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In neoclassical optimal growth models the stability of the paths of
capital accumulation depends on the discount parameter. We prove here that,
for discount factors small enough, the policy function which describes an
optimal path can be of any type. The result is achieved by making use of the
notion of a-concavity and it leads to a constructive approach. Given any
twice differentiable map we show how to construct an optimal growth problem
which produces that map as the optimal policy function. An obvious consequence
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1. INTRODUCTION.

Many dynamic models used in current research assume, either explicitely or
implicitely, that the actions taken by the economic agents are very regular
and predictable. Also it is often claimed that this "well behaved" behaviors
are logical consequences of some hypothesis on the rationality of the agents.
In this paper we investigate wheter these assumptions are infact sufficient to
ensure such a regularity: we will find that this is not the case. In
particular we prove that even very irregular (i.e. chaotic) dynamic behaviors

are possible.

Capital theory provides the best established analytical framework in which
to carry out this exercise. In this case a reduced form model is considered.
An aggregate welfare function is defined in terms of the state variables and
its discounted sum is maximized. The resulting optimal choice is a sequence
of vectors of capital stocks which are Pareto Optima for the underlying
economy. It is then customary to interpret such a sequence as a competitive

equilibrium over time for some decentralized economy.

The concept of policy function plays a central role in describing these
aggregate accumulation paths. It is defined as the map which associates to any
given capital stock the future capital stock which is optimal according to the
intertemporal objective. Under standard assumptions, these functions will be
continuous from some compact set into itself. Clearly the set of all
C°-functions is very wide: consequently many efforts have been placed in
finding economically meaningful assumptions capable of restricting the
possible policy functions within some smaller subset. The best results in
this area belong to the so-called Turnpike Theory: loosely speaking they
provide conditions for the policy function to be a map with a unique and
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dynamically stable fixed point. Unfortunately the whole problem is
dramatically complicated by the presence of discounting: the optimal solution
depends on the.discount factor, and such dependence, even if continuous, can
actually be very complicated. In fact most of the Turnpike Theorems are
stated in terms of discount parameters very close to one, i.e., for problems
in which discounting is relatively unimportant. On the other hand some well
known examples of instability and other new researches on the periodicity of
optimal paths have definitely proved that the class of functions with a unique
and globally attractive fixed point does not exhaust the set of policy
functions. The reader is referred to Benhabib and Nishimura [1] for a recent

work on this topic, some earlier literature is also quoted there.

All this leads to a very natural question: "Can an arbitrary continuous
function defined on a compact subset K of the positive orthant be an optimal
policy function for some value of the discount parameter in a neoclassical

optimal accumulation model?".

We provide here a first affirmative answer to this question. It is not a
complete solution of the problem above because we have to restrict ourselves
to a less general set of maps. Specifically we prove that the claim above is
true for the set of twice differentiable functions and not for that of all the
continuous functions. The former is actually dense in the latter, but the
restriction does not seem to be unessential. In fact it is not clear to us if

an extension to the continuous functions is possible.

Let us recall that the results presented here are a continuation and
specialization of the research initiated in Boldrin and Montrucchio [2]. They
are a continuation because the "Density Theorem" contained there is improved
upon here; and a specialization because in the first work we considered a very
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large class of models of economizing over time, whereas in the present article
we restrict ourselves to the neoclassical optimal growth model only. Formally
this amounts to adding some monotonicity conditions on the return function,
but this apparently innocuous variation requires some new techniques to be

handled.

We have organized the article in this way: the next Section contains a
formal statement of the problem and some standard results from the precedent
literature. Section 3 is devoted entirely to list and explain the notions of
a-concavity and concavity-B which are essential in proving the two main
Theorems of Section 4. We conclude the paper with a simple economic example
and some comments on future research. For reasons of homogeneity and brevity
we have omitted any detailed economic applications here: this is left for

further work in which special attention will be paid to the two-sector model.



2. STATEMENT OF THE PROBLEM.

The neoclassical model of optimal growth with discounting is completely

described by problem (P) and the subsequent assumptions (A.1)-(A.3) below.

o
Max ) V(kt,kt+1)5t
£=0
subject to (kg,ktsq)eT, £=0,1,2,.... (P)
ko given in K

Se(0,1) .

(A.1) The set of feasible capital stocks KC-RY is convex and compact. The
technology set TCKxK is also convex and compact and it satisfies: projq(T) =

K. We also assume that K has non-empty interior.

(A.2) The return function V: KxK+R is continuous and concave. V(k,*) is

strictly concave for every fixed keK.
(A.3) V(k,k') is strictly increasing in k and strictly decreasing in k'.

To simplify our notation from now on, we will denote the set of capital
stocks which are technically feasible from k with T(k) = {k'eK, such that

(k,k')eT}.

The solution to (P) will be a sequence of vectors in K, say {kg, ki,
kp,....} with k, exogeneously given. It can be shown that under (A.1)-(4.3)
such an optimal path exists and it is unique. These same results can be
actually obtained under a set of assumptions weaker than (A.1)-(A.3), see for

example McKenzie [7].



