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1. Introduction and summary

In this paper we provide a general framework for the analysis of a class of
dynamic choice models, and characterize the resulting optimal plans. We consider
the problem faced by an individual, labelled the principal, who must, in each period
of a multi—period horizon, select an agent, from a countable infinity of available
candidates, for the performance of some task.! Rewards accrue to the principal as a
consequence of his choice, and the principal’s objective is to maximize the discounted
sum of rewards over the horizon of the model; but the factor determining the
distribution of rewards in any given period — the chosen agent’s "type" — is unknown
to the principal. Agents’ types are independent and identically distributed, where the
parameters determining this distribution may or may not be known to the principal.2
Moreover, since information on an agent’s type can be accumulated only through
observations of rewards generated when the agent is employed, all untried agents
appear ez ante identical to the principal. Finally, since our purpose in this paper is
to examine the effect of uncertainty and information acquisition on the principal’s
optimal actions, we suppress the role of the agents by assuming there is only a single
"action" available to the employed agent; thus we ignore the problem of the principal

having to provide incentives for the agents.

iStrictly speaking, all we require is that there be more agents than the length of
the principal’s horizon, so that at least ome untried agent is available in each period,;
however the horizon is assumed infinite for most of the paper.

?Note that if the principal is unaware of the "true" distribution of agent types in
the population, a simultaneous learning issue emerges: rewards now provide information
on not only the incumbent’s true type, but also on the distribution of types in the
population.



An immediate application of this model, and indeed the scenario which provides
the motivation for this paper, is as a description of repeated elections, where the
agents are potential representatives of some constituency, and the principal is the .
(median) voter. Most previous research on repeated elections, notably Barro (1973)
Ferejohn (1986), and Austen—Smith and Banks (1989), study repeated elections from
a "moral hazard" perspective: the voters are attempting to control the actions of
their current representative through their choice of re—election rule.® In the current.
model, on the other hand, the problem faced by the voters is one of "adverse
selection”, in that the voters’ problem is simply to learn which of the potential
representatives is "best" at performing the given task of, eg., generating
government—controlled benefits for the constituency. This learning aspect of the
current model dovetails with the notion of "retrospective voting" due to Fiorina
(1981), where voters attempt to infer which candidate will provide higher benefits in
the next term as a function of the realized outcome from the previous term. The
current model places retrospective voting in an optimal learning framework, where
now the voters can use all previous realized outcomes to project which candidate will
provide the highest (discounted) sum of benefits over the voters’ horizon. Economic
applications of our model include the decision problem faced by an employer where
the current employee, and all potential employees, are of unknown quality; and as a
variant of the standard job search model where the worker is uncertain about the
reward distribution associated with each job (cf. Mortensen (1986) for a survey). In
the latter application, for example, the worker receives information about the current

job at regular intervals, and at each point in time has the choice of either remaining

30ther models of repeated elections include Alesina (1988) and Alesina and Spear
(1988) on credible policy pronouncements, Ledyard (1988) on the transmission of
information between candidates regarding voter preferences, and McKelvey and Riezman
(1990) on the observance of seniority in legislatures.



with the current employer, selecting a new, untried employer, or returning to a
- previous employer.

Our model is closely linked to-the extensive work.on optimal Bayesian learning
in economic environments, eg. Rothschild (1974), Easley and Kiefer (1988), Feldman .
(1989), McLennan (1988).4 However, in contrast to our paper, where we aim to
characterize the effect of uncertainty and learning on optimal actions, the optimal
learning literature has focused, almost exclusively, on examining whether individuals
in these models learn the "truth", ie. whether the stochastic process of beliefs
converges to point-mass at the true value of the parameter governing rewards. In
our model this unknown parameter corresponds to the infinite sequence describing the
true type of each agent in the population; it is clear that, except in degenerate
situations, asymptotic learning in the above sense is an impossibility in our model.
On the other hand, from the point of view of our applications, the effect of the
learning process on optimal behavior is an important issue, and it is this we attempt
to address.

Section 2 below provides a formal description of the basic model, in which the
distribution of agent—types in the population is presumed known to the principal:
We show that one can without loss of generality restrict attention to "no recall”
strategies by the principal, where such strategies select either the agent employed in
the previous period (labelled the incumbent), or else an untried agent (labelled a
challenger), but never a previously employed and discarded agent. This follows from
our first result, which states that if there exists an optimal strategy in the space of
"no recall" strategies, then such a strategy is optimal in the unrestricted space of

strategies as well. This observation enables us to reformulate the optimization

40ur model is also related, to a lesser extent, to the literature on micro-rational
expectations equilibrium; cf. Blume, Bray, and Easley (1982) for a survey.



exercise facing the principal as a dynamic programming problem, and in Section 3 an
appeal to standard arguments now reveals the existence of an optimal "no recall"
strategy for the principal. - Moreover, this policy is stationary, ie. such that the
optimal decision on whether to retain the incumbent is a function only of the
principal’s belief on the incumbent’s type.

In Sections 4 and 5 we turn to a characterization of the optimal policy. Our
basic model can be viewed as an infinite-armed bandit problem, by associating each
agent with an arm of the bandit;’ indeed, such an analogy is used in proving the
"no recall" property described above. Nonetheless, we show in Theorem 3 that a
sharp characterization of the optimal stationary policy can be obtained in a manner
very similar to the construction of the "Gittins index" for finite-armed bandit
problems (Gittins and Jones (1974)). Specifically, we show that by solving a family
of two—armed bandit problems, where the principal has to decide at each point
between accepting a fixed reward, thereby terminating the model, and retaining the
incumbent for one more period, at the end of which the same option is again
available, an "indifference reward level" can be associated with each possible prior
belief on an agent’s type. These indifference levels have the property that they
completely determine the optimal choices at any point in time in the basic model: it
is optimal to retain the incumbent in favor of a challenger if and only if the
indifference reward level associated with the former is greater than that associated
with the latter. Since two-armed bandit problems with one arm generating a known
fixed payoff form the simplest class of bandit problems, this result also shows how
the seemingly complex decision problem faced by the principal can be transformed

into a family of relatively well-understood and elementary ones.6

scf. Berry and Fristedt (1985) for a comprehensive study of finite—armed bandit
problems.

6Actually, an even stronger analogy with two-armed bandit problems suggests itself.



