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ABSTRACT

This paper is an attempt to contribute to the integration of business
cycle analysis with long-term growth. A real business cycle model with
endogenous growth is developed and estimated with U.S. data. It predicts that
output and the real wage follow integrated processes, while the process
describing hours of work is stationary. In the present framework wage
movements do not have to be transitory to generate fluctuations in labor
effort.

The reduced form is a constrained bivariate output/hours (or real
wage/hours) VAR process. The bivariate setup provides a useful framework to
analyze the persistence of output fluctuations, given that the theory implies

that hours of work contain information about future output movements.
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1. Introduction

The analysis of business cycles requires that the researcher come to
grips with the presence of long-term growth in macroeconomic time series. The
traditional approach has been to assume that growth occurs as the result of
exogenous technological progress, which can be captured by a deterministic
function of time. A measurement of the business cycle is then the residuals
obtained from fitting a deterministic trend to the series.

An alternative approach is to treat long-term growth as endogenous, as
in King and Rebelo (1986) and King, Plosser, Stock and Watson (1986). These
models follow Lucas (1985) and Romer (1986), in the incorporation of
mechanisms generating sustained growth without exogenous technological
change. A major implication of this framework is that temporary shocks have
permanent effects. Hence, the decomposition of a series into a deterministic
trend and a stationary cycle is inconsistent with this theory.

The present paper pursues this line of research, which integrates the
analysis of business fluctuations with long-term growth considerations. A
real business cycle model with endogenous growth is developed. It predicts
that both output and the real wage (in logarithms) are generated by processes
with unit roots, while hours of work follow a stationary process. In the
present model fluctuations in hours of work reflect the changing relative
labor productivity in home and market activities. A consequence of this setup
is that real wage fluctuations do not have to be temporary in order to
generate fluctuations in labor effort. A related implication is that the
secular increase in the real wage is consistent with stationary hours of
work, even though there is no income effect at work.

The empirical analysis focuses on two alternative bivariate systems
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derived from the model: output/hours, and the real wage/hours. The model
predicts that both systems follow constrained bivariate vector
autoregressions. These processes are estimated with post-World War II U.S.
data, and the restrictions are tested. Structural parameters related to labor
supply and capital accumulation, as well as the parameters of the joint
process of two exogenous shocks affecting this economy, are estimated. One
disturbance is a standard shock to the production function, as is usually
found in the real business cycle models, and the other is a disturbance to
capital accumulation.

The bivariate output/hours setup provides a useful framework to analyze
the persistence of output fluctuations, given that the theory implies that
hours contain information about future output growth. In this sense the
present paper extends the work by Nelson and Plosser (1982), Campbell and
Mankiw (1987), Watson (1986), Cochrane (1988) and others, who used a
univariate framework. The question of the permanence of output fluctuations
can also be posed in terms of how the movements in actual output relate to
those in its long-run stochastic trend. The procedure adopted here to obtain
a stochastic trend is a multivariate version of the method suggested by
Beveridge and Nelson (1981), as discussed in King, Plosser, Stock and Watson
(1986).

The paper proceeds as follows. In Section 2 the setup of the model is
described along with a discussion of the special features of tastes and
technology. The solution to the model is presented in Section 3 and its
implications for the co-movement of real wages and labor effort are discussed
in Section 4. The estimation is reported in Section 5, and Section 6
addresses the calculation of the stochastic trend in output and the

persistence of fluctuations. Section 7 contains concluding remarks.



2. The Setup of the Model

The framework is a stochastic growth model of the type used in Kydland
and Prescott (1982), Long and Plosser (1983) and King, Plosser, Stock and
Watson (1986). As in the latter two papers the present model has a
log-linear structure, so that a closed-form solution can be obtained. Here,
however, hours of work are not constant in equilibrium and capital does not
fully depreciate in one production period.

The economy is composed of a large and constant number of identical
households and identical firms interacting in a competitive environment. The
technology and preferences are specified and discussed next. Special
attention is given to the aspects in which the present specification diverges
from that usually used in real business cycle models.

The representative firm produces output according to the technology

o l-a
(L) Yt = F(Kt’HtLt’zlt) = AoKt(HtLt) exp(zlt), 0<a<l,

where Zi¢ is a productivity shock, Kt is physical capital in productivity

units, H_is an index of knowledge and Lt is labor input in time units.

t
Hence, the accumulation of human capital has the effect of Harrod-neutral
technological progress. The shock Z1¢ follows a stationary process to be
specified below.

The capital stock evolves as

K = KtG(It/Kt)exp(z Y, ¢ >0, G” <0,

t+1 2t+l

where It is the amount of resources devoted both to investment that increases
the quantity of capital and to research that improves its quality. Capital
accumulation is subject to the stationary disturbance Zoy This is the type

of capital evolution equation used by Lucas and Prescott (1971). Unlike the



standard linear form (i.e., K = Kt(l-d) + It) it exhibits decreasing

t+l

returns, which can be interpreted as reflecting adjustment costs in

increasing the volume of capital or diminishing returns in research

activities. The specific form adopted for the function G is (It/Kt)l-s,.

0 < § <1, so that the capital evolution equation becomes1

(2) K, = Ath(It/Kt)l-aexp(z

t+1 2 t+l) )

An alternative interpretation can be given to (2) by rewriting it as

K = A Kallhsexp(z

e+l 1K¥ele The parameter § can be associated then with the

2t41)
relative quality of old capital relative to new investment goods.
The shocks Z1¢ and z,, are assumed to follow the vector autoregressive

process ¢(B)zt = a,_ where Zz

c e = (th’ ZZt) 8 is the wvector white noise

(alt, a2t)’ and ¢(B) is a 2x2 matrix polynomial of order p in the backshift
operator B.
As in Arrow (1962) and Romer (1986), knowledge is assumed to grow

proportionally to and as a by-product of the accumulated investment and

research activities in the economy:

(3 Ht = Kt,

where Et is the average capital stock across firms.2 Thus, the production
function of the representative firm--equation (1)--displays increasing
returns at the social level, but the model is consistent with competitive
equilibrium since each firm takes Ht as given.

