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1. Introduction

The theory of non—cooperative stochastic games finds an especially fertile
application in the economic theory of capital accumulation and intertemporal resource
allocation under imperfect competition. The standard model involves a single good —
the state variable — that may be consumed or invested. In each period of an
infinite-horizon, each of several infinitely-lived agents observes the available stock and
independently decides on his consumption level for that period. Any amount left over
after consumption by all the agents forms the investment for that period and is
transformed to mext period’s available stock through a (stochastic) production function,
and the situation repeats itself from the new state. Agents derive utility solely from
their own consumptions and attempt to maximize the (expected) discounted sum of
one—period utilities over the infinite horizon. However, since any agent’s consumption
level in a given period has repercussions for all the other agents’ current and future
rewards through its impact on the investment level for that period, the need for
strategic interaction arises. This gives rise to a stochastic game.

Parametrized models of this sort with discounting, have been studied by Lancaster
(1973), Levhari and Mirman (1980), Mirman (1981), Easwaran and Lewis (1985),
Reinganum and Stokey (1985), and Cave (1987) among many others. Benhabib and
Radner (1988) study the case when no functional form restrictions are placed on the
(deterministic) production function, but utility functions are restricted to being linear in
consumption. Our point of departure in this paper is the recent work of Sundaram
(1989) and Majumdar and Sundaram (1988). Both papers establish the existence of
pure—strategy stationary Markov equilibrium (PSSE) to these games in which all players
employ strategies that are lower—semicontinuous (lsc) functions of the state variable.
These results are obtained, without imposing any functional-form restrictions, under
convexity and monotonicity assumptions on the game’s structure that are standard in

the neoclassical economic theory of intertemporal resource allocation; and a special



assumption of symmetry (that all players have identical discount factors and payoff
functions) that enables the authors to get around the familiar problems that arise when
trying to demonstrate existence of equilibrium in pure strategies. The distinction
between the papers is that Sundaram (1989) assumes the transition mechanism to be a
deterministic function of investment, while Majumdar and Sundaram (1988) posit
atomless transition probabilities.

Our contribution in this paper is twofold: first, we extend the results of these
papers by demonstrating (Theorem 1) the existence of PSSE in Isc strateiges under a
much more general transition mechanism that admits as special cases the deterministic
and atomless mechanisms. More specifically, all we require of the transition
probabilities (apart from the usual productivity and weak—continuity assumptions) is
that they satisfy a certain "strong stochastic dominance" condition. This condition is
little more than the requirement that higher investment yield (probabilistically) higher
output.

Our second and main result (Theorem 2) combines this existence theorem for
discounted stochastic capital accumulation games, with techniques developed in Dutta
(1989) where the asymptotic properties of dynamic programming problems as the
discount factor tends to unity are studied. We prove under a value-boundedness
assumption that there is a PSSE in lsc strategies to the undiscounted stochastic
resource allocation game, when payoffs are evaluated according the limit of means. In
fact, we demonstrate that as the discount factor tends to unity, the equilibrium
strategies of the discounted game converge (in a sense made specific in the paper) to
PSSE of the undiscounted game and the discounted average value functions converge to
a state-independent constant which turns out to be a long-run average value of the
undiscounted game. To the best of our knowledge, this sharp convergence result is the

first existence theorem for such undiscounted stochastic games.



A few remarks are in order. Firstly, it is interesting to contrast our results with
existence theorems available in the literature on noncooperative stochastic games. The
framework employed in the latter is typically considerably more general than ours;

however, existence of equilibrium has been established only in mixed (i.e. randomized)

strategies (e.g., Nowak (1985), Mertens and Parthasarathy (1987), Duffie, et al (1988))
that may not even be stationary (Mertens—Parthasarathy, and Duffie, et al), and only
for discounted stochastic games. On the other hand, convexity and monotonicity
assumptions of the form we employ are standard in the economics literature, and
provide for a rich analytical structure. Our framework fully exploits these assumptions
to obtain stronger results in this more restrictive framework.