A natural question of interest in the basic model concerns the extent to which
the principal’s optimal policy. incorporates the -consideration of future rewards into the
current decision whether to retain. the incumbent.. Such trade—offs between current -
rewards and information acquisition that might better future decision-making ability
are indeed an inherent part of all dynamic learning models (cf. Easley and Kiefer
(1988)), and in Section 5 we examine this issue in the context of our model. As a
benchmark against which to compare the optimal policy, we consider the set of
myopic rules, ie. rules that completely ignore future rewards, and recommend
retaining the incumbent if and only if the current expected reward associated with
the incumbent is larger than that from the challenger. Our results show that a
surprising divergence occurs when going from the case of exactly two possible agent
types to three or more possible types. In the former case, Theorem 4 demonstrates
that — regardless of the specification of any of the remaining parameters — optimal
rules are always myopic. Thus, optimal considerations of information acquisition and
enhancement of future rewards are achieved in this case by merely identifying the
agent generating the largest one—period expected reward. A subsequent example then
shows that optimal rules need not be myopic, and vice versa, when there are three -
or more agent types: in particular, it may be optimal to go with the incumbent

(resp. challenger) even if myopic considerations favor the challenger (resp.

In the basic model, the "no recall" property implies that in each period the principal is
choosing between the incumbent and a randomly chosen challenger. Since the type
distribution of the latter is fixed and unchanging over time, this choice essentiall
amounts to that between the incumbent’s prior and this known, fixed (over timeg, prior.
Superficially, at least, this resembles a two-armed bandit problem with one arm
generating payoffs according to a known fixed distribution. The results in Section 5
show that this analogy is purely superficial, and has no deeper significance; see
footnote 8 below.



incumbent).” Therefore, depending on the number of possible agent types, myopic
_considerations may mean nothing or everything in the basic model.®

- In Section 6 we turn to a generalization of the basic model, where we assume .
that not only the "true" type of any agent, but also the distribution of agent types
in the population, is unknown to the principal. This complicates matters
considerably: observed rewards now generate information not only on the actual type
of the incumbent generating that reward, but also (since all agents, including the
current incumbent, are drawn randomly from the population) on the true distribution
of agent types. This simultaneous learning implies, of course, that the principal’s
prior beliefs on an agent’s type and on the distribution of types in the population
are not independent; and that the principal’s beliefs regarding the type of any
untried agent change over time as rewards are accumulated. To render the analysis
tractable, we assume recall is no longer an option to the principal; thus in each

period the only challengers are untried agents (as we explain below, in contrast to

TIndeed, the example also suggests that imposing any special structure on the
distribution of rewards from each agent type cannot resolve this conclusion. In
particular, the distributions in our example are actually ordered according to
(first—order) stochastic dominance, surely the most natural condition under which one
might hope for myopic optimal rules.

8These results highlight the differences between the basic model and two-armed
bandit problems (with one known arm), since it is well-known that in the latter class
of problems, myopic considerations always exert a one-way influence on optimal
decisions. Namely, in such problems it is optimal to play the unknown arm whenever
the current expected reward from it is larger, or not much smaller, than from the
known arm; however the converse fails to hold. The reason for this is as follows:
clearly, once the principal begins playing the known arm, he will continue to do so,
since no new information is revealed to alter his decision. Therefore if the unknown
arm gives a higher expected reward, the principal is better off today from playing this
arm relative to playing the known arm, at that time. On the other hand, playing the
unknown arm today generates information valuable to tomorrow’s decision; thus the
principal may prefer to play the unknown arm even when its expected reward is lower,
since such a loss may be offset by a gain in future payoffs.



the basic model this assumption is now far from innocuous). It is quite
‘straightforward to show that the results from Section 3 on the existence of an
optimal stationary policy for the principal carry over in toto to this more general -
framework, with the one difference that the optimal policy bases its recommendation
on the joint distribution of the principal’s belief about the incumbent’s type and the
type—distribution of challengers. However, little else carries over from the basic
model; in particular, an example shows that even in the simplest case where there
are only two possible agent types and the true distribution of types in the population
can take on only two values, optimal policies and myopic rules need not have
anything in common. As in the three-type example in Section 5, it may be optimal
to replace the incumbent even if the current expected reward from him is higher
than that from the challenger (based on the principal’s current perception of the type
distribution in the population), and to retain him even if it is lower. Further, the
example also reveals that the no-recall assumption may, unlike in the basic model,
be binding: the principal may wish to recall an agent who was discarded earlier in
favor of a challenger, since observations accumulated from that time might have
changed the principal’s perception of the population’s type-distribution, thus lowering
the "security level" associated with replacing the incumbent with a challenger below
its earlier level.

Finally, in Section 7 we suggest a number of possible extensions and

generalizations of our framework.

2. The basic model

2.1 Notation, Definitions, and Assumptions

In the interests of providing a single framework, applicable equally to the



various political and economic scenarios listed in the previous section, we couch the
description of our model in the language of principl-agent theory, and maintain this
terminology throughout the paper. - An individual, whom we refer to as the principal
has a "task" to be performed in each time period t = 0, 1, 2 ..., T} unless otherwise
specified, we set T = ». In each period t, the principal must select a single agent
for the performance of this task; we let N = {1, ..., i, ...} denote the (infinite) set
of available agents. In period t, the selected agent yields a reward 1* € R to the
principal. The distribution governing the realization of this reward is solely a
function of the chosen agent’s type. Each agent may be one of a finite number of
possible types {w;, ..., wg} = €, where K > 2. We denote by f, () = f(+|w) the
probability density of rewards accruing to the principal in any period if the chosen
agent that period is of type Wy - (Note that the likelihood of receiving particular
levels of rewards is independent of the time period and the identity of the employed
agent.) We assume that fj(-) and fk(-) have common support [r, 1], j, k = 1, ...,
K. We also assume, without loss of generality, that € is ordered according to

ezpected reward for each type, i.e., that R1 > R2 > > RK, where
R, = [rf(ndr, k =1, .. K. (1)

It is probably useful to provide at this point, a translation of the terms defined
above into the appropriate onmes for each application, since we do not touch on any
specific application again in this paper. In the repeated—elections interpretation of
this model, the principal is the (median) voter, the agents are potential
representatives of the voter’s comstituency, and the rewards represent
government—controlled benefits for the constituency. Thus, type in this context could
refer to the agent’s ability to steer these benefits in his constituents’ favor.

Similarly, in the job—search application, the terms principal, agents, and rewards refer



respectively to the searcher, jobs, and utility indices arising from various jobs.?
Lastly, the agents could also be interpreted as various potential employees available
to an employer, the principal, with the obvious interpretation that higher "types"
represent. better employer—employee matches.

Agents’ types are independent and identically distributed according to = € P(Q),
where for any set A, P(A) denotes the set of probability distributions over A. Thus
T = (7r1,...,7rK), where m_ is the ex ante probability an agent is type w; we assume
T > 0V k. For now we also assume 7 is known with certainty by the principal;

however we drop this assumption in Section 6.

Let H' = {h}0 = {IT}:=1} denote the set of histories of length t of realizations,
and define = ¢. A strategy for the principal is a sequence of functions o =
(oL,...,%,..) where for all t, ot: H*™ —> N. Thus o*(a"™) € N is the agent
selected by the principal in period t upon observing the t-1 realizations of rewards

described in ht—1

- let ¥ denote the set of strategies. In selecting a strategy the
principal wishes to maximize his total (discounted) sum of expected rewards over the

T-period horizon, so for all ¢ € %, let W(o) = E [ 6t_1rt] denote the worth of
t

strategy o, where § € (0,1) is the principal’s discount factor.

