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I Introduction

The inception, development and long run features of industry have long been the
subject of much attention. The most basic facts‘ are clear: when an industry is very young,
there are few firms in business, but entry is rapid. Subsequently, the number of operating
firms levels off and then begins to decline, eventually achieving some "long run" value.

1t is not difficult to produce competitive theories of industrial evolution that generate
such a time path. For example, a model in which demand increases at a decreasing rate,
coupled with increasing optimum firm size due to learning—by—doing does so, as will a
suitably selected structure of adjustment costs. Gort and Klepper (1982) provide a good
summary of existing approaches along with a substantial amount of information about the data.

The existing theories of entry and exit in competition suffer from two deficiencies.

One is that they are not firmly grounded in individual optimization, making it difficult to use
what is known about firm behavior in other contexts to restrict the theory, generate predictions
that make explicit claims about what should be observed, and develop an integrated theory of
all aspects of firm behavior. Second, while the existing theories permit useful classification of
entities that tend to induce entry or exit, the abundance of "free parameters" prohibits the
development of a body of novel hypotheses; for example, there is little that could not be
explained by a demand shift/learning—by—doing model.

This paper presents a preliminary investigation of a model of entry and exit behavior in
which individuals optimize and that has few free parameters. It's equilibrium is roughly
coincident with the facts described above. Moreover, the structure of equilibrium is
sufficiently simple that calculating the equilibrium for given parameter values is not
computationally overwhelming, so that structural estimation of the model's parameters—the
subject of Part II—is feasible.

The main ingredients of the model are as follows. Inventions—new ideas that might
somehow prove useful in production—are random occurrences. But once a new invention

exists, there is potential for figuring out exactly how it can be put to use



in the production process: innovation. The same applies to subsequent invention of
refinements to basic inventions. In the present model there are just two possible inventions: a
basic one and a single refinement. Once an invention has occurred firms may attempt to
introduce innovations based on it; success is stochastic. Those who succeed may begin
production and once some have done so an industry is born. (It is assumed that pre—existing
technology is too primitive for exchange based on it to occur in equilibrium.) Subsequently,
the basic invention may be refined; the timing of this event is stochastic as well. But once the
refinement has come on the scene, innovations based on it are a possibility too. At this point
either more new entrants or established firms may innovate, basing their attempts on the
refinement. This activity is also stochastic, and, in general, some firms succeed earlier than
others. At some point firms that have yet to succeed may find that it is no longer to their
advantage to continue trying since others' success has led to a low price for output. Once this
is the case (in some instances it will not happen at all) the industry enters an exit phase
wherein the total number of firms begins to decline and continues to fall, achieving some long
run value as the industry reaches "maturity". In brief, new opportunity produces entry and
relative failure to innovate yields exit.

The optimization behavior of firms greatly restricts the possible outcomes. The time
paths of the main observables in the model—total number of producing firms and price of
output—may (ignoring cases corresponding to extreme parameter values) be described as
follows. Each new invention (basic or a refinement) yields immediate entry followed by
stability in number of firms. Some time after the refinement has been invented, exit begins
and is equal to a constant proportion of the stock of operating firms that have so far failed to
generate an innovation based on the refinement. During the period after the basic invention
and before refinement, output price is stable. But once refinement has occurred, the price of
output begins to fall. However, its decline must cease entirely as exit begins; the exit phase is

also one of complete price stability.



The next Section sets out and analyses the model and its equilibrium. Since structural
estimation is the goal, comparative dynamics are not presented; all attention is focused on the

structure of the model's equilibrium.

IL Theory

In this Section a model of entry and exit in a perfectly competitive industry is set out
and analysed. Its elements are very straightforward. New knowledge, or "inventions",
emerges constantly in the economy at large, including ideas in both science and industry.
Most of this information is of no use whatsoever as far as any given industry is concerned, but
some knowledge is applicable. Given some basic invention, firms may try to find a way to put
it to use commercially, to "innovate" in the familiar Schumpeterian distinction. Those who
succeed in the costly and unpredictable process of innovation begin production and the
industry begins. Further inventions yield new innovation opportunities for firms currently
operating in the industry as well as others; the latter may find it to their advantage to enter
when such an invention occurs. Success at innovation being stochastic, there will, however, be
some who lag behind as progress occurs. Because progress lowers costs for competitors, these
less successful firms may find it to their advantage to exit. These basic ingredients—new
opportunities generating entry and relative lack of success yielding exit—are the key elements
in the analysis to follows.