The representative household maximizes

o0 J _
B2 nof UlCeyyr Heyy@ - 6], 0 <f <1,



where Ct is the flow of consumption goods per-household, L is the flow
endowment of time, and Ht(L—G(Lt)) measures effective leisure time as input
in home activities, which in turn produce utility. The function G(:), with

G () >0, G’(+) > 0, represents a fatigue effect that reduces effective
leisure time. Following Ghez and Becker (1975) and Heckman (1976), we
incorporate the notion that knowledge increases the productivity of the input
of time in home activities. Hence, Ht not only increases market labor
productivity, but also the marginal disutility from labor supply. This

effect is captured by

1+w
(4) U = 1n[Ct - HtLt ], w>0.
This form implies that the direct positive effect of Ht (which is not a

choice variable) on utility is neglected. The corresponding formulation

including this effect would have been

(5) U =1n[G,_+ H (L - Li‘”w)].

The form in (4) was chosen instead of (5) because it allows for a closed-form
solution to the model. Given the important role that this type of criterion
function plays in the paper, it is in order to elaborate first on the
economic implications of (4)-(5), and then to assess how the approximation
taken in (4) is likely to affect the results.

An important property of both (4) and (5) is that the marginal rate of
substitution between consumption and labor supply is independent of the
consumption level. Hence, Lt can be solved independently of the intertemporal
optimization over consumption and saving. This, however, would hold not only

for the logarithmic function but also for any function applied to the



. 1+w 1+w
composite Ct - HL or to Ct + Ht(L - Lt

L ). Defining Wt as the real wage

at time t, the condition for optimal labor supply for both (4) and (5) is

w
= (1+w)HtLt = Wt.

Labor supply is a stationary variable if Ht and Wt have the same stochastic
trend. This holds in the model. The accumulation of human capital will
affect not only the real wage, but also the opportunity cost of supplying
labor. The important characteristic of (4)-(5) is that there is no income
effect at work. Labor supply remains stationary as the real wage increases
over time, because of parallel increasing productivity in home activities.

The criterion functions (4)-(5) also have important implications
regarding the effect of the real wage on labor effort. A standard utility
function, like the Cobb-Douglas, has the important characteristic that only
temporary movements in the real wage affect labor supply. Permanent movements
do not alter labor effort because it generates offsetting substitution and
income effects. It can be observed in (6) that, under the present utility
function, real wage movements have a positive effect on labor supply
regardless of whether they are permanent or transitory. What matters for
this response is whether the increased labor productivity driving the real
wage affects home productivity (Ht) contemporaneously or with a lag. Labor
supplied in the market is, in the present setup, a result of shifting
relative productivities at work and at home.

We turn now to the implications of using the form in (4) rather than
that in (5). As mentioned above, (4) neglects the direct effect of the

externally evolving human capitél on utility, reflected in HtL' As seen



above, since this term does not affect the marginal rate of substitution
between consumption and leisure, the conditions for optimal labor supply
following from (4) and (5) are identical.

The marginal rate of substitution between current and future consumption
determines the investment decision. The term HtL, which is not a choice
variable, reduces the marginal utility from current consumption but, at the
same time, it also reduces that of future consumption. Hence, the exclusion
of HtL does not systematically bias the investment decision. As a
consequence, in a deterministic version of the model the balanced growth path
is not affected at all by the exclusion of HtL' This is shown in Appendix A.
The question now is how the investment decision following from (4)
approximates the investment decision from (5) in the stochastic framework.

Appendix A describes the numerical simulation of the exact choice under
two extreme cases regarding the stochastic nature of the shocks. Our
conclusion from those exercises is that the adoption of (4) instead of (5)
should have little impact on the investment decision. Hence, the behavior of
the variables in the present model seems to approximate closely to that
following from a model with the criterion function (5).

Finally, the choices in the economy are constrained by:

(7) Y. =¢C_+1

3. Solution of the Model
The interaction of optimizing households and firms in competitive
equilibrium is analyzed by solving the following representative agent's

dynamic problem



VR K,z ) = omax (In(C, - KL t ) +pE VK1 K024 )
{¢_,1._,L}
"t Tt
where z, = (zt’zt-l""’zt-p+1)’
subject to:
Co = Yo - o
o l-a 1
Yt = AoKt(Kt) Lt exp(zlt),
§.1-6
Repp = 8K T exp(Zy )

Additionally, the individual agent takes the evolution of the average level

of capital in the economy as given by the process:

T
'y R - zoy 1 p
(27) Kipq = Ap(RY) exP[zj=0 T23%1,t41-5 733%2, t4l-§)" Ty < /8-

Since this process is taken as given, the individual agent does not recognize
the effect of his own decisions on Et+l'

For any arbitrary set of coefficients in (27) (satisfying the condition
1 < 1/B for finiteness of utility) the model can be solved by conjecturing

that the value function is of the form

VK, K, z) =D +DInK_+DynK +3 7} 1%,
t’ t’ =t 1 2 i= O i Ze- -3’
*
where Dj is a 1x2 vector.
The solution is:
a -a 1 1

atw,z (atw atw _ atw
(8) L = AR (K Texp(zy ) By = [ (1+w)]



a(l+w) w(l-a) 14w 1

l-aq———
otw = atw atw 1tw,1-c atw
(9) Yt = Ath (Kt) eXP(th) ’ Ay = [AO (m) ] ’
ﬂDl(l—a) atw
(10) I, = bY,, b= T+pD, (1-8) T’
(11) Ct = (1-b)Yt,
s+ a(1+w)(1_8) w(l-a)(1-§) (14w) (1-6)
otw ooy atw atw
(12) K = 4K Xp) exp(zy,) exp(Zy 41

- 1-6
Ay = Ay (AT

The coefficients D, and D, are

1 2
D. = a(l+w) /(atw) > 0
1 atw(5+a(l-6)) )
1-B1 v ]
w(l-a)[l+ﬂD1(l~6)]/(a+w)
D2 = 1 > 0.
-ﬂrl

Since D1 is positive (and 0 < a < 1), this implies that 0 <b < 1. The other
coefficients of the value function, which also can be calculated, are not

relevant for our purposes. Substituting D1 into eq. (9) yields

3
’ . 2] (1‘8)
) 1, - —%TEE—— Y,

As in the similar contexts analyzed by Romer (1986), King and Rebelo
(1986) and King, Plosser, Stock and Watson (1986), the model generates an
endogenous "engine of growth". This role is taken in the present model by
the capital stock process in equation (12). Consider first the case where
the externality does not exist and hence Et drops from equation (12). Since

the exponent of Kt is less than one, this would imply that the stochastic
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difference equation in (12) is a stationary process. Therefore, no long-term
growth would occur in this economy.