Finally, we describe how the principal’s belief about the agents’ types evolve
over time. At the beginning of period t, let pt(i) = (pg(i),...,pf((i)) denote the
principal’s belief about agent i’s type, and let pt = (pt(l),...,pt(i),...) denote his
belief about all agents. Thus p0 = (m,...,m,...), and since agent types are
independent, if agent i is not employed in period t then pt+1(i) = pt(i). On  the

other hand, if agent i is employed in period t, then upon observing a reward of rt

9This interpretation is, in a sense, more general than the simple job—search model
(cf. Mortensen, 1986), fo rit admits the possibility that wages may not be the only
distinguishing factor among jobs, and, moreover, permits recall.



10

the principal updates his beliefs about i in a Bayesian manner:

O (r
p' )bt = AG)n) = ( ——p—‘i)—l‘(—)— ,
? pj(l)fj(r) k=1,...,K

(2)

so that ﬂk(p(i),r) is the principal’s posterior probability agent i is type w, given the
realized reward r and prior belief p(i). More specifically, we can write pt+1(.) as
pt+1(ht;a), since the belief at the beginning of period t+1 is a function of the
history of realizations, as well as the principal’s selections up to period t (embodied

in the strategy o).

2.2 The "no recall" property

In general solving for an optimal strategy for the principal, ie. a strategy
maximizing W(.), could be quite complicated. However, in this subsection we show
that the principal can without loss of generality restrict attention to a simple class of

strategies, namely those that never recall an agent who has been previously employed

and then discarded. For all histories h' = {IT}:_Z]_, define h: = {I‘T}j_=1, 0<s <t
thus h: is simply the first s realizations in the history ht. We say that the strategy
o employs no recall at period t if V il ¢ Ht_l, at(ht_l) =i and as(h:_l) = i, for
some s, implies asl(hgjl) = i for all s < s* < t-1. Thus, o employs no recall at t
if at(ht_l) is either the previously employed agent, who has never been discarded, or
else is an untried agent. We say o is a mo recall strategy if o employs no recall at
all t = 1,2,...; let Enr denote the set of no recall strategies, and define o, 35 3

strategy such that W(s) = sup W(o’). For now we assume such a strategy exists;
nr

in the next section we prove its existence. We now show that Ty is optimal in the

space of unrestricted strategies.
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Suppose that only n < o agents are available to the principal; since agents are

. identical - ex ante we can think of: this as restricting the principal’s strategy space.to-

5= {o:Vth enm o'(h'™1) < n}. Then the principal’s decision problem is
equivalent to an n-armed bandit problem (cf. Berry and Fristedt (1985)), with an
"arm" associated with each available agent. Gittins and Jones (1974) show that an
optimal strategy for such a problem can be characterized by the solution to a family
of optimal stopping problems, one associated with each arm. In the current context,
this would work as follows: as before let p(i) denote the principal’s current belief
about agent i’s type, and suppose the principal’s decision is to either employ agent i
for the current period, or stop the process and accept a payment of m € R; further,
if the principal employs the agent today, then he faces the same decision tomorrow
(albeit with a potentially different belief). Now solve for the value m(p(i)), agent i’s
current "Gittins index", such that the principal is indifferent between employing
agent i today and stopping the process, and do so for each of the n agents; note
that m(.) is not indexed by i since agents are identical up to their type, nor is
indexed by time since with geometric discounting and an infinite horizon the stopping
problem is time-invariant. Then Gittins and Jones (1974) show that given the ..
current belief about the n agents pt = (pt(l),...,pt(n)), the optimal decision is to
select the agent with the highest value of m(pt(i)). Thus, letting pt(ht—l;a) denote

ht——l

the Bayesian updated belief about the agents after the history , we have that for

e =1 *t t-1 ooy b1, *
all t, and all t-1 histories h* ~, ¢ ‘(n)(h* ") € argmax m(p'(i)(h" “;0 )). Note that
i

*
although this definition looks circular, ie. o -appears on both sides, it is actually.-

recursive in t, since pt(.;a) requires only knowledge of the principal’s decisions up to
period t-1.
Now since all agents in the current model are identical ex ante, an implication

*
of this result is that o (n) employs no recall through period n, or more precisely
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that the principal never recalls a previously discarded agent until all available agents
‘have been employed for at least one period. The reason is that if agent i has been -
employed only ‘once, and has-been -discarded for an untried agent, then -at the time 1
was dropped m(p(i)) < m(x); further, since no new information about i has accrued,
i’s Gittins index is still m(p(i)). Thus, as long as there exists an untried agent, the
principal will never recall agent i. Theorem 0 below can be seen as an immediate
extension of this result to the case where there are an infinite number of agents:
there exists an optimal strategy without recall, since there always exists an untried
agent. However, the Theorem of Gittins and Jones is for finite-armed bandits only,
and we are unaware of any generalizations to the infinite-armed case. While we
conjecture that such an extension should be possible (with some additional minor
conditions!0), we show that, in effect, their result does hold in the context of the

current model.

Theorem 0. W(o_ ) = Sl}l}p W(o).

Proof. Suppose not; let o be such that W(;‘) - W(o

o) = € > 0, and define t(e) as

the unique value of t solving
1
§'Ry
€ = ——
1-6
Define the strategy o’ as follows: ¥V t < t(e), ot = at, while for all t > t(¢) ot

selects only those agents previously employed plus a set of untried agents, where the

10In a general infinite—armed bandit problem, one diffculty would be that an arm
with maximum Gittins index need not exist, implying one additional condition may be
that such a maximum does exist. Notice that this is not a problem in the current
model: although there exist an infinite number of arms/agents, the fact that all are
identical ex ante imples there is only a finite number of distinct values for the Gittins
index at any point in time, since all untried agents have the same index.
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sum of agents across these two groups is equal to t(e). Thus ¢’ can be thought of

as a strategy associated with a t(e)-armed bandit problem.
Claim 1. |W(o) — W(o")| < .

This follows since, i) o and ¢’ agree on t < t(e), ii) the maximum expected payoff
from period t(¢) onwards, evaluated at t = 0, is

5’“(6)111 T ACASS gt M2 4.

(5t( E)R
= = ¢ and
1-6

iii) the minimum expected payoff from t(¢) onwards is zero.

*
Recall ¢ (n) is the optimal strategy when only n agents are available, ie. an

n—-armed bandit problem.
*
Claim 2. W(o (n)) is strictly increasing in n.
Suppose n+1 agents are available, and let o(n;n+1) denote the Gittins index strategy
*
which ignores one agent; clearly W(o(n;n+1)) = W(o (n)). By the Gittins and
*
Jones Theorem, o (n+1) is the uniquely optimal strategy when n+1 agents are

*
available, implying W(J*(n—i—l)) > W(o(n;n+1)) = W(o (n)).