The optimal solution {ky, k4, ....} can be alternatively represented by
iterating a policy function t§ . This will be a map from K into K such that:
k1 = t8(kg), ko = t5(ky), ...., etc. . The subscript § is used to underline
the dependence of the policy function on the discount parameter: this
parameterization turns 6ut to be a crucial step in the development of our

central argument.

The relevant features of t1g are probably better understood by introducing
the techniques of Dynamic Programming. Define the value function associated

to (P) as:

Ws(ko) = Max ) V(kt,kt+1)6t (1)
t=0

subject to (k¢,kgs1)eT
kKo given in K.

It is well known that Wg(kg) turns out to be the (unique) fixed point of a
functional equation which is induced by a contraction operator of modulus §
over the space of all the continuous functions (see for example Denardo [5]).

This functional equation is the Bellman Equation:
Wg(k) = Max {V(k,k') + 8Wg(k'), s.t. k'eT(k)} (2)
This allows a "formal" definition of the policy function as:
T5(k) = Arg max {V(k,k') + SWg(k'), s.t. k'eT(k)} (3)

Notice that the iterates of (3) over K define the dynamical system:

kg1 = Tg(kg), t=0,1,2,.... , which describes the optimal path starting at
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the initial condition k, . A more detailed discussion of the relation between

(P) and tg§ can be found in Boldrin and Montrucchio [2].

To place our enquiry within the framework of the contemporary research we
report, without proofs, some previously estabiished facts about the behavior

of the dynamical system induced by (3).

FACT 1. Under assumptions (A.1)-(A.3) the following properties are true:
a) tT§ is a continuous map from XK into K,
b) the map 8+ tg is continuous from the interval [0,1) into C°(K;K),
c) C%°-lim 145 = O,

§»0*

where 0 is the policy function of the short run problem:

Max {V(kg,k1), s.t. k1eT(ko), ko given in K}

and the C°-1im refers to the topology of the uniform convergence.

Proof. See Boldrin and Montrucchio [2]. Notice that Assumption (A.3) is not

needed at all in proving this result.

FACT 2. Assume dim(K) = 1 and that V is of class C!. These two additional
Assumptions, plus (A.1)-(A.3), imply that: there exists a §! such that for
any § < 8' the policy function turns out to be defined as:

T5(k) = Min {k'ekK, s.t. k'eT(k)}.
This means that the optimal policy function 1is trivially defined by the
technology for any given initial state vector. In particular: tg(k) = O for

all keK if (k,0)eT for all k.

Proof. This is just Lemma 1 in Deneckere and Pelikan [6].



Remark 1. Notice that the same result is no longer true in the n-
dimensional case when a generic convex and compact T is considered. To be more
precise, the situation turns out to be the following: the policy function will
take on values only on the lower boundary of T(k) for all § lower than a
certain critical value 8! . But in general the boundary of T(k) does not
reduce to a single point, hence the only relevant information gained from
assuming very small discount factors is that the dynamics induced by the
policy function is restricted on a (n-1)-dimensional manifold. If the "putty-
putty" hypothesis (or simply: 0eT(k) for all k in K) is added, then the n-

dimensional analogous of Fact 2 can be replicated.

Remark 2. It is also easily seen (compare for example the proof given in
[6]) that the imposition of some "Inada-type" conditions on the behavior of V
at the boundary of T will rule out the result for all the values of ¢
different from zero. This should be taken in account when Fact 2 is intended
to be applied to the standard aggregate model of optimal growth for which

"Inada-type" assumptions are usually made.

FACT 3. Consider problem (P) under (A.1)-(A.3) plus some technical
hypothesis. Then for any given V there exists a &% such that for all
8e(82%,1] the optimal policy function Tg possesses a unique fixed point k(§)

in the interior of K. Moreover this fixed point is globally attractive.

Proof. The 1literature proving Turpike Theorems is actually very large.
Proofs of statements equivalent to Fact 3 can be found, for example, in

McKenzie [7] and Scheinkman [10].

It is apparent that our knowledge of the nature of the policy function (3)

is very poor. Using the continuity of the relation between § and tg (Fact 1)
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we can characterize the behavior of tg for § in a neighbourhood of zero for
the one-dimensional case (Fact 2), and in a neighbourhood of one for the n-
dimensional case (Fact 3). For § very small in the n-dimensional case we can
only say that tg has a qualitative behavior very close to that of 6 (Fact 1
again), but nothing more precise. What is worse is that we know almost
nothing of 15 when the discount parameter is outside these two
neighbourhoods. The aim of the present paper is to show that (A.1)-(A.3) are
too weak for imposing any other significant restriction on tg when § is
allowed to take on any value on the unit interval. This will imply that, as
long as only those assumptions are maintained, problem (P) can hardly provide
any falsifiable prediction when the true value of the discount parameter is

not known

-11-



3. ALPHA-CONCAVITY AND OPTIMIZATION PROBLEMS.

All through this Section we will consider concave and finite maps f and g from
X to R, and real valued functions V(x,y) defined on XxY, with X and Y convex
subsets of Euclidean spaces. We will denote with ||¢|| the usual Euclidean

norm aof R" .,

DEFINITION 1. We say that f is a-concave , a>0, if:

f(x) + (1/2)a| |x||2 is concave over X.

