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Abstract

This paper presents a simple, competitive equilibrium model of
exhaustible resource extraction in which the price can remain constant or
decline monotonically for all time. It is driven by technological change that
results from the accumulation of knowledge by forward looking, cost minimizing
firms. Because of the characteristics of knowledge, the technology exhibits
both externalities and increasing returns. A new existence result and a
feasible procedure for calculating sub-optimal dynamic equilibria are

established. Results from the computation of a sample equillbrium are also
presented.
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1. INTRODUCTION

This paper presents a simple, perfect foresight, exhaustible resource
model in which the spot price of the resource can remain constant or decline
monotonically for all time. It is motivated by the observafion that in long
time series, prices for most natural resources fluctuate about a constant or a
declining trend. The model departs from from existing models by allowing for
the possibility of endogenous technological change. The observation that
technological change has acted to mitigate resource scarcity is old. The
substantive contribution of this paper is to contruct a fully specified
competitive equilibrium in which technological change is the result of
intentional actions taken by forward looking agents. By assumption, the
production of new knowledge by any individual firm has positive external
effects on the production of all other firms in the economy. Despite the
crucial assumption that the social marginal product of knowledge is
increasing, the model has a well defined competitive equilibrium with
externalities. To prove that this equilibrium exists and that it can be
approximated by a sequence of computable, finite horizon equilibria, the paper
develops a new approach for the analysis of a suboptimal dynamic equilibrium.

Standard resource pricing models generate two logically distinct sets of
implications. The most immediate results are the implications for the
behavior of a firm, taking as given a path for the future price of the
resource. These results can be derived immediately from a specification of
the extraction technology of the firm. If a specification of the demand for
the resource at all future dates is added, the model can also yield the price
path itself. Under a constant marginal cost extraction technology as assumed
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in the original paper by Hotelling [14], it is difficult to distinguish the
implications for the firm from those for the industry. Unless the path for
future prices is increasing at the rate of interest, the optimal behavior for
any firm is either to sell all its stock or to buy as much as possible. Under
virtually any specification of demand, prices must therefore go up at the rate
of interest. The exact specificatibn of demand is need only to determine the
level of the price at some point.

In more general models that allow the marginal cost of extraction to vary
with the rate of extraction or cumulative extraction, the distinction between
the implications for the firm and the industry is more obvious. In this case,
a firm facing a given path for the price of the extracted resource must choose
quantities so that the difference between the price and the marginal cost of
extraction increases at the rate of interest. By itself, this puts no
restrictions on the trend in prices. Implications for the behavior of prices
alone cannot be determined until demand for the resource is specified and an
intertemporal form of "supply equals demand" is imposed.1

The simplest form of demand in a resource model is to assume that there
is a given interest rate and a stationary market inverse demand curve,

p = D(q). Following the strategy of Lucas and Prescott [17], it is then a
simple matter to solve for the equilibrium quantities and prices. Let u(q)
be defined as the integral under the demand curve up to q. Then the
equilibrium quantities and prices follow immediately from the solution to the
problem of maximizing the infinte sum (or intergral) of u(q(t)), discounted

at the interest rate, subject to the extraction technology.

Solow [26] gives a simple presentation of the intuition behind these results.
The book by Dasgupta and Heal [6] gives a comprehensive introduction to
resource models. Devarajan and Fisher [8] review the contribution of Hotelling
and part of the large literature, much of it recent, that has developed on
natural resource pricing.



" Once this kind of demand is assumed, it is clear that prices must
ultimately be increasing. Without calculating intertemporal optimization
conditions, finiteness of the initial resource stock implies that the quantity
of the resource extracted or consumed in any period must go to zero as time
goes to infinity. In any model with a stationary demand for a flow of the
resource, the price ultimately increases as the quantity supplied goes to‘
zero. Changes in the extraction costs faced by firms can alter the pattern of
intertemporal supply, but they can not avoid this implication. Pindyck {21])
shows that given aggregate extraction costs for the industry that increase as
reserves fall, the price of a resource can fall for some initial period as
exploration takes place and new discoveries are made. The logical foundation
for this form of aggregate extraction costs is challenged in Swierzbinski and
Mendelsohn [29]. Their analysis suggests that in models where the aggregate
is derived from a specification of the extraction costs and exploration
strategy of individual firms, the price should not fall even for an initial
interval. In any case, since the demand for the resource is stationary, the
prices must eventually rise. Backstop models, as introduced by Nordhaus [20],
and Dasgupta and Heal [5], modify the demand for the resource by assuming the
existence of a perfect substitute available in infinite supply at a constant
A cost.2 Assuming that the backstop is currently available, demand for the
exhaustible resource will have an intercept at the cost of the substitute and
resource prices will be bounded; but effective demand for the resource is
still stationary and the price must ultimately be increasing. If the demand
is assumed to be a function of the stock of an extracted resource that does

not depreciate, e.g. gold, the analysis in terms of a flow demand clearly does

See Dasgupta and Heal [6] for more recent papers which rely on the presence
of some kind of backstop technology.
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not apply. The stock of the resource in use increases as extraction takes
place, and as demonstrated in Levehari and Pindyck [16], the price for the
resource can fall forever. However, once depreciation is allowed, the stock
must eventually be falling and the prices will must once again increase in the
limit. Except in the very special case of a demand for a stock of a resource
that does not depreciate, the only way to generate'prices that fall forever is
for the demand curve for the resource to shift to the left over time.

In the model proposed here, the demand for the resource is derived from a
stationary production process which uses the resource and other inputs to
produce a consumption good. The perceived demand for the resource at a point
in time is its marginal productivity schedule. Shifts in this schedule arise
from the accumulation of knowledge, an intangible capital input in the
production process. The marginal product of knowledge is assumed to be
globally increasing in the stock of knowledge. This departure from the usual
concavity assumption on éroduction is natural in this context. Without it,
one would be faced with the implausible prospect of an optimal steady state
level of knowledge. In a world with a stationary labor force, the marginal
product of additional knowledge at the steady state would be so low that it
would no longer be worth the trouble it takes acquire new knowledge. Research
would stop. The other distinguishing assumption about knowledge is that it
cannot be perfectly patented or completely kept secret. Consequently,
research by any individual firm has positive external effects on the
production of all other firms in the economy. In related work, Romer [23]
develops the implications of these assumptions in simple growth model with no
exhaustible resources.

As in conventional models of physical capital, firms can choose to
convert output into additional units of knowledge by means of a deterministic
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investment technology; that is, they can forego output and do research. The
assumption that the technological change assciated with the accumulation of
knowledge is "resource saving" is captured by the assumption that knowledge
and the resource are substitutes in production. For example, it is possible
to produce telecommunications services with lots of copper wire and little
knowledge or with little copper and lots of knowledge (i.e. fiber optic
technology.) Stated in this context, the essence of the model here is to
assert that the price of copper is falling because of the development of this
kind of knowledge; and simultaneously to assert that the research responsable
for these inovations is dndertaken by profit maximizing agents who seek to
economize on resource expenditures. In the last section, detailed attention
is devoted to a rigorous proof that these assertions are consistent in part
because they sound suspiciously like newspaper explanations that "the price
went up, so the demand went down, so the price went down."