Claim 3. W(o (t(¢))) > W(o").
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*
This follows since both o (t(¢)) and o’ employ t(e) agents, and by Gittins and Jones

*

o (t(€)) is the optimal strategy among those employing t(e) agents.
*

Claim 4. V n < w, W(o, ) 2 W(o (n)).

*
If not, then there exists t such that W(o (t')) — W(o ) = A > 0, implying (by
* *
Claim 3) V t > t* W(o (t)) - W(o,) > A. But since o (n) and o agree on the
*
first n periods, |W(o (n)) — W(o, )| is bounded above by 6nR1/(1—5), which is less

than A for n sufficiently large.

Thus we have W(o_) > W(o (1(e)) (by Claim 4)
> W(o’) (by Claim 3)
and |W(s) — W(o")| < ¢ (by Claim 1). Thus either W(s") > W(0), in which
case W(o_) > W(a), or else W(g) 2 W(0"), in which case W(o) - W(a,) < €
QED

Theorem 0 implies that the only previously employed agent the principal might select
in period t is the agent employed in period t-1, whom we now refer to as the
current incumbent. Thus, we can without loss of generality recast the principal’s
problem as a binary choice problem at each point in time of either retaining the
current incumbent, or else replacing him with a selection from the (infinite) set of
untried and ex ante identical agents, whom we refer to as challengers. Further, the
only relevant information accruing from past realizations is the principal’s belief
about the current incumbent’s type; thus, redefine p = (pl""’pK) € P(Q) as the
belief about the current incumbent only, while 7 € P(Q) is the belief about current

and future challengers. For all p € P(Q), let P(.) be the expected density over
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rewards given belief p: fP(r) = % P, fi(r) ; and let R(p) denote the expected reward
k
given p: R(p) = X PRy Then the decision to replace the current incumbent with a
k

challenger will affect the principal’s immediate (expected) rewards to the principal, ie.
either R(p) or R(w), the distribution of rewards, either 2(.) or £7(.), and (through
the realized reward and Bayes’ Rule) the beliefs of the principal going into the next

period, at which time the principal faces an identical decision problem.

3. Existence of an optimal policy

In this section we prove the existence of an optimal "no recall" strategy. As
noted above, when restricting attention to no recall strategies the principal’s problem
is one of binary choice, ie. select either the incumbent or a challenger, and the only
relevant variable in this decision is the principal’s belief about the current
incumbent’s type. We now follow Easley and Kiefer (1988) and formulate this
binary choice problem as a dynamic programming problem, whose components are:.

i)  the state space S = P(Q) ;

ii)  the action space A = {0,1}, where 0 denotes replacing the incumbent and

1 denotes retaining the incumbent;
iii) the (expected) reward function R SxA - R, with

R (p1) = [ifP(r)dr = 3 p;R; = R(p)

R*(p,O) = [rf"(r)dr = ¥ mR, = R(7);

iv) the transition probabilities Q : SxA -+ P(S), where
Q(p,1)(X) = prob {A(p,r) € X | p}
Q(p,0)(X) = prob {f(mr) € X | 7}
for X a Borel subset of S.
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The transition probabilities in (iv) are easily defined using the Bayes map f :

P(Q)x[r,7] = P(Q) from eq. (2), and so we state the dynamic programming problem

in terms of A rather than Q.

Our first result tailors the usual existence result of dynamic programming to

the current environment.

Theorem 1.

i) The principal’s optimization problem is well-defined. The value function

V : S - R associated with the problem is continuous on S, and for all p € S

satisfies

V(p) = max {V(r), R(p) + §fV(A(p.x)’(r)dr} ; (3)

*
ii)  There exists a stationary optimal policy a : S - A.

Proof. Let C(S,R) denote the space of continuous, bounded, real-valued functions o

S, and for all w € S define the operator M on C(S,R) by
Mw(p) = max _ {aR(p) + (1-a)R(n) + fafw(A(p,0))P(r)dr

ae{0,1
+ (1-a)[w(H( 7r,r))f7r(r)dr]}. (4)

It is easily seen that the Bayesian updating rule is continuous; hence Mw maps

C(S,R) into C(S,R) by the standard arguments.

Since, (a) v,w € C(SR) and v < w implies Mv < Mw, and (b) M(w + x) =

Mw + 6x for any constant x, it follows from Blackwell (1965) that M is a

contraction given § < 1. Therefore M has a unique fixed point V:

n
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V(p) = max {aR(p) + (1-a)R(n) + affV(H(p,1)P(r)dr
ae{0,1

+ (1-a)6fV(B(m,r)f" (r)dr}. (5)

It is immediate that we can translate this expression for V(.) into the more compact-
form given in the statement of the Theorem. Further, that V(.) is the value
function of the problem also follows from standard dynamic programming arguments;
cf. Maitra (1968).

Condition (ii) follows from the fact that the continuity of V(.) implies the
correspondence of maximizers in (5) is upper—hemicontinuous, and hence admits a

measurable selection. QED

In the next two sections we consider the characteristics of the optimal
*
stationary policy « . It turns out that for the case K = 2, ie. two possible agent
types, we get an extremely precise result, while for K > 3 the picture is a little

murky. The proof of the former is facilitated by the following:
Theorem 2. The value function V : S =+ R is convex.

Proof. The arguments follow McLennan (1988), and proceed in several steps. For all
w € C(S,R) define

Hw(p) = Jw(A(p,0)P(r)dr. (6)
We first show that if w € C(S,R) is convex, so is Hw. Using this and the linearity
of R(.) in p, we show that Hw convex implies Mw convex, where M is the
contraction mapping from Theorem 1. Lastly, we show that this implies the
existence of a convex w € C(S,R) such that w = Mw . Since V is the unique

fixed point of M, this implies V is convex.
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Let w € C(S,R) and pl,p2 € S, and define p = 'ypl + (1——')’)p2 for some 7 €

(0,1).

Step 1. w convex implies Hw convex.

For each r € [r,r] define ¢(r) € (0,1) by
2
(DP(r) = 1 (1)

1
(equivalently (1 — ¢(r))P(r) = (1 - NP (1))

Observe that €(r) € (0,1) and
(1-e(r)A(pLr) + ()B%r) = Blp.)-

Suppose w is convex; then
Hw(p) = jw(ﬂ(p,r)fp(r)dr
= Jw((1-€(D)Bp") + e(D)AE° )P ()dr

< [[a-e(@))w(Bp5r) + e(r)w(BE% )P (r)dr

(by Jensen’s inequality)

1
y G;g-(ﬁ‘)iﬂ w(B(pL )P () dr

2
b T 2
+ %p—(ﬁ)l w(B(p2,)P(r)dr

= (1—7)Hw(p1) + 'wa(p2), completing step 1.