The model imposes three restrictions that should be discussed in advance. First, there
are no direct costs associated with attempts to implement a new technology. Such activities
are costly in that they necessitate foregoing some other activity in the economy and because
new techniques cannot be implemented instantaneously once learned. But, if the firm has
chosen to participate in the industry in question, learning entails no additional outlay. This
assumption will imply that if there are any firms operating in the industry and utilizing any

technology other than the most advanced invented so far, such firms will learn a better



technology with positive probability—progress must occur if the industry operates at all. It is
straightforward to verify that provided such costs are not large, the results to follow are not
qualitatively altered by their inclusion.

Second, as indicated earlier, inventions occur outside the industry. It is not difficult to
replace this assumption with the specification that firms within the industry both invent and
innovate, with significant inventions being rare and hard to conceal (although how an
invention may be put to use is another matter). The substantive restriction is that the behavior
of the industry under consideration does not affect the stochastic process governing arrival of
potentially useful ideas. At the cost of additional clutter it is possible to permit various
relaxations of this assumption. Moreover it appears that external invention is the rule rather
than the exception; see Davies (1979).

Finally, success at innovation is nearly independent of other's success: the probability
with which one firm's attempts to innovate succeeds is not affected by others’ luck. In other
words, it is easier for the firm to sort out implementation internally (via a R & D department,
for example) than it is for it to learn from or imitate others. Under this assumption it will
follow that the most attractive dates at which to enter the industry are those at which new
inventions occur. When innovation depends more strongly on what others know, delaying
entry may prove advantageous and the analysis becomes more complex. Provided the
interdependency is not large, this assumption may be relaxed.

These three assumptions reduce the difficulty in analysing the model substantially.
Moreover, moderate relaxations of them preserve the essential features of equilibrium; the
basic ideas that entry is generated by new opportunities and exit by relative failure to exploit
them, are also not sensitive. Thus while weakening of these assumptions is not without
interest, it will not be pursued here.

The formal analysis follows.

Time, denoted ¢, is discrete and the horizon is infinite: t € {0,1,...}.



The industry is defined by the commodity firms might produce and sell to consumers.
The consumer side of the market is not of immediate interest and is summarized by a
time—invariant inverse market demand function D(Q), where Q is industry output; define the
product price p by p = D(Q). D is assumed to be continuous, strictly declining and bounded
with limQ_MD(Q) =0.

The invention process is a very simple one. At ¢=0, it is known that there will be at
most two inventions of relevance to the industry. The knowledge existing at #=0, along with
any production techniques based on it, will be referred to as "primitive". The first invention
will be interpreted as a "basic" invention and the second as a "refinement"”. This structure is
intended to be a stylization of an industry's development in terms of fundamental breakthrough
and subsequent significant improvement; prop planes and jets are an example.

Below, assumptions will be imposed that guarantee no trade will occur prior to
implementation of the basic invention. Thus, with respect to observables, there is no loss of
generality in letting =0 denote the date at which the basic invention arrives on'the scene. (It
will be assumed that innovation based on a period ¢ invention may be put to use no sooner that
t+1. Thus r=1 is the earliest date at which production might occur.)

Once the basic invention has emerged, refinement is possible. For any ¢ > I, if the
refinement has not been discovered earlier, it occurs with fixed probability p € (0,1). LetT >
1 denote the actual date of refinement.

Altogether then, the basic invention exists at =0 and refinement is possible at any
t > 1, occuring with probability p.

The supply side of the market comprises a fixed continuum of identical firms [0,N]. At
any date ¢, one option for any firm is participation "elsewhere" in the economy. Doing so
yields a fixed per period profit of 7t0 > 0. Assuming a perfect capital market and constant

interest rate i > 0, the option of producing elsewhere has capital value 1:0/ (I—y) where



v={+i) € (0,1).

Participation in the industry requires that nO be foregone and makes possible two
activities: innovation and production.

Innovation involves attempts to implement inventions. As discussed earlier the
innovation process is assumed to entail no direct costs other than foregoing no. Firms that
have the know—how to implement only technologies based on primitive inventions will be
referred to as "knowing 90"; all firms are endowed with this information at t=0. Any firm
knowing how to put at most the basic invention to work (there may be many ways to do so;
for simplicity it will be assumed that all yield the same cost) will be referred to as "knowing
9", while a firm that can utilize the refinement (once it has been invented) will be said to
"know 6"

Prior to #=0, all firms necessarily know 60. At =0, innovation of production
techniques using the basic technology is possible. It will be assumed that when the basic
invention has occurred (but not the refinement—0 < ¢ < T) any firm knowing 90 succeeds in
its efforts to innovate (i.e. learn 8) with probability B € (0,) in any period. If a firm learns 8
at ¢, it may commence production using the innovated technology at ¢+ or later.