The presence of the externality implies that Kt+1 depends not only on Kt
but also on Et' Now, since all firms are identical the equality Et = Kt

holds. Then, equation (12) becomes

(L+w) (1-6)
, _ atw
(127) Ry = AKeexp(zg,) exp(zy, 1)
Hence, the disturbances Zi e and Zorsl have permanent effects on the capital

stock, which accumulates at a stochastic but stationary rate.

" the process for the average capital stock in (27)

Since Kt = K
coincides with the process for Kt in (12'). Hence, the arbitrary parameters
of (2') should be identical to the corresponding coefficients in (12'). In
particular Ty = 1, satisfying the condition 1 < 1//3.4

We turn now to consider the solution to the two variables of main
interest: output and hours of work. Since output depends on the capital
stock, the nonstationarity of the latter is absorbed by output as well. With

Kt = Kt’ equation (9) becomes

Lo

, _ otw
9") Yt = Athexp(zlt) ,

where the "trend" in output is generated by the accumulation of Kt.

When Kt = Et the process for hours of employment in equation (8)
becomes:
1
-+

1
>

(8") L, o exp(z,)
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The capital stock drops from the labor equation because of the two opposite
forces that it exerts on labor supply. Since knowledge affects proportionally
both the market and the non-market marginal productivities of labor,
productivity at home rises as much as in the market place.

To establish the link between output and employment fluctuations in an
empirically useful form, the solution for output is expressed in terms of its
rate of change. From equations (8'), (9') and (12') and using lower-case

letters for natural logs, it follows that

14w
(13) ay_ =p + (o) (L-6B)zy  + z,50, 7

I

1oy

(14) £t = 1n(A£) t o=z,

These two equations form the main structural empirical model to be estimated.
Equation (13) shows that the disturbance to capital accumulation, Zoes
has a permanent effect on output, while the effect of the production function
disturbance, Zqe is partially reversed next period according to the
parameter § (0 < § < 1). Note that the theory rules out the possibility of
the existence of a deterministic trend in output. For this to be the case the

variance of z, would have to be zero and, more importantly, the

t
moving-average coefficient § would have to be one--implying that investment
does not contribute at all to future productive capacity.

Finally, equation (14) implies that the movements of hours of employment
reflect the productivity shock Z9 ¢ Hence, by looking at the 2t series one

can identify, in the Box-Jenkins sense, the process describing the production

function shock in a univariate setting.
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4. The Real Wage and Labor Effort

This model generates fluctuations in labor effort through a different
channel than the intertemporal substitution mechanism stressed originally by
Lucas and Rapping (1969), and incorporated in the real business cycle models.
The latter mechanism has to do with the response of labor supply to the
deviations of the real wage from the normal future level. Hence, for example,
if the real wage follows a random walk this channel does not operate, and
labor effort does not respond to real wage movements. This is not the case in
the present model. To illustrate this, the solution of the model can be used
to derive the real wage that would support, in a competitive environment, the
process for Lt derived from the model.

Equalizing the real wage, Wt, to the marginal productivity of labor at
the solution values yields

w

atw -
(15) Wt = AwKteXp(zlt) ) Aw = (1-a)A0A£

From the process of Kt in (12'), the first difference of the log of the real

wage can be expressed as

1
(16) Awt = u + a:;[w + (1-6(1+w))B]z1t + Zopo p o= lnAk.

To highlight the implications of the present specification assume for a
moment that §(l+w) = 1, which is consistent with the theory, and that Z1¢ and

2z are white noise. In this case the real wage follows a random walk with

2t
drift. However, labor effort still co-moves with productivity according to

equation (14).

The different implications of the present mechanism, relative to the
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intertemporal substitution mechanism, is that what matters for labor supply
here is the contemporaneous productivity differential in market and home

activities, represented by the shock zq As market productivity, and hence

e
the real wage, changes with a given realization of Z1c labor supply reacts
positively. Over time the transitory shock generates the accumulation of
capital and knowledge, which cancel each other as to the labor supply
decision. The increment in the real wage typically becomes permanent, given
the accumulation of capital, but as the shock Zy, dissipates so does the
labor fluctuation.

Another aspect of the relationship between real wages and hours worked
was addressed recently by Christiano and Eichenbaum (1988). They stress the
contrast between the positive correlation between real wages and hours,
predicted by the existing real business cycle models, and the old observation
that the actual correlation is very weak. Christiano and Eichenbaum argue
that it is important to incorporate shocks shifting labor supply, in addition
to the usual productivity shocks affecting labor demand, for a model to
conform with the observed correlations.

Given the present mechanism, by which human capital accumulation can be
seen as shifting labor supply, it is interesting to address the model's
implications regarding the co-movement of real wages and hours of work.
Consider first the innovations in these two variables. From equations (14)
and (16) if follows that (1/(a+w))a1t and (w/(a+w))a1t + a5, are the
innovations in hours and wages respectively. If a1 ¢ and a,, are independent,
the correlation between innovations in hours and real wages is positive since
w > 0. This can be interpreted along standard lines: aj. affects market

productivity of labor. Hence, its effect can be visualized as a shift of the
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demand schedule, which has positive effects on hours and the real wage. The

component a,, appears only in the real wage innovation. This is so because it

2t
affects both home and market productivities in the same way, reducing labor
supply and increasing labor demand. This results in higher wages at the same
level of hours worked.

The observed negative correlation, however, does not refer to
innovations but to detrended of first-differenced real wages and hours. In
the context of this model, there is no independent trend, as is usually

assumed. Hence, we will consider the theoretical correlation of the

first-differenced variables. The relevant expressions are:

_ W 1-6(1+w)
(16) Aw, = p + - 21 + O V%11 Zae
(') 2 =L 2z .1,
t otw 1t atw 1lt-1

If §(1+w) < 1 holds, the coefficients of z in the two equations have

1t-1
opposite signs. This implies that, at times, the real wage and hours may be
moving in opposite directions. This would tend to reduce the positive

correlation generated by the current Zqp-
What happens can be interpreted as movements of labor demand and supply

schedules. Consider a positive productivity shock zq Contemporaneously,

e
labor demand increases, thus generating a positive co-movement of hours and
the real wage. Abstracting from subsequent disturbances, as the shock

dissipates the demand curve does not return to the initial position because
of the accumulation of new capital. This accumulation is larger the smaller

is 6§ (recall the condition §(1l+w)<l above). Additionally, the parallel

increase in Ht shifts the supply schedule to the left. The smaller the
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contraction in labor demand and the larger the contraction in labor supply,
the more likely it is that, as the shock dissipates, the co-movement of hours

and real wages becomes negative.

