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Abstract. Consider an n-armed bandit problem in which each of the n
independent arms generates rewards according to one of two known reward
distributions, but the true distribution associated with some (or all) of the
arms is unknown. If rewards are discounted geometrically over an infinite
horizon, and the reward distributions either (a) both admit density
representations, or (b) are both discrete distributions, then we show that
myopic strategies are optimal in the space of all strategies. Some
interesting implications of this result for a class of Bernoulli reward
distributions are given.
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1. Introduction

This paper studies the class of n—armed bandit problems characterized by the
property that each of the n arms generates rewards to the decision-maker according
to one of two known distributions, F1 and F2. The arms are assumed independent,
so that the probability any given arm is of type F, is independent of the "true"
types of the remaining arms. Under some mild technical conditions on the
distributions Fy and Fo, and the assumption of geometric discounting by the

decision—maker over an infinite horizon, we prove the optimality of myopic strategies,

ie. strategies that specify the arm to be played in each period solely on the basis of

maximizing the current expected reward. Thus, in our environment the trade—off

between current rewards and information acquisition to enhance future rewards is
avoided, in that the "optimal" consideration of future rewards is in essence embedded
in the maximization of current rewards.

The problem we study is closely related to, but distinct from, the work of
Rodman (1978), who generalizes the results of Feldman (1962). In particular,
Rodman is concerned with the case where exactly one of the arms is of type F1 and
the remaining arms are of type F2, but it is not known which arm is of type Fl.1
Rodman shows that myopic strategies are optimal in this framework as well. In
addition, our problem is related to that of Berry and Fristedt (1985, Theorem 4.3.9),
where there are two arms available, both of which are Bernoulli, and where the arms
have a common two—point support (thus each arm can be one of two possible types,
as here). Berry and Fristedt show that as long as the discount sequence is
nonincreasing, a myopic strategy is optimal. Theorem 1 below then shows that, by

restricting attention to geometric discounting, their result holds for an arbitrary

IRodman also allows the horizon to be finite and the discounting to be uniform.



number of non-Bernoulli arms.2

Section 2 below describes our framework precisely, and gathers definitions. The
Dynamic Allocation Index (DAI) of Gittins and Jones (1974) is reviewed in Section
3, and then invoked to show the existence of a solution to the decision-maker’s
optimization problem. In Section 4 we show that the arm having the highest current
expected reward is also one of the arms with the highest. DAI, thus proving the
optimality of myopic strategies. Finally, Section 5 provides a characterization of the

optimal solution for a class of Bernoulli reward distributions.

2. The Problem

For a comprehensive and general description of bandit problems, we refer the
reader to Berry and Fristedt (1985); the following suffices for our purposes.

The horizon we consider is infinite. Time is discrete, and periods are indexed
by t = 0,1,2,... In each period, a decision—maker, hereafter referred to as the
principal, must decide which of the independent arms of the bandit to play, where N
= {1,...,n} denotes the set of available arms. Each arm yields a reward r € R to
the principal, where the realization of this reward is according to one of two known
distributions, F1 and Fo; however, the principal does not know the "true" type (ie.
whether it is F, or F2) of some or all of the arms. He begins instead with a
vectors of priors p = (pl""’pn) € [0,1]", where D; € [0,1] is the principal’s prior
belief that arm i is of type F,.

We assume F1 and F2 have finite expectation. For technical reasons we shall

also require these distributions to satisfy one of the following conditions:

2For further references on myopic optimal strategies, we direct the reader to the
excellent monograph of Berry and Fristedt (1985). Recent additions include Fristedt
and Berry (1988), and O’Flaherty (1989).



(C1) F; and F, admit densities (with respect to the Lebesgue measure),
denoted fl and f,, resp.; or

(C2) F, and F, are discrete distributions.

Throughout, our presentation is confined to case (C1) for notational cleanliness;
however, the modifications of the proofs to cover (C2) are transparent. ILet R =
supp f; U supp fo, where for k = 1,2 supp f = {reR : fk(r) > 0}. All integrals in
the material following are to be taken as being over the set R.

Observations accumulated through the play of the various arms are used to
update the vector of priors in a Bayesian manner. Since the arms are independent
by assumption, information regarding a particular arm may be accumulated only
when that arm is employed. Let pt = (pi,...,pfl) denote the principal’s beliefs at the

beginning of period t, and suppose arm i is played that period and the reward r € R

is witnessed. The updated vector of beliefs for the principal, pt—l'1 =
(!, pETY), is then given by
p§+1 = pg, if j#1i, and (2.1a)
t
1. (1)
t+1 t !
Pi+ = ﬁ(Piyr) = 3 ; T ) (2.1b)
Pifl(r) + (1—pi)f2(r)
t+1

where f(.,.) represents the Bayes map. [For r ¢ R we adopt the convention p =
p']

Histories and strategies are defined in the usual manner: let m = ¢, and for
integers t > 1 let H' denote the set of all possible (partial) histories of length t of
observations, with generic element nt. A strategy o for the principal is a sequence

of measurable maps {at} such that ¢° € N and for all integers t > 1, ot 'Y 4 N



Thus at(ht) is the arm recommended by the strategy o in period t if the history bt
of rewards has been observed. Let ¥ denote the set of all possible strategies
available to the principal.