The formal analysis of the suboptimal equilibrium in this model follows a
new approach. It is now common theoretical practice to characterize Pareto
optimal dynamic equilibria by studying a suitably chosen maximization problem.
The equilibrium here is not Pareto optimal and cannot be characterized by
solving a maximization problem. As in other models of sub-optimal dynamic
equilibria, for example, perfect foresight Sidrauski models of inflation
(Brock [2]) or dynamic models with more conventional kinds of externalities
(Brock (3], Hochman and Hochman {13]), it is relatively easy to write down a
set of difference (or differential) equations which would characterize the
behavior of an equilibrium if one were known to exist. Except in the
restrictive cases where these equations can be explicitly solved, it is much
more difficult to show that an equilibrium does exist. For a broad class of
dynamic models, the argument here establishes a new method for proving the
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existence of a suboptimal dynamic equilibrium and justifies a feasible method
for calculating the equilibrium quantities and prices. The existence proof
and the justification for the numerical method rely on the observation that
although equilibria cannot be derived by solving a maximization problem, they
are fixed points of a mapping defined by a maximization problem. They follow
by an application of the Maximum Principle.3

The next section begins with a stripped down, two period version of the
model which illustrates the equilibrium analysis in a familiar, finite
dimensional context. Section 3 presents the full infinite horizon model and
derives the difference equations which characterize the equilibrium. Section
4 presents the results of a numerical solution of these equations for a
specific economy. Because they are more technical, the formal results are
deferred until the Section 5. To provide the required consistency or
"diagnostic" check on the logical structure of the model, we prove first that
an equilbrium exists. As a corollary to that proof, we establish the
approximation result that shows that an infinite horizon equilibrium can be
approximated by taking limits of finite horizon equilibria. A concluding

section discusses some limitations and possible extensions of the model.

2. TWO PERIOD MODEL

The analytical difficulty in the model outlined above arises entirely
from the externality and non-convexity associated with knowledge. To
illustrate the equilibrium analysis in the simplest possible context, consider

a simple two period model. Let each of S identical firms have a technology

For a statement of the Maximum Principle in the form in which we will use 1it,
see Hildenbrand (12].
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for producing goods in period two from knowledge produced in period one and a
set of other inputs. Assume provisionally that the research technology for
producing knowledge is linear, so one unit of knowledge k is produced for
each unit of foregone consumption in period one. As indicated in the
introduction, each firm is assumed to contribute unavoidably to the aggregate
stock of knowledde and to benefit from it because secrecy is only partial and
property rights for knowledge are not completely defined. Let F(k,K,x)

denote the (differentiable) production function of a representative firm,
S

where K = 2 kj is the aggregate stock of knowledge and x 1is a vector of
J=1

all other inputs. Assuming the usual form of competitve behavior, each firm
takes both prices and the aggreagate stock of knowledge as given in its
optimization problem. For the existence of a competitive equilibrium with
externalities, F must be concave in the arguments k and x that are
controlled by each firm. Without loss of generality, we can also assume that
F is homogeneous of degree one in k and x. If it is not, we can add an
additional factor to the vector x to make it so. (See Rockafellar [22], p.
67.) Because the scale and number of firms in equilibrium is indeterminate,
we can simplify the notation by assuming that the number of firms equals the
number of (identical) consumers, so per firm and per capita quantities are
equivalent. To focus solely on the choice of the level of knowledge, assume
that the factors x, other than knowledge, cannot be augmented or consumed.
directly and are available in fixed supply at a per capital level x. Let e
denote the intial endowment of consumption goods in period one and assume that
the initial stock of knowledge is zero. Since F(k,K,x) 1is assumed to be
homogeneous in k and x and increasing in K, it will exhibit increasing
returns to scale. Suppose further that the true (per capita) social
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production function, ¥(k) = F(k,Sk,x), is globally convex in k. For example,
let F take the form F(k,K,x) = quuxl—q with a <1 and atv > 1.

Let U(cl,cz) denote a concave, differentiable, strictly increasing
utility function for each agent. Consider the problem of proving that an
equilibrium for this economy exists and of characterizing its qualitative
properties. First, define a family of constrained maximization problems,
P(X), by maximizing representative utility subject to the technology, taking

as given a level K for the aggregate level of knowledge. Formally this

gives
P(X) max U(cl’CZ)
subject to =2 <e -k,
<, < F{k,K,x),
X € X.

For arbitrary choices of K, the solution to this problem will have no
economic meaning since the optimal value of i from this problem may not
satisfy the aggregate consistency condition, K = Sﬁ.

Now define a function W(k,K) by substituting the constraints for the
maximization problem into the objective: W(k,K) = U(e-k,F(k,K,x)). By the
assumed form for F, W is a concave function of k for each fixed K.
Assuming enough steepness on the boundary to ensure the existence of an
interior solution, the optimal choice of k for each value of K 1is given as
the solution to the equation DIW(k,K) = 0. Equilibrium quantities can now be
derived by inserting the condition K = Sk into the first order condition for
the choice of k:

(2.1) DlW(k,Sk) = 0.
Let k* be a root of this equation, hence also a solution to the problem

X
P(Sk ). By the standard necessary conditions for the existence of a
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constrained optimum, each of the three constraints in the explicit statement
of the problem P(Sk*) will have associated to it a Lagrangian or Kuhn-Tucker
multiplier. Since firms take the aggregate variable K as given, both
consumers and producers will face concave maximization problems in
equilibrium. By a simple computation, it follows that the multipliers can be
used to decentralize the quantities implied by k* in a competitive
equilibrium. Using the sufficient conditions for the concave maximization
problem of the firm, the choices k* and x are optimal for a firm facing -
prices equal to the values of the multipliers and a given value Sk* for the
aggregate level of knowledge. Similarly, in the concave utility maximization
problem of a consumer faced with the multipliers as prices and with an income
determined by the value of the endowment (E,E), standard sufficient
conditions show that ¢y = e - k*, Cy = F(k*,Sk*,Q) will be optimal values
for consumption.

This kind of argument demonstrates that any solution to equation 2.1 can
be interpreted as an equilibrium for this simple economy. In fact, in this
model and its generalization to an infinite horizon model, one can show that
k represents the quantities in a competitive equilibrium if and only if it is
a solution to the appropriate version of equation 2.1 (Romer [23]). As the
example here suggests, it is generally a simple matter to derive such an
equation from a specification of the preferences and technology for an
economy. The qualitative properties of any possible equilibrium follow
directly from an examination of its properties.

Proving the existence of an equilibrium for this kind of model is
therefore equivalent to proving the existence of a root of the equation 2.1 or
its generalization. In a finite dimensional problem, it may be simple to show
directly that a root must exist for some specified class of utility and
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production functions, but in an infinite dimensional problem it is likely to
be difficult. Given a path for a variable K(t) in an infinte horizon dynamic
model, the first order condition for the representative agent maximization
problem analogous to the problem P(K) is an Euler equation together with an
initial condition and a transversality condition at infinity. This Euler
equation will depend on the given path K(t), but just as in the finite
dimensional case, one can substitute Sk(t) for K(t) into these equations.
The analog of equation 2.1 is then an autonomous system of difference
equations with an initial condition and a terminal condition "at infinity".
The difficulty arises in showing that there exists a solution that satisfies
the boundry conditions. Except in specially chosen models, these equations
and boundary cdnditions cannot be derived from any maximization problem.
(This is easy to check using conditions given in Dechert (7] that any
difference equation system arising from a maximization problem must satisfy.)
If they were the necessary conditions for some problem ;, a theorem ensuring
the existence of a maximum for ; would imply the existence of a solution to
the equations satisfying the boundary conditions. In a continuous time model
with a single state variable, Romer {23] shows directly that a solution
satifying the boundary conditions exists by using the geometry of the two-
dimensional phase plane. For economies with more than one state variable, no
comparable geometrical approach is available.

An alternative way to demonstrate the existence of an equilibrium is to
exploit the structure imposed by the individual maximization problem in a
fixed point argument. In the two period example considered above, consider a

correspondence M which sends K into the aggregate result of the solutions
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to the individual maximization problem:

M(K) = S[argmax W(k,K)].
k

If W is continuous (and in general if any constraint set depending on K
varies continuously) the Maximum Principle guarantees that M will be upper-
hemi-continuous (u.h.c.). If W is concave as a function of its first
argument, M will be convex valued. If M maps a compact, convex set into
itself, a version of the Kakutani fixed point theorem will imply the existence

of a fixed point, and therefore of an equilibrium.
3. INFINITE HORIZON RESOURCE MODEL

Let =N € R represent the consumption of the single consumption good in
period t , let u:R+ — R denote a momentary utility function. (RE will

denote the non-negative orthant in Rn.) Let B8 <1 be a discount factor.