The strengthening comes in two directions. In a stationary Markovian
environment, a natural first class of strategies within which to look for an equilibrium
is that of stationary Markovian strategies. Moreover, as an extensive literature in
economics attests, a characterization of the positive and normative properties of pure
strategy stationary Markovian equilibria is a task several orders of magnitude easier
than a similar exercise for other equlibrium classes.! Finally, as has been argued for
example in Maskin-Tirole (1988), stationary Markovian equilibria capture the more
intuitive notion of "reaction functions" than do history dependent equilibria. For the
symmetric resource game, based on the canonical paradigm of dynamic economics, the
neoclassical growth model, we supply a very general existence result for PSSE in both
discounted and undiscounted games. A second, and perhaps more important,
strengthening pertains to the undiscounted game. As Sorin (1986) has shown by way
of an example, the limit of the equilibria of discounted non—cooperative stochastic

games may well not be an equilibrium in the corresponding undiscounted game; further

fFor a complete characterization of the properties of stationary Markovian equilibria
in resource games, see Dutta-Sundaram (1989).



even the e—equilibria of the undiscounted game may be "far away" in payoffs from this
limit. In fact, as Aumann (1987) points out, there is no general existence theorem in
any class of strategies for undiscounted stochastic games. Theorem 2 in this paper,
therefore, shows that for an interesting and important class of economic problems, we
do have positive results on both the existence and the convergence issues.

It should be pointed out that for the asymmetric version of our game, there is no
existence result that we know of. This remains an important open question.

This paper is organized as follows. Section 2 sets up the stochastic resource
allocation game, lists our assumptions, and defines a stationary equilibrium to the
game. Section 3 collects the main results on the existence of PSSE to the discounted
and undiscounted games. All proofs are in section 4. Finally, the Appendix provides
sufficient conditions under which our value-boundedness condition (used in proving

Theorem 2) holds.

2. The Model

91 Preliminary Notation and Definitions

The set of reals (resp. non-negative reals, strictly positive reals) is denoted by R

(resp. R, IR_H_).

A function g: D = R is lower—semicontinuous or lsc at x € D iff for all sequences

{xn} ¢ D such that x - x, liminfng(xn) > g(x). g is upper—semicontinuous or usc at
x € D iff ~g is Isc at x. Lastly, g is everywhere lsc (resp. usc) on D iff g is Isc (resp.
usc) at each x € D.

By analogy with probability distribution functions, a sequence of non—decreasing,

right—continuous functions {Fn} converges weakly to a limit F with the same properties

iff Fn(x) -+ F(x) at all x where F is continuous. By Helley’s selection theorem

(Billingsley (1978, p. 290), for every such sequence of functions {Fn}, there is a



subsequence n(k) of n, and a non—decreasing, right—continuous function F such that
Fn(k) converges weakly to F.

The support of a distribution function F is denoted by supp.(F). Supp(F) is
defined as the interval [a, b] where a = inf{x|F(x) > 0} and b = inf{x|F(x) = 1} =
sup{x|F(x) < 1}.

2.2 The Stochastic Resource Allocation Game

For notational convenience we confine ourselves to the 2-player situation. A
generic player will be indexed by i. In all statements pertaining to i, j will denote the
other player.

