statistical mechanical heat
baths in what he calls “Harmony Theory” and argue for its realism in economic settings
as well. Section 4 will then state the major theorems from Smolensky (1986) and Geman
and Geman (1984) generalized to the continuous state space and provide proofs where they

differ from the ones for discrete state spaces. Finally, Section 5 will conclude the paper.

2. Bayesian theory and the maximum entropy formalism?

The study of decision making under uncertainty and the nature of probability has
occupied scientists, philosophers, and mathematicians for a number of centuries. A long
tradition of recognizing probabilities as measures of the state of knowledge dates back at
least to Jacob Bernoulli (1713) in his discussion of the principle of insufficient reason (in
modern terms this will be referred to as uncertainty). All of his work was based on the
existence of many “equally likely” events that may occur. In the equally likely framework,

Bernoulli obtained his well known weak law of large numbers, and then DeMoivre and

1 This section is based on Jaynes’s “Where do we stand on maximum entropy” (1978), and
“prior probabilities” (1968) in Rosenkrantz (ed. 1983). For a more detailed discussion, refer to

those papers.
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Laplace produced what is generally cited as the first of a long and rich family of central
limit theorems. The question of inferring the true probabilities from observed frequencies
then preoccupied many mathematicians of the time. The first attempt at inverting the
binomial probability model was due to Thomas Bayes (1763) but the first general derivation
of what came to be known as Bayes’s theorem or Bayes’s rule was due to Laplace in 1774.
Whether to ascribe the discovery to Bayes or to Laplace is only of interest to historians of
scientific thought (and perhaps to people who indulge in British versus continental greatness
debates). The important and essential idea to note in that development is the choice of
priors for application in Bayes updating in real problems. The principle of insufficient reason
suggested to the scientists and mathematicians of the time to use uniform priors; i.e. where
no further knowledge is available, one should start with a prior that all possible events are

equally likely, and then use accumulated evidence to update that prior.

In the following two centuries, scientists, mathematicians, and philosophers engaged in
a long and fruitless debate about the definition of probability and whether the Bernoulli-
Bayes-Laplace view of probability as a measure of ignorance or the modern frequentist view
of probability is the true one. As Jaynes (1978) notes, there is truly no substantive content
to that argument other than a fight over the right to use a term. In this paper, we have
decided that for economic agents with lack of information about certain variables of interest,
the distributions they ascribe are a measure of their ignorance. But if we agree with Laplace
that with no information at all, one should assume that all events are equally likely, how
does one decide on the best prior to use if there was a certain amount of knowledge possessed
by the agents? Jaynes and others have argued for the use of Shannon’s (1962) measure of

information
S(p) = pi-log(p:)
=1

which is mathematically equivalent to entropy as used in Gibbs’s statistical mechanics. We
shall avoid arguments here about the use of the term entropy in Shannon’s information

theory, and whether Gibbs or Maxwell entropies should be used. We simply note that with
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no further information, maximizing Shannon’s measure of information (or more concisely
maximizing entropy) yields the uniform p; = 1/n for all < which is the outcome of Laplace’s
principle of insufficient reason. If more information is available, for instance, if we know

that the expected value of some variable X takes a certain value, then we can solve the

problem
max - Z pi.log(pi)
P i=1
s.t. Zp,'.X,- =g
i=1

The general philosophy behind the maximum entropy formalism, therefore, is to choose
the distribution that is consistent with all the information that we have (satisfying the
constraints of the maximization problem) and which does not presuppose any more infor-
mation. Many uses of the maximum entropy formalism in the physical, social, and cognitive
sciences have been found, and the method received great success (e.g. see Levine and Tribus

(1979), and Justice (1986)).