For ¢t > T, innovation of techniques based on the refinement (i.e. learning ) is also a
possibility. The likelihood of success at doing so may depend on the firm's present state of
knowledge. Any firm knowing O learns 0 at ¢ > T with probability r € (0,1). Those knowing
only GO learn 8 with probability LO e (0,1) and 8 with probability 7'0 € [0,1]; learning O is not a
prerequisite to learning 6 unless fo = (. Until more of the model has been presented, these
probabilities will be left unrestricted.

In brief then, once an invention has occurred implementation is possible and stochastic.
When only the basic invention has arrived, participating firms implement it with probability {.
Once refinement occurs, firms knowing how to use the basic technology learn how to use the

refinement with probability 7; others may still learn how to use the basic invention, doing so



with probability ;O, but they may also skip directly to techniques based on the refinement. For
them, this latter possibility has probability FO.

Turning to production, given 0 production activities yield one period profits

n(p;0) = max{pq - c(¢,;0)},
220

where 0 = 90, 9 or 8. c(-,0) gives the factor cost of producing output ¢ using technology
based on knowledge 6. Implicit in this specification is that the prices of all factors, including
any that might be technology—specific, are constant over time and that there are no direct
adjustment costs. One rationalization for this assumption is that any factor specificity is in
terms of the underlying inventions rather than in terms of the specific application in this
particular industry, and that inventions find applications in numerous industries.

- It is assumed that 7t(-;-) satisfies

i) =[D(), 8% = 0 G.e. 0 = argmax {DO)q - c(g:6%)); i) RIDO), 8] > 1°; and iii) for all
q=0
p>0,%>n(p,0)>mn(p, 8)>0. (i) requires that the primitive technology is nonviable even

if no has been foregone; (ii) states that knowing 8 is profitable relative to production
elsewhere if p is high enough; and (iii) imposes the condition that if TL'O has been foregone,
production given any 6 # 90 dominates shutting down, but knowing 8 is more profitable than

knowing 8. Also, define q(p,0) = argmax{pq - ¢(q,0)}. q(p,eo) = (0, and for p > 0 assume
q=0

q(,0) > q(p,8). (Note that ¢(p,0) > 0 is implied by n(p,8) > 0).

While there is randomness at the individual level, it will be assumed that in the
aggregate, given invention of the refinement (a realization of T) the evolution of innovations is
deterministic. In general, as is well known, this requirement generates some question as to

whether equilibrium exists. Moreover, available existence theorems (e.g. Jovanovic—Rosenthal



or Jovanovic—MacDonald) do not apply to this setting. Fortunately, the environment set out
above is structured sufficiently that the existence issue may be settled along with the
description of equilibrium; that is, the construction given below is itself a direct demonstration
of existence.

Given the deterministic aggregate behavior for fixed T, some useful expressions
describing industry evolution can be set out. This description depends on the timing of events
in each period. The within—period timing convention is as follows: inventions occur first,
then firms choose whether to participate in the industry, and finally output is produced and any
innovations realized. This specification may be altered with only trivial impact.

At any date ¢, firms may operate in whatever industry they find advantageous. Let n(t)
denote the number (strictly, measure) of firms knowing only 90 and that participate in the

industry at z. nO

: evolves according to

n € [O.N],
(1-p)nd - 29, 0<t<T
"r+1 7 (]-;-O ] ?O)n(t) _x(t)+1 t>T,
0

where x? is net exit (or entry, if x ;< 0) by firm's knowing 90 at the beginning of period 2.1
n(t) is thus the number of firms knowing 90 that are "at risk" with respect to learning 0 # 60 at

t. For 0 <t < T, only innovations using basic technology are possible, and these are learned

L'O and FO being

with probability B; for z > T innovations using the refinement may also occur,
the probabilities of innovation using the basic invention and its refinement respectively.
In an analogous manner, define n X and X, (n " and X t) as the number of firms knowing 9