Step 2. Hw convex implies Mw convex.

(7)

(8)

(9)
(10)

(11)

This is a straightforward exercise using step 1 and the linearity of R(.) in p.
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Step 3.
Let W be the set of all convex w such that w ¢ Mw. Since R(.) is bounded and &

*
€ (0,1), W is non-empty (eg. take w = 0) and bounded above. Define w by

W*(p) = sup w(p). (12)
weWw .

As the supremum of convex functions, w is convex as well.

But w ¢ Mw also implies Mw < M(Mw) for any w € W. By step 2, w convex
implies Mw convex, so for all w € W we have Mw € W. However, by the definition
of W*, Mw* € W implies W* > Mw*, implying w* = Mw*. Since V is the unique

*
fixed point of M, V = w , thus proving the convexity of V. QED

The intuition behind Theorem 2 is quite straightforward. Consider p,p’ € P(Q), and
let py = Ap + (1-\)p’, where X € (0,1). Then p, can be viewed as the expected
prior before it is known whether an event has occurred, where A is the probability of
the event’s occurrence. On average, knowing whether or not the event has occurred

cannot lower the value of the problem, which is precisely the convexity of V(.).

*
4. A bandit characterization of the optimal policy a

In Section 2 above we saw how the Theorem of Gittins and Jones (1974)
generates a concise characterization of an optimal solution to a finite-armed bandit
problem. In this Section we derive an analogous result for the current model;
namely, the optimal policy a* for the principal can be characterized by the solutions
to a family of stopping problems. What makes this exercise tractable is the "no
recall" property of an optimal strategy for the principal: rather than solving for the

solutions to an infinite number of stopping problems (as might be the case in a
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general infinite—armed bandit problem), we need onmly solve for iwo, one for the
- current incumbent and one for a randomly chosen challenger.

Recall that in the stopping problem, the principal has the option of either
allowing an agent to perform the task in the current period, or stopping the process
and accepting a payment of m € R.!t Further, if the agent is chosen, then in the
next period the choice is between this same agent and the payment m, although the
beliefs of the principal concerning the agent’s type will undoubtedly differ. For any
m € R, let W(.;m) be the unique fixed point of the contraction mapping

Mw(p;m) = max {m, R(p) + 6fw(B(p,);m)fP(r)dr}, (13)

and for all p € P(Q) define m(p) = inf {m : W(p;m) = m}. Thus, m(p) is the
amount rendering the principal indifferent between selecting the agent, where the

principal’s current belief about the agent is p, and selecting the payment.
*
Theorem 3. o (p) = 1 if and only if m(p) > m(7).

Proof.

Step 1. W(p;.) : R - R is convex and increasing on R.

W(p;.) increasing in m is obvious. If g is any strategy that stays with m once it is
selected (as an optimal policy must), it is trivial to see that the payoff under g is a
linear increasing function of m. Since the optimal strategy is the payoff-supremum
over all such g, and the supremum of non—decreasing linear functions is convex and

non—decreasing, the result follows.

1tNote that this problem is strategically equivalent to a two-armed bandit problem
with one arm generating rewards according to a known fixed distribution, since in any
optimal solution to the latter, if the "known" arm is uniquely optimal in any period, it
remains uniquely optimal in all subsequent periods.
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Step 2. W(p;m) - W(p,m’) < m — m’ for all m > m"’.
Let g(.;m) be the optimal policy under m, and consider -the policy g(.;m) when m’ is
the outside option. Clearly,

W(pim) < W(pim’ |g(5m)) + (m - m) (14)

< W(pm’) + (m - m’), (15)

where W(p;m' |g(.;m)) is the payoff under g(.;m) if the outside option is m’. The
first inequality holds since the only difference between W(p;m) and W(p;m|g(.;m)) is
as a consequence of taking the outside option. The second inequality follows

immediately from the first.

Step 3. [W(p;m) — m] is decreasing in m.

Follows from Step 2.

Step 4. Let m = V(7); then W(;m) = V(.).

Follows from the uniqueness of fixed points of the respective contraction mappings.

Step 5. m(7) = V(x).
By Step 4, W(m; V(7)) = V(7), so by definition of m(7), V() > m(r). Suppose
V(7) > m(x), and define

HW(p;m) = R(p) + & W(A(p,r);m)f(r)dr. (16)

Since W(;V(m)) = V(.), so HW(m V(7)) = V(r) by the definition of V(.).
We will show that for any m, if m(7) < m then HW(mm) < m. This will

imply HW(m; V(7)) < V(7), a contradiction. If m > m(r), then
HW(mm) = R(r) + 6/W((r,r);m)i"(r)dr (17)
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= R(7) + 8§ W(B(m,r);m(m))f"(r)dr

+ S{J[W(B(mx);m) — W(B(mr);m(n)]f" (r)dr } (18)

< m(7) + §(m — m(x)) (by Step 2 and the definition of
m(p))

= (1-f)m(7) + ém (19)

< m, since § € (0,1) and m(7) < m.

Step 6. m(p) > m(m) <=> V(p) > V(m).

Suppose m(p) > m() and V(p) < V(r); then V(p) = V(). But V(p) = W(p;m(m))
(by Step 4), so W(p;m(1)) = V(p) = V(n) = m(r). Therefore by the definition of
m(.), m(p) < m(x), a contradiction.

Suppose now m(p) < m(x) and V(p) > V(r). Then V(p) = W(p;m(r)) > V(7).=
m(7), implying W(p;m(7)) — m(r) > 0. Since W(p;m) — m is decreasing (by Step
2), it follows that m(p) > m(~). QED

*
Thus Theorem 3 shows how « , the solution to an infinite-agent dynamic choice
problem, can be characterized by the solution to a family of simple optimal stopping

problems.

5. Can myopic decision rules be optimal?

A natural question concerns the extent to which the optimal policy a*
incorporates the consideration of future rewards into the current decision whether to
retain the incumbent. We say a stationary decision rule a : S - A is myopic if
a(p) = 1 if and only if R(p) > R(7). Myopic decision rules are obviously a

particularly simple class of rules in that they require mo consideration of future
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rewards, or, more precisely, that such a consideration is already imbedded in the
maximization of current rewards. While it may be apparent that one can always
find a set of parameters (eg. {fk},é, or 7, the most obvious case being § = 0) such -
that a* is myopic, the next result shows that if there exists only two types of

agents, then the optimal decision rule is always myopic.

* *
Theorem 4. If K = 2, then a (.) is myopic; in particular, a (p) = 1 if and

only if p; > 7y

Proof. To simplify notation let p be the probability the current incumbent’s type is
w;, and note that V r € [r,r], A(.,r) is strictly increasing.