One problem we encounter in extending the maximum entropy formalism to contin-
uous state spaces is that the expression — [ p.log(p) does not arise as the limit of Shan-
non’s entropy as n t oo as postulated by Shannon (1962). Jaynes ((1963) in Rosenkrantz
(1983)) showed quite easily that with zi,...,z, as the possible realizations, as n 1 oo,
[n{zi—1— z:)] — [m(z:)]~1, where m(.) is a well defined density. But we can write the discrete
probability distribution gq1,...,9n as ¢; = p(%:)(zi+1 — z:) where p(.) is the limiting density
of the distribution as n 1 co. This tells us that ¢; — p(z;).[n.m(z;)]~1. The discrete entropy
S%(q) will therefore converge to

54(q) — — / p(z).log(p(—z)).da:

n.m(z)

which after subtracting the term log(n) gives us the continuous version of Shannon’s entropy

o),
_/p(:c).log(m(z)).d
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One of the important and essential features of Shannon’s entropy in the discrete case was
its invariance to many transformations of the data, which contributed to the sense in which
maximizing entropy was optimal. The choice of the measure defined by m(z) will have to be
used to ensure such an invariance in the continuous case (since p(z) and m(z) will transform
in the same way leaving S invariant to the change of variables). In general, one may need
to discuss the choice of those prior measures m(z) according to group theoretic criteria (e.g.
see Jaynes (1968) in Rosenkrantz (1983) for examples). For the purposes of this paper,
we shall simplify the problem by letting our space be X = [0,1]" and choose the uniform
prior m(z) = 1 for = € X (which corresponds to Lebesgue measure which by being a Haar
measure is invariant under shift and rotation; for this state space, the use of Shannon’s own
postulated generalization of entropy to continuous state spaces is, therefore, justified), in

which case unconstrained maximization of entropy will yield

which is the principle of insufficient reason revisited. We reiterate that generalizing the
results of the next two sections where m(z) is more generally chosen for other state spaces

is possible, but there does not seem to be a need to use it at this stage.

3. Introduction to harmony theory:2

We start with a complete probability space in the strict sense (E, S, P) where E is the
economic environment in which the agent is making his/her decisions, & is a s-algebra of
subsets of E, and P is a probability measure on (E,S). The environment is not directly

observable to the agent, but there is a transduction map T:E — R where R = [0,1]" is a

2 This section is an adaptation of Smolensky’s framework as in Smolensky (1986), where a number
of changes in the interpretation and the functional and probabilistic specification have been made

to resemble the framework of economic modelling.
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representation space. This map will not play any role in our analysis, but it is used to make
sense of the definition of representations of reality as random variables. The map T will
therefore induce a probability measure p on R by p(.) = PoT~!(.). The agent’s environment
(to be distinguished from the Economic environment or the true environment) is completely
specified by R and p, hence, we shall be referring to p as the agent’s environment. Given
a representation r € R, the agent will make his/her decision in a deterministic fashion. In
other words, if the agent knew the actual environment (i.e. the realization in E), he would
be able to solve his problem with certainty. The general representation space is introduced
to define how he/she will act when the actual outcome of the economic environment is not
observed but some measurable function on it is; and R is assumed to be a sufficient statistic
in the sense that knowing R is all the agent needs to make a deterministic decision. An
example of an element of R may be a price of some commodity, the agent’s decision to
purchase may depend on the weather, its effect on the crop, etc. but it is sufficient for the

agent’s purposes to see the price for him to be able to make his decision.

The uncertainty in the model is introduced via an input function D: E — I where I = R
is the same space. An individual’s input is assumed to cover some elements of R but not
others. Hence, the agent will know with certainty some of the random variables that are
sufficient to make his decision, but he will have to guess about the others. The default input
for a variable on which no data is available is 0. Since all the measures we shall consider will
be absolutely continuous with respect to Lebesgue measure, the probability of an actual
data point being 0 is itself 0, and hence, we need not worry about such cases. Now, the
agent attempts to fill out the 0 entries in his input vector to achieve a representation vector
on which to base his decision; for this ‘fill in the blanks’ mission, the agent has to find a
completion function. A completion function c: I — 2F will then consider all representations
of the environment which agree with the input vector where data is available. When r € R

is a completion of ¢ € I, we write r D 1.
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Now the agent may consider a number of possible representation vectors that are com-
patible with the input he has received. For each such possible representation, we define a
basic event as the event that the some of the elements of the representation vector is equal
to some value. Therefore, a basic event « in our environment will be an assignment of values
to some of the elements of R, i.e. o= (r; = b1),...,(ri, = bg), Where (by,...,bs) € [0,1]%.
The default value for entries in the representation vector that are not known under that
basic event will be set to 0 to agree with the input vector which has the same non-zero
values and the same unknown entries. We shall construct a gain function which determines
under any particular event « the distance between o and our representation vector r. A
metric p(r, ko) is now introduced as a measure of the usefulness of the knowledge vector k,,