DEFINITION 2. The function f is called concave-B if:

f(x) + (1/2)8]| |x||2 is convex over X.

The notion of a-concavity was used in Rockafellar [9] to provide a

Turnpike Theorem for the continuous-time version of problem (P).

The following alternative characterization will be useful later on; the
proof follows trivially from the standard definitions of concavity and
convexity.

PROPOSITION 1.
(a) f is a-concave if and only if:
FLC1-0)xeay] 3 (1-0)F(x) + AE(y) + (1/2)ar(1-)) | |x-y| |2,
for all x,yeX and every Ae(0,1].
(b) f is concave-B if and only if:
FLO1-M)x4hy] € (1=X)P(O)+AE(y)+(1/72)BA(1-)) | | x=y ] | 2,

for all x,yeX and all Ae[0,1].

Now consider the function V(x,y). A natural extension of Definition 1 is

given by:

DEFINITION 3. We say that V is (a,B)-concave if:
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V(x,y) + (172)a|[x|]|2 + (172)8]|y| |? is concave over XxY.
In| the following we need this particular case only:

DEFINITION 4. V is called ay-concave if:

V(x,y) + (1/2)a||y| |2 is concave over XxY.

Notice that the latter corresponds to the Definition of (0,a)-concavity

for V. The final Definition we need is:

DEFINITION 5. We say that V(x,y) is uniformly concave-8 in x if V(-,y) is

concave-B for every fixed yeY.

Remark 3. Some clarification on the meanings of the above Definitions are
proba@ly useful for the reader. It is clearly understood (see also Proposition
1), that the notion of oa-concavity defines a degree of strong concavity
(for 0=0 we have just the usual notion of concavity). The larger a is the
more concave is the function. On the contrary the concavity-B places an
upper bound on the degree of concavity.

Although both notions are independent of the differentiability of the
function, it happens to be the case that the specific functions we study later
on, turn out to be differentiable (actually of class C?). For this specific
class of functions a characterization of a-concavity and concavity-B in terms
of second derivatives can be given naturally. Denote with H(x) the Hessian
matrix of the function f, then to say that f is a-concave and concave-B8 is

equivalent to: -B||z||2 < z'H(x)z g —a||z||2, for every x in X and z in R"

The sum of two concave functions is always a concave one, whereas this is
not the case, in general, for their difference. In the latter case it is

intuitively clear that the resulting function will be concave only if the
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difference in the "degrees of concavity" of the two operands is large enough.
As we need to add and subtract concave functions it is worth reminding the
reader that if we take two concave functions f and g, such that f is o-
concave and g is concave-B, with Bga, then the difference (f-g) is (o -
B)-concave . Consider two real valued functions W:XxY->R and ¥:Y»>R, in this

case the above fact can be generalized as follows:

PROPOSITION 2. Let W(x,y) be ay-concave and ¥(y) concave-B, with B<a. Then

the difference W(x,y) - ¥(y) turns out to be an (a-B8)y-concave function on

XxY.

Proof. Indeed W(x,y) + (1/2)a||y||2 is concave over XxY by assumption, and
- ¥(y) - (172)8] |y||? is concave over Y.

Hence 'their sum: W(x,y) - ¥(y) + (1/2)(a—B)||y||2 is concave. Q.E.D.

At this point we have enough structure to begin ocur positive analysis. In
Boldrin and Montrucchio [2, Theorem 3.1] we used the following family of

functions:
Wx,y) = -(1/72)] |y| |2 + <y-7,8(x)> - (1/2)L] |x| |2 (4)

with BeC?(X,X), X = Y and § a fixed value in X, to prove that any CZ-map
can be a solution to (P), under (A.1)-(A.2) and § = 0. The properties of (#4)
will be exploited here to give an improved version of that Theorem. We proceed

by Lemmas.

The critical role played by (4) in the proof of our results will become
apparent later on (see especially Lemma 3 and Theorem 3). At this point we
want jonly to single out the following to, intuitive, facts: (a) if (H4) is

concave then it can be interpreted as a Bellman Equation before the
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application of the Max operator with respect to y, i.e. we can put: W(x,y) =
V(x,y) +8Ws(y) (b) when (4) is maximized with respect to y it is easily seen
that y = 6(x) is the optimal solutions. These two facts will be exploited at

length in this paper.

LEMMA [1. Consider the family (4) for a given map 6: X »X, where X = Q, Q is

open in Rn, X 1is compact and convex, 6 is of class C? over © and it is
continuously extendable with its derivatives over X. Then for any ac[0,1)

there exists a positive constant L such that the corresponding W is Oy=

concave. More precisely it is enough to put:
L > uo + 8Y2/(1-a),

where: y = Max{||D6(x)||, xeX}, o = Max{||D26(x)||, xeX}, u = diam X =

Max{ | |x1-x2| |, x1,x2eX}, and D is the derivative operator.