0

The objective function for this model will be of the form z Btu(ct) . In
t=0

the discussion that follows, it is convenient to speak as though the good cy
is a composite commodity and the objective function represents the usual
preferences of each of an infinte family of individuals linked by
intergenerational altruism. Alternatively, following Lucas and Prescott
[17], we can treat the model as a partial equilibrium model of the market for
a particular good, here a consumption good, not the resource itself. In this

case, interpret u(ct) as the integral up to c¢, of the area under a

t
stationary demand curve for the this consumption good, and B8 as one divided

by one plus the exogenously given interest rate.
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To minimize extraneous complications and to highlight the interaction
between the accumulation of knowledge and resource pricing, we will assume
that the stock of knowledge and the stock of the resource are the only state
variables necessary to summarize the dynamics in this model. Thus, assume
that all other factors of production like physical capital, labor, etc. are
available in a fixed per capita supply %, and have no use other than as
inputs in this production process. This kind of assumption can be relaxed at
the cost of increasing the dimensionality of the difference equation system
which results. In the first approach to this problem, we did not feel that
adding the familiar features of physical capital accumulation, a growing
population, etc. would add enough insight to justify the additional
complexity in the exposition and the numerical computation of an equilibrium.
Nonetheless, all of the theoretical results in Section 5 apply to the general

case with multiple state variables. Letting r denote resource inputs,

t
output in period t can be written as F(kt,Kt,rt,xt). As above, F will be
assumed to be concave and homogeneous of degree one in all other inputs when
the aggregate stock of knowledge, Kt’ is held constant. Homogeneity implies
that the scale and number of firms is indeterminate, so that we are free to
set the number of firms equal to the number, S, of consumers. Henceforth, all
gquantities are measured in per capita (equivalently, per firm) units. Having
made this observation, we can drop the other factors X, - Because each of the
identical firms will choose Xy = x for all t, we can suppress this argument
and neglect it in the subsequent discussion. To futher simplify the
exposition, we assume that private knowledge k and public knowledge K

enter F as a kind of composite good. Thus, let *¥: RE -—R be the
aggregating function for knowledge, and let f:Ri—a R describe output as a

function of composite knowledge and the resource inputs. Period t output
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can therefore be written f(?(kt,Kt),rt) = F(kt’Kt’rt’;)’ In keeping with the
assumptions on F, f will be assumed to be concave jointly in its two
arguments and ¥ will be concave as a function of k when K is held
constant. Increasing marginal productivity of knowledge at the social level
is captured by the assumtion that ?(kt,Skt) is a convex function of kt’ and
that f(?(kt,Skt),rt) is therefore convex in kt for any fixed r,.
To describe the resource extraction technology, let At denote the stock
of the resource remaining in the ground, and define a function h:RE—a R such
that h(rt,At) measures the cost, in units of the output good, of current
period extraction r. As expected of a cost function, h is increasing in
r, and is convex as a function of both units. For technical reasons, it is
convenient to assume that the marginal cost of extraction in any period is
strictly increasing in the rate of extraction; hence we assume that h(rt,At)
is strictly convex as a function of ry for any fixed At.

extraction costs increase with cumulative extraction, h is assumed to be

Because

decreasing in At'

Finally, let G:RE—* R describe the research technology; if 1t is the
output devoted by the firm to research, G(It,kt) denotes the resulting
increment in the stock of knowledge. As is standard for a production
function, G is assumed to be concave. Note that the production functions f
and G, and the cost function h, all have the standard concavity or convexity

properties. The model departs from the norm only through the increasing

returns present in ¥.

Because there is no discovery in this model, the objection raised by
Swierzbinski and Mendelsohn to the specification of extraction costs used by
Pindyck and others does not apply to the model here.
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We can now describe the constraints for this economy. Recalling that all
quantities are measured in per firm and per capita magnitudes, the first
constraint is that current output must be at least as large as the sum of
current consumption, current output invested in research and current
extraction costs:

(3.1) f(?(kt,Kt),rt) -c, - It - h(rt’At) 2> 0.

t

Since G gives the increment to the firm’s stock of knowledge, and since

knowledge is assumed not to depreciate, the evolution of kt is given by

(3.2) g(It’kt) + kt - kt+l 2 0.
Finally, At decreases one for one with r, so
(3.3) At -ry - At+1 > 0.

Note that each of these constraints can be written in the form Ct(y) >0 for
a concave function Ct and a vector y = <kt’kt+l’At’At+l’Ct’rt’It)' These
functions may differ with the date t because of the dependence of the first

constraint on Kt.

Given an arbitrary non-negative sequence K = {Kt}t:0 , we can specify
the representatitve agent utility maximization problem for this economy
analogous to the problem P(K) in the two period economy. In the infinite

horizon case, define the problem PQ(K) as follows:

-3
.. t
P_(K) maximize z B u(ct)
' t=0
over the set of non—negative sequences {kt}, {At}, {ct}, {It}, and {rt}

satisfying the constraints 3.1, 3.2 and 3.3. Because of the assumptions
described above, Pw(K) is a concave maximization problem for any arbitrary
path K; i.e. the problem involves maximizing a concave objective over a
convex set of sequences. The following assumption collects the convexity
assumptions noted above on the functions f, ¥, G, and h. To simplify the
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statement of the REuler equations for this problem, we also assume that these
functions are differentiable. Since the domain of a function need not be an
open set, throughout the paper "differentiable" will mean that a function is
differentiable on the interior of its domain and continuous on the entire

domain.5

ASSUMPTION 1: The functions u , f and g are concave, increasing and
twice continuously differentiable; h 1is convex, strictly convex and
increasing in the first argument, decreasing in the second argument, and twice
continuously differentiable; ¥ is increasing, concave in its first argument,

and twice continuously differentiable.

Increasing marginal productivity of knowledge is assumed to ensure that
the accumulation of new knowledge never stops. In an infinite horizon
maximization problem, a production function that is globally convex with
respect to an augmentable capital good raises the possibility that the
supremum for the_problem may be unbounded and that the problem may fail to
have an optimum in any sense, overtaking or otherwise. In the model here, the
finiteness of the objective function, the existence of a solution to the
. problem P_(K), and the existence of a social planning optimum all follow from
an additional assumption on the research technology. Because of strongly
diminishing returns to investment in research in any given period, there is a
technologically determined upper bound on the rate of growth of the stock of

knowledge. Combined with a bound on the degree of increasing returns in ¥,

More precisely, the functions are continuous in the relative topology on the

domain as a subset of R". This is needed only to rule out jumps on the
boundary of the domain.
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this will ensure that the maximum feasible rate of growth of consumption is
not "too big." The intuitive basis for diminishing returns in research is
clear.6 For example, even though it may be possible to develop the knowledge
necessary to produce electricity from controlled nuclear fusion by spending a
small fraction of total GNP on the research effort over the next twenty or
thiry years, it would most likely be impossible to develop it by next year
even if unlimited resources were devoted to the effort. The first part of
Assumption 2 states the bound on the degree of increasing returns in
production; the second part determines the bound on the rate of growth of

knowledge implied by the decreasing returns in research.

ASSUMPTION 2:

i) There exist numbers bl,bz,o € R, with o > 1, such that

a
f(?(k,Sk),Ao) < bl+b2k .

ii) There exists + » 1 , with ﬁvo < 1, such that for all It € R

and all kt € R+ . G(It’kt) < (1—l)kt .

The first part of this assumption ensures that for any amount of resource
usage up to the maximum amount available, output is bounded by a function

which grows as k to the power o. The bound on G 1implies that for all ¢,

kt+1—kt < (1—1)kt. Hence, k, = kovt for any initial value k

¢ <
equilibrium, this implies K can grow no faster than 1t as well. Then

t
output can grow no faster than 7°t. Since B1° is assumed to be less than

In

o

one, any feasible consumption path will be summable with respect to Bt.