to be defined below, one example of such a metric would be
1 B
€a(r) = plrka) =1- 3 Y o (r, —bu)? (2.1)
p=1

which is 1 - mean squared error; none of the results in following sections depend on the
particular form of the gain function; and we will just keep it defined as a general metric. We
impose some restrictions on the metric, however, only as a normalization. We require that if
we have a perfect match, then £,(r) = 1, and the largest mismatch will give a £,(r) = 0. Now,
for each event «, there corresponds a knowledge vector k, = (0,...,0,5;,,0,...,0,b;,,...—),
and an atom « in the agent’s mind which decides what to do if o was the case. That is rem-
iniscent of the standard way of modeling decision making under uncertainty by considering
each possible configuration of reality and what the utility of such an outcome would be.
Here, we actually assign physical pseudo-entities (which we call atoms) that correspond each
to such a possible configuration. Each of the atoms o € O where O is the set of observables
(i-e. all possible events that the agent can witness), has two parameters assigned to it from
the agent’s cognitive system. The atom may be activated or not according to the activation
parameter a, € {0,1}, and the strength of the connection to the atom may be increased or
reduced by means of the strength parameter o,. So, if a particular atom corresponds to

a configuration of reality which has a negative impact on the overall understanding of the
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cognitive system (this overall understanding will soon be rigorously defined by the harmony
function), it will not be activated which means that that particular configuration will not
be considered by the system. Depending on how the different configurations that have a
positive contribution to harmony interact, their respective strengths will be set to maximize

that harmony.

Now, to choose a representation that is in some sense optimal, we rigorously define a
“harmony function” which assigns to each representation vector r € R the real number
Hg(r) = Z @aOohi(r,ka) (2.2)
a€0
where hg(r, ko) is the contribution of atom o to the harmony of representation . We choose

for this function the form

1
(ko) = = ; J(r; — ko) — & (2.3)
where J(z) =1 if z = 0 and J(z) = —1 otherwise, and « € [-1,1]. Now, it is only reasonable

that an atom will be activated if and only if it has a non-negative contribution to the
harmony function. So if k = 1, then atom « will only be activated if there is a perfect
match. At x = 0, half or more matches are required, and at s =-1, the atom will always be
activated. As with the choice of ¢,, we can choose an arbitrary form for the function hy

which satisfies certain regularity conditions and all the following results will still hold.

We now turn back to the issue of assigning a probability distribution to the various
representation vectors that we may consider. We start with the maximum entropy distri-
bution whose merits were discussed in the previous section. Given an environment p, and
a set of observables O, the observable statistics of the environment are defined as the set
{p(@)}aco- The entropy of a distribution p is taken to be the continuous version of the

Shannon entropy (Shannon, 1962)

St)== [ plr)in(plr))dr
refo,1]
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The maximum entropy estimate of p with observables O is the probability distribution with
maximum entropy among the class of distributions that have the same observable statistics
as p. This notion will give us the class of distributions that add the least possible amount of
information over what is observed. Given any distribution p on R, the maximum likelihood

completion of an input vector ¢ € I will then be
¢(z) = {r € R:Vr' € R with v D 4;p(r) > p(r')}

This completion function will seem to be the one that we would highly recommend investi-
gating given the discussion in section 2 of the paper. The result of Theorem 1 in section 4
will be to show that this completion function will be equivalent to the completion function
arising from a natural and physically feasible algorithm based on the harmony function

defined above, to which we now turn.