(©) that participate or exit at . The implied evolutions are?2



5y =0
0

_r;t+[3nt —X41 0<t<T
n =
Zr+1

00

(I-rjp, + r'n; -x,.; t2T,
n,=0 0<t<T,
_ = 00 .
nt+1—nt+ry_t+rnt-xt+1 t>T

The interpretation of these expressions parallels that given for the evolution of "(t)' To reduce

clutter, assume X, = 0 and replace x " by Xy The restriction on X will be shown to be

t t

nonbinding in equilibrium

Now consider optimization by an individual firm. Each takes as given the participation
decisions and knowledge of others. In this model, as is familiar from standard competitive
analysis, the actions and information of others may be summarized by a price sequence.
However, in the present case prices will generally depend on whether the refinement has been
invented; i.e. whether ¢ Z T, where T, is random. Since the equilibrium price path turns out to
be a very simple ohe, introduction of an elaborate body of notation to describe the price path is
not the most straightforward route. Rather, a simpler (and equally correct) route will be
followed. Price, knowledge aﬂd a variable indexing whether the refinement has arrived are
modelled as a joint—Markov process on [0,D(0)] X {90, 0, 6} x {0,1}. The numerous
restrictions implied by the structure set out above—for example that prices are deterministic
given T—can be left implicit at this point.

Let EO be the expectations operator at =0 given py= D(0) (recall there is no trade at
t=0 irrespective of p), 6 = 60 and that the refinement has not been invented. It is assumed that

firms are risk neutral and behave so as to maximize
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ElS 8t ,
o)

where T ; equals 150 if the firm does not participate, and n(p t,G t) if the firm participates at ¢
when price is p, and knowledge is 6 L€ {90, 9, 6).3

Given the boundedness of 1°

and 7(p; 0), this optimization may be represented by a
sequence of pairs of functions {U t( 0), Vt( 0 )}°0° where U t( 6) represents the expected present
value of profits from ¢ onward given i) an optimal participation policy will be followed; ii)
knowledge is 0; and iii) the refinement has not been invented either prior to or at z. Vt( 0) has
the same interpretation except that it takes as given that the refinement has been invented at ¢

or earlier.

The functions Vt( -yand U t( - ) must satisfy the optimality conditions.4

u@% = L {(1-1){15’ +41pV,, ;0% + a-p)U,, ;@)

+y(BIpV,, ;® + U-p)U,, ;@]

+U-Prov,, ;0% + d-pU,, ,(eom},

Vt(eo) - 1Er?gx”{(1-t)[ﬂ:o vV, l(eo)] + W[L‘OVt ®
+ 70 @ + 1-OFW,, 1(60)]}

U,® = rflgx”[a-omo + PV, ;@ + T, @)
1€ ,

win@, 8 +1pV,, ;O + (I-p)UH_](Q)]}J

0
= 1€r?gtc]}[(l-t)n +1n(p, O] +1pV, 1 ® + A-p)U, (O],

V@=  mx U+, @ + Ln, &) + 17V, ;O
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and Vt(é) = 16r?éa;xl){(l-t)[n() +V,, 1(6) +1[r(p, 0) + W,, 1(6)]}

O _ —
= [(I-\m™ +1 0] + V., ,(0).
1er?g),(1} ( "oy O+ W

Define U( ) = vy 8). U () and V(- ) may be interpreted straightforwardly. Take U ( 60), for
example. U t( 90) is the present value of firm profits given knowledge of (-)O and that the
refinement has not been invented by ¢. If a firm knowing 90 does not participate (1=0) it earns
current profit 1::0 plus the expected discounted profit associated with knowing 60 at t+1, where
the expectation takes into account that the refinement might be invented at #+1. On the other
hand, the option of participating (1=1) yields no current period profit but offers the possibility
of knowing 0 at #+1, the value of which will generally depend on whether the refinement is
invented at t+1. U t(GO) is the larger of the values following from the participate/not
participate decisions.

Now consider equilibrium. At each date ¢, firm actions (participation (1), quantity
produced (g) and knowledge (0)) may be summarized by a conditional distribution function
A t(t, g, 081-) where the conditioning is with respect to whether the refinement occurred at or
before ¢. The sequence of such conditional distribution functions, {A t}g, is defined to be an
equilibrium of the economy if given the (market clearing) price sequence {p t} implied by
{A t}’ the optimizing behavior of all firms coupled with the learning technology implies {A t}
itself as the sequence of joint conditional distributions over (1, g, 6).