Time is discrete and continues forever. Periods are indexed by t = 0, 1, 2, ... .
In each period t, the two players observe the available stock Yy > 0 of a good (the
'resource’), and, independently and simultaneously, decide on the amounts they plan to
consume that period. Let a;, € [0, yt] be player i’s planned consumption. If plans are

feasible (a1t + ag, ¢ yt), then they are executed, and player i’s actual consumption,

denoted by Cit» equals I If plans are collectively infeasible (alt + a9, > yt), then
actual consumptions are decided through a pair of "allocation functions" (h;, h2) as ¢
= hi(yt’ 345 a2t). The amount X, = ¥y = Cqy ~ Co4 left over after consumption by

the players forms the investment (or savings) in period t. This investment then gets

transformed to the period— (t + 1) stock Vit1 which is realized according to the
(conditional) probability distribution q(-|x,). The situation now repeats itself from the
new state y; and so on ad infinitum. Player i’s reward in period t is a function

only of his own (actual) consumption in period t, and is given by the utility function

ui(cit); however, each player’s consumption level in any period affects (through q) the
distribution of output in the next period, and hence the future consumption possibilities

for both players. Since the objective of both players is to maximize their expected



total rewards (defined precisely below) over the infinite horizon, this conflict of interests

creates the need for strategic behavior and gives rise to a stochastic game.

We now proceed to list our assumptions on the various components of this game,

beginning with the transition mechanism q.

A. The Transition Probabilities:

Departing somewhat from standard practice, we define q to be a (conditional)
probability distribution function, so that if y is the random variable distributed
according to q(-|x), then q(y|x) = Prob. (y < y|x).

The first assumption on q has 2 parts: (i) there is no free production, and (ii)
strictly positive investment levels today result always in strictly positive realization of
output levels tomorrow, with a non—zero lower bound and a finite upper bound on

possible realizations. Formally:

Assumption 1: (i) If x = 0, then q(0|x) = 1.
(i) For all x > 0, there is a compact interval I(x) ¢ R 4 such that

supp (q(-[x)) ¢ I(x).

The next 2 assumptions are concerned with reproductivity of the resource.
Assumption 2, usually referred to as a "productivity" or "Inada" condition, states that
for sufficiently small investment levels, all realizations will exceed the investment level.
Assumption 3 requires the existence of a "maximum sustainable stock": any realization
of output from an investment level exceeding this stock will be smaller than the

investment. For any x, y € R, let a(y |x): = limZTy q(z]x) denote the left-limit of

q(-|x) at y.



Assumption 2. There is 7 > 0 such that if 0 < x < 7, then q(x |x) = 0, i.e,
supp q(-|x) C [x, o).

Assumption 8 There is X > 0 such that if x > X, then q(x|x) = 1, i.e,

supp q(-|x) ¢ [0, x].
The next assumption is the standard weak—continuity requirement on q:

Assumption 4: If x_ - x, then the sequence of distribution functions q(- [xn) converges

weakly to q(-|x).

Lastly, our "strong stochastic dominance" condition that requires larger investment

levels to yield probabilistically higher stock levels:
Assumption 5. If x < x’, then for all y € lR+, a(y %) 2 q(y|x’).

Remark 1: Sundaram (1989) assumes the existence of an increasing, continuous
function £R - R with (i) f(0) = 0, and (i) f(x) > x for x < X, and f(x) < x for
x > X for some x> 0 and sets q(y|x) = 0 if y < f(x), q(y|x) = 1 if y > f(x). Our

assumptions clearly cover this as a special case.

Remark 2 Majumdar and Sundaram (1988) require q to satisfy assumptions 1-4 and
to be atomless whenever x > 0. Note that, under this atomlessness assumption, strong
stochastic dominance and their assumption of weak stochastic dominance (x < x’3
a(y|x) 2 q(y|x’) for all y € R +) are equivalent. Hence, our assumptions cover

Majumdar-Sundaram (1988) also as a special case.



Assumptions 1-5 suffice for proving Theorem 1. To prove Theorem 2 we need a
stronger version of Assumption 2, that is analogous t0 (identical to if transitions are
deterministic) the standard assumption of the infinite slope of the production function
at the origin that is employed in neoclassical growth theory. For y € R 4 let m(y) =
inf. {x|supp. q(-|x) C [y, o]}, i.e, m(y) is the smallest investment level that will
regenerate y with probability 1. Using this notation, Assumption 2 requires that, for

small values of y, m(y) < y. For Theorem 2, we will replace Assumption 2 with
Assumption 2’: [m(y)/y] - 0 asy = 0.