Since the utility function is concave, u(ct) will also be summable with

6Especially to anyone who does research for a living.
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respect to Bt. Consequently, as demonstrated in lemmas 1 and 2 in Section 5,
solutions to the problem Pw(K) and to the social planning problem for this
economy will exist.

Finally, we need specific restrictions on the derivatives of the
functions f and G. In the notation used throughout, the symbol "Du"
denotes the derivative of u, "le" denotes the partial derivative of f with
respect to its first argument, etc. In the usual abuse of notation, the
symbol ¥ will be used to denote both the aggregating function for the two
types of knowledge and a specific argument of the function f. Which use is

intended is always clear from the context.

ASSUMPTION 3: Let ¥, r, and k be positive.
i) Normalization: Dlg(O,k) =1,

ii) Substitution: Dlzf(?,r) <0 .

The normalization in 3.1 defines the units of knowledge; one unit of
knowledge is that amount which could be produced in the limit as one unit of
consumption good is invested at an arbitrarily slow rate. From the discussion
in the introduction, it is clear that the substitution assumption 3.1ii is
crucial for the results which follow. This assumption characterizes the
effect knowledge has on production. With prices held constant, increases in
knowledge lead producers to economize on resource utilization. There is no
theoretical presumption in favor of this kind of interaction. It is a
statement about the technology which in principle can be verified by an
engineer. The justification here is purely empirical; without this
assumption, resource prices in this model must ultimately be increasing.
Recall that f is not homogeneous of degree one in ¥ and r because other
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arguments X are being held constant; if it were, DlZf < 0 would not be
possible.

As an example of the kind of function used in the numerical example, let
f take the form f(¥,r) = (ﬁa + #p)u, where a, p, and v lie between O
and 1 and v 1is strictly less than one. This kind of function allows the
resource to be important in production in the sense that starting from zero
units of resource usage, the marginal product of the resource is infinite. In
an equilibrium for an economy with this technology, some amount of the
resource will always be used in production. But, the assumptions that f is
increasing in both arguments and that it satisfies the substitution condition
together imply that the resource can not be necessary for positive production.
For *1 > ?2, the graph of f(?l,r) as a function of r must lie above that
for f(?z,r). By the substitutionn assumption, the slope of the first
function (the higher one) must be less than the slope of the second function
at any point r > 0. These two requirements are consistent only if the
intercepts for the two functions are different, hence not both equal to zero.

Authors concerned with exhaustible resources that are necessary for
production are generally concerned with the possibility of maintaining a

specified level of consumption as resouce stocks decline.7 In this model,

this is trivially possible. 1In fact, per capita consumption will generally

7Dasgupta and Heal (5], Solow [27], Stiglitz [28], Ingham and Simmons [15] are
early references in this area. Dasgupta and Heal (6] gives a simple
presentation of some of the basic results. Mitra [19] examines the role of
exogenously specified population growth. Cass and Mitra [4] give a complete
characterization of the technological requirements for consumption to be
bounded away from zero in a quite general model. They weaken the assumptions
on the technology to allow for the possibility that technological progress may
be the result of a form of capital accumulation. They also suggest that this
kind of capital may not exhibit conventional decreasing returns. However,
they do not consider the existence of competitive equilibria in this context
or the behavior of resource prices over time.
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grow without bound. For us, the canonical resource is a specific good like
copper, not an aggregate like energy. We are not concerned here with more
speculative questions concerning possible "limits to growth" because it seems
appropriate first to fry to explain observed empirical regularities in
variables like resource prices. Resources here are not assumed to be
necessary in production because falling resource prices are possible only in
the presence of opportunities for substitution which could not be present if
they were. Moreover, for specific resources like copper, oil, etc., it seems
quite unlikely that production would go to zero in their absence.

Returning to the characterization of a competitive equilibrium for this
economy (discussion of the social optimum being deferred until the end of this
section), a set of Hamiltonian-like equations can easily be derived for the

maximization problem PQ(K). Define a Lagrangian ¥ as follow:
[
- t _ . _ -
£= ) Blulep) + Alk =k, + BERFLKD T = o th(r,A) 5 k)]
t=0
*ulag = Ay

As a function, ¢ depends on the sequences for the choice variables C and

r,, the exogenous state variable Kt’ the endogenous state variables kt and

At’ and the shadow prices for these endogenous state variables, At and Hy -

As usual, one first maximizes out the variables ¢ and Tys solving for them

t
as functions of the other variables. Then the partial derivatives g% and
t
g% define first order difference equations for the shadow prices At and
t

By respectively. The constraint equations 3.2 and 3.3 define the
corresponding difference equations for the state variables. Each of these

four equations depends on the values of kt’ A A Hys and K For any

t' Tt t’

given path K, the necessary conditions for specific paths kt and At to be
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a solution to P_(K) are that there exist paths At and My such that kt’

~

At’ At, “t’ and Kt satisfy this system of equations and satisfy a set of
four boundary conditions. Two of the boundary conditions are given by the

initial values for the state variables ko and AO; the other two are given

by the transversality conditions 1lim Atkt = 1lim “tAt =0 . (For a proof of
too o
the necessity of these tranversality conditions in a problem like PQ(K) , see

Ekeland and Scheinkman [10].)

Proceeding as in the two period model, we can substitue out for K to
find the equations that will characterize a competitive equilibrium with
externalities. Recalling that the economy consists of S identical firms, we
can substitute in the equilibrium condition K, = Sk to get a coupled,

t t

autonomous, first order system of difference equations in kt’ A and

t’ At’
Hys with two initial conditions and two terminal conditions. As before, any
solution (k:, A:, At,u:) to these equations that satisfies the boundary
conditions can be supported as a competitive equilibrium with externalities
using the shadow prices At and u: as equilibrium present value (i.e. time
zero) prices for private knowledge and the resource. In period f, the spot
price, Py> of the resource in terms of the consumption good will be equal to
the marginal rate of transformation betweem resources and consumption goods,

%
P, = D2f(?(kt,5k:),r:)‘ The present value price for the consumption good at

time t can be calculated by dividing u*

¢ by this spot price. Because of

the symmetry in the problem, these results do not require that there exist a
market for private knowledge. The discussion up to this point has suggested
that integrated firms engage in both resource extraction and the production of
the output good, but these activities can also be decentralized so they are

carried out by separate competitive firms. As in the two period model, the
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proof of these results follows directly from a version of the Kuhn-Tucker
" Theorem. For a detailed example of this kind of argument in an infinte
dimensional space, see Romer [23].

Existence of a competitive equilibrium therefore follows immediately from
the existence of a solution to these equations satisfying the boundary
conditions. Showing directly that such a solution exists does not appear to
be feasible in general; but the non-constructive argument in Section 5 shows
that under assumptions 1, 2, and 3, one must exist. Given that one exists, it

is still a non—-trivial matter to characterize its behavior. Because the

X
t

approaches a point on the boundary of the feasible set of values, one cannot

analysis relies on the fact that k: grows without bound and that A

simply linearize this system around a steady state for the dynamical system.
Moreover, there is no hope in general of solving the complete non-linear
system. Nonetheless, useful information can be extracted by examining the

individual equations. First, observe that the equation g% = 0 gives
t

X _ X X 8

Because DAh is negative, the present value shadow price for in—ground
resources decreases. (If DAh = 0 , this reproduces a form of Hotelling’s
rule; the present value shadow price of the in-ground resources must be
constant.) Recall that the spot price p: of the extracted resource in terms
of the consumption good is given by the marginal rate of transformation,

Py = D_f (= D,f(¥(k},Sky),ry) ). Recall also that finiteness of the initial
stock of the resource implies that r* must eventually be decreasing towards

t

a limit of zero. If f is strictly concave, the second derivative Drrf is

8When no ambiguity can arise, expressions like DAh will be used in place of
the more cumbersome (but more explicit) form Dzh(r:,A:).
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negative. 1If k: were constant, this would imply that p: would ultimately

be increasing as r: goes to zero; but if k: increases fast enough (so
?(k:,Sk:) increases fast enough), and if Dlzf(?,r) is negative, Drf may

decrease.