5. Estimation

This section presents the derivation of reduced form representations for
the model and the testable restrictions it imposes. Then, the empirical
results are reported.

The structural form of the model, in (13) and (14), can be written as:
(17) x, = Q(B)zt,

(1+0) (1-§B) 1
where X, = [Ayt - u, ﬂt - 1nA£] , (B) = . o )

‘and the factor 1/(a+w) has been absorbed into Z1¢ (since a turns out to be
not identifiable).

As mentioned in Section 2, Z is assumed to follow a vector
autoregressive process of order p given by ¢(B)zt = a,, where a_ ~ iin[0,) 1,
z = [aij] for i,j=1,2, and ¢(B) is a 2x2 matrix polynomial of order p with
$(0) = I.

A vector autoregressive process is much easier to estimate than a vector
ARMA(p,q) with q > 0, especially when restrictions are to be imposed. From
(17) it appears that X follows a vector ARMA(p,l) process if z. is a VAR(p)
process. However, it turns out that X has a VAR(p+l) representation as well.

This is so because det[Q}(B)] = -1, so that S'I(B)-1 is also a first order

polynomial (rather than being of infinite order as is usually the case) given

by:
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4 |0 1
a(B) — = ,
1 - (1+w) (1-6B)

so that

(18) #(BIA(B) 'x, = a

t,
and hence xt.follows a VAR(p+l) process. This simplifies the estimation work
considerably.

However, (18) is not the usual VAR representation since Q(O)-1 = 1. The

standard representation, with the autoregressive operator normalized to be

the identity matrix when evaluated at zero, is given by:

2(0)4(B)R(0) "a(0)A(B) x, = a(0)a,

or

(19) 3®A®) x, - 3,
where
(20) 3(B) = Q(0)$(BYA(0) T,
~ -1
Q(B) = Q(B)Q(0) , and

a_~ 1in[0,} ], ¥ = @(0)} a(0).

The polynomial #(B) is also of order p with $(0) =1, ﬁ(B)—l is of order 1

with 5(0)_1 = 1 and is given by

-1 1 \B
(21) a(B) ~ = , A= §(1+w).
0 1

The representation in (19) can be viewed as the reduced form with
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reduced form parameters: A, i, and the 4xp coefficients in g(B). The
VAR(p+1) process is constrained by the model to be of the form g(B)ﬁ(B)-l 80
that three testable restrictions are imposed on the VAR(p+l) operator. That
is, if one estimates an unrestricted VAR(p+l) process there would be 4(p+1)
free parameters while the restricted VAR(p+l) depends only on 4p+l free
parameters: A and $(B)5.

Unfortunately, the structural parameters in the model are not

identifiable without one additional restriction. To see this one can match

-~

the structural parameters with their reduced form counterparts: Y and ), ,
a(B) and ¢(B), but )\ gets matched with § and w. Thus, one more restriction is
required in order to identify all the structural parameters.

A natural, though arbitrary, identifying restriction is to set 919 = 0
so that the innovations driving Zie the shocks to the production functiom,
are independent of the innovations driving Zge the shocks to capital
accumulation. Hence, any interaction between Z1e and z,, occurs after a lag
of at least one period. From (20), it follows that l4+w = 312/522 - 012/011 S0
that if O19 = 0, w can be calculated as l+w = 512/522. Once w is determined,
the definition of X in (21) implies that § = A\/(l4w). Given w and §, one can
calculate 1(0) and then use (20) to obtain ¢(B) and z .

The model can also be estimated using the alternative system real

wage/hours expressed in equations (14) and (16). This pair of equations can

be written as

(22) s, = \II(B)zt
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where s, = [AWt -, £t - 1nA£] ,

wt(1-6(1l4+w))B 1
(23) ¥(B) = '

and, again, the factor 1/(atw) has been absorbed into Z1¢e Just as before,

det[¥(B)] = -1 so that S, has the constrained VAR(p+l) representation:

(24) $BEB) s = a,

where

(25) $(B) = ¥(0)$(BYV(0) T,

T(B) = ¥(B)¥(0) T,

Zt ~ iin[0,%], ¥ = ¥(0)Y ¥(0),

and

_ 1 1 -vB
T¥(B) = , 7 = 1-6§(1+w) .
0 1

Since the reduced forms for both the output/hours and the real wage/hours
models are of the same form, the same computer program can be used to
estimate both models. However, the calculation of the structural parameters,
assuming again that 019 = 0, is now w = ;12/;22, and 6§ = (1+v)/(14w). Once w
and § are calculated, one can obtain ¥(0) from (23) and then use (25) to
calculate ¢(B) and z .

The theory does not provide guidance regarding the length of the basic

time unit, and hence about the frequency of the observations to use in the
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estimation. We opted for using alternatively annual and quarterly data as
following from two alternative ways of interpreting the model.

The results for the output/hours system are reported first, and then the
real wage/hours system is briefly addressed. The use of wage data proxying
for the theoretical spot return on labor effort is admittedly problematic. In
spite of this, we reestimated the model with real wages as a way to provide
additional evidence about the model.

The estimation was carried out with U.S. data. The variable Yt is
measured by real GNP and Lt is total employment times average weekly hours.
Since the model is based on a representative agent and constant population,
both output and total hours were divided by the working age population
(between 16 and 64 years of age). The labor data are from the Current
Population Survey, which is a survey of households. The real wage is
measured by nominal average hourly earnings in total private nonagricultural
establishments divided by the GNP deflator. The quarterly data are seasonally
adjusted.6

The annual results for the output growth/hours system in equation (19)
are reported first. The sample period is 1954-1987. The estimation requires
the specification of the order of the polynomial #(B), which is equal to the
order of ¢(B). We picked p=2 given that, using the Box-Jenkins identification
procedure, the univariate annual hours series that is theoretically
proportional to z, . appears to be described very well as an AR(2). Hence, to
allow for the possibility that Z1¢ and Zoy do not interact, at least a second
order for ¢(B) is required.