Proqf. (see Appendix)

We ¢an now state:

THEQREM 1. Take X = Q, where Q is an open subset of R" and X is compact and

convex.

Let 6: X >X be any C%-map over Q with derivatives extendable for continuity
over X.

Then for every given ae[0,1) there exists a C2-function W: XxX »R such that:
(1) IMax{W(x,y), s.t. yeX} = W(x,6(x))
(ii) W(x,y) is ay-concave over XxX.

Proof, Let W(x,y) be defined by the family (4). Then (i) follows by the first
order conditions and (ii) has been proved in Lemma 1. Q.E.D.
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Remark 4. It is immediately seen that Theorem 3.1 in Boldrin and
Montrucchio [2] refers to the case o = 0. The relevance of the a-concavity

improvement for the understanding of (P) will be apparent later on.

THEQREM 2. Take a function W from XxY into R and assume it is uniformly
[eS———— ke SU——
concave-B in x, then:

¥(x) = Max {W(x,y), yeY},

is also concave-8.

Progf. Let x and x' be two points in X, y* the maximizer of W associated to
Ax # (1-A)x*' for a given Ae[0,1]. Then:
YAx+(1-0)x'] = WIAx+(1-M)x",y° ] €
< MGy + (-0, yY) + (172)BA(1-0) | |x-x" | | <
SAY(R) + (1=0)¥(x") + (172)BA(1-0) | [x—x"' [ |2 .
The  last inequality corresponds to the concavity-8 of ¥ by Proposition 1

above. Q.E.D.

Remark 5. We need to stress that Theorem 2 does not hold any longer if a
(non-trivial) constraint is added to the maximization problem. In other words
if the maximizer y* has to be selected in a (convex and compact) set dependent
on x, say T(x), then the concavity-B of ¥ does not follow in general from the
concavity-B of W in x. Since the case we are studying includes such a
codstbaint (see problem (P) and Assumption (A.1) ), a straightforward
apgli¢ation of Theorem 2 is not possible. This unpleasant complication will be

consifdered further and solved in the next Section.

We complete our technical background with the two following applications

of the theory developed so far: they will be both useful in proving Theorem 3.

PROPOSITION 3. For any given positive number L the function W given in (4) is
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| *
uniformly concave-B in x for every B > 8 =L + uo.
Proof. We have only to prove that:

F(x,y) = -(172)||y| |2 + <y-§,8(x)> + (1/2)(8-L)| |x||?
is convex for any given y when B > B*
Take a fixed y in X and set:
£(t) = Fxg+txq,y)

where xo and (xo+txq1) are two points in X to which the same qualifications
int#oduced in the proof of Lemma 1 apply. Then:
? frr(t) = <y—§,D26(xo+tx1)(x1,x1)> + (B-L)||x1||2
50 ﬁhat:

| £11(6) > (B-L)| |x1] [® - |<y-§,0%6 (xgetxq) (x1,x1)>| 2

| 2 (B-L) [ [x1] 12 = [[y7y| M [D26Cxowtxy) | || [x1] 1% 3

> | [x1]|20(8-L) - uol.

Hence B » B’ implies f''(t) 3 0. Q.E.D.

CORQLLARY 1. If W is the same as in Proposition 3 and B is such that W is
uniformly concave-B in x for a given L, then the function:
¥(x) = Max {W(x,y), s.t. yeX} = W(x,06(x)).

is also concave-B for all B > L + uo.

Prdof, It follows from Proposition 3 and Theorem 2.
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|
4. THE MAIN THEOREM: INDETERMINACY OF THE POLICY FUNCTIONS.

hhé mathematical tools we have been exposing and discussing in Section 3
wilf be applied here to the n-sector neoclassical optimal growth model defined
by |[problem (P) under (A.1)-(A.3). Actually we will develop most of the
subsequent analysis considering problem (P) wunder (A.1)-(A.2) solely.
AssTmption (A.3) will be introduced in the last step only (Theorem 4). This
procedure has been chosen to shorten the proof of the main Theorem (Theorem 3

bel?w) and to keep it consistent with the tools developed in Section 3.

The next Lemma contains a characterization of the policy function tg which
turns out to be essential in proving our main Theorem. This Lemma is just a
restatement of Theorem 5.4 of Montrucchio [8]. From now on we will return to

the notation of Section 2.

LEMMA 3. A map 6: K +K is the policy function tg of the optimal growth model
(Pﬂ under (A.1)-(A.2), for a fixed value of 8§ in [0,1), if and only if the

two|following conditions are satisfied:

|
(i)EThere exists a real (concave) function W(k,k') defined on KxK such that:

|

} Max {W(k,k'), s.t. k'eT(k)} = W(k,0(k)).

(ii) Setting ¥(k) = W(k,6(k)), the real function W(k,k') - S¥(k') satisfies

the hypothesis (A.2).