The behavior of Drf over time is constrained not just by feasiblity but

X

also by the requirement that the input r* be optimally chosen. (That is ry

t
must be optimally chosen by firms that take the aggregate path for Sk: as

given. None of the discussion so far pertains to the social optimization

problem of a planner who can take account of the externality in this economy.

See below for a discussion of this problem.) The equation for maximizing out
o¢

Cio
t Gct

= 0, gives

t E S 9
B Du(ct) = AtDIg.

In equilibrium, if k: is increasing without bound, c: must be bounded from

below; constant consumption at the level implied by no resource inputs and no
new investment in research would always be feasible. Then Du(cz) is bounded

from above and A:DIg must go to zero with ﬁt. The equation for r:,
9 =0, implies
r
t
*
t

. X . .
Since He and A:(DIg) are both decreasing, optimal resource usage by

* -
At(DIg)(Drf—Drh) = u

competitive firms does not rule out a path for p: = Drf that is
monotonically decreasing, provided that k: increases without bound. Note

that if DAh were equal to zero, u: would be constant. Since Drh must be

In this equation and the subsequent discussion, we neglect the non-negativity
constraints on Cy> It’ and ry- In the actual calculation of an
equilibrium, we will need to verify that they are satisfied. If not, these
equations will hold as inequalities.
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bounded from below by zero, Drf would then have to be increasing in the
limit.

To see that unbounded growth in k: is a possible equilibrium outcome
for this system, consider the functional form described above for f,
£(#,r) = (¥* + )Y, Suppose that ¥ takes the form ¥(k,K) = k’k7. 1If ¢
is less than one but (£+n)ow > 1, knowledge will have the required
decreasing private marginal productivity and increasing social productivity.
If r: is forced to be identically zero, output takes the form

ct+It < (kEKtn)av .

For a model of this form, Romer (23], [24] proves that there exists an
equilibrium in which kt and S grow without bound.10 In fact, the growth
rate for capital can approach the asymptotic maximal growth rate 7t. This
does not constitute a proof that in the economy with resources, kt will
exhibit similar growth. Since the equilibria here are all second-best
equilibria, it is not necessarily the case that the equilibrium in the economy
with resources will yield higher utility than that achieved in the economy
without resources. Nonetheless, the natural presumption is that in the
economy with the resources, an equilibrium with unbounded growth in kt will
exist. The same increasing returns in k which drive growth in the economy
without the resource are present in the economy with the resource. Moreover,
as the stock At of the resource approaches zero, this-economy resembles more
and more closely the economy with no resource.

None of this constitutes a proof that for some specification of this

model, the price of the resource will fall. We do not attempt to establish an

analytical result of this kind. Simulations described in the next section

1OIn fact the model there is in continuous time, but for the discrete version

these results will hold.
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demonstrate that the trend in prices, both initially and asymptotically,
depends not only on the functional forms chosen to describe the technology,
but also on the relative size of the initial endowments of knowledge and the
resource. It would not be hafd to specify conditions like those in Romer
(23], (24] that guarantee that k; grows without bound. The difficulty is
that the behavior of Drf(?,r) over time depends not just on whether or not
k: (hence also ¥) grows over time, but rather on the on the rate of growth
of k: relative to the rate of decrease of r:.
increase because of the substitution assumption, but falling r* causes it to

t

fall because of concavity. To determine the magnitudes of these rates

Growing k: causes Drf to

starting from specific initial conditions, one must solve the equation system
forward, using the transversality conditions to determine the initial values
for the shadow prices. For this model, this can be done numerically, but not
analytically.

This leaves four important steps in the analysis to be completed. First,
some proof must be given that under the assumptions above, this economy has a
competitive equilibrium. Second, further exploration of_the qualitative
properties of the competitive equilibrium must demonstrate that in at least
some cases, prices can indeed fall. As suggested above, this can only be done
numerically, but this raises an additional complication. Any numerical
approach to this problem must rely on a limiting argument using solutions to
truncated T-period economies. It is not literally possible to evaluate
conditions at infinity. Thus, the third task is to establish an approximation
result which states that equilibria for T-period economies converge to an
equilibrium for the infinite horizon economy as T goes to infinity. This is
also an important check on the robustness of the model. Any equilibrium in a
perfect foresight model which depended too strongly on the infinite future
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would be highly suspect. Note that since the equilibria for these economies
are not the solutions to maximization problems, this problem is distinct from
the much easier problem of showing that solutions to trucated maximization
problems converge to the the solution of an infinte horizon maximizafion
problem.

The numerical analysis of a specific example is contained in the next
section and the existence and approximation results follow in the section 5.
Before going on to these, we conclude this section with the fourth of the
steps alluded to above, a comparison of the competitive equilibrium with the
social optimum for this economy. In most models of equilibrium with
externalities, this forms the bulk of the analysis, but the discussion here
will be brief. 1In part, this is becuase we are interested primarily in
explaining historical price movements and feel that an equilibrium without
govermment intervention is a better historical model that one with
intervention. Over the time horizon for which we have data on resource
prices, substantial government tax and subsidy schemes are a quite recent
innovation. In addition, the analysis of the social optimum in this context
would add little to what is already known; the presence of an exhaustible
resource has little bearing on the welfare anaysis of this model. Exactly as
one would guess from a simple static model with a positive externality, the
sub-optimality in this economy arises because competitive agents accumulate
too little knowledge. 1In the optimum, kt will grow more quickly than in the
competitive equilibrium. The social optimum can be supported as a
competitive equilibrium with taxes under a variety of tax schemes that
directly or indirectly subsidize the production of knowledge. Romer [24]
discusses these results in the context of a model without an exhaustible
resource. They carry over essentially without modification. The only
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implication worth noting here is that since kt grows more rapidly in the
social optimum, resource prices in this model will fall more rapidly (or rise
less rapidly) than they do in the competitve equilibrium.

In the formal analysis, the existence of.the social optimum follows
immediately from Lemmas 1 and 2 in Section 5. Again, the key feature is that
because of the form of the research technology, the maximum rates of growth of
knowledge and consumption are not "too" fast. The equations describing the
social optimum can be derived as above by substitutuing the expression Skt

in for Kt before taking the derivative g% instead of after doing so.
t

This change in the equation for the evolution of A constitutes the only

t
difference between the equations for the competitive equilibrium and the
social optimum. Choosing taxes that will support the optimum is then simply a

11

matter of getting the equations for A for the two models to agree.

t
Finally, all the usual cautions about second best analysis apply.
Roughly speaking, any policy that stimulates research will be welfare
improving. Thus, if the consumption good is transportation services from
automobiles and the resource is petroleum, regulations like mandated minimum
fuel efficiency standards can be welfare improving if they stimulate research
that has a common property element. In contrast, speed limit restrictions
should lower the demand, hence the price, for petroleum, and discourage
research. Taking this view to the extreme, it is conceivable that a reduction
in the inital stock of the resource could be welfare improving. The increase

in the price of the resource may cause an increase in the amount of research

suffcient to outweigh the direct welfare loss from the reduction in the stock

llBrock {2] or Hochman and Hochman [13] present exactly this kind of analysis

for dynamic models with externalities.
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of the resource. For example, Great Britain may have benefited from its
relatively meager endowment of wood if it contributed to an earlier transition

to coal and an earlier development of steam power.
4., NUMERICAL EXAMPLE

As suggested above, calculating the competitive equilibrium prices and
quantities for a given specification of this economy is equivalent to solving
a two point boundary value problem for a four dimensional difference equation
system. As noted above, it is conceptually impossible to evaluate any of the
variables for this system at the "boundary" defined by t = <. Any numerical
procedure must rely on calculating the values at some large but finite value
T. The difficulty in implementing this procedure lies in the choice of the
appropriate termainal values for the state variables and the shadow prices at
T+1. Rather than rely on some ad hoc procedure, the approach taken here is to
define and calculate equilibria for truncated, T-period finite horizon
economies. The proof in the next section shows that any sequence of
equilibria for these economies has a sub—sequence which converges to an
equilibrium for the infinite horizon economy.