We shall investigate distributions of representation vectors that depend on the harmony
function, and the analytic form of the densities of those distribution will turn out to be of
the familiar Gibbs form. We shall offer two different methods to arrive at that form of
the densities in question. We first start with the more heuristic version due to Smolensky
(1986). We assume that the agent will use his harmony function Hy to estimate the density
of the relevant variables summarized by his/her representation vector. The form of that
distribution function can be achieved in one of two ways. The first way & la Smolensky (1986)
is to impose the restriction that if the cognitive system was to be split into two unconnected
parts, the probability density of the two corresponding sets of observable vectors should be
independent. In other words, if we were to split the space of observable atoms O in two

parts Oy, and Oz, then we require that the density
f(Hi(r)) = FHS () + HS* (7)) = f(Hi(r))-f (Hi(r))

The interpretation of this condition is that if we were to have two people collect the informa-

tion instead of one, with each of them considering only some of the knowledge atoms, where
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there is no overlap between their investigations, then we should expect their outcomes to
be independent of each other. It is well known that the only family of functions that map
addition into multiplication is the exponential family, and hence, p(r) = A.a® () = 4.e#(")/T
where T = In(a). The constant A will obviously be chosen to normalize the integral of p(r)
to unity. This density is commonly known in statistical physics as the Gibbs density, and in
the statistical physics framework, H will be known as the energy, and T as the temperature

of the system.

The more formally rigorous way of achieving the Gibbs distribution as the proper distri-
bution of the representation vectors is to utilize the equivalence between Gibbs distributions
and Markov random fields. This equivalence relationship is discussed in Geman and Geman
(1984) for the case with a discrete state space. The same equivalence result for continu-
ous state spaces, and the intuition behind it is quite similar in many ways to Smolensky’s
derivation as well as Geman and Geman’s. The idea of a Markov random field was first
developed by Dobrushin (1968) to generalize the notion of Markovian processes in one di-
mension (usually time) to the multi-dimensional case. The relevance of this equivalence
result for Geman and Geman (1984) was due to the nature of their problem where the
neighboring pixels in a blurred image were the important ones in determining the value for
any particular pixel. A similar argument could be used here provided that the variables of
interest are arranged in the agent’s representation vector so that adjacent entries are entries
of variables with strong mutual information, and distant entries do not influence each other.
The other important aspect of this equivalence for our purposes in this paper is its impli-
cation that during the process of inference (to be studied shortly), only neighboring atoms
need communicate with each other which makes the implementation of the algorithm to be
studied in a parallel processor such as the human brain or the Boltzmann machine feasible
and fast. On a more technical note, the equivalence also figures heavily in the proofs of
Geman and Geman (1984), and hence, the analogue of their results for the continuous state

space requires the availability of that equivalence result for continuous state spaces.
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T

Now, we are ready to state the rigorous derivation of the Gibbs density, the remainder
of this section is based mostly on Rozanov (1982, pp. 55-74), and then we shall be ready to
proceed with the estimation procedures. We say that a o-algebra B splits the two o-algebras

A1 and A2 if

Pr(ay U azg|B) = Pr(a;|B).Pr(az|B)

for all a; € 4; and a; € A;. In the standard uni-dimensional Markov case, we think of a
random variable n; and let A; = §(—o0,t), A2 = §(t,00), and B = (t), where as usual, S(z, 5)
is the o-algebra generated by »;,...,7n;, and the Markovian condition states ,conditional on
the present, the past and the future are independent which is equivalent to saying that B
splits A; and A;. For a general Markov random field, we shall be thinking of T to be a
general locally compact metric space instead of the unidimensional “time” dimension. We
now proceed to define more of the mathematical primitives needed for the understanding

of Markov Random Fields.

Definition: Let a collection of o-algebras A(S) be connected with domains § c T where
T is some locally compact metric space. Consider all open domains § < T, then we call

A(S) a random field (RF) if A(S'uUS") = A(S") v A(S")

Definition: Let G be a system of open domains of S ¢ T, and for all § define §; = S,
T =§(S), S; =T\ § where as usual 6(.) is the boundary, and - is the closure of the set. We
call S; the complement domain of S, and we call T' the boundary between S; and S;. For

the next definitions, we shall take I'¢ to be an e neighborhood of T in the proper topology.

Definition: The random field A(S) is a Markov Random Field (MRF) w.r.t. a system
G defined above if VS € G, the boundary T splits S; and S;; i.e. if the o-algebras A(S:),

A(T¢), and A(S;) form a Markov sequence for ¢ small enough.