B. The State Space:

We take the initial stock level y, to lie in some compact interval [0, §] CR,.
Define y* = max {§r, X}, where X is the maximum sustainable stock of Assumption 3.
Then, for all x € [0, y*], q(-|x) has support contained in [0, y*]. Therefore, there is
no loss of generality in confining analysis to [0, y*¥] = S. We refer to S as the state

space. Since this is only a choice of measurement units, we henceforth set y* = 1.

C. The Utility Functions:

Our first assumption on the utility functions u; requires them to satisfy the
standard assumptions of concavity, monotonicity, and the Inada condition of unbounded

marginal utility at the origin:

Assumption 6: Fori = 1, 2, ui:lR 4" R n is strictly concave and strictly increasing on
Al - oy
R, and is C" n R, with hmxlO u’(x) = +to.
Our second assumption, that of ’symmetry’ is special. As we explain in section 4,

standard techniques, such as obtaining the equilibrium as a fixed—point of a
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(continuous) best-response map taking a (compact) set of strategies into itself, are
inapplicable in this game. Symmetry enables overcoming this problem by enabling us
to consider a different map whose fixed—point yields (after some manipulation) a PSSE

to the game.
Assumption 72 (Symmetry) U = U, (= u, say).

We remark that we are not aware of any existence theorem even under
deterministic transitions in the presence of possibly non-symmetric payoffs, but

counterexamples are also lacking.

D. Allocation functions:

For the sake of definiteness, we specify a symmetric allocation rule:
hl(y) a 32) = h2(y, a1 32) =y/2,y >0
The "equal split" rule is a natural candidate to resolve infeasible plans in the
symmetric game. The results that follow also hold for a larger class of allocation rules
with similar qualitative features.2 Since the establishment of existence results for the
broadest set of allocation rules, which are never invoked in equilibrium, is peripheral to

our main question, we do not pursue it any further here.

The tuple {S, q, u, hl’ h2} completes the specification of the stochastic resource
allocation game. In the next subsection, we define strategies and equilibria to the

discounted and undiscounted versions of this game.

2Tt is clear that some structure on the allocation rules is indispensible. Else,
bizarre specifications of allocation rules could force a dynamic resource game into
yielding arbitrary outcomes. On this point, see Dutta—Sundaram (1989, footnote 15).
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2.3 Stationary Strategies and PSSE

Definition 1: A stationary strategy (for either player) is_a measurable function g:5 + S

that satisfies g(y) € [0, y] V y € S.

A player’s stationary strategy g specifies his planned consumption level at any y €
S as g(y). Let T denote the space of all stationary strategies available to the players.
(Note that we have already restricted attention to only pure (i.e., non-randomized)
strategies.) Henceforth, we denote a stationary strategy for i by g;-

A pair of stationary strategies (g, go) induces in the obvious manner through u,
q, and the functions hi’ a t-th period expected reward for player i from each initial
state y € S. Denote this reward by ulic(gl, g2)(y).

In the discounted stochastic resource allocation game with discount factor §

(henceforth, § — SRG for short), both players discount future rewards by the discount
factor § € (0, 1). Thus, in the 6-SRG, player i’s total reward from the initial state y

when the players employ the stationary strategies (gl, 32) is given by:

) ) t t
W.(81, 89)(¥) = %0 ;(8y, 89)(¥)-

Definition 2: The stationary strategy gl* € T is a best-response of player 1 to player

2’s stationary strategy g, in the 6 — SRG iff:
Wilg.*, g.)5) > Wog,, g)y) VyesS Vg €T
18171 BoJY) 2 WqlBys BoJLY y » VB .