The maximum likelihood estimates are presented in Table 1. The

restrictions implied by the model on the reduced form, tested against the
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alternative of an unrestricted VAR of order 3, produce the likelihood-ratio
test statistic of 0.80. The 5% critical value is x%05(3) = 7.8, so that the
restrictions can be easily accepted. Previewing similar tests performed with
the three other data sets, in none of these céses was it possible to reject
the restrictions either. These results are not interpreted as evidence that
the model is correct, but, rather, that the restrictions are weak. We prefer
to see the model as a tool with which to organize and theoretically interpret
the data. Another way of "testing" the model is then to judge whether the
interpretation is sensible.

Using the identifying assumption 019 = 0, the structural parameter
values are w = 0.28 and § = 0.66. The estimate of w indicates a high
elasticity of labor supply with respect to the real wage. This elasticity
corresponds to 1/w = 3.6. In micro-data studies (see for example MaCurdy
(1981) and Ashenfelter (1984)) the estimates of a similar elasticity are much
smaller. However, as Heckman (1984) points out, most of the wvariation in
total hours comes from movements in the number of workers rather than in
hours per worker. Since the macro-data used here captures the total variation
in hours, one would expect a higher estimate for that elasticity. See below,
however, about the assumption T19 = 0 underlying the identification of w. The
estimate of § does not have, to our knowledge, comparable values in the
1iterature. Recall that the capital accumulation equation is Kt+1 = AlKiIt-s,
and hence 1-§ represents the elasticity of the next period capital stock with
respect to current investment. A rough comparison, though, can be made with
the corresponding elasticity in the standard linear capital evolution
equation. In the latter case, the elasticity equals the ratio of gross

investment to the usual measure of the capital stock. This ratio is in the
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order of magnitude of 0.1, much sméller than the 1-§ value of 0.37 obtained
here. Hence, the present estimate indicates higher relative importance of
current investment for future productive capacity than under the usual
capital accounting.

The estimation with quarterly data requires the determination of the
order of ¢#(B) for this case. Given the thinner choice of p to be made now, we
used here the criterion suggested by Hannan (1980) for the determination of
the order of an ARMA process.7 Surprisingly, the best choice turns out to be
3, implying again p=2. Hence, it will be harder for the estimated quarterly
system to capture the long swings in hours picked by the annual data.

The results from the quarterly estimation are reported in Table 2. The
likelihood-ratio test produces the statistic 2.6 (compared with the 5% 7.8
critical value). However, a problem for the model with these results is that
the estimates of w and § are -0.68 and 2.5, which sharply contradict the
theory. The parameter o is theoretically constrained to be positive, and §
should be between zero and one. The assumption responsible for those
estimates is 919 = 0. This assumption implies that 511 = (1+w)a11 +a,, and

~

Opnn =0 Note, however, that in Table 2: 511 < ¢,,. Hence, if 919 = 0, w

22 11° 22

has to be negative. Then, given X, the estimate § results in a value higher
than one.

The empirical results can be reconciled with theoretically acceptable
values for w and 6§ if 919 is negative rather than zero. This would allow for
w to be positive, which would result in a value for § less than 0.80 (;). We
return to this point below.

Results from the estimation of the real wage/hours system in equation

(24) are reported in Table 3. The quarterly series on wages is available
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only from 1964. Again, the restrictions cannot be rejected at the 5% level,
although with annual data the statistic is 7.3, close to the critical value
of 7.8. The table also reports the estimated structural parameters under

A

019 = 0. With quarterly data the estimates are w = 0.02 and § = 0.97, which

are barely but within the theoretically acceptable region. The corresponding
annual estimates are ; = 0.15 and g = 1.31. Here 0 < 2 < 1 is violated. It
is interesting to note that if 999 is negative rather than zero, the values
for w will be larger and those for § smaller. That will shift the quarterly
estimates further into the theoretical region, and move the annual estimates
into that region.

The results above imply that for the present model to be a reasonable
description of all the four data sets used the innovations ae and a5, should
be negatively correlated rather than be independent. However, this would
imply that the annual output/hours estimate ; = 0.28, which seems low but
still theoretically reasonable under T19 = 0, should be taken only as a lower
bound. Hence, the elasticity of labor supply to the real wage emerging from

A

that data set should be lower than the corresponding value of 3.6. Also, 6 =

0.66 would be considered in this case only as an upper bound.

6. Stochastic Detrending and Long-Term Impulse Responses

The present model provides a new angle to analyze the question of how
persistent output fluctuations are, which can also be posed in terms of how
the movements in actual output relate to those in its long-run trend. The
existing evidence on this issue varies. Nelson and Plosser (1982) and
Campbell and Mankiw (1987) found 1little or no evidence of temporary output

fluctuations, while results in Watson (1986) and Cochrane (1988) do indicate
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that a large part of output movements are reversed later on.

The theoretical structure of this model, within the bivariate setup, can
be used to obtain another insight into the decomposition of output into
permanent and transitory movements. To see this it is convenient to rewrite

equations:

14w
(13) Ayt = pu + o 1 - 8B)z1t + Zypo and

(14) 2, = In(a) + ==z, .
Equation (13) says that output movements are generated by two types of
shocks, Z1¢ and Zoy Abstracting from the exogenous stochastic properties of
these shocks, the model implies that an output movement generated by Z1¢ is
partly temporary, given that 0 < § < 1, and that when it is generated by Zye
it is permanent. The theoretical interpretation of these different impacts
is that Z1¢ affects the market efficiency of labor, and hence it induces a
fluctuation due to temporary labor effort. The reason why only a part of
this fluctuation is reversed--zlt_1 is multiplied by § which is less than
1--is because capital accumulates following the shock. By contrast, z,
augments permanently the productivity of labor in both market and home
activities, without generating a movement in labor effort. Hence, this type
of output movement is permanent.

Given the different implications of the two shocks, the bivariate setup
(13)-(14) is particularly useful. Since in (14) hours move proportionally to

Z the hours series makes it possible to identify the output movements which

1t

have a temporary component.