The determination of the structure of an equilibrium proceeds as follows. First,
equilibrium is constructed for z = T+1,...; that is, for the periods following that at which the
refinement occurred. This construction takes as given fixed values for ng >0, np = 0, and

ﬁT = (. These values imply fixed values for the sum B g+ Xp, = 04 -r)n_T + zong as well

+

0_o and x, > 0. Both will

as for ﬁT 4] = TRp ?Ong It is also assumed thatfort > T + 1, n ¢

be shown to hold in equilibrium.
Next, the structure of period T is determined. Subsequently, behavior in all periods to

T but after t=0 is set out. Finally, period O is analysed.
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The material to follow makes use of the following notation. Define p* as the unique

solution of

0 = n(p*, B) + e 8) + (I-nrd].
Iy Y

p* has the property that if t > T, and p = p* in the current and all subsequent periods, a firm
knowing 8 would be just indifferent about current period participation. Let #* be the number
of firms knowing 6 which as a group would produce output exactly sufficient to yield price p*

if no other firms produced; that is, n* is the unique solution to

p* = D[r*q(p*,0)].

Next, let p (> p*) be the price at which firms knowing 8 would earn exactly no from current

production. p solves
n(p, §) = 0.

Finally, let Q ; denote industry output at ¢
0,=1n4(@, ® + 74, O).

In particular, given p*, define O* by p* = D(Q*).

At this point, in order to avoid a proliferation of less relevant cases, four parameter

restrictions will be imposed. First, it will be assumed that parameters are such that
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=0

10 > y7rp*.8) + (1-70) n°

] (D

is satisfied. The restriction implies that if p ;= p* prevails for all ¢ beginning next period,
firms knowing only 60 would not enter during the current period. (Recall that p* is such that
those knowing 8 would be indifferent.) Without this restriction it may be that those knowing
only 60 may learn 8 so easily relative to those knowing 8, that equilibrium may involve those
knowing 6 producing at T and exiting at 7+, with output sufficient to cause p = p* for all

t > T + I being supplied by firms who entered at T knowing only 60, and who learned 6 at T.
Under restriction (1), it will be shown that np. ;> 0 must hold. It is easy to show that r > ?O
would be sufficient to guarantee the above inequality.5 That r > ?O is not necessary is,
however, advantageous, for in a richer model allowing innovation effort to be endogenous (for
example, Jovanovic and MacDonald) it is possible that the counterpart to r < ?O can occur
easily enough as a result of the greater incentives to innovate faced by firms whose

technological knowledge is presently inferior.

The second restriction is

q(p*, 8) > rq(p*, 6). | (2)

This inequality is a relatively mild one, but it plays an important role that will become
apparent. The conclusion that it is a mild restriction follows from noting that it is equivalent
to the one period output of a firm knowing 0, when p ;= p*, being smaller than the total
output a firm presently knowing only 8 would expect to produce using technology based on 8
if price remained fixed at p*.

Next, it will be assumed that N is sufficiently large that the expected present value of
profits from participation by firms knowing 90 may always be driven to ﬂ:O/(I -Y) by suitably

many participating, and, that if all N firms participate, so many would learn 8 that the
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supposed participation is not maximal for any firm knowing only 90. As stated, this "free
entry” restriction depends on the structure of equilibrium. However, it is neither difficult nor
very helpful to provide a statement in terms of primitives.

In a similar vein, it will be assumed that

20 < v min {BR[D(O),Q] + (1-py0, For[D(0), 81 + =), 81 + 7-7°- ro)no}. 3)

Under this restriction, if no firms plan to operate at z+, in which case p ] = D(0), it would
always pay for a firm knowing (-)0 to participate at . This restriction merely serves to
guarantee that the industry is "viable" once the basic invention has arrived on the scene.