Now, given a MRF, we can consider additive functionals on A(S), i.e., real valued
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functions on A(S) s.t. for any S; and S; € A(S),

n(S1U S2) = n(S1) + n(S2) — n(S1nSy)

Lemma:

Given % an additive functional on a Markov Random Field, if [ n(S) < co for all § c T,

has a density

1

= (T
P fe"(T) e’

proof is trivial since the set S; NS, = @ and, as with the heuristic development in
Smolensky, we notice that the only function that maps addition into multiplication is the

exponential.
4. Estimation of the distribution, and the maximum likelihood completion

An agent’s problem is fully characterized by the quintuple (R, p, O, 7, c) where R = [0, 1]"
is the representation space, p is the environment, O is a set of statistical observables, = is
the maximum entropy estimate of the environment p which agrees with it at the observables
0, and ¢ is the maximum likelihood completion function with the density =. We also define
the generic Gibbs density

pv(z) =271V (3.1)

where

Z = / ¢V (@) 4z (3.2)

z€X

The first theorem we state here is a generalization of what Smolensky (1986) referred

to as the competence theorem of the agent with the above defined problem. Part 1 of the
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theorem states that for appropriate coefficients (which come naturally out of the constrained
optimization problem of finding the maximum entropy density ), the maximum entropy
density will be a Gibbs density with “energy” U equal to a linear combination of the
penalty function &, at all observable events. The second part of the theorem states that the
maximum likelihood completion function with density « is equal to the maximum likelihood
completion function with the Gibbs density defined by the energy U of part 1 of the theorem,
which in turn is equal to the maximum likelihood completion with the Gibbs density with
energy equalling the Harmony function defined in the previous section. The statement and
proof of the theorem below are adaptations of the aforementioned theorem in Smolensky
(1986) after the necessary changes in functional forms and algebraic manipulations have

been made to generalize to the continuous representation space.
Theorem 1:

1. The mazimum entropy density = of the agent’s problem (R, p,0, 7, c) s the Gibbs density
(as in (3.1) and (3.2)) defined by U(r) = 3 Ay €q(r) for appropriate weights X,, where
a0
£y 15 defined in (2.1).

2. The mazimum likelihood completion function ¢ corresponding to = of part 1. 1s the
completion function defined by the Gibbs distribution with energy Hi(r) as defined by

equations (2.2) end (2.3) for suitable choices of o,, and k.3 O

Proof of Theorem 1:

The constrained optimization problem defined by the maximum entropy density determination

3 The existence of a simplé algorithm which converges to the proper values of A and o needed for
this theorem will be discussed in the end of this paper after the two major results in Theorems 1 &

2 are stated and proofs are provided.
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max S(r)=— / w(r).In(x(r)).dr

r€ER

s.t. / w(r).dr=1

reR

and w(r).€x(r).dr = py

The first constraint insures that the estimate is a density and the second insures that the maxi-
mum entropy estimate agrees with the environment for all observable events. When we write the
Lagrangian for that problem, and find the first order condition

0= %(r)[ / w(s).In(w(s)).ds — A( / n(s).ds — 1) — Z Aol / £a(s).m(s).ds — pa)]

sER sER «€0  cp

and solving that FOC, we get

0=1+In(n(r)) =2 — > Aaalr)
a€0
which after rearranging terms, setting U(r) = 3 Ay.ma(r), and Z71 = A1 =1/ [ €U(").dr|, we
aEO rer
get

w(r) = Z71e~U)

which ends the proof of part 1.

For the proof of part 2, we wish to rewrite

€a(r) = p(T, ka)

as

A

€alr) = max [——hx(r, ka)]

ac€{0,1}' 1 — kK
where « is chosen to equate the two expressions. The existence of such a value of & is obvious since
we have bounded p(r, k,) between 0 and 1. Once x is chosen to equate the two expressions, it is

clear that by setting the atom strengths o4 = Ao/(1 — &), we get

er Ul = mer lt)
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and with the result of part 1, it follows that the completion with the maximum entropy density is
equal to that with the Gibbs density defined by U(r), which is equal to that with the Gibbs density

defined by Hg(r), and that finishes the proof of the theorem. ]

Now, given the result of theorem 1, we know that the plausible distributions arising
from maximum entropy estimation (for a full study of the importance of this class of density
estimators, see Christensen 1981, 1982, and Levine & Tribus, 1979) and harmony theory as
described in the previous section coincide. The next step is to consider mechanisms that
may converge to those estimates starting from some randomly chosen initial distribution of
representations. The next theorem was designed to achieve that result; the first part has
been in the literature for a long time - see for instance Metropolis et al (1953) - and the
second part is mainly due to Geman and Geman (1984); in both cases, the results mentioned
have been proven for the discrete state space, and we generalize them here to continuous

state spaces.