This definition is standard and requires no elaboration. We do however note that the
stipulation that the best—response be chosen from I' is not a restriction. A well-known

argument in dynamic programming establishes that a stationary non-randomized
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best-Tesponse to a stationary strategy is also a best-response in the space of all
strategies, i.e., even when the responding player may randomize and/or condition his
actions on histories. Similarly, a best—response of player 2 to g € [ is defined. We

are naturally led to:

Definition 3: The pair (gJ, g2) € I' x T is a PSSE to the 6-SRG iff: for i, j = 1, 2,

and i # j, gf is a best-response in the 6~SRG to g?.

In the undiscounted stochastic resource allocation game (U-SRG, for short) both

players use the limit—of-means (or: long-run average or LRA) criterion to evaluate

payoffs from the game. That is, if W.(g;, 85)(y) denotes the total reward to i from y
€ S under the LRA, we have:

. 1 T—1 ¢t
(2.1) Wiey, B)() = timinty [ 1 51 g uiley, €5)0) |
or, if the limit on the right is well-defined:

(2.2) Wile 8)v) = img, [ 1 51) uf (g, 89)) |

We define best-responses in the U-SRG exactly as in definition 2, with the
obvious modification. Finally, exactly as in definition 3, a PSSE to the U-SRG is
defined by a pair of strategies (gl, g2) that are best-responses to each other in the
U-SRG.

Some preliminary observations before proceeding to the next section. Under our
specification of the model, trivial equilibria always exist, equilibria in which after some

history players choose actions that are collectively infeasible. Indeed, it is readily

verified that the stationary strategies (g;, 8o) specified by g,(y) = Bo(y) =y Vye€S
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constitute a PSSE to both the 6SRG and the U-SRG. Such equilibria are

uninteresting for obvious reasons and this motivates the definition:

Definition 4: A PSSE (81> 89) (to_the discounted or undiscounted game) is "interior"

if for all 0 < y € S we have g,(y) + go(y) < ¥

Our existence theorems in this paper pertain to interior PSSE. Apart from their
greater realism, our desire to search for interior PSSE was motivated at least in part
by wishing to find a set of conditions under which the stock would not be extinct in
finite time. For more on the importance of this and related issues, we refer the reader
to Clemhout and Wan (1987).

Finally, some terminology for the U~SRG. If the limit in (2.1) is well-defined and

the LHS of (2.2) is a constant for all 0 < y € S (say, W;(g;, 85)(y) = ;) then we

define v; to be the long—run average (LRA) value of the game to player i in the PSSE

(gl: g2)

3. Results
Our first theorem establishes the existence of PSSE in Isc strategies to the 6~SRG

for § € (0, 1):

Theorem 1: (a) For each 6 € (0, 1), there is a function g6 € T satisfying

(i) g5 is everywhere lsc on S

(i) 0<20(y) <yforalo<yes

b
5,(Y)51/2f0rally#y’es

such that the stationary strategies gf = gg = g‘s constitute a PSSE to

the &SRG

§
and (iii) & (Y; -
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(b) The corresponding payoff functions Wﬁ(gé, g5 are
i

upper—semicontinuous and non—decreasing on S.

Remark: Theorem 1 asserts a stronger property of the equilibrium strategies than
mentioned above; namely, that these strategies have slopes bounded above everywhere
by 1/2 (1/n in the n—player case). This last property is crucial in establishing
Theorem 2.

Some new mnotation based on Theorem 1 is needed to state Theorem 2. Let ¢6:S -

S represent the savings function in the 6-SRG, i.e, wé(y) =y - 2g6(y) at all y € S.

6 6

For ease of notation, let V17 v, denote respectively the total payoff functions in

equilibrium in the §SRG, that is, Vf = Wf(gf, gg). Since gf = gg = 85

symmetry we must also have Vf = Vg. Denote this common function by V‘S. The

, by

value-boundedness condition that we need to prove Theorem 2 can now be stated

formally.