Periods following T may now be analysed. Take as given ng >0, np > 0 and A= 0,
and consider date ¢t > T + I assuming X 2 0 (no entry of firms knowing 8) and n(t) = 0. Recall
(1) implies that if p < p*fort>T+1, ng = 0 may also be assumed. If p; < P (defined by

n(ﬁ,@) = 11:0) forall t > T+1,n = 0 may also be imposed.
T

There are three cases to consider. In the first the maximum number of firms that might
operate at t = T+1 —np + (_r;o + FO)ng—is at most 7*. In this instance the hypothesized

equilibrium evolution isé

1) ng._” =0, L (I-r)y_T+ _r_ongand ﬁT+I =rep+ ?On%
and i)  Vi> T+l n?+1=0,
ey g =(rjng
and & =n,+r,;

t+1 t t
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in particular X, = O forall t > T+1. Given ng >0 and nr> 0, this evolution is clearly
feasible. Moreover, because g(p,0) is increasing in p for all 8, and 0 < ¢(p,9) < ¢(p,0), it
follows that Q ; < Q%, and thus that p P2 p*. Therefore it is certainly maximal for firms

knowing either 8 or 6 to behave as hypothesized; that no = 0 is maximal for those knowing GO

t
will be demonstrated below. It follows that the evolution displayed above is equilibrium
behavior given np + ( ?O + L’O)ﬂT < m*.

For the second case, suppose instead that By + ( 7‘0 + Lo)ng > n*; in particular that
Ar. 1(= o + fong) > A*. In this case firms knowing 0 at T+1 would by themselves produce
output sufficient to cause p < p*forallt > T + 1, and should n ;> Oforanyt>T+1,p ;> p*
is implied. It follows that the evolution

V> T+1, n? =0,n,=0and i, = rap + ;‘—Orzg)w
is equilibrium behavior.”

The third and intermediate case—characterized by hy + (rO + Lo)ng > n* and
g, 1(=rﬁT + FOnS}) < n*—generates a slightly more complicated equilibrium evolution.
Recall the evolution in the first case: x, = 0. Given the present parameter values, if this "no
exit" evolution obtained, eventually Q ;< Q* would have to occur, implying p ;< p* for some

t. Let T* > T+1 denote the first date at which the inequality obtains. The hypothesized

evolution is then given by
. 0o _ _ 0 0 _ _ 20 0,
) npyp=0 npyy =UNap+ap-Xp, Ry g =gt TR

. 0o _
ii) Ve>T+1 niL g = 0,

ny; =UNn %, 0

3

=n,+rn,

and 7, , t ¢
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0 ifT* > T+1 andT+1 < t < T*

_ _ %) .
and i) %, = | (1) g + (Fops_p + s - n*)-g%r’g_%lf t =T* > T+l
[%;ig%-l}rﬂt-l ifr> T*.

The path of exit (xt) by firms knowing 9 implies that p ;= D[gtq(p » 0)+na tq(p fé)] > p* for
T+1 <t < T* (assuming T+1 < T*) andpt =p*fort>T* IfT+1 = T*,pt = p* for all
t > T+1. Note also that ng).*_ 1= 0 always holds. If T* > T+1, this implied by the assumption

n

NQI

= 0; if T* = T+1, the restriction (1) implies ng[=ng~*_ 1] = 0.

The expressions for x, # 0 are obtained as follows. First, X is chosen to yield

t
P« = p¥*, requiring QT* = Q% or

B d@*.0) + Fipyd(p*0) = F*q(p*,9).

Substitution of Ry = (I—r)ﬂT*_ 7~ X (recall ng*_ 7= 0) and s = Ropse g + Thyse_g gives
the desired expression. Feasibility requires 0 < X < 04 -r)nT*_ I Should Xps = 0, by
definition of T*, P < p* violating the requirement Ppx = p*. Similarly, if Xy = (]-r)n_T*_ 7

it follows that

QT* = (ﬁT*—] + rﬂT*_I)CI(P*:é)
< fipw140% ©) + Ay 4", © (by (2)

= QT*-]’

implying Ppx_g < p*, again violating the definition of T*. Thus 0 < X < @) -r)_t_z_T*_ I
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For x P givent > T* p .= p* and thus QO = O* must hold for all ¢, implying

n, ;4(p*, 8) + 7, 1q(p*, 8) = nq(p*, 8) + Ag(p*, 6).

Substitution of n, = (I-r)n, ; - X, and A, = i, ; +rn, ; gives the desired expression. Once
again the feasibility requirement 0 < X, < (I-r)n . ] is easily verified under assumption (2).

The role of (2) is clear. Exit by firms knowing 8 must maintain p ;= p*. If (2) fails,
learning may be so rapid, or firms knowing B may be so large, that even exit by all firms
knowing O might not prevent p £ < p*.

In terms of optimization by individual firms, that p P2 p* for all ¢ implies all those
knowing O will invariably participate. All firms knowing 8 at
t > T will strictly prefer to participate when ¢ < T*, and will be willing to behave as prescribed
by the hypothesized evolution for ¢ > T*.8 Again, that n? = () is maximal remains to be
demonstrated.