To define these economies, truncate the preferences at t = T, but leave

the technology unchanged. For any given sequence {Kt}tzo, the truncated
T

problem PT(K) is to maximize z ﬂtu(ct) over all feasible infinite
t=0

sequences of capital and resource stocks. This is equivalent to the finite
dimensional problem of maximizing these preferences subject to the technology

up to T, treating the values of kT+l and AT+1 as freely chosen terminal

values. (For t 2 T+1, letting Cp = ry =0 and letting kt and At be
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constant is feasible.) For this finite dimensional problem, a simple
application of the Kuhn-Tucker theorem shows that the second set of boundary
conditions is just ATkT+l = "TAT+1 = 0. Since the technology for t > T is
irrelevant, the values of Kt for t > T are irrelevant; to specify the
problenm PT(K), it is sufficient to specify the first T+1 components of K.
An equilibrium for this truncated economy is therefore a T+1 vector K such
that the solution {k}i:é to PT(K) satifies K = Sk. As before,
substituting Kt = Skt into the difference equations which describe the first
order conditions for the problem PT(K) gives a set of autonomous difference
equations in kt’ At’ At and Hy - In fact, they are identical to the
equations for the infinite horizon economy. The only difference is that the
boundary conditions at infinity have been replaced by the boundary conditio:s
ATkT+l = MTAT+1 = 0 which can be evaluated directly.

For simplicity and without loss of generality, the number of firms S

was set equal to one. The functional forms chosen were as follows:

f(t,r) = F- (¢ + )Y p=0.8 v=0.8
#(k,K) = Pk a=0.8, n=0.9
G1I, 2 (v=131 - oo I
. k) (‘Y 1)..1 e.\g( m7 )] v = I. 032
U(c) = ¢
-2
h(r,A) = H—

The parameters F, P and H are multiplicative constants chosen to scale the
functions. The choice of functional form was determined primarily by
analytical convenience. Despite the numerical approach used here, this was a

concern because of questions of convergence. In principal it is straight-
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forward to start with values for 2z = (k,A,A,u) € R4 at either t = 0 or at
t = T and use the difference equations to work to the other boundary,
iterating until the conditions at each boundary are met. In practice, the
equations relating vaiues at t to values at t+l are given in implicit form
by the first order conditions. The functions here were chosen so that a
simple Newton method would exhibit global convergence to a value for the
variables at t given values at t+l. In fact, it can be shown that for a

given value of 2z there may exist more than one value of 2z which

t+l

satisfies the implicitly defined difference equation; but for each =z

ti

t+1’

there is a unique value of =z This does not necessarily imply that there

p
are multiple equilibria for this economy. Starting from a specific value of
zy, many of the possible paths satisfying the implicit difference equations
may fail to satisfy the necessary terminal conditions. Nonetheless, this

suggests a numerical strategy of choosing a value for 2z and working

T+1

backwards. For any given values of ko and AO’ trial and error lead to the
value of Zp4y satisfying the terminal conditions, such that solving the
difference equations backwards from this point lead to a value of zg with
ko and AO as its first two components.

The most troubling of the specified functional forms is the linear
utility function. Under the Lucas-Prescott interpretation of this function,
this corresponds to a market demand curve for the output good which is
infinitely elastic at a price of one, so it may be possible to justify this
form for a small country. In principle, it is straightforward to extend the
analysis to more general, strictly concave functions. In practice, the
required numerical analysis may require methods which are more sophisticated

than the elementary ones we used.
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The discount factor B was set at 0.95 so the real interest rate was
roughly 5%. Accordingly, one time period is taken to be approximately one
year. Values for the truncation point T ranging from 100 to 400 years
in the future were tried. For the specific initial conditions used in the
results reported below, the value function (equal to the present discounted
value of consumption) for the 200 year truncated economy differed by less
than one-half of one percent from the value function for the 300 year
truncated economy, which in turn differed from the value function for the 400
year economy by less than 0.05% The 200 year results were therefore taken
as having essentially converged to the « horizon results and are the only
ones reported. Figure 1 graphs the behavior over time of the real spot price
of the exhaustible resource for one choice of the initial values for AO and
ko. Subsequent graphs give the paths for the resource stock, resource usage,
the rate of growth of the capital stock and the level of consumption for this
example. OQut of many simulations, these results are presented because the
behavior of the resource price differs so starkly from that expected in more
conventional models. Here the price initially rises, then falls
monotonically.

In general, the behavior of the price is determined by the offsetting
effects of growing knowledge and shrinking resource usage. Not surprisingly,
by adjusting the relative magnitude of the initial stocks and the scaling
factors in the definitions of the functions, it was possible to generate price
paths which fell monotonically or increased monotonically. Monotonically
falling prices could be generated in cases where the resource was exhausted by
the terminal date T and in cases where it was not. In no case were the

non-negativity conditions for or investment I, = f - ¢, - h

Cpr Ty t t

violated. As one would expect from the behavior of the model with no
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resource, in all cases the capital stock eventually grew at a rate close to

the maximum feasible rate of 3% per year; consumption grew accordingly.
5. EXISTENCE AND APPROXIMATION

5.1 An Existence Result

The first step in the formal analysis of this model is to be precise
about the sequence space on which the objective functional is defined. The
model requires a space which can accommodate sequences for kt and cy which
may grow at the rate +° . For obvious reasons it will be useful if the
feasible sequences are contained in a compact set in this space. By
assumption 2, Bva <1 . Let & be some constant satisfying 1 > &6 > 8 and
6° < 1. Let Zl(Y,m,w) denote the usual Banach space of integrable
functions defined on a set Y which is made into a measure space by a measure
m on a sigma algebra B. For this application, let Y be the set of non-

negative integers, let B denote the set of all subsets of Y and let m be

the measure which assigns mass 6t to the element t . The norm will then

take the form

00
_ t
kil = z 6% 1k, |
t=0

Let Ql(é) denote this space for these choices. This norm is extended to the
n—-fold cartesian product of Ql(é) , denoted (Q1(8))n , by replacing the
absolute value by any norm on R" equivalent to the usual norm.

As has been argued elsewhere (Romer [25]), 21 spaces are convenient for
maximization problems of the type considered here because of the availability
of simple characterizations for weak upper—semi-continuity and weak
compactness. It is well known that the usual discounted objective functionals
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are not continuous in the weak topology, but upper—-semi-continuity and
compactness are sufficient for finding solutions to maximization problems.
These functionals are weakly upper—-semi—~continuous. As opposed, for example,
to compactness in the Mackey topology, a simple characterization of weak 21
compactness is available. The choice of an 21 topology is particularly
compelling in a discrete time model. Since the underlying measure space is
purely atomic, the weak and norm topology coincide. (Dunford and Schwartz (9,
Iv.8].) Thus we can exploit the advantages of sets which are weakly compact
and functions which exhibit a form of norm continuity.

Let kO and AO be positive ihitial values for the state variables in
this economy; they will be constant throughout the discussion which follows.
Define a subset 4 c Ql(é) by

4={{K € 01(5): K. < ¥Sk, and K

tte=1 1= ™% g+l — Ty S
Holding constant the initial values, define the feasibility correspondence
r:ac Ql(6) — (Q1(6)+)4 as the map which sends the path K into the set of
. m » - >
non—-negative sequences {kt+1’At+l’ct’rt}t=0 which satisfy the constraints
3.1, 3.2, and 3.3 1in the definition of the problem P(K). As noted in the
discussion of assumption 2, kt is bounded by kovt; for any K € 4, Kt is
bounded by Skovt. Then by assumption 2, output and consumption are bounded
by an affine function of 1°t. Since & was chosen so that &+v° < 1, the
correspondence I does indeed map 4 into (Q1(5)+)4.