To measure the degree of persistence of output movements, the bivariate
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system was used to compute the long-run impulse responses to the structural
innovations. Then, the procedure was followed up by computing a stochastic
trend in output. The reported results correspond to the annual data and
estimates. It is important to note that these calculations are based on the
reduced form (19), which does not depend on the identification of w and §.
The long-term impulse response of a unit size innovation corresponds to
the sum of coefficients in the possibly infinite moving average
representation of the growth rates. To obtain such a representation one can

rewrite equation (19) as

(26) x,_ = $(BIa,

k

where $(B) = fi(B)F(B) ™" and $(0) = I. Let ¥ (B) - Z;=O¢?jB be the (i,)™

component of ¥(B). Then, for output we have
(27) Ay, = by, (Ba) + ¥y, (B)E,,,

with a1, = (1+w)a1t + 8y, and 8,0 = @3¢ (from equation (19)). Hence, (27)

can be expressed as

b, (B)
AYe = [¢11(B) * "il&'l(1+“)a1t ¥ (B)aye

Since ¢11(0) = 1 and ¢12(0) = 0 (from $(0) = I), an innovation in output
of, say, one percent corresponds either to (1+w)a1t or a,. of the same
magnitude (or a combination of both). The calculation of the long-term
effect of each one of these shocks requires the values of ¢1j(1) = Z:=O¢§j’
j=1,2. These values--which take into account the total impact of a current

innovation on growth rates over the entire infinite future--are calculated
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using the estimated parameters as P(l) = 5(1)3(1)_1.

The long-term effect of the innovation (1+w)a1t turns out to be 0.53.
For comparison, with a process following a deterministic trend plus
stationary fluctuations, the long-term response is zero. In the random walk
case the corresponding value is one, since with the long-run level of the
variable shifts with the actual level. The value of 0.53 indicates an
intermediate case where about half of the output innovation is "undone" over
the future. Hence, production function shocks generate output movements that
are largely temporary.

The situation is very different with respect to the capital innovation

a For this shock the long-term response is 2.4. Hence, the effect of a

2t°
given innovation on output due to this source builds up over time to more
than twice the size of its initial impact.

The procedure followed to compute the detrended output series, which is
closely related to the calculation of the long-term impulse responses, is
based on a bivariate counterpart of that suggested by Beveridge and Nelson
(1981) as discussed in King, Plosser, Stock and Watson (1986).

Detrending is achieved by the decomposition of the level of Ve into a

permanent and a cyclical component:
B ¢
Ve =YV ¥ Ve

where yz is a random walk (plus drift) representing the stochastic trend and

yi is a stationary component. The decomposition is obtained by rewriting
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equation (27) as

alt Ezt (¢11(B) - ¢11(1)) -
(28)  y. = | D 15 + ¥ D) 1-3} * [ 178 a

1t

(¢12(B) - ¢12(1))~
* 1-B 22t

The expression in the first brackets is a random walk and is thus defined as
the permanent component YE' It is related to the long-run impulse responses
because it represents the long-run level of output (except for the
deterministic growth).

The expression in the second brackets of (28) is defined as yz. Using
the fact that the residuals 51 and a, can be written in terms of the

t 2t

observable variables, it is shown in Appendix B that yi can be expressed as
c
(29) Ve = I‘l(B)Ayt + FZ(B)ﬂt,

where Pl(B) and FZ(B) are finite order polynomials whose coefficients can be
calculated from the estimated parameters. Since Ayt and ﬂt are stationary,
equation (29) implies that yz is also stationary. Once yi is calculated from
(29), the stochastic trend can be obtained as yg =Y. - yz.

This method of calculating the permanent and transitory components
differs from the procedure suggested by Beveridge and Nelson. That procedure
is to calculate yE by recqrsively producing forecasts of the future levels of
the time series, which approach the trend value as the forecast period
increases. Here, given the vector autoregressive form, we can obtain and

calculate closed-form expressions for the trend and the transitory component.

Figure 1 depicts the stochastic trend along with the actual values of
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output. The resulting values for yz and the cyclical movements in total
hours, which is Bt itself minus a constant, are plotted in Figures 2 and 3.
The cycles in hours exhibit troughs in the years 1958, 1961, 1964, 1971, 1975
and 1982, most of them matching the conventional chronology of business
cycles. These fluctuations tend also to be reflected, to some extent, in the
cycles of output depicted in Figure 2.

To illustrate the model's interpretation of the detrending and impulse
response calculations it is of particular interest to consider the markedly
different behavior of detrended output and hours in the 1974-1975 episode,
Figure 3 shows that hours turn downwards slightly in 1974, and then they
decline sharply in 1975. In contrast, detrended output surprisingly turns
upwards in 1974 and only in 1975 it declines, but not nearly as sharply as
hours (Figure 2).

The source of the difference lies in the sharp negative innovation to
capital accumulation in 1974. Note in Figure 5 that the value of a5 is
below -2%, the lowest value in the sample.8 Given the long-run impulse
response of 2.4 to capital accumulation innovations (see above) the long-run
value of output--or trend--declines by about 5.5% in 1974 (this is the
calculated permanent loss of annual output due to that particular negative
shock). Now, for the measurement of the temporary component, what matters is
that the trend declines by more than actual output (see Figure 1), producing
the recorded increase in detrended output in 1974. Then, the observation of
1975 is dominated by the productivity innovation of -3.8%, also the largest
in the sample (see Figure 4) which generates a decline in detrended output.
Recall that for this type of disturbance the long-run effect is 0.52, so that

the trend responds by less than actual output.
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Another interesting episode is 1986-1987. 1In both years output growth
and hours are high. The model translates these movements into large values
(2.4% and 3.2%) for the innovation 8¢ which has temporary effects.

Informally, the bivariate output/hours detrending procedure amounts to
the following. In a given period, if hours move in the same direction and by
a similar percentage as output the model takes this as an underlying aje
innovation. Hence, the output change is predicted to be largely transitory.
If hours move significantly less than output, as in the period 1962-1964 and
1974, the model interprets it as an underlying ay. innovations which have
strong permanent effects. In these cases the trend shifts more than actual

output.

7. Concluding Remarks

This paper studied the determination of output, the real wage and hours
of work in a real business cycle model with endogenous growth. As in Arrow
(1962) and Romer (1986), a characteristic of the model is a positive
externality associated with investment activity. Investment is seen as
producing the accumulation of knowledge, which in turn increases productivity
at the social level. This form of technological progress is thought of as
also affecting the productivity in home activities, which in turn produce
utility.

The model is estimated in its output/hours form and in its real
wage/hours form. Annual and quarterly data were used alternatively. The
restrictions imposed by the model were not rejected in anyone of the data
sets. These results are not taken as evidence that the model is appropriate,

but that the restrictions are weak. We prefer to think of the model as a tool



with which to interpret the data. Whether the interpretation is sensible or
not is then a way of evaluating the model.