We assume the principal discounts  future rewards geometrically using the factor
§ € (0,1). The principal’s objective is to maximize the (expected) discounted stream
of rewards over the infinite horizon. Formally, each strategy o defines, in the
obvious manner, a t—th period expected reward for the principal based on the initial
(period 0) vector of priors p, denoted rt(a)(p). Thus, the total discounted reward

under ¢ from p, or the worth of strategy o, denoted W(c)(p), is given by

W(o)(p) = EO (o)) - (2.2)

* *
The principal’s objective is thus to find a strategy o € ¥ such that W(o ) = sup
g€EY

W(o); if such a strategy exists, it will be called an optimal strategy.

Finally, let I'y = jrdFk(r), k = 1,2, denote the expected reward from a type k
arm. To avoid trivializing the principal’s optimization problem, we assume I‘1 # I‘2,
and, without loss of generality, that I'; > T\. For notational convenience we let

I‘(pi) = pl'y + (1—pi)1‘2 be the expected one—period reward from employing arm i

p.
given belief p;, and f Y1) = pif;(r) + (1-p;)fy(r) be the expected density governing

rewards.

3. Existence of an optimal strategy

Although the existence of an optimal strategy for the principal may be
established directly by appealing to standard results in the theory of discounted
dynamic programming, we do not adopt this route here. Rather, since the Dynamic
Allocation Index (DAI) is an essential ingredient in the proof of our main result in

the next section, we construct these indices and invoke the Theorem of Gittins and



Jones (1974) to accomplish this end.

The DAIs associated with the arms are constructed in the following manner:
pick an arm i € N, and suppose p; € [0,1] is the principal’s prior belief arm i is of
type Fl‘ Consider the optimal stopping problem in which, in each period, the
principal must decide whether to play arm i or stop the process and accept the
terminal reward m € R.3 Standard results in the bandit literature (eg. Berry and
Fristedt 1985, Ross 1983) establish the existence of a unique continuous function
V.(-m) : [0,1] - R such that V.(p;;m) is the value to the principal of this optimal
stopping problem when the initial prior on arm i is p; and the terminal reward is m.

Moreover, V.(.,m) satisfies the functional equation

Vi(p;m) = max {m, I'(p;) + 6]Vi(ﬁ(pi,r),m)fpi(r)dr}. (3.1)

It is routine to verify that if m is sufficiently large, say m > I‘l/(l—&), then
V.(p;m) = m for all p, € [0,1], while if m is sufficiently small, say m < T',/(1-6),
then Vi(pi,m) > m for all p; € [0,1]. The DAI of arm i when the prior is D;;
denoted mi(Pi)’ is defined by

m,(p;) = inf {meR : V,(p,m) = m}. (3.2)

Since arms are identical up to the prior on their true type, it follows that Vi(.,m) =
Vj(.,m) for all i,j € N; this implies of course that mi(.) = mj(.) for all i,j € N as
well. Henceforth these common functions will be denoted V(.,m) and m(.),

respectively.

3Alternatively, one could consider the (strategically equivalent) two—armed bandit
problem in which one arm is arm i, and the other generates a known constant payoff
of m(1-6).



Theorem 0 (Gittins and Jones, 1974). The optimal initial selections in the n-armed

bandit problem given the priors p = (pl,...,pn) are those arms i for which

m(z) = ¥, nip) (3.3)

4. The optimality of myopic rules

The myopic strategy o for the principal is the strategy that in period t

recommends the arms that have the highest expected current rewards based on the

priors at the beginning of period t; thus, given pt = pt,...,plc , o™ selects any arm
8 8 1 n y
i for which
I'( by = IlV r(pt 4.1
Pi) ) (PJ) ‘ (4.1)

=1

Myopic strategies are a particularly simple class of strategies in that they do not
require the principal to take account of the impact of his current actions on his
future rewards. In this sense, they go directly against the fundamental
characteristic that bandit problems often exhibit, the trade—off between current
rewards and the acquisition of information that might improve the principal’s future
prospects, a trade—off that Whittle (1982, p. 210) claims, "embodies in essential form
the conflict evident in all human action" (emphasis added). Nonetheless, we show in
this Section that in the current environment a myopic strategy by the principal is

actually optimal.