Proof.
Negessity. Let the policy function T§ be equal to 6 for a given return

function V(k,k') and a technology set T satisfying (A.1)-(A.2). By the

Bellman's Equation (2) we must have:
{
Max {V(k,k') + SW(k'), s.t. k'eT(k)} = W(k) (2")
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and:
8(k) = Arg max {V(k,k') + SW(k'), s.t. k'eT(k)} (3")
Put: W(k,k') = V(k,k') + 8W(k'), to obtain:

Max {W(k,k'), s.t. k'eT(k)} = W(k,0(k)),

50 ?hat (i) is satisfied.
Mor?oder, if we set: ¥(k) = W(k,0(k)), we obtain ¥(k) = W(k), by (2'),
In ﬁhﬂs way we have:

| Wik,k') - S¥(K') = V(k,k') + SH(K') -8W(k') = V(k,k')
whigh is concave in (k,k') and strictly concave in k' by (A.2). Hence (ii) is
sat#sﬁied.
Suffidiencx. Define the return function of (P) as: V(k,k') = W(k,k') -
- GF(k'), which satisfies (A.2) by (ii). Then:

Max {V(k,k') + 8¥(k'), s.t. k'eT(k)} = Max {W(k,k'), s.t. k'eT(k)} = ¥(k)
and:
Arg max {V(k,k') + 8¥(k'), s.t. k'eT(k)} =

| = Arg max {W(k,k'), s.t. k'eT(k)} = 6(k),
by hypothesis (i).
This, in turn, implies that 6 is the optimal policy function of a problem (P)
whe}e we have: V(k,k') = W(k,k') - 8¥(k'), as the return function, the
diséount parameter § is given and the value function defined in (2') is
exactly ¥(k) = Max {W(k,k'), s.t. k'eT(k)}. Q.E.D.

Unfortunately we cannot make full use of the last characterization result

to Jobtain our main Theorem. This is due to the fact that Theorem 2 is

essential in our strategy of proof (see Theorem 3). But, as we have noted in
the| Remark 5 above, Theorem 2 cannot be applied when a non trivial constraint
is}added. To overcome this difficulty we will give a weaker version of Lemma

3, |td obtain a result compatible with the unconstrained maximization of
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Theorem 2. This is accomplished in the following Corollary. We omit the

proof because it is self evident in the light of the proof of Lemma 3.

/

COR%LLMRY 2. A set of sufficient conditions in order to obtain a map 6: K »K

as fthe optimal policy function tg§ of problem (P) under (A.1)-(A.2) for a
givinl65[0,1) is:
i) (k,0(k))eT, for every keK.
ii) There exists a concave, real valued function W(k,k') such that:
Max {W(k,k'), s.t. k'eK} = W(k,6(k)).

iifi) Setting ¥(k) = W(k,0(k)), the real function W(k,k') - &¥(k'), is

concave in (k,k') and strictly concave in k'.

|

3Fihally we can prove our central result:

|
THEQREM 3. Take any 9eC?(K;K), satisfying the assumptions of Theorem 1, and
such that: (k,08(k))eT for every kekK.
Theh there exists a discount parameter 6*6(0,1), the value of which depends
onle, such that for every fixed 0 < § < 6* we can construct a return function
Vs(k,k') satisfying (A.2) and with the following property: The optimal
policy function tg solving (P) under (A.1)- (A.2) with V = Vg, is the map ©.

*
Moreover a lower bound for § can be estimated as:

§% > 6% = (8y2 + wo - Uy(Uy2+uo) 7 P3/(21262) > 0.

Remark 6. It is important to stress that the assumption of monotonicity
of |V given in (A.3) it is not satisfied by the Vs we will construct. We

cohsiber this problem in the Corollary 3.

Proof. Take any 0eC?(K;K) such that (k,8(k))eT for every keK.

By Theorem 1 there exists a W(k,k') such that:
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Max {W(k,k'), s.t. k'eK} = W(k,0(k)).
By Lemma 1 we know it is sufficient to take W(k,k') as defined in (#4). The
same Lemma implies that this function turns out to be agr-concave over KxK,
when:
L > 8Y2/(1-a) + Jo, | ael0,1) (5)
Let ¥(k) = Max {W(k,k'), s.t. keK}, then ¥ is concave-B8 by Corollary 1, when:
B > B* =L + Uo. (6)
Then Qorollary 2 will imply that the function: Vg(k,k') = W(k,k') - &¥(k'),
is our desired return function if we can prove it is strictly concave in k'.
Usng\Proposition 2 we can see that: W(k,k') - §¥(k') is (a-8B)K'-concave on
KxK.
So we Ineed the three parameters to satisfy:

a - &8 > 0. (7)
to have Vg(k,k') concave in KxK and strictly concave in k'. Summing up: the
Thegrem is proved if the conditions (5), (6) and (7) are simultaneously
satisfied by some values of the parameters L, a, B such that §¢[0,1).

With some algebra (left to the reader) it is easily seen that the set of
sdl¢tions to the system (5)-(7) is not empty and that the value:

6** = Max {(L+uo)'1 - (8Y2)(L2—u202)'1, s.t. L;8Y2+uo.}
is the largest value of the discount parameter compatible with a non empty
solution. Further tedious computations will show that the solution of the
latter maximization exercise is exactly the value 6** given in the Theorem.