We start by defining a “heat bath” process resulting from a sequence of absolutely
continuous probability measures on the representation space which is characterized by the
sequence of densities {p:}52,. The process starts with an initial density fo, and an initial
representation vector ro which is randomly drawn from fy. At each step of the algorithm,
we shall randomly choose one of the coordinates of the representation vector r. Let the
set S = {1,2,...,n} index the coordinates of the representation space, and let the sequence
of visits to the different elements of S be denoted by {n;,ns,...}. Then, at each point in
time, we randomly choose an element of S, and update the density f;,; by the Chapman-

Kolmogorov type equation

ft+1("s = T,;8 € S) = PU("ne+1 = Tpyyy|Te = Za3 8 # nt+1)'ft(ra =Z4;8 F nt+1) (3-3)

where py(z) is again defined by (3.1),(3.2), and the conditional density in (3.3) above is
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defined according to

pu(r)
pu(r).dz,

pu(rs|ri;l # s) = T (3.4)

z.€[0,1]
where s € S, and r € R = [0,1]". The time series of representations ry;t = 1,2,... is then

generated by randomly drawing from f, after each iteration of the type described above.

The first part of the next theorem tells us that for a heat bath process where py, which
is defined according to equations (3.1),(3.2) for a fixed temperature T, is used to define the
constant sequence {p;} of our heat bath, and starting from any initial density, the sequence
of densities f; converges to the maximum entropy density = of the agent’s problem. It is
clear that the equivalence of py and « proved in part 1 of Theorem 1 plays a major role
in achieving this result. The main step to prove part 1 of theorem 2 is to recognize the
Harris ergodicity of the heat bath process described above, together with the stationarity
of the density py, which therefore is the unique stationary density (see El-Gamal (1988),
or Nummelin (1984) for definition of Harris ergodicity/ exactness and some interesting
results). This result allows us to think of a variant of the representative agent. We know
that asymptotically, as each individual agent goes through their heat bath stochastic process
for representations of the economy, the profile of representation vectors in the economy will
be a random draw from py. The “representative” or “mean” agent may thus be thought
of as the one with the mean representation vector according to the density py. If our main
interest is say the optimal action for that average person, then under the assumption made
so far that the agent’s optimal action is a deterministic function of their representation
vector, the mean optimal action can also be achieved by taking the time average in one
individual’s heat bath. The ergodicity result stated above, and used in proving part 1 of
Theorem 2 below assures us that that average or mean representation vector in the economy
is asymptotically equivalent to the time average of the representation vectors through the
heat bath process for any one individual with any initial density. This result is viewed

as a formalization of a variant on the idea of the representative agent which is based on
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biologically feasible and easily implementable model. It also allows us to simulate models of
that average individual’s behavior based on his/her representation vector without having to
simulate many replications from many different initial densities since the time series from
one heat bath simulation can be used to cheaply compute the average that would result

from such a panel exercise.