Assumption 8 There is a function M:S - R with M(y) > —wo for all y # 0, such that
for all 0 < y €S, (Vi) = vi(1)) » M(y) for all 6 € (0, 1).

We have been unable to prove that this condition holds in general. On the other
hand (see Appendix), we have found several sufficient conditions on the PSSE of the
6-SCG that ensure it; and we have parametrized examples where the PSSE satisfy
these sufficient conditions for an interval of values of the parameter. Assumption 8 is
neither vacuuous nor degenerate.

Observe that, by the properties of g5 listed in Theorem 1, for each § € (0, 1) 'gbé

is an upper—semicontinuous and non-decreasing function on S. Let ¥ denote the space

of all such functions:
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¥ = {:S - S|y(y) € [0, y] for all y € §; 1 is usc and non—decreasing on S}

Since non—decreasing usc functions are also right—continuous, it follows from Helley’s

Theorem (e.g., Billingsley (1978, p. 290)) that every sequence in ¥ has a

weakly—convergent subsequence. That is, if {1pn} is a sequence in ¥, then there is a

subsequence n(k) of n and a function ¢ € ¥ such that lim; wn(k)(y) = (y) for all

continuity points y of 9. In particular, ¢6 € ¥ for each 6 € (0, 1); s0if 6 < 1,

6, -1, this property holds for the sequence {¢ m,

Theorem 2:

(i) There is a PSSE to the U-SRG.

)
(i) Let &6, <1, 6, - 1. Assume, wlog, that ¥ ™ converges weakly to

¥ € U. Then, the stationary strategies (g, go) defined by g; =
8y = & where

1
g(y) = 5 (v - ¥(y)) forall y € 5
constitutes a symmetric PSSE to the U-SRG.

(iii) The total payoff functions Wi(gl’ 32) associatied with this

equilibrium are both equal to a constant v at all 0 < y € S, where v

is defined by

§
v =lm__(1-8)V D).

and, is the long—run value of the game to either player.

In words, the pure strategy stationary equilibria to the U-SRG under the long-run

average payoff criterion, may be obtained as the weak limit of the PSSE of the

6~SRGs as 6]1. Moreover, the PSSE thus obtained has a constant LRA value on S,

which is given by the limit (as 6{1) of the normalized payoff functions of the 6~SRG.
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4. Proofs

4.1 Preliminary Results

The following lemma, a generalization of Fatouw’s lemma, is critical in proving

Theorems 1 and 2. The proof of this lemma follows from Dutta (1989, Theorem 1).

Lemma 1: Let Fn, F be non—positive, non—decreasing, right—continuous functions from

S into R,, and suppose Fn converges weakly to F. Let {xn} c S, X, 0 X Then,

+7
(40)  limsup__ JF (-)da(-]x,) ¢ JF(-)da(- |x).

Proof: As x_ = X, q(- |x,) converges weakly to q(-|x) by assumption 4. The lemma

now follows from the Generalized Fatow’s lemma (Dutta (1989, Theorem 1)).

Remark 11 Ifx =x for all n, then (4.0) is, of course, just Fatou’s lemma, since the
functions are all non—positive. On the other hand ifF = F for all n, then (4.0)
follows from the definition of weak—convergence of probability measures, since
non—decreasing, right—continuous functions are also usc. Lemma 1 generalizes both

results by allowing measures and integrands to vary simultaneously.
Remark 2 A simple corollary of lemma 1 is that (4.0) continues to hold if the

condition of non—positivity is replaced by the stipulation that the functions Fn’ F are

all uniformly bounded above on S, provided the other conditions of lemma 1 hold.

41 Proof of Theorem 1

The construction of the proof of Theorem 1 is in the spirit of Sundaram (1989)

and Majumdar and Sundaram (1988). Consequently, in the early steps we state
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without detailed proof several preliminary results. The reader is urged to consult the
two papers for details. The notation introduced here is important for it is used again

in proving Theorem 2.