. _ © 4
Given an element z = {kt+l’At+1’Ct’rt}t:0 in (Q1(6)) , we can

trivially extend the preference functional to a functional V:(Ql(6)+)4 — R
o

by setting V(z) = E ﬂtu(ct) . Then we can rewrite the problem Pm(K) as
t=0

P (K) max { V(z) : z € I'(K) }



The following lemmas verify the conditions needed to apply the Maximum

Principle to this problem.

LEMMA 1:For given positive k0 and Ao , there is a compact set
2 C,<Ql(6)+)4 such that for any Ke€e 4, [(K) ¢ 2 . Moreover, I'(K) is
itself compact for each K € 4.

PROOF: By the continuity of the functions in the constraints 3.1, 3.2 and
3.3 and the fact that convergence in Qi(&) implies pointwise convergence, .

F(K) 1is closed. Define 2 as the set of non-negative sequences

t
((kt+l},{At+1},{ct},{rt}) such that kt < kot At < A, ,
t

c
C < b1 + bzkov and r, < A, . (Here bl’

in assumption 2.) Since the bounds in this definition are all summable with

b2, v, and ¢ are as specitied

respect to 6t , it follows that 2 is compact in both the weak and the norm
topology by Dunford and Schwartz [9, IV.13.3]. By the discussion following
the definition of I, it follows that for all K € 4, [I(K) ‘is contained in

and hence is itself compact.
The proof of compactness is made simple by the choice of 6 satisfying

617 <1 in the definition of the norm for the sequence space. Note that it

also implies that neither 2 nor [I'(K) has an interior point.
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LEMMA 2: The function V:(Q1(6)+)4 — R is continuous in the norm
topology.12

. . X

PROOF: Let {zn} < (0.1(5)+)4 be a sequence converging to a point z .

Then z" converges pointwise-to z* and is bounded in the (0.1(6))4 norm;

-]

that is, there exists B € R such that E 5tuz2n < B for all n . Then for
t=0
-t

all n and all t , Wz, il £&6 "B . Since the utility function u 1is

n
t
continuous, the sequence u"  defined by u:

u* = u(c:) , where c¢

= u(cz) converges pointwise to

n X

n (c*) is the third component sequence of z (z)

Since the function u is concave, there exist non-negative constants a, and

a; such that w(0) < u? < a, + a Bé_t for all n and all t. Since B8 < 6,

t = 1

these bounds are summable with respect to Bt . By the Dominated Convergence

o0 [+ -]
Theoremn, E Btu(cz) converges to } Btu(c:) and V is continuous.
t=0 t=0

To apply the Maximum Principle to this problem, it remains to establish
that the feasibility correspondence [:d4 < 0.1(8)+ —_ (0,1(6)+)4 is continuous.
Upper—-hemi-continuity follows easily from the continuity of the functions
defining the constraints and the fact that convergence in the norm implies

pointwise convergence. The difficulty, as always, is to show that the

12As noted above, integral functionals of the general form of V are weakly

upper—-semi-continuous in an 21 topology. Also as noted, since the measure

space used here is purely atomic, the weak and norm topologies coincide.
Hence, it follows that V is u.s.c. in the norm topology. We are able to
prove that V here is actually continuous in the norm topology because we
have assumed that the utility function u is bounded from below. This was
done purely for simplicity. If u 1is not bounded from below —- for example
if u(c) took the form u(c) = ln(c) —- then we would need to modify the proof
and treat both u and V as upper-semi—continuous, extended-real valued,
concave functions.
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corrspondence is lower—hemi—continuous. Given a sequence of paths K"

converging to K* in 0.1(6)+ and an element z* € F(K*) , one must construct
a sequence of paths z" converging to z* such that 2" € F(Kn) for all n .
The key observation in the proof is as follows. The correspondence in finite

dimensional space which specifigs the feasible values (Ct’rt’kt+1’At+1)

given (Kt’kt’At) is lower-hemi-continuous. Suppose that for all s < t, we

. n, n X
are given sequences {zs}n_o, such that Zg converges to 2z as n goes to

s

n

infinity and such that zg is feasible given z:_l. Then we can use the

lower—-hemi—continuity of this finite dimensional correspondence to construct a

. n . .
new sequence in n, zt+l’ thi-- «tisfies the constraints and convav. -
b 3 . . . . .
to Zt+]' Proceeding inductively, this gives a sequence z" (of sequences)

with 2" e F(Kn), such that z" converges pointwise to z*; but by the bound

+° on feasible growth rates and the choice of 6 less than 1—0, {zn} is
uniformly bounded by a sequence summable with respect to 5t. Then the
Dominated Convergence Theorem implies that {zn} actually converges to z*
in the (D.l(é))4 norm. This argument once again relies heavily on the

-o

summable upper bound implied by the choice of &6 < «

To make this argument precise, define a correspondence ¥ from Ri into

4 i . 4
R+ as follows: Y(Kt,kt,At) is the set of elements (kt+1’At+1’Ct’rt) € R+
such that

- 5¢ - —
kt kt+1 + \f(*(kt’Kt)’rt) c, h(rt’At) . kt) >0
and
At - At+1 —rt >0

LEMMA 3: ¥ is lower—-hemi-continuous.
PROOF: The proof is a tedious but straightforward exercise in finite
dimensional space. It is contained in an appendix available on request.
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LEMMA 4: I is continuous.

PROOF: We use the definitions and results from Hildenbrand [12, Part 1].
Since the image of 4 ¢ 0.1(5)+ under [ is éontained in the compact set 2 ,
I' is u.h.c if and only if it is closed. By the continuity of the constraint
functions, I 1is closed. As above, let {Kn} be a sequence in 4
converging to K*, and let z* € F(K*). Since z* € F(K*) , we know that
zT € Y(K:,kO,AO). Using the l.h.—continuity of ¥ , construct a sequence
z? € ?(Kg,kO,AO) , n 20 , converging to zI . Suppose we have defined 22

X X X

for all n and for all s £ t. Since € T(Kt,kt,At) , use the l.h.-

z*
t+1
continuity of ¥ again to construct a sequence 22+1 , n2 0, converging to
X . n n, ® . n
Zyey - By construction, the sequence 2z = {zt}t=0 is an element of I (K")
for each n , and z" converges pointwise to z*. Since z" is contained in
2 for all n, the set {zn}n:0 is uniformly bounded by a sequence that is
summable with respect to St. By the Dominated Convergence Theoren, z"
actually converges to z* in the (Ql(é))4 norm. Hence, we can conclude

that I' 1is l.h.c. By the remarks just after the proof of lemma 2, it is

upper—hemi~continuous. Hence it is continuous.

Lemmas 1 through 4 are sufficient to apply the maximum principle to the
problem Pw(K) and conclude that the correspondence defined by the maximizing
values is u.h.c. As currently defined, this correspondence, the argmax
correspondence, is a mapping from 4 ¢ 0.1(6)+ into (0.1(6)+)4 . For the
fixed point argument which follows, it is convenient to modify the definition
of the constraint correspondence slightly so that both it and the argmax
correspondence map a set into itself. Recall that R, as defined in the proof
of lemma 1, is the set of feasible sequences k, A, ¢, and r in (Q1(5)+)4.
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Refering to the definitions of 4 and 2 if necessary, note also that S
times the projection of £ with respect to its first argument is contained in
4. Thus, define ;:Q — (Ql(5)+)4 as the correspondence which sends the
quadruple of sequences z = ({kt+1},{At+1},{ct},{rt})t:0 into the set
F(S{kt}tjl). That is, the action of ; on 2z 1is equivalent to the action of
' on S times the first component sequence of z. ; is continuous since I
is. By lemma 1 its image lies in R . Since the constraints 3.1, 3.2 and
3.3 define a convex set of feasible values for any fixed path K(t) , the
correspondences I and ; are convex valued. For the problem PQ(K), define

the argmax correspondence M from R into itself,

M(z) = argmax { V(w) : w € 1~'(Z) c (0.1(6)+)4}-
W

~

Since V is concave and I is convex valued, M(z) 1is convex valued. By
the Maximum Principle, it is upper-hemi-continuous. By lemma 1, it maps a
compact set into itself. By the Kakutani extension of the Schauder fixed

point theorem, M has a fixed-point in f. As a result, we can conclude,

THEOREM 1: Under assumptions A.l to A.3 and given positive initial values

for k, and A,, there exists a sequence K* and a solution
X X X, ke X X_ o X

({kt+1}’{At+1}’{ct}’{rt})t=0 to the problem P_(K'), such that K'= Sk .