Theorem 1. W(o™) = sup W(a).
oeX



The proof of Theorem 1 follows as a consequence of several Lemmata. The
underlying argument is, however, quite simple, and an outline of the proof may be

useful. First, observe that since I‘1 > I‘2, 80

n n
M(p) = V T(p) <=> p;= V p;. (4.2)
j=1 =1

We show that whenever p,p’ € [0,1] satisfy p > p’, then we must also have m(p) >
m(p’), where m(.) is the DAI function of the previous Section. Since this function

has the same form for all the arms, this will imply

n n
P = V p; => m(pi) = V

AR ; m(p;) . (4.3)

Theorem 1 is now an immediate consequence of (4.3) and Theorem O.

The following Lemmata establishing (4.3) all concentrate on the optimal
stopping problem described in the previous Section. For expositional ease we drop

the subscript "i" and use p € [0,1] to represent the prior on a generic arm.

Lemma 1. For all p € [0,1], V(p,.) : R - R is continuous and non—decreasing.
Proof. Berry and Fristedt (1985, Theorem 5.0.1) prove this for the strategically

equivalent case of a two—armed bandit with one known arm. o

Remark. V(p,.) continuous implies in particular that V(p,m(p)) = m(p) for all p €
[0,1].

Lemma 2. For all p € [0,1], m(p) € M = [I'y/(1-6),I';/(1-0)].
Proof. If m < Ty/(1-6), then V(p,m) > m for all p € [0,1]; conversely, if m >
I'y/(1=6), then V(p,m) = m for all p € [0,1]. o



Lemma 3. For all m € R, V(,m) : [0,1] = R is convex on [0,1].

The proof of Lemma 3 is somewhat tedious, and so is relegated to an Appendix.
However the intuition behind the result is straightforward: consider p = (pl""’pn)
and p’ = (pi""’pﬁ)’ and let Dy = Ap + (1-A)p’, where X € (0,1). Then p, can
be viewed as the expected prior before it is known whether an event has occurred,
where ) is the probability of the event’s occurrence. On average, knowing whether
or not the event has occurred cannot lower the value of the problem to the

principal, which is precisely the convexity of V(.,m).

Lemma 4. For all m € M, V(.,m) is non—decreasing on [0,1].
Proof. V(p,m) > m for all p € [0,1] follows from (3.1). Also, if m > T'y/(1-6), then

V(0,m) = m. The result now follows from Lemma 3. O

Lemma 5. For each m € M, if V(p,m) = m for some p € (0,1], then V(p’,m) = m
for all p’ € [0,p).

Proof. Immediate consequence of Lemma 4 and the fact that V(.,m) > m. o

Lemma 6. p > p* => m(p) > m(p’) for all p,p’ € [0,1].

Proof. If p = p’, then clearly m(p) = m(p’), so suppose p > p’. Then, since
V(p,m(p)) = m(p), so V(p’,m(p)) = m(p) by Lemma 5. By definition of m(.),
then, m(p’) < m(p). O

Proof of Theorem 1. Immediate consequence of (4.2), Lemma 6, and Theorem 0.

QED



Theorem 1 thus establishes the optimality of myopic strategies in "two—type" bandit
problems regardless of the values of the remaining parameters in the model, ie. the
reward distributions Fl’F2’ the principal’s prior belief p, the discount factor 6, or the

number of arms n.

5. A Bernoulli example

Consider the following special case of this model: the reward distributions are
Bernoulli, with ¢, = prob{r=1 : F:Fk}, 1-q = prob{r=0 : F=Fk}, k=12 We
assume q; = 1-q,, and q; > qg, SO that q; > 1/2 > Ay Finally, we suppose that
all arms are a priori identical to the principal, so that the initial prior p = (7,...,7)
for some 7 € (0,1). Note that under these assumptions, the posterior belief on an
arm which has generated a 1’s and § 0’s is a function only of the difference o—f; in
particular, this posterior is the same as the one resulting from observing o—@ 1’s and
no 0’s (resp. f—a 0’s and no 1’s) whenever a > f§ (resp. § > a).