To summarize what has been shown so far, beginning during the period (T+1)
following that in which the refinement was invented, and assuming i) fixed values of ng >0
and By > 0, and ii) for all t > T, n? =0 and x . > 0, the evolution may take on three forms. If
np + (fo + zo)ng <n*,p ; > p* and no exit ever occurs. If By + (?0 + Lo)ng > n* and
rag + ?Ong > n*, all firms knowing 8 exit at 7+ and 7 = g+ Fong forallt > T+1.
Should nyp + (70 + zo)ng > n* and rag + ?Ong < n*, there is no exit prior to some date
T* > T at which time exit by firms knowing 9 begins; p ] <P; forz < T* and the level of exit
retains p,= p* fort > T*.

To proceed, consider date T, at which time the refinement is invented. In this part it
will be supposed that there is a positive number of firms, mr g > 0, that have learned 8 prior
to T; thus the number participating is constrained by 0 < hp < M g The number knowing
only 90 (prior to T) is then N—mT_ I

The construction for ¢t > T assumed n(} >0, np > 0, iiT = (, and both X 2 0 and

n? = 0 for all t > T+1. These restrictions must be shown to represent optimizing behavior.
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First consider n(t) = 0 for all t > T+1. Under free entry of firms knowing 90', the expected

present value of participation at date T given 90 must not exceed 7t0/( 1-y). In all three
evolutions (for ¢t > T+1) displayed above, the expected present value of participation given 60

is as great (or greater) at t=T than at any ¢ > T+/. Therefore nonparticipation at t > T+1 is a

0
t

The conditions ng > 0 and r‘zT = ( are merely definitions and need no further

maximizing choice for these firms: n, = 0 fort > T+1.

consideration. In regard to x P2 0 and np > 0, verification requires consideration of periods
prior to r=T and is therefore postponed. However, it can be mentioned that those conditions
are implied by Ny =My g > 0, which is what will be shown below. Thus By =My > 0 will
be employed here.

Given Ap= 0 and np = My (exogenous at T), all that needs to be analyzed at =T is
the behavior of those knowing 90; in particular, when is ng > 07 Recall that the expected
present value of entry at T for such firms cannot, in equilibrium, exceed 1c0/( 1-y). For mr g
sufficiently small, given restriction (3), ng = () yields any firm knowing only 90 expected
present value of profits from entry at T in excess of no/( 1-y). Given that N is large and that
raising n(Y)w augments both iy, g and ﬁT I thereby reducing p ¢ for t > T+1, there exists some
value of ng yielding expected present value of profits exactly equal to 1:0/( 1-y). Moreover,
this number is nonincreasing and continuous in mr g, since increasing My g raises iy and may
lower p,. Given that N is "large”, this value of ng is in fact declining in m ; for m , large
enough, and takes on its minimum value ng), = () for some value my_; < N. Thus, given any
M 1, the number of firms knowing 90 that participate at ¢ is either that n(]), > 0 which equates

the present value of participation at T to no/(l -Y), or, if no positive ng will accomplish this,

0

np = 0.

Now consider any period ¢ such that 0 < t < T; i.e. a period after the basic invention
and before the refinement. (Since T=1 may occur, such ¢ need not exist). It will be assumed

that for such ¢, no = 0 implies

;= 0. Again, that this behavior is maximal is to be shown. nO

t
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the number of firms knowing 8 at ¢, m,, is equal to the number that learned 9 at =0, Bng,

—t’
assumed positive.
For firms knowing 6, participation at ¢ < T confers no special advantage; in particular,
these firms are free to participate as soon as the refinement has been invented. Thus, they will

participate at ¢ < T if and only if p ; _>_ﬁ; ie. if n(p P 0 > 1\:0. The evolution for I <t < T is

given by

where 1 solves p = D[ng(p, 8)].

Notice that p . is constant for / < t < T, and pr is not larger than this value, since Ry = M g

Now, consider ¢=0. ny = Ay = 0, by definition. The behavior of firms knowing only
60 (i.e. all firms) is to be determined. Given the evolutions for ¢ > I set out above, if ng is
sufficiently small, participation by any one yields expected present value of profits in excess of
nO/(I <Y). Similarly, for n8 sufficiently large, the expected payoff falls short of 1c0/( 1-y). Ttis
also easy to verify that the expected payoff is continuous and declining in ng, since raising ng
augments 7, at least. Thus there exists some feasible n8 > ( such that the expected value of
participation at t=0 is exactly nO/( 1-y), and this value is that hypothesized for the evolution at
t=0.