Given this fixed point, K*, constructing a competitive equilibrium is
straightforward. The necessary conditions for a solution to the concave
maximization problem PQ(K*) consist of the difference equations referred to
in Section 3 plus the two tranversality conditions at infinity. The
multipliers A*

Ny and u: will be present value shadow prices for the

knowledge and the in—ground resource at the future date t. Even if there is
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no market for knowledge, these can be used to derive prices for any goods that
are traded. In particular, the spot price for the resource will be given by
the marginal rate of transformation as given in Section 3. The proof that
this defines a competitive equilibrium consists of showing thét, at these
prices, priqe—taking firms and consumers will choose the quantities associated
with the fixed point K* . Given the information from the necessary
conditions, this is a simple application of the well known sufficient
conditions for a dynamic maximization problem to the problem of the firm and
of the consumer. For a detailed treatment of this general approach to
decentralizing a possibly time-dependent dynamic maximization problem as a
competitive equilibrium, see Romer ([23].

Superficially, it may appear that this argument generates prices for an
infinite dimensional equilibrium without applying the Hahn-Banach theorem and
without some kind of interiority condition, but this is not the case. The
proof of the necessary conditions for the kind of problem considered here is
essentially a version of the Kuhn-Tucker Theorem in an infinite dimensional
space, That theorem requires an interiority assumption typically referred to
as a Slater condition. The problem PQ(K*) will satisfy a Slater condition
and the usual necessary conditions. What is clear is that this condition and
the duality theory used in the proof of the necessary conditions must rely on
a different topology than the one used here; as observed in the remark after
Lemma 1, in the topology used here, all the sets of interest have empty
interior. One of the useful features of the approach outlined here is that it
allows this kind of separation between the arguments needed to prove the

existence of a fixed point and those used to generate prices.
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5.2 'An Approximation Result

It the fixed point K* were known, it is easy to show that the solution
to the infinite horizon problem PQ(K*) can be found as the limit of the
solutions to the finite horizon truncated versions of PQ(K*) . By itself,
this is not helpful in calculating K*, precisely because K* must be found
simultaneously with the solution to P“(K*). The generalization needed to
Jjustify the procedure used in Section 4 is a result which shows that the limit
of a sequence of fixed points for finite horizon economies converges to a
fixed point for the infinite horizon economy.

Consider a sequence of T-period truncated versions of the infinite
economy. Preferences are defined as before except that the summation is
truncated at T. The technology can be described exactly as before. The
operative constraints are those on quantities up to T and the non-negativity
constraints up to T+1 , but there is no harm in using the full constraint set

in (01(6)+)4 . Let VT denote the truncated preference functional,
T

} Btu(ct) . By appending a sequence of constants (k,A,c,r) with
t=0

c=r =0 to the solution of the truncated problem, we can view this solution
as an element in (Q1(6)+)4. Suppose we are given a sequence {zT} of

. equilibria for for the finite economies; i.e. a sequence {zT} such that

zT € argmax { VT(;) : ; € ;(zT) o,

~

where [ 1is as defined above. Since zT €  for all T and since R is

compact, this sequence must have a convergent sub-sequence. Because of the
dependence of VT on T, the results above are not enough to conclude
anything about any limit z* of the sequence zT, but a slight generalization

will suffice. Let N denote the set of integers union the point and

?

make N a metric space by defining d(n,m) = | % ~ % ] with the convention
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= 0 . Then we can define a single function V over N x (0,1(5)+)4 by

8{—

setting ;(T,z) = VT(z) . (Recall that 2z is formally a quadruple of
sequences, but V and VT depend trivially on all but the sequence
corresponding to consumption.) To prove that the extended function ; is
continuous, note that convergent sequences in N x (0.1(6)+)4 have values for
T which are eventually constant or which tend to . For the first type of
sequence, lemma 2 above will apply. Thus, it remains to consider convergent
sequences such that T goes to infinity. But since ﬂva is less than one
and since momentary utility can grow no faster than 7Ot, we can put a uniform

bound on the difference between VT and V, and this bound can be made

arbitrarily small as T goes to infinity. Thus we have
LEMMA 5: V:N x (0.1(5)+)4 — R 1is continuous.

Now we can use the ﬁaximum Theorem to conclude as before that the
correspondence which sends (T,zT) into argmax { ;(T,z) 1z € ;(ZT) } is
u.h.c. Then if zT converges to z* as T goes to ®, we can conclude that
z* is an element of argmax { ;(m,z) 1z € ;(z*) } and thus that z* is an
equilibrium for the infinite horizon economy. In fact we know more. Since
any sequence zT of finite horizon equilibria will be contained in the

compact set 2 , it must have a convergent subsequence. This establishes
THEOREM 2: Any sequence of equilibria for T-period finite horizon

economies has a convergent subsequence which converges to an equilibrium for

the infinite horizon economy.
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Note that this gives an alternative proof of the existence of an infinite
horizon equilibrium, but it does not offer any real savings in effort. 1In
either case, the key step is to establish the upper-hemi-continuity of the

argmax correspondence by checking that the conditions for the Maximum Theorem

are met.

6. DISCUSSION

This model is both too simple and too complicated. The ways in which it
is too simple are obvious. The numerical analysis needs to be refined and
extended to more complicated functions. The entire framework needs to be
extended to allow for other goods. Evidence such as that provided by Barnett
and Morse [1] suggests that not only have resource prices been falling,
extraction costs have also been falling. As the model stands, extraction
costs fall only with decreases in the current rate of extraction ry.
Generating falling prices, falling extraction costs and increasing resource
output over some interval will require some addition to the model like
exploration and discovery or technological change in the extraction technology
as well as the production technology for output. The intent here was to
suggest a possibility in a simple context. If it is judged to be of interest,
complicating elements designed to make it more realistic can easily be added.

The sense invwhich the model is too complicated is perhaps more
worrisome. This is not a tightly parameterized model. There is wide latitude
for generating different kinds of behavior using different specifications for
the initial conditions and the functional forms. The extensions described in

the last paragraph will only increase this freedom. Given the computational
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difficulties and the current state of the available data, there is little hope
of directly estimating some set of fundamental parameters.

This does not imply that the model had no scientific content. In the
analysis of exhaustible resources, it makes a great deal of difference whether
this model or a more conventioanl extension_of the Hotelling model offers a
better explanation of the behavior of prices over the last several hundred
years. Any number of possible interventions like price controls, research
subsidies, fuel efficiency standards for automobiles, etc. will have very
different positive and normative effects in the two models. Observing that it
will not be easy to distinguish between them is not the same as claiming it
does not matter which (if either) is right. Moreover, the model does have
implications for in empirical research. For example, it suggests that some
attempt should be made to quantify the effect (if any) of technological change
on the derived demands for resources. Until more evidence on this point is
available, future tests of resource models may best be conducted along the
lines used in Miller and Upton [18] or Farrow [11], taking as given the path
for the market price of the resource and testing only the efficiency
conditions for the firm.

We emphasize the model here suggests only a possibility. It should be
absolutely clear that the past behavior of resource prices, technological
change, and growth offers no guarantee about future trends. The assumption in
this model that knowledge exhibits global increasing marginal productivity
could simply be wrong. We could be on the verge of the end of a long period
of explosive growth in knowledge, resource productivity, and per capita
consumption. Nonetheless, there is nothing in the data to suggest that we
have already reached such a point; and there is no compelling theoretical
reason to believe that we must reach such a point anytime soon.
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