Step 1: A Generalized Game

Following Debreu (1954) we define a generalized game, as one in which infeasible
plans are ruled out by construction. For any stationary strategy g, suppose that a
responding player is restricted to picking strategies only from I'(g) ¢ T' defined by

T(g) = {ryeTlAy) €0,y -g(y)]VyeS]

When both players are restricted in this manner to picking plans which are feasible
relative to the other player’s strategy, we have a generalized game. A best response in
such a game we will call a "generalized best-response” or GBR. Consider a symmetric
equilibrium (g, g) of the generalized game, and call it an interior symmetric equilibrium
if 0 < 2g(y) < y at all y > 0. Given the allocation rule that splits the stock in the
event of infeasible plans, it follows that an interior equilibrium in the generalized game

is actually an interior equilibrium in the &-SRG.

Lemma 2: Let (g, g) be an interior symmetric equilibrium in the generalized game.

Then, (g, g) is_an interior symmetric equilibrium in the 6~SRG.

Proof: Let V5 represent the players’ value function in the equilibrium (gé, gé) of the

generalized game. Then,
Vig) = o) + 6f Vi )da1y - 26%)  Vyes
> u(y - g%y)) + df{%l

> uf) + &0
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The last expression is the returns to the choice of an infeasible plan by a
responding player in the 6~SRG. The lemma is hence proved.

From hereon, we concentrate on finding an interior equilibrium in the generalized
game. However, the usual technique of obtaining an equilibrium as the fixed point of
a suitably constructed best—response mapping cannot directly be applied here, since
best-responses cannot be guaranteed to belong to the same space (i.e., satisfy the same
restrictions) as the corresponding strategies. Specifically, a sufficient condition (see
Majumdar-Sundaram (1988, Theorem 3.1)) for a strategy g to admit a GBR is that g
be everywhere lsc on S. However, it is trivial to construct strategies that satisfy these
conditions, but admit no GBR that is everywhere Isc on S. Similarly the GBR to an
everywhere continuous (resp. differentiable) strategy cannot be guaranteed to be
everywhere continuous (resp. differentiable). We explain now how symmetry enables us

to overcome this problem.

Step 2: A Common Savings Function

Consider the space ¥ defined earlier (section 3) as the space of non—decreasing, usc
functions 9:S - S that obey ¥(y) € [0, y] for each y € S. As in Sundaram (1989) and
Majumdar—-Sundaram (1988), we identify ¥ with a set of potential savings functions in
a stationary equilibrium. Each such function ¢ is "consistent" with the symmetric

consumption functions (g(v), g(¥)) defined by

(41)  gW)(y) =3 - ) v €S.

Observe that g(%) is Isc on S; and further that for all y, y’ € S with y # y’, we have

(4.2) [(e(¥)(y) - &)y )/(y - y)] < 1/2.
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We observe, without proof, the following:

Lemma 3: For each ¢ € ¥, g(v) admits a GBR é(gb). The total payoff V'V’:S - R

obtained by the responding player in a GBR to g(%) is_usc and non-decreasing on S.

A proof of Lemma 3 may be found in Majumdar-Sundaram (1988, Theorem 3.1).
As indicated above, on the other hand, é (¥) need not be lsc, and certainly
therefore, need not be consistent with any savings function % € ¥ in the sense of (4.1).

However, one can prove:

Lemma 4: (i) For each ¢ € ¥, there is a unique GBR é(?/)) to g(%) such that the

function 9(¢) defined by

HDE) = ¥ - W) - sH)

is in .

(ii) Moreover, ;Wp) can be actually be defined as

(43) YY) = max {x € &Y}

where () = argmax | {u(yg(0)0)) + & SV )da(- )}

Sketch of Proof: By the Principle of Optimality, V ¥ satisfies at each y € S:

(44)  Vy) = {u(y-g(¥)(y)=x) + 6f V,(-)da(- [x)}.