The second part of Theorem 2 deals with computing the mode of the density = = py =
py Which will give us the maximum likelihood completion function for the agent’s problem.
The idea here is to consider the heat bath as above, but let it be generated by the sequence
{pr.}, where pz, is the Gibbs density defined by (3.1),(3.2) where the temperature at time
t is taken to be T;. The idea, which was copied from models of statistical physics and
convergence to equilibrium in chemical processes, is that starting from a large temperature,
the stochastic process r; will be evolving almost completely stochastically which is what
is required by the first part of the theorem for convergence to py. As time progresses,
the temperature is slowly lowered until ultimately, as T — 0, the process becomes more
and more like steepest assent towards the mode of the density. This’process is known
as simulated annealing due to the way it simulates the progress of a chemical process
towards its equilibrium, and it has been suggested for numerical analysis applications of
searching for the global maximum of a function (see, for example, Anily, and Federruen
1987) where greedy algorithms like steepest assent can get trapped in a local maximum.
As in the chemical processes, lowering the temperature too fast can “freeze” the system in
an unwarranted local maximum; hence, we should make sure that 7; — 0 at a slow enough
rate. The first known result which gives a rate for the convergence of T; (referred to as
the annealing schedule) is due to Geman and Geman (1984), and it is stated in part 2 of
Theorem 2 below. The rate provided by the authors is very slow, and their simulation
results show that a much faster rate of convergence achieves in practice, which suggests the
possibility of improving on their bounds. At this stage, however, we just state their result

as it appears in Geman and Geman (1984), and note that their proof extends directly to
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the case with a continuous state space without any necessary changes. For the purposes of

the theorem, let us define
Ro={re R:U(r) =maxU(y)}
vER

and let my be the uniform measure on Ry. Also define U* = max,cg U(r), U. = min,ecg U(r),

and A=U*-U..
Theorem 2:

1. The heat bath process determined by py converges for all initial densities fo to m, the

mazimum entropy density of the agent’s problem.

2. Consider the annealing process determined by nr, with T, — 0 and T(t) > N'Tn—A(t‘)‘ for all

t >to > 2. Then, for all initial densities f,,

lim £:(r(8) = 5lr(0) = ) = mo(2)

Proof of Theorem 2:

It is clear that the stochastic process r; is a Markov process. Now, for a fixed ¢, let r € R =
[0,1]", and for any z € [0, 1]; let r* be the representation vector such that r2, = z, and % = r, for

all s 3 n;. Then, the transition kernel for the Markov process r; is defined for all ¥ € r*
K(r,lr) = PnepU(r'nt = zntlr’s =158 F nt)

where py(.) is defined by (3.1),(3.2), and py(.|.) is defined by (3.3),(3.4), and where P,, is the
probability of choosing coordinate n; to change at time ¢ (this will typically be %) But that kernel

easily shows us that

pu(r').K(r|r') = pu(r).K(r'|r)
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where r and ' differ in at most one component, and K is a stationary kernel. Hence, if we start

with the density f¢(.) = pu(.), we get

frv1(r) = / K(r|r").pu(r').dr'

rlerz

= [ K@ ole)adr =po() = £0)

rErs
and hence the Gibbs density py(.) is a stationary density. Notice moreover, that the way we
constructed the heat bath process, all coordinates will be visited infinitely often with probability
1, and by the positivity of py(.) and hence of py(.|.), K(.|.) is irreducible, and py defines an
irreducibility measure. Now, there exists an irreducibility measure of K(.|.) ( by proposition 2.4,
p.13, Nummelin 1984), and it is clear that by the positivity of py everywhere, the measure defined
by py is a maximal irreducibility measure (i.e. all other irreducibility measures are absolutely
continuous with respect to it). We also know that all sets of f py measure non-zero will be visited
infinitely often with probability 1. But that is equivalent to positive Harris recurrence (Nummelin
1984, Ch.3), and that is implies the Harris ergodicity of the process r;, and since we know that py
is a stationary density for K(.].), it follows that py is the unique stationary density and the limiting
density of the process. This concludes the proof of part 1. The proof of part 2 of theorem in Geman
and Geman (1984) extends to the continuous state space without requiring any changes other than
replacing all transition probabilities with transition kernel densities, and replacing all sums with

integrals where applicable, and so on. |

We therefore have the two major results that we set out to achieve. Theorem 1 gave
us the the relationship between the maximum entropy distribution and those based on the
distributions arising from the intuitive Harmony theoretic approach, and between the com-
pletions of representations based on them. Then, the results of Theorem 2 assured us of the
convergence of heat baths to the distributions in question, and the convergence of anneal-
ing schedules with “temperatures” falling slowly enough to the mode of that distribution.