Now by (3) we know that V(.) is bounded below by V(7), and hence attains. a
global minimum at p = 7 Also, #(0,r) = 0 and f(1,r) = 1 for all r € [r,r]; it
follows then that since Ry > Ro, V(.) attains a global minimum at p = 0 and a
global maximum at p = 1. By the continuity and convexity of V(.) (Theorems 1
and 2), it is immediate that V(.) is constant on [0,p] and non—decreasing on (p,1],
where p > m further, V p € (p,1], V(p) > V(). Thus, a* is of the form

a*(P)‘—‘{O Tfp ‘ I_). (20)

1 ifp>p
We show that V p € (m1], V(p) > V(r), implying p = 7, and therefore proving the
Theorem.

By (20) we can write V() as
V(r) = R(7) + E{I{V(w)f”r(r)dr + ]JgV(ﬂ(r,r))fW(r)dr}, (21)

where A = {r : f(m;r) < p}, B = {r : B(mr) > p}. Thus A and B partition [£,1],
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and if r € A the current incumbent is replaced at the beginning of the next period,
while if r € B the incumbent is retained. Further, since f(w,r) > = if and only if
f,(r) 2 f5(r), and p 2 7, it must be that B C {r: £,(r) 2 ()}

Next, since V(.) gives the payoff arising from the optimal policy, we know that

for all values of p
V(p) > R(p) + 5{1£ V(mP(r)dr + ]g V(A(p,r))P(r)dr}, (22)

where the sets A and B are the same as those in (21). The RHS of (22) is the
payoff associated with retaining the current incumbent, replacing him in the next

*
period if r € A and then proceeding according to « , and retaining him if r € B and

*
then proceeding according to a . Thus

V(p) - V(n) 2 R(p) - R(n) + &{V(m) I{[fp(r) ~ 7(r))dr

+ II3 V(B(p.))P(r)dr - ]{3 V(B(mx))f"(r)dr}. (23)

Let p > m; then R(p) > R(m), so that V(p) — V(7) > 0 if the bracketed term in

(23) is non—negative. To see this holds, note that
V() [[P() - £(@)ldr + [V(Apx)P()dr ~ [ V(A(mr)E"(r)dr
A B B

> V(m) l{[fp(r) - £(n)dr + 113 V(B(mn))P(x) — £(r)ldr (24)
(since B(.,r) and V(.) non—decreasing imply V(4(.,r)) is

non—decreasing)
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> V(W)A[fp(r) — fT(r))dr + IJBV(W)[fp(r) — £7(r)]dr (25)
(since ¥ p € [0,1] V(p) > V(m), and [P(.) - £7(.)] is non-negative on
the set B)
= V(7 P(r)dr - T(r)dr
V() [AéBf (r)d AlI)Bf (r)dr] (26)
= 0. QED

Hence if there exist only two types of agents, the principal’s optimal policy prescribes
simply selecting the agent who provides the highest expected reward for the current
period, thereby apparently ignoring cohsideration of future beliefs and future rewards.
Further, the reward distributions, f,(.) and f,(.), are immaterial to the optimal policy
beyond simply the determination of which type generates the highest expected
1-period reward.

Two additional features of the model restricted to two types are worth noting.
The first is that the policy in Theorem 4 is optimal even if the model is one of
finite, rather than infinite, time. The key is that if p; > 7y then regardless of the
realization of rewards the current incumbent will be preferred to the current
challenger in the next time period. Thus, consider the optimal policy if the current
incumbent is replaced, and alter this policy by keeping the current incumbent and
subsequently following the former policy with respect to retaining the agent. Thus, if
in the next period the current challenger would be retained, retain the current
incumbent as well; on the other hand if the current challenger would be replaced,
replace the current incumbent. Then the principal receives a higher expected payoff
today from retaining the current incumbent, and will either receive a higher expected

payoff (if both would be retained) or the same expected payoff tomorrow.
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Continuing this argument, we see that, regardless of when the procedure ends,
retaining the current incumbent if p; > 7 is optimal.

The second feature of this model is that the optimal decision rule in the space
of rewards, as opposed to beliefs, has the following simple property: if r is such that
fl(r) > f2(r), then the incumbent is necessarily retained regardless of p. This follows
by Bayesian updating: if py > m and r is such that fl(r) > f2(r), then ﬂl(p,r) > py
> m, implying R(A(p,r)) > R(#) and by the Theorem the incumbent is retained; if
on the other hand f;(r) < fy(r) then the optimal decision rule depends on the
relative magnitudes of f;(r) and fy(r) as well as the previous belief p. Thus, for
example, if [r,r] = [0,1], f,(r) = 3r2, and f,(r) = 2r, then if r 2 2/3 the incumbent
is necessarily retained.

On the other hand it is easily seen how Theorem 4 and the ensuing conclusions
do not extend to the case where K > 3. Consider the following 4-period example,
where Q0 = {wl,w2,w3}, and the reward distributions are Bernoulli: let q, = prob{r
=1:w= wk}, 1-q = prob {r =0: w= wk}, and note that Ry = q. Let
the prior on challengers be = = (1/3,1/3,1/3), and q = (ql,q2,q3) = (3/4,1/2,1/4).
Suppose rl, the realized reward in period 1, is 1, in which case the incumbent is
retained, and 2 = 0. Applying Bayes’ rule we see that the principal’s belief about
the incumbent at the beginning of period 3 is p = (.3,.4,.3), implying in particular
R(p) = R(7). Should the principal retain the incumbent? The answer is "no",
according‘to the following argument: with either the incumbent or the challenger the
probability of r3 = 0, which would entail selecting the challenger at the beginning of
period 4, is 1/2; further if r3 = 0 the expected payoff is the same regardless of the t
= 3 decision. Now if the current incumbent is retained and r3 turns out to be 1,
then Bayes’ rule implies A(p,1) = (9/20,8/20,3/20), giving an expected reward of
R(8(p,1)) = 23/40; if on the other hand the challenger is selected and = 1, then
B(m1) = (1/2,1/3,1/6), giving an expected reward of R(A(m,1)) = 7/12 > 23/40.
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Hence the expected payoff in period 3 is the same regardless of whether the
incumbent is retained, while the expected payoff in period 4, evaluated at the
beginning of period 3, is strictly greater if the incumbent is replaced. Thus, even
though the principal is indifferent with regard to myopic or current payoffs, he is not
with regard to future payoffs.