Q.EiDy
'Some Remarks on this Theorem seem appropriate.

| * *¥
\Remark 7. We need two qualifications on the estimates of § and ¢ given

abave.
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|
1

| * .
First: it should be clear that § depends on the chosen 6. That is: for a

‘ *
givén\e there exists a § >0 such that the Theorem follows. With the number

*% *
§ | 'we provide a lower bound for § ,
!

1
derivatives of 6 and on the diameter of K. It must be clear that such an

which depends on the first and second

estim@te is surely biased downward for a generic 6.

Second: notice that we have been working with a particular family of concave
functions, i.e. the family (4). This does not exhaust the class of functions
satisflying our Theorem. Hence the lower bound we have found (i.e. G**) can
probably be improved upon by using suitable generalizations of (4).

Findlyy, let us report here that, with some more computations, the upper- and
lower- bounds of 6** can be simply estimated as:

(32\(2 + 4 uo) < §** < (32\(2)‘1

Bgﬂggg 8. Our second observation concerns the nature of the Vg we have
constructed. Noticed that these Vg's satisfy a set of assumptions stronger
than (A.2), at least for all § < 6** . First: they are of class C? and they
originate value functions which are also C?. Second, and more important,
they lare strongly concave for § < 6** . This fact 1is understood in the
following way: when § is smaller than §** the set of solutions to (5)-(7) is
open: | this is obtained by plugging 8 = L + uo in (7) so that we are left with
the| inequality (5) plus the inequality L < a/8 - poc. When § < § © is Ffixed
theﬁsblutions will be the intersections between the halfplane L < a/8 - uo
and| the set of (a,L) satisfying (5). Now: take two pairs (a,L) and (a,L')
which are interior to this intersection and such that L' > L. Denote with W,
and W' the maps (4) corresponding to L and L' and with ¥y, Yp+, the
respective maxima. It is seen immediately that the following hold:

W (x,y) + (172)(L0-L) | x| |2 = Wo(x,y)
and
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Yo (y) + (172)(L'-L) | |y | |2 = Yu(y).

FroT which:
oo (x,y) - S¥pe(y) +(172)(L'-L)| x| |2 - (172)8(L'-L) | |y |? = wp(x,y) -
GYLJ(y)

Sin%e Wy - 8Y¥ is [a-G(L+uo)]y—concave we conclude that:
J WL (x,y) - SYLi(y) + (1/2)(L'-L)||x||2 + (1/72)[a - 6(L'+u0)]|IYI|2
is bodcave. Hence:
i

! Vs(x,y) = W (x,y) - SY¥p(y)

turns out to be {L'-L, a-§(L'+uo)}-concave (see Definition 3).

gggﬂggg 9. Finally, a few more words on the content of Theorem 3. It is,
in %ome sense, a strong improvement on Theorem 3.3 in Boldrin and Montrucchio
[2]L The most signifiéant improvements, as we see them, are the following:
1) |The result holds for any 6eC?(K3K), whereas formerly we gave only a
den%iqy version of the statement.
2) ?s 6* > 0 we can get rid of the § = 0 approximation. This fact is critical
in ixpermitting us to include the neoclassical optimal growth model in our
"wofld of indeterminacy".
3) £a$t, but not the least, Theorem 3 underlies a constructive technique which
per#its the exact computation of a problem (P) for any given C? policy
funétion. The technique should be clear from the proof, we will briefly

illustrate it after Theorem 4.

|We can now tackle a problem we have been postponing so far, i.e. the
inﬁluSion of the monotonicity conditions (A.3) in the structure of the return
fuﬁction V. 1Is it possible with a small modification of family (4), to

coﬁstruct a Vg satisfying also this latter requirement ? A positive answer

\
is'giyen in the following, non trivial, consequence of Theorem 3.
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THE

REM 4. Assume 0eC?(K,K) is as defined in Theorem 3. Then for every
| * * .

§'ef(0,8 ), with § given in Theorem 3, there exists a return function Vg

depending on §' and satisfying A.2 and A.3, such that 6 is the optimal policy

fungtion 1§ of the associated problem (P) under (A.1)-(A.3) when &= §'.

Progf. After Theorem 3 the only thing we need to prove is that the

mongtanicity requirements on the return function Vg can be satisfied for an

opportune choice of parameters.
Consider the following modified version of the family (4):
Wk, k') = =(1/72) | |k'| |2 + <k'-K,0(k)> - (L/2)]|k]||? + <a,k>,  (4')

where a 1is a strictly positive n-dimensional vector and K is a given point
in K.
\

Not%cé that all the arguments on a-concavity and concavity-B we have been

using in Theorem 1 and 3, hold true even by adding the linear term <a,k>.

‘ *
Thuﬁ, for 8<8 and retaining the notation of Theorem 3, we know that:
Vst,k') = W(k,k') - 8¥(k') is concave.
|
Alsh:
|
(a)ka[Vg(k,k')] = {D6(k)}T(k'-k) - Lk + a > O,
thﬁ the components of the vector a are large enough. Precisely: aj> (LN +

| |
yu), all i=1,..,n, where N = Max {||k||, s.t. keK}. Also, we indicate the

trjﬁspose operator with {s}T .