<el0, y-g)¥)(y)]
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From the strict concavity of u and (4.2), it immediately follows that the objective
in the RHS of (4.4) is a supermodular function of (x, y). Hence, it follows (see, e.g.,
Majumdar-Sundaram (1988, Lemma 4.3)) that the correspondence of maximizers in
(4.4), &(¢), is non—decreasing, i.e., y° > y, x € {¥)(y), x’ € ¢¥)(y’) 2 x* > x. The
right continuity of V¢ (Lemma 3) and the weak continuity of q (Assumption 4) then
imply that ;p, as in (4.3), is usc, non~decreasing and is in fact, the unique usc,
non—decreasing selection from &(%).

Q.E.D.
We henceforth refer to ;p(«/)) as the GBR to ¢ (rather than as "the savings

function in a GBR to g(¢)"). This GBR map defines a map H:¥ - ¥. At a
fixed—point ¢* of this map H, we have H(¢*)(y) = ¢*(y) for all y € §, or:

y - g(N) - g@) = )
=y — 2 g(¥*)(y)

so g(v)(y) = g(¥*)(y) for all y € S, or g(y*) is a GBR to itself. By symmetry g(¢*)

is then an equilibrium to the generalized game.

Lemma 5: At a fixed point y* of H,g(¢*) is_an interior, symmetric equilibrium of the

generalized game.

Proof: We only need to show that g(y*) is interior. The proof follows by exploiting
the ITnada conditions (Assumptions 2 and 6) on u and q. See Lemma 4.9 in
Majumdar—Sundaram (1988) for details.

Q.E.D.
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The task is now reduced to finding a fixed point of H.

Step 3: An Expansion of the State Space

For technical reasons, we expand the state space S = [0, 1] to a larger space §* =

[0, s*], s¥* > 1, to avoid upper—endpoint problems in S. On S*, define

U* = {:8* -+ S*|¢(y) € [0, y] V y € S*. 4 is usc and non—decreasing on S*;
Ys*) = 5.

Since supp q(-|x) C S* for x € S* by assumption 3, the generalized game with state
space S* is also welldefined. Lemma 3 and 4 are extended to S* in the obvious
manner, and continue to be valid. Finally, it is clear that the restrictions to S of
strategies that constitute a PSSE to the generalized game on S* constitute a PSSE to
the generalized game on S.

We first establish the requisite topological conditions for ¥* to have the
fixed—point property. Observe that ¥* ¢ TI(S*), where II(S*) is the space of all
distribution functions corresponding to finite, positive measures 4 On the Borel sets of
S* satisfying p(S*) = s*. A well-known result (see, e.g., Parthasarathy (1967,
Theorem 6.4.1) establishes that this space of measures, hence II(S*), is compact in the
metrizable topology of weak convergence. It is easily seen that ¥* is a closed subset
of TI(S*) in this topology ; hence, ¥* is also compact, and sequential arguments in U*
suffice. Convexity of ¥* is immediate. And invoking the Schauder—Tychonoff

fixed—point theorem (e.g., Smart (1974)):

Lemma 6: ¥* has the fixed—point property, i.e., any continuous map from ¥* into

itself has a fixed—point.
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To ensure that the GBR map H, of step 1, maps ¥* into itself, we modify H at
the upper—endpoint of S* to H(y)(s*) = s* V ¢ € ¥*, Observe that a fixed—point ¢*
of H still yields a function g(¢*) that is a GBR to itself on [0, s*), hence on [0, 1].
(This is true since supp q(+|x) € [0, x] V x € [1, s*) by assumption 3, so that if the
game starts in [0, s*), it can never get to s* which is then irrelevant.) All that

remains in the proof of Theorem 1 is, therefore,

Step 4: Continuity of the GBR map H:¥ - §*3

Let {wn} ¢ U* be a sequence converging weakly to %, and let ¢ = H(wn).
Assume