The key to this example is that if p; = D3, a8 is the case here, than R(p) is
necessarily equal to R(w), and the next period’s reward (if ° = 1) will be higher
from keeping the current incumbent only if p; > 7 = 1/3. However given the
symmetry of the reward distributions, and since the principal has observed the same
number of "1’s" and "0’s", he continues to believe P; = DPg, but now has shifted
weight (relative to the prior) onto Pg, thus guaranteeing that p; will be less than
m: Further, we can modify the example by "perturbing" p so that R(p) is strictly
greater than R(7) and yet the incumbent is still replaced. To do so use the above
analysis as that pertaining to the last two periods preceded by a string of x periods
with r = 1 rewards followed by a string of x—1 periods with r = 0 rewards. Hence
in all previous periods the expected 1-period reward from the incumbent, is greater
than that of the challengers, so we can assume the originally chosen agent is still the
current incumbent. Then for x large we get that p; = pg + ¢ for some small ¢,
implying R(p) = R(7) + p for p small, but p, will be close to 1. Therefore p; will
be less than , implying from above that R(f(w,1)) will always be strictly greater
than R(A(p,1)), and therefore that for x large enough (and consequently p small
enough) replacing the incumbent even though R(p) > R() will be optimal.

As noted in Section 1, this gives a prescription which never occurs in the
two—armed bandit problem With one known arm. In the latter case, if the unknown
arm gives a higher (expected) payoff today than the known arm, then the principal
is better off with the unknown arm today, and cannot be any worse off tomorrow,

since he can still select the known arm at that time regardless of the realized
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reward. In the current model, however, the current challenger, while giving a fixed
expected payoff and being always available, is itself an unknown arm, and as such
may give a different payoff tomorrow depending on the realized reward. Indeed, this
is precisely the moral of the above example: today’s challenger might look better
than tomorrow’s challenger or today’s incumbent from fomorrow’s perspective, even if
today’s challenger looks worse than today’s incumbent from today’s perspective. Of
course, as noted above this logic fails when there are only two types of agent, in
which case if today’s incumbent looks better than today’s challenger, then the former

will look better than the latter for all possible realizations of rewards.

6. Adding uncertainty about the distribution of types

Suppose we now modify the principal’s problem by assuming that, in addition
to not knowing any agent’s true type, the principal is also uncertain about 7, the
likelihood a challenger is of a particular type. In this case, upon observing a reward
from the current incumbent the principal will not only update his beliefs about the
former’s type, but also about w, and hence about future challengers. This follows
since the current incumbent’s type was also drawn according to =, although at
present the principal may have more information about the incumbent’s type than
about future challengers.

We make two simplifying assumptions. The first is that we restrict attention
to "no recall" strategies, so that the principal’s optimization problem can again be
formulated as a dynamic programming problem. As we show below by way of
example, in contrast to the basic model this assumption is no longer without loss of
generality: since the principal is now learning about his "outside options", ie. the

value of 7, he may wish to return to a previously discarded agent, who now may
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look attractive relative to a randomly chosen challenger. Therefore Theorem 0 will
not necessarily generalize to the current environment.

The second assumption is that the principal "knows" 7 € II = {n(1),...,7(J)}; of
course, the case where J = 1 corresponds to the previous model. The principal’s
belief space is now P(QxII), where A € P(QxII) gives the joint distribution over the
current incumbent’s type as well as over the population distribution. Thus )‘kj
denotes the probability associated with the joint event {w = wy, 7 = 7(j)}, k =
1,...K, j = 1,.,J. The marginal of A on §, which yields the principal’s prior on
the incumbent’s type, will be denoted p()), and the marginal of A on II, ie. the

principal’s prior over the "true" population distribution, will be denoted p(A):

prob {w = wy : A} = p(A) = ? )‘kj , (27)
prob {r = (j) : A} = ,uj()\) = i )‘kj : (28)

Given a prior A € P(QxIT) and an observation r € [r,r], the principal again updates

his beliefs according to Bayes’ rule:

A s fo(1)
Bi(Ar) = kjk k=1..K j=1,.7J. (29)
J 5% Ayt (®
m q q
In particular,
£f.(r)8:A .
k k
p(BOD) = (o)
m2q m(r))‘mq k=1,....K
fi (1)p ()
K \ TPk
= ( ) (30)

15131 f.(0)p,(A) k=1,...K

gives the updated belief about the current incumbent, while
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Bl DAy ;

28 (A, 3=Led
m g

wB(Ar)) = ( (31)

gives the updated belief about the population distribution. Note that the updated
belief about the current incumbent can be expressed as a simple function of the prior
belief about the incumbent, as in the earlier model where 7 was known.

Given A, we denote the joint distribution obtained when the principal replaces
the incumbent with a challenger by h(}), ie. the new prior h()) is the joint
distribution of the new incumbent’s type and the population distribution. The belief
h(A) is defined as follows: for x € P(II), denote by p(u) the expected distribution of

types under p of a new draw from the population, ie.

P = b = : =Y . , k = 1,...,K; 32
pk(/"’) pro {(4) wk ,U,} J Wk(l):u"] ’ EARES Rt} ( )
when p = y(A) for some A, we denote p(x) by p(A). Then h()) is obtained from A

by simply replacing p(A) with p(A):
h(Y) = prob {w = w7 = 1)} = M

]
k=1..K j=1,.1J, (33)

and note that h(h(})) = h(}A).

The principal is now faced with the following problem at the beginning of every
period: whether to continue with the present incumbent, so that the updated prior
next period after an observation of r is f(A,r), or to replace the incumbent, in which
case the new starting prior is h(A) and the Bayesian updated belief will be A(h()),r).
As before, the problem may be transformed into a dynamic programming problem,
with

i)  state space S = P(QxII)
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ii) action space A = {0,1}
~* -~ -~
iii) (expected) reward function R : SxA - R, where

R 1) = JPM)dr = R(p(2)

R'(00) = PV = RE(O)

iv) transition probabilities é) . SxA - P(é), where
Q(A1)(X) = prob {A(A1) € X | A}
Q(A0)(X) = prob {A(h(X),r) € X | h(A)} ,

where X is a Borel subset of S and Q() is definable from the

Bayesian updating rule.
Generalizing the arguments in Section 3, we get the analogous results:

Theorem 5.
i) The principal’s optimization problem is well-defined. The value function
\~/' : E~3 - R associated with the problem is continuous on é, and for all A € é

satisfies

V(3) = max {V((3), RG() + §VEA)PN@dr}. (34)

a-* - -~
ii) There exists a stationary optimal policy a : S - A.

iii) The value function V : S 4R is convex.

While a bandit characterization analogous to that in Section 4 eludes us for the
model with unknown 7, we can show how the results in Section 5 do not generalize.
Specifically, consider the following two-type, 3—period example, where J = 2, ie. 7
can take on only one of two values, I = {n(1),7(2)}, and where we let p(A) € [0,1]

denote the probability the current incumbent’s type is wy Then we can write
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p(B(A,r)), the belief about the current incumbent upon observing a reward of r, given

prior A, as

p(d0n) = 1P (35)
"5 @p(A) + f,(r)(1-p(V))

Similarly, after some manipulations we can write p(f(A,r)), the belief about

tomorrow’s challenger given prior A and upon observing reward r, as
Ekiljfk(r)w( j))\kj

p(A(A1)) = ST (36)
mgq™ mq
_ 5RO + [8() - ()] 2y o
f,(r)p(2) + fy(r)(1-p(A))
and finally,
) < QOO+ (6500 1(0)] By o

£()p (A) + f(x)(1-p(}))

is the belief about tomorrow’s challenger, given reward r, if the current incumbent is

replaced by the current challenger.