The way the model organizes the data can be summarized as follows. Hours
of work depend only on the productivity in market activities relative to that
in home activities. This feature has two méin consequences. One is that the
stationarity of the process of hoﬁrs per-capita is not due to an income
effect, but to parallel long-run technological progress in market and home
activities. The other consequence is that real wage movements do not have to
be temporary to generate labor fluctuations. The processes of output and the
real wage, however, contain unit roots because of the endogenous growth
mechanism. Shocks have permanent effects both on output and the real wage
through their effects on capital and knowledge.

The model provides a new framework to perform and interpret a bivariate
calculation of the persistence of output fluctuations. According to the
model, output fluctuations are caused by two types of shocks. One is a
disturbance to the production function--which has transitory effects since it
alters the relative productivity of labor in market and home activities--and
the other is a shock to capital accumulation, which has only permanent
effects. Hours of work fluctuate with the first shock and hence it is
possible to identify those output movements which contain a large transitory
component. Hence, the present bivariate output/hours setup is a useful
framework to carry out the decomposition of output into permanent and

transitory components.
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APPENDIX A

Consider a model identical to that in the text except for having the
criterion function in (5)

U = In[C,_ + Ht(L—Lt+w)].

Given that this model does not have a closed-form solution, as that in
the text, a different strategy should be adopted to solve for the equilibrium
decision rules.

Define it = Xt/Ht, so that the model can be transformed into one which
possess a deterministic steady state (see e.g. King, Plosser and Rebelo

(1988) and Christiano and Eichenbaum (1988)).

In the transformed economy the planner’s problem is to maximize

0
i -~ _He
(A.1) 5 jEO B 1n(ct+j + L Lt+j) + 1nHt+j,
subject to
S =0
(A.2) Yt = AoKt Lt exp(zlt)
H
= t =6 =1-§
(A.3) Repp =B a7 K Ip exp(Zp)
t+l
(A.4) Yt == ct + It

The first-order optimality conditions are

= ~-Q w
(A.5) (l-a)AoKt Lt exp(zlt) = (1+w)Lt
o¥,, /R + (20T, /K R
(A.6) 1 - pE t+17 t+l 1-87 "t+l/ t+l (1-8) t+1
: 5 = l+w = = 1+w =
YL Ah-Ly t Yy " lenn L-Lin L
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From (A.5) and the production function it follows that

o 1
(A.7) Lt = A£Ez+wexp(z1t)a+w,
a(l+w) 1+w
= ~ ot +
(A.8) Y - Atha © exP(zlt)a “,

where AB and Ay are defined in equations (8) and (9).

Since in equilibrium Et = Kt’ or Kt = 1 for all t, we have
H K
t+1 t+1 §-1 .1-6 =
(4.9) B~ K, AR IO explzy q) = AL exP(Z) ),
1
(A.10) L= Azexp(zlt)a+w (identical to (8') in the text), and
1+w 1+w
5 atw \ otw
(A.11) Yt = Ayexp(zlt) , or Yt = Ath exp(zlt) ,

which is identical to (9') in this text. Substituting Rt =K, -K =1,

t+2
and (A.9), (A.10), (A.11) in the Euler equation (A.6) yields:

1 .~ - 5
(8.12) ST _sE e 5 en
A-ag" € A _
( A )Yt - I+ L Sy Wi - Ten L
where Ay-Ai+w > 0 (from the definitions of A, and A, in (8)-(9)).

If 1L=0 the model is identical to that in the text, where the solution in
(10) was that investment is proportional to output: Tt = b?t. Postulating
this solution here, it can be easily checked that (A.12) holds, implying that
b = aB(1-6)/(1-68), as in (107) in the text.

Consider now the deterministic balanced growth case, where Zie = 0.

Equation (A.12) implies that
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(=T = Bla T+ (12T,

which, again, reduces to

§.2f0-8) g ~ of-8)
-5 0 or I = F59755 Y.

The solution of the original variables Yt and Kt can now be calculated. From
(A.11) it follows that along the deterministic balanced growth path

Y =AK

t vyt
It = bAth, and, from the capital solution equation,
Kt+1 = Ath, where Ak is defined in equation (10).

These paths correspond to those in the text (equations (97), (10’) and (12"))
with the shocks set to zero). Hence, the use of the criterion function (4)
instead of (5) does not alter the deterministic growth version of the model.
The assessment of the stochastic behavior requires the numerical
simulation of the investment decision using (A.12). 1In this equation the
current Tt decision depends on the state variable Z1e (through ?t in (A.11))
and on other variables only through their predictive power over z, ... Hence,
the decision about Tt depends on 21 ¢ and on the process driving this shock.
The Tt choice was simulated under two extreme cases regarding the 21 ¢

process. One is when zq is i.i.d., and the other is when Zy, is a random

t
walk. The model in the text requires statiomarity for Zyps SO that the random
walk should be interpreted only as a limiting case. To perform the
simulations the following values were chosen for the parameters: A1 =1, a =
A

0.3, and the annual data estimates 6 = 0.66 and w = 0.28. This implies that

the mean of ?--Ay--is 0.49. The standard deviation of Y was chosen as
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follows. The s.d. of 1InL_ is 1 01/2, which is 0.025 in annual data.
t oatw 11

Correspondingly, the s.d. of 1n?t is (14w)0.025 = 0.0325. The value of L was

picked as 0.34. The average of Ll+w is Al+w = 0.26. Ll+w

¢ P has the

interpretation of total hours of work and rest.
Case (1): Z1 e i.i.d.

A grid of 100 equally spaced points for Y with equal probabilities was
chosen so that the s.d. of ¥ is 3.25%. An initial 100-vector guess (zeros)
for T was chosen and used on the right hand side of (A.12). With the
resulting value on the RHS another choice vector I was calculated from (A.12)

on the LHS. This T choice was used in a second iteration obtaining a new I
choice and so on, until one-by-one convergence of the elements in I.

The results: The average 1/Y is 0.26 with a standard deviation of
1.92%. When L-0 (the case in the text) the ratio I/Y is 0.26 exactly.
Case (2): Z1 ¢ random walk

The same range of ¥ was used, with equal % probabilities of moving to
the lower, higher, or staying in the same point. At the end points the
probability % was assigned to staying , and % to the adjacent points. 1In
this case for each point on the current grid for Y there is an expected value
on the RHS. Iterations on the I choice were carried out using (A.12) until
one-to-one convergence. Different grids sizes were used here: 10, 20, 50, and
100. 1In all cases the standard deviation of the I/Y ratio around 0.26 is
extremely small, less than 1/100 of one percent in the 10-grid case and even
less as the grid size increases.