The|derivative with respect to k' is:

(3/ak")[Vg(k,k)] =

= 4(1+6L)k" - Sa + 6(k) + §{DO(k")}IT(R - B(K")).

Againb we satisfy the monotonicity requirement by simply imposing a component-
wise lower bound on the vector a:

aj > LN + ypu + N/§, all i=1,...,n.

Suqrarising: it is easily seen that, for any positive § < 6* there exists a
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vector a satisfying the requirements. Notice that § > 0 is essential in

finding a real value for a. Hence:

Max{W(k,k'), s.t. k'eT(k)} = Max{Vg(k,k') + 8¥(k'), s.t. k'eT(k)} = W(k),

will be the value function of a problem (P) under (A.1)-(A.3). Finally

because:

by

(3/93k')[W(k,k')} = O implies k' = 6(k),

equation (3), we conclude that 6 is the policy function tg of such an

optimal growth model . Q.E.D.

Remark 10. We think that the theoretical implications of the last result

need not be explained to a careful reader.

Rather, we stress here the constructive approach underlying our main Theorem.

The||step-by-step procedure is as follows: assume a technology set T is given.

Then take a generic map 6c¢C2(K3K) such that (k,6(k))eT. Using the formulas

of

*%
Theorem 3 we compute the critical value § . The function W can be

calgulated by using the family (4') given in the proof of Theorem 4.

At

this point pick a 0 < §' < 6** : for such a &' the return function is

computed by: Vgi(k,k') = W(k,k') - &8'¥(k'), as proved in Corollary 2. Next

cho¢sé an opportune vector a as indicated in Theorem 4. This will complete

the| construction of the neoclassical optimal growth model exhibiting 6 as the

optimal policy function tg:

Furthar, remember that in the one-dimensional case and/or when "free disposal"

and| "reversability" is assumed for T, a lower critical value §' of the

dis¢ount factor can be computed such that for all § smaller than this the

sithation depicted in Fact 2 shows up. The reader has to pay attention to the

fact that 8' depends on Vg: which, in turn, depends on the previously chosen

0,

so that it does not interfere with our procedure.

Inffrmally speaking, the following scenario will appear: the optimal problem
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(P) lwith Vg as a return function exhibits the trivial map tg(k) = inf {k'eK,

*
s.t, k'eT(k)} for any &8e[0,8']. 1Instead for the given &§'e(8!,8 ) the

associate problem (P) produces 6=tg' . Finally when 8 is in the neighbourhood

(82,1) the Turnpike property holds.




5.CHAOS IN A TWO-SECTOR MODEL.

To fide a flavor of the possible applications of the above results we will
constrict a very simple two-sector, no-joint-production economy exhibiting a

particular dynamic behavior for appropriate values of §. To make 1life

easier, we consider a very simplified world where utility is linear in
consumption, a fixed amount of labor is supplied in each period, the capital
depreciation factor equals one and both factors are used in each sector. In
this ¢ase the Production Possibility Frontier (PPF) c¢ = V(k, k') is the
solytion of:

Max ¢ = f(k¢, 2°) (8)

s.t. k' < g(kK, 2K)
kC+kK < k, 2C+2K < 1.
wheﬂelthe total amount of work has been fixed at one and all the variables are
constriained to non-negative values.The notation should be self-evident. The
only assumptions we make on the two production functions f and g are
conéavity and positive marginal productivity of both factors. The maximization
problém then becomes:
©

Max § V(kg, kgsq)8®

t=0 (9)

s.t. 0 g kgt < 8lke, 1).

The| reader is referred to Benhabib and Nishimura [1] for the details of the

model.

Cansider the famous "chaotic" map U4x(1-x) from the unit interval into
itself (see for example Collet and Eckmann [3]) and assume we wish to have it

as | the optimal policy function of (9) for some value of the discount

@\ -27-
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parameker. All we have to do is follow a routine computation. Using Theorem 4
we get the following PPF:

V(x,y) = -.014ly™+.0288y3-.307Uy2-4.03y+lxy (1-x)-115x2+2191x. (10)

Is |pquation (10) a consistent solution to problem (8) ? The answer is
posﬁtﬂve: the reader can easily check that by using:

| £(KC,20) = VIKS+d(1-29),1-2°] (1)
and

g(kk, 2K) = min [KkK/d,2¥] (12)

witF |d < .000257, the PPF (10) is obtained.

As (11) and (12) satisfy all the standard requirements, we have

congtructed a two-sector economy exhibiting "chaos" when the discount
*

parameter is equal to § * = .0018 . The reader should note that in this

exakp;e the warning we have given in Remark 6 above applies. The above value

%%
of ¢ ' has been calculated routinely by using the formula given in Theorem 3,
buti as we noted, it is a downward biased estimation. In fact the same example
goeé hhrough by using any &§ smaller than .01263. This can be verified by

direct computation.
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6. CONCLUSIONS.