We assume without loss of generality that whenever the principal is indifferent
between playing any subset of arms he selects the arm with the lowest number, so
let the principal begin by initially selecting arm 1. Then Bayes rule along with
Theorem 1 imply that the principal will remain with arm 1 until more 0’s have been
observed than 1’s, at which time he will begin playing arm 2. Note that this
decision rule is independent of the value of 7. Similarly, arm 2 will be replaced
with arm 3 whenever more 0’s than 1’s have resulted from arm 2, and so on.
Finally, the principal will return to arm 1 after the first time the n—th arm has
generated more 0’s than 1's, since the principal’s beliefs about all arms are again
identical (by the earlier observation that the posterior depends only on the difference
between the number of 1’s and 0’s observed). And, since the above process is
independent of the initial prior 7, the entire procedure now repeats itself In

particular, any time a previously discarded arm is chosen the decision rule governing
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its replacement is exactly the same as that employed the very first time the arm

was chosen, regardless of the current belief about the arm. Consequently, the
"survival" probability distribution of an arm each time it is newly selected is
identical to the distribution the first time it was chosen.

A second characteristic of this optimal policy is that the distribution of an
arm’s continued use follows a random walk. To see this, consider a newly selected
arm as starting at the position 1 on the real line. If a 1 is observed, the position of
the arm moves one unit to the right of its previous position, while a 0 moves it one
unit to the left, where a type F, arm moves to the right with probability qp- From
the above description of the principal’s optimal policy, it follows that the arm is
replaced at the first instance at which the origin is reached, ie. the first time more
"left—-moves" than "right—-moves" occur. In random walk terminology, this is simply

the first—passage to the absorbing barrier at the origin.

The following features of random walks are well-known (cf. Feller, 1968). Let
q denote the probability of a right-move; then, (i) if ¢ < 1/2, the probability of
reaching the origin at some point in time is one, while (ii) if q > 1/2, this
probability is (1—q)/q. Further, (iii) if ¢ < 1/2, the expected first—passage time is
1/(1-2q), while (iv) if q > 1/2 this is evidently infinite. Therefore, in this example,
all arms whose true distributions are F2 will with probability one be replaced each
time they are chosen, with an expected duration of continuous play equal to
1/(1-2q,). More to the point, this expected duration is independent of the entire
past use of that arm, as well as its current prior. Of course, analogous statements
hold for type F1 arms, except that with positive probability such an arm will never

be replaced.
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Appendix

Proof of Lemma 3. Fix m € M, let I = [0,1], and define C(I,R) to be the set of all

continuous functions from I to R. Endow C(I,R) with the topology of uniform (ie.
sup-norm) convergence. It is well known that C(I,R) is then a complete metric

space. Define the operator T on C(I,R) by
Tw(p) = max {m, I'(p) + 6fw(A(p,r))P(r)dr}. (A1)

Routine arguments show that T maps C(I,R) into itself, and is a contraction. Hence
T has a unique fixed—point, one that is evidently V(.,m) given in (3.1).

* *
We will show? that there is a convex function w € C(LR) such that Tw

w . By uniqueness of the fixed—point this establishes V(.,m) is convex.
Some notational simplification will greatly aid this process. For w € C(IR),
let
Hw(p) = Jw(8(p,))P(r)dr, and (A2)
Mw(p) = I(p) + 6Hw(p). (A3)

Then, of course,

Tw(p) = max {m, Mw(p)}. (A4)

As a first step in showing the existence of a convex fixed—point of T, we show that
if w is convex, then Hw is convex as well. By the linearity of R, this will imply
that Mw is also convex. As the max of convex functions, then, Tw will be convex.

1 2

So suppose w € C(L,R) is convex. Let p~,p” € I, and define p = (1—)\)p1 +

)\p2 for A € (0,1). For all r € R define €(r) by

4These arguments largely follow McLennan (1988).
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1
(1-€@)P(x) = (- (2) (A5)
(or, equivalently, ¢(r)fP(r) = Afpz(r)),
and note that

Blp,r) = (1-e()A('1) + «(r)B(p%1). (A6)

Since w is convex,
Hw(p) = [w(B(p,r))f(r)dr
< Sl(-e@)w(Bp'r) + ew(BEE)IPE)d (A7)
(by Jensen’s inequality)

1 2
= (AW )P (@)dr + Aw(BELo)P (r)dr (A8)
(by definition of €(.))
= (1-0Hw(pY) + AHw(pd). (A9)

- Thus, w convex implies Tw convex, completing the first step of the proof.
Now let W be the set of all convex w € C(LR) such that w < Tw. Since I'(.)

*k
is bounded, W is nonempty and bounded above. Define w by

W (p) = sup _ w(p) (A10)

* * *
Then, clearly w is convex and w < Tw . But T is also a monotone operator (ie.

* * *
v < w implies Tv < Tw), so Tw < T(Tw ). Now from the above arguments w

%k
convex implies Tw convex, so Tw € W as well. Thus, by the definition of w ,
* * * *
Tw < w, implying Tw = w . Since V(.,m) is the unique fixed-point of T,

*k
V(.,m) = w, so V(.,m) is convex on I. QED
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