It remains to check that three restrictions imposed along the way are nonbinding
1) xt_>_0 fort > T+1; ii) np > 0; and iii) n(t) #0onlyift=0orT.

Since mr = Bng > 0 under the hypothesized evolutions, both (i) and (ii) will obtain if
it can be shown that hp = mp ;. That Rp=mr_; implies By > 0 is immediate since Ry = 0
implies pr= D(0). In regard to the entry condition X 2 0 for t > T+1, there are two

situations. In one, as occurs if, for example x, , = (1-r)np, that no firm knowing 8 would
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strictly prefer to enter at ¢ > T+ is immediate because a payoff of at most nO/( 1-y) for firms

knowing 8 defines this situation. x, > 0 is then clearly nonbinding. In the other, the payoff to

t
participation exceeds nO(I —Y), and so any firm knowing 9 and not participating would seek to
do so. Butif By = My s there are no such firms since all possible entry occurred at t < T+1.
Thus, if np = mp 4, (i) and (ii) will follow.

That By = my g is easily shown. Suppose Ry < My g Then the expected present
value of participation at T given knowledge of 8 cannot exceed nO/(] —Y). In particular, p < ]
must hold, for simply producing at =T only is an option. Since p ) isconstantfor I <t < T
and cannot rise at T, the expected present value of profits given knowledge of 9 can never
exceed no/( 1-y) at any t: both U t( 0) and VT( 0) < nO/(l—B). Since free entry implies

U t( OO) = 11:0/( 1-B), it follows that the value of participation at 7=0 given 90 is at most

0 0 0
7{1371_‘7 + (I-B);,’f—y} <%

implying n8 = (. But given the assumption that if no firm planned to enter it would pay for
some firm to do so, ng = ( cannot occur in equilibrium, a contradiction. Thus Ry = My ;.

Observe that this same argument implies that if n , < My g fort < T-1, Xp 7= 0 must
oceur; Aip, 5 > o* (implying Xr, 1> 0) is thus ruled out for that case. Otherwise, the expected
present value of profits given 8 is no/(l -y) for all ¢, in which case no firm knowing only 90
would seek to participate at t=0. Simiarly, if n = Moy g X g > 0 implies nr= 0.

Finally, checking ng # 0 only if t=0 or T is straightforward. In all of the evolutions
displayed, the value of participating for firms knowing only 90 is exactly 71:0/( 1-vy) for

0 <t < T, in which case such firms would be content to behave as hypothesized for those

0

dates. For t > T+1, participation yields at most 1:0/(1 Y,son, = 0 is maximal for those dates

as well.
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Figure 1 summarizes the nine possible cases, and is read as follows. n8 > 01is
assumed. Along the uppermost branch not all firms knowing 8 participate until the refinement
is invented; n ’ < Bng. When this occurs, at 7, all such firms participate and so do some
knowing only 60; this latter group participates only at 7. Subsequently, all firms knowing
either @ or O participate. The other branches are interpreted similarly and make use of the

. 0. .
remarks made earlier; for example that n ; < Bno implies Xp, 1= 0.

Figure 1
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Footnotes

10bviously x? is constrained both above and below. These constraints are left implicit
during the development, but certainly satisfied in the equilibrium.

2Constraints on x, and X ; are treated in the same manner as those on x?.

=t

3Recall w(p; 90) =0.
4In the expressions to follow p : is price at ¢ and taking into account whether the

refinement has occurred.

0 A 0
Sie. =m0t O + {rﬁ%’%ﬁ + (I-r)]%]

[ a 0
n(p*,0) T
>y r———T:;-Y-— + (]-r)m}

[ & 0
0

ifr>r".
6For brevity, a complete description of A t(t,q,e,l -) is omitted. All information can,
however, be obtained from the evolution displayed, together with p = q(p P 0),p = D(Q t) and

Q,=n4qp, 0 +nqp,d).

7The trivial case in which p : is such that n(p ’ 0)< 11:0 is ignored.

8If oy is less than the number of firms knowing 8 at T, it will be necessary to verify

that nonparticipants that know 8 would be willing to eschew participation at £ > T+1. It will
turn out that consideration of this possibility is not required because np will take on its

maximum possible value; see below.