We

res

neo

unr

consider this paper as the opening to a potentially fruitful field of
arich. Simply, the main result says that every behavior is possible in a
3lassical optimal growth model: hence the problem of excluding some

ealistic and/or undesirable behaviors is totally open. In particular, this

means that the usual practice of assuming very simple dynamic patterns for

econonies with rationally maximizing agents is totally unjustified. Along this

ling bf research more effort should be put in obtaining "Turnpike-like"

results. Certainly, to obtain meaningful results, much more structure than

thaﬁ contained in (A.1)-(A.3) should be added to problem (P).

Whiile the above is a primary research objective, a second one, no less

interesting, follows directly by using our strategy of proof. It is the study,

and| possibly the classification, of the various types of return functions V

that !can originate a specific policy function. Such a knowledge seenms

impprtant because it can provide information on the technological structure

that are, potentially, falsifiable. Moreover, it is not a trivial exercise

because the family (4) is not the only suitable class of functions for

obtaining our results. It must be understood that many other functions of the

type W can be constructed by using concave maps different from the (negative

of)

whi

the norm.

Beéfore concluding let us note that a by-product of our research is a

comtlete solution of the question of existence of '"chaotic" policy functions

h represents optimal accumulation paths. The estimates of the critical

*
value § given in Remark 7 also suggests that the conjecture according to

which the values of the discount parameter should be very small to obtain

"cd@os" is probably true. In fact the estimate §** < (32Y‘2)'1 implies

| _29-
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par

whi

prd

cal

fas

< (1/32) when Tg is "chaotic". The conjecture was suggested in Boldrin
Montrucchio [2] and in Deneckere and Pelikan [6]. It is also clear that
negative conjecture made in Dechert [4] is not true in general. It is
id only for the standard one-sector model, because in that case the

ticular features of V force t1g to be monotone.

Finally, a "bifurcational conjecture" should be investigated: given a V
ch exhibits complex behaviors for & small, what kind of bifurcation
cess leads from the Turnpike state to chaos ? In particular: is the so-
led "Feigenbaum scenario" the most likely one ? Indeed this seems a

cinating and challenging problem.
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APRENDIX.

Proof of Lemma 1. The proof is divided into two parts.

_7[ part). Let ael[0,1). Then to show that W is ay-concave amounts to

W (x,y) = -(172)(1-a) | |y] (2 + <y-F,0(x)> - (L/2)]|x||?

is |concave when L satisfies the above inequality.
Concavity of W* is equivalent to the concavity of the family of functions
f:R>R defined as:

£(t) = W*(xo+tx1,y0+ty1)
Xos Yo fixed in X and (xq+txy), (yo+tyq)eX, teR.
The case xq = O is trivial, given the fact that o < 1. Without any loss of
generality we can assume : ||xq|| = 1 and 0 < ||yq||<+>. To maintain both
(xp+txq) and (ygo+tyq) within X we have to impose:
6] = |lexql] s u and ||tyq]] < ue
It is easily seen that f will be of class C? in the interior points by

canstruction. Hence we can compute its second derivative f'' which turns out

ta| be:

£rr(t) = -L - hq(t) - ha(t),

n1(t) = (1-a) | [y1]]? - 2<y1,D8(xo+tx1)x1>, and

ho(t) = <y—(yo+ty1),029(x0+tX1)(X1,X1)>.

To complete the proof of Lemma 1t we make use of the following Lemma:

LEMMA 2. There exists a positive constant M such that: for any ||y1|| > M,
(t) is non-negative for all vectors (xq+tx1), (yo+ty1), Xg, YoeX, x1 and yj
R%, with ||xq]] < 1.
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Precisely we can put: M = 2y/(1-a).

Prg

of of Lemma 2. It is easily proved by using the following estimate:

|<

He

an

Pr

11,00 (xg+tx)x1>| & ||y1|le]||xq] || |DO(xo+tx) || < ¥||y1]]-
ce:
hi(t) 3 (1-a) | [y1]1% = 2v| ly1l] = |ly1l[=€Q-0)| [y1]] - 2v},

, by setting ||yq|| > M = 2y/(1-a), we have h4q(t) > O for all t. Q.E.D.

of of Lemma 1 (2089 Part). To study the sign of f''(t) we can now argue

Se

Fo

th

va

bec

In

st

In

Y-

arately for the two cases: ||yq|] »Mand ||yq]|] < M.

the first case, Lemma 2 assures that h4(t) 2 0, so if we are able to prove
t ho(t) is bounded we can conclude that there exists a (finite) positive
ue of L such that f''(t) < O everywhere. This is immediately obtained
ause |h2(t)| < uo and then L 3 po will guarantee the desired result.

the second case(||y1||<M) it is possible to see that not only hp(t) is
11 bounded but that h4q(t) is also so. In fact:

Ihy(t) | < (1—a)||y1||2 £ 2v|ly1]| < (1-0)M% + 2My.

both cases L can be determined independently from the choice of x4, X1, Yo,
In fact we need to set:

L 3 (1-a)M2 + 2YM + yuo = 8Y2/(1—a) + Jo.
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