We view these results as follows. The true process for Z1 ¢ is more
complicated than the two forms considered above, and jointly evolving with

z However, given that Z1¢ is stationary but displays significant

2t°
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persistence, we conclude that the error in the investment choice caused by
the approximate criterion (4) is far smaller that that in the white noise

case.

APPENDIX B

In order to prove equation (29), we express equation (19) as

B.1)  $®x -3, 4@ = F®E® T

and rewrite for convenience equation (28):

a a

(B.2) y, = [y (D T + ¥, (D 15

¢11(B)_¢1l(1) . ¢12(B)'¢12(1) -
* 13 a3 * 1-B 39¢ls

(]
Wy,

I

* -
where ¢ij(B) is the (i,j)th component of P(B) = ¢ (B) 1. As shown below,
ignoring the constant terms will not affect the generality of the argument.
Substituting the left-hand-side of (B.1l) for alt and EZt in (B.2), one

obtains the yg as a function of (l-B)yt and £t:

- % *
$11(BY(L-BYY, + 61, (B
(8.3) 7 = by (D | 1 t]

=+

by (BYE, + ¢’§1<B><1-B>yt]
¥ | 1-B

B

[y, (1651 (B + ¥, (dyy (B)]y,

% * %
by, (D by(B) + By (147, (B) . 'y (B)
1B o= DBy + Ty fe
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%
where ¢§j(B) is the (i,j)th component of ¢’(B). Now, from the fact that

$(1)-¢7 (1) = T it follows that
* *
(B.4) Pl(l) =1 r.(1) =0,
2
* ~ . -
so that FZ(B) = FZ(B)(l—B), where FZ(B) is a finite order polynomial. Hence:
(B.5 P _ ¥y, + T, (B)4
-3) Ve = DBy + Tp(B) 5.
Now, using the fact that yi =Y - yi it follows that
B.6 C_(1-T(® T, (B)2
(B.6) e = (1 - 1BV - g (BY 2.

*
Since Tj(1) = 1 it follovs that (1-ri(s)) - T, (B)(1-B), where T (B) is a

finite order polynomial. We thus have:

c ~
(B.7)  yo =T (B) - (I-B)y, + T,(B)A,  Tp(B) = -T(®),
expressing the cyclical component as a finite linear combination of present
and past values of (l-B)yt and ﬁt. 1f E[(l-B)yt]=p#0, then one can obtain a

zero mean yz by substituting (Ayt - p) = Ayt into (B.7). This proves (29).



36

FOOTINOTES

1A drawback of (2) is that if It is zero, Kt+1 is zero as well. In any
event, the present model will always generate positive investment.

2The assumption of proportionality in equation (3) 1is crucial for
generating balanced growth in this model.

3Appendix A reports numerical simulations of the model using the exact
utility function (5), under two extreme assumptions about zlt: white noise
and a random walk. The solutions for Lt and Yt are identical to those in (8)
and (9). The investment choice is not proportional to output, as in (10').
However, the deviations from proportionality seem reasonably small.

4Comparing (2’) and (10”), it follows that 12,l=(1+w)(l—6)/(a+w),
73,0=1, A2=Ak and the rest of the coefficients in (2’) are equal to zero.

5Strictly speaking we have to assume that ¢(B) does not factor into

+*(B)B(B). If it did we would have 3(B)G(B) =p"(B), where ¢ (B) could be any
VAR operator, so that no restrictions on the reduced form would be implied.

6The only series unavailable in seasonally adjusted form is the average
hours. It was adjusted by regressing the log of hours on four seasonal
dummies. Adding to the residuals the average coefficient on the four dummies
and taking the exponent produced the adjusted series.
7The procedure is to find the integer k=p+l which minimizes
ln[det[ik]] + 8kln[1n[N]]/N, where N is the number of observations, and ik is
the estimated variance covariance matrix of the innovations from the
unconstrained vector autoregressive of order k.

8One may think of this measured negative innovation in the capital stock

as reflecting the drastic increase in oil prices, which rendered part of the

capital stock economically obsolete.
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Table 1

*
GNP/Hours Data Set
Annual Observations: 1954-1987

Reduced Form Estimates

A = 0.84
(0.25)
1 0 0.37 0.28 0.18
" (0.28)  (0.45) (0.28)
F(B) = - B -
0.24 0.86 -0.28
0 1 (0.19)  (0.24) (0.19)
~ 0.00042

0.00025 0.00019

Structural Parameter Estimates

w=0.28 § = 0.66
(0.12) (0.26)

A 1 0 1.17 0.24 -0.66  -0.28
$(B) = - B -
0 1 -0.74  0.06 0.70  0.54

E

Y =

A [0.00019

0.0 0.00011}

Likelihood-Ratio Test Statistic: 0.8

*
Standard errors in parenthesis

-0.37
(0.33)

-0.30
(0.20)
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Table 2

*
GNP/Hours Data Set
Quarterly Observations: 1954:1 - 1987:4

Reduced Form Estimates

A= 0.80
(0.32)
1 0 0.29 0.80 0.15 -0.42
- (0.09) (0.32) (0.08) (0.15)}
¢(B) = - B - B
0.53 0.55 0.28 -0.26
0 1 (0.10) (0.08) (0.10) (0.25)
~ 0.00009
0.00004 0.00012

Structural Parameter Estimates

w = -0.68 § = 2.50

(0.14) (0.47)
A 1 0 0.72 0.53 -0.17 0.28 9
$(B) = - B - B
0 1 0.66 0.12 -0.31 0.06
A 0.0004
Y =
0.0 0.0001

Likelihood-Ratio Test Statistic: 2.6

*
Standard errors in parenthesis.
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Table 3

*
Real Wage/Hours Data Set

Annual Observations: 1954-1987

w=0.15 § = 1.31
(0.12) (0.59)

Likelihood-Ratio Test Statistic: 7.3

Quarterly Observations: 1964:1 - 1987:4

w=0.02 § =0.97
(0.05) (0.19)

Likelihood-Ratio Test Statistic: 2.3
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