This gives us the full framework needed to write simple algorithms which converge to the
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desired quantities that we use in models of economic behavior. The choice of A’s for part 1
of Theorem 1 and of ¢’s for part 2 have not been discussed, however. In the remainder of
this section, we shall discuss the “learnability” result adapted from Hinton and Sejnowski
(1983) by Smolensky (1986), which offers an algorithm for teaching a cognitive system
(which in our case will be a program or machine that simulates the behavior of an economic
agent) the proper values of A and o for Theorem 1. The algorithm suggested is Hinton and
Sejnowski’s (1983) “trace learning procedure” where we start with all the A,’s = 0, and
sample a representations r from the true distribution p, and store an increment ¢, = sample
mean of &,(r) for each A\,. Also compute a decrement d, = sample mean of £,(s) where
the s’s are sampled from the distribution py defined by the current A’s. Then, we update
each A\, = Ay +4, — do. Repeat this algorithm ad infinitum incrementing the \’s with the
penalty function from the true distribution and decrementing it with the penalty function
from the current distribution until the two distributions converge, and the increments and
decrements start to offset (which by the law of large numbers are good approximations of
the expected losses corresponding to the two distributions provided a large number of r’s
and s’s are sampled at each iteration) and the X’s converge. At each step in the iterations,

set 0, = 2,

Theorem 3 in Smolensky (1986; proof in pp. 278-280) proves that the above algorithm
converges to the A’s and o’s necessary for Theorem 1 above. His proof generalizes immedi-
ately to the continuous case, and hence we will only briefly discuss the main steps in it. The

proof requires showing that the Lagrange multipliers A in Theorem 1 minimize the function

F(A) =ln / e[zaeo Aa(€a(r)—ra)]

reER
and then showing that F()) is a convex function. The next step is to show that the “trace
learning algorithm” defined above is equivalent to gradient descent along F which by the
convexity of F should clearly converge to the argmin of F(}). Hence A and o (which is a

scalar multiple of A in each iteration) converge to the values needed in Theorem 1. This
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T

completes all the computational ingredients needed to provide a full algorithm for simulating
economic agents going through the decision making problem be that the completion task
(searching for the completion funétion corresponding to the mode achieved as the limit
of the stochastic annealing algorithm) or the computation of expectations of variables of

interest via time averages of their values in the heat bath.

5. Conclusion

In this paper, we have introduced the models of harmony theory and stochastic relax-
ation used in the cognitive sciences by Smolensky (1986) and Geman and Geman (1984) to
the framework of rational economic agents making decisions under uncertainty. The form of
uncertainty allowed is lack of data on important variables, and the inference process was es-
timation and maximization of the density of representation vectors. The competence results
of Smolensky, and the relaxation and annealing results of Geman and Geman were shown
to extend to continuous state spaces which are prevalent in economic modelling. Those re-
sults can then be used to discuss the representation vector of the average or representative
agent by taking the time average of the representation vectors of one simulated individual
through a heat bath. That result followed immediately from the Harris ergodicity of the
heat bath process developed in section 4, and the well known result of Birkhoff’s ergodic
theorem. An alternative was also offered which is to use the mode of the density (which is
viewed as the most likely values for the variables of interest in the economic problem) that
naturally arises as the limit of the annealing schedule with temperatures converging to zero
sufficiently slowly. Properties of decision rules based on those “real expectations” remain to
be studied in future research, and it would be interesting to see if they avoid the well known

experimental fallacies that “rational expectations” assumptions continually perpetrate.

More research also needs to be done to generalize the simulation programs of Boltzmann

machines and harmony processes provided in McClelland and Rumelhart (1988) to the
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continuous state space. Once such simulations are available, one has to start considering
models with many individuals where the variables of ignorance differ among individuals. In
particular, a subject of great interest would be to consider models with many individuals
where one individual’s action is one of the elements of the representation vector of another
individual on which he does not have data. This cross inference and guessing procedure
will then immediately become a dynamic game rich enough to offer a number of economic
models for analysis. The multi-layer parallelism this framework (parallel processes in one
individual brain, and the collection of individuals as nodes in a market which serves as a
higher level parallel process) offers a number of challenges to researchers, but also offers the
promise of the possibility of simulating very complex economic structures that are heretofore

too difficult to analyze.
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