The following result is useful in characterizing the principal’s optimal policy in

this example.

Lemma. Suppose A = h(}), implying p()) = p(}); then p(A(A,r)) > p(A(A,r)) if and

only if £,(r) 2 f5(1).

Proof. Follows immediately from (35), (37), and the fact that E_7r(j))\2j > 0. QED

J
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Note: this is as in the 2-type model in Section 5.

Let o denote the principal’s decision at time t, and let p(rl,al) denote the -
principal’s belief about the agent selected at t = 2 given his t = 1 decision, the
realized reward r; (and subsequent t = 2 decision).1? Then the expected payoff in t

= 2, evaluated at the beginning of period 2, is

frolp(r )y () + (1-(r;))y(xy)ldr,
= Jryfy(rp)dry + Blrp)rylf(ry) — fy(rg)ldry
= R, + p(r))[R; - Ry). (39)

Evaluating this payoff at t = 1, we get

Ry + [Ry = Rolfp(ry)[p(aV)fy(ry) + (1-p(a))iylry)ldry (40)

where ;~>(a1) is the belief about the t = 1 incumbent given the principal’s decision at
the beginning of the t = 1 period.

Now suppose p(A) = p(}), implying R(p(X)) = R(p(})), ie. the current period
expected rewards are the same from either the incumbent or the challenger, and the
principal is simply interested in selecting the t = 1 agent to maximize the expected
reward in period t = 2. If the incumbent is retained at the beginning of period 1,

1

ie. @ = 1, then by the Lemma the decision rule at t = 2 will be to retain the

incumbent if f;(r) > fy(r) and replace with the challenger otherwise; further, since

12The two time periods are to be considered the last two periods of a finite horizon
model. The distribution of "initial" beliefs used below could, at the risk of
complicating notation, have been derived from identical underlying priors on all agents.
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p(A) = p(}) this is also the decision rule if ol = 0, ie. the current incumbent is
replaced. Let A = {r : f;(r) < fy(r)} and B = {r : £,(r) 2 fy(r)}; then, using the

Lemma and eqs. (35), (37), and (38) to rewrite eq. (40), we get the following

expression for expected t = 2 payoffs, evaluated at t = 1, if al = 1:

Ry + [Ry - R2]{II3 £, (r)p(A)dr + lg(fl(r)ﬁ(A) + [f(r)- 1(r)]?7r(j)>\2j)dr}

= Ry + [R; - Ryl{p(}) + ?W(J')A%{& [fo(r)£; (r)]dr} (41)
since p(A) = p(A). Similarly, if o' = 0, we get
R, + [Ry - R2]{]J3 f,(r)p(A)dr + ‘l{(fl(r)ﬁ()\) + [fz(r)—fl(I)]?W(J')hzj)df}

= Ty + (R~ RHFO) -+ Br(iny | Iy (42)

Canceling terms, we see that al = 1 is optimal if and only if
Y(i . > Yr(j)h,. = IM1=7(3)] .
j7r(J)A2J > jW(J) % jW(J)[ m()]k;
= ST + Ay (43)

J
or,

)] (=D = (g < 0 (4)

Now let #(1) = .1, 7(2) = .9, and suppose X is the following:
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(1) m(2)
w 10/200 86,200
w, 95,200 9/200

Then p(A) = p(A) = 96/200, and

?7"(.])[ (1_7r(j)))‘1j - W(J)’\QJ] = 4/2000 > 0;

*1
hence aa = = 0.

Alternatively, suppose A is the following:

(1) m(2)
wy 30,/200 66,200
we 75/200 29/200

Then again p(A) = p(A) = 96/200, but now

B (=r(Ayy - DAy = - 14:85/200 < 0,
J
implying a*l = 1.

Then, by perturbing ) slightly, we can have R(p(})) > R(p(})) but o = 0,
and R(p(})) < R(p(})) but ¢ = 1, ie. the incumbent having a higher 1-period
expected payoff is neither necessary nor sufficient for the principal to retain him. In
particular, even with only two types of agents and two possible values of 7, myopic
decision rules may not be optimal. This example, along with the example at the
end of Section 5, shows how Theorem 4 is sensitive to both the assumption of only 2

types and to the assumption that 7 is known with certainty by the principal.
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Notice in addition that if in the perturbed example R(p(A)) > R(p(A)) but aI
=0, and the reward is such that the t = 1 challenger is retained, then the principal
would tather recall the previous incumbent, since for p()) arbitrarily close to p(A),.
p(A(\,r)) will be greater than p(A(h(})),r) for some values of r. Therefore adding
the ability to recall previously employed agents will non—trivially effect the analysis
of the principal’s optimal policy when 7 is unknown; ie. Theorem 0 will not

generalize to the current environment as well.

7. Extensions and generalizations

The framework we have offered in this paper admits generalization and further -
investigation in several interesting directions. Perhaps the most obvious one is to
allow agents a choice of actions, eg. effort levels, with the usual stipulation that
hjgher costs accrue to agents from actions yielding (probabilistically) higher rewards
to the principal. This would, of course, convert the one-person optimization model
in the current paper into an infinite-player stochastic game. Several questions
regarding the characteristics of the resulting equilibria now arise. First, continuing to
assume the principal is limited to an "up or out" choice and cannot offer differential
contracts to separate agent types, what (if any) are the conditions under which a
"patural" equilibrium separation occurs in the agents’ action space, with higher types
invariably selecting higher actions? Second, in the two-type situation, are there
Markov—perfect equilibria in which an analog of Theorem 4 holds, implying the
principal’s equilibrium strategy is myopic? Third, if the principal is allowed to offer
differential contracts, what kind of contracts arise in equilibrium? In particular, are

"separating" contracts a robust possibility?



37

An alternative avenue of exploration concerns the generalized model of Section
6, and a more comprehensive characterization of the principal’s optimal policy. It
would be especially interesting to know if a generalized Gittins index—type
characterization is available for this problem along the lines of that provided in
Section 3 for the basic model. A second open question within this framework
pertains to "learning" in the limit; namely, whether (or under what conditions) the
marginal of the principal’s belief on the distribution of agent-types converges to
point—mass at the "true" distribution.

Finally, although we have provided a reasonably exhaustive characterization of
the optimal policy in the basic model, we have left unanswered several questions
concerning properties of the model arising from this policy. These include the
expected time to dismissal for different agent—types, whether "higher" types last on

average longer than "lower" types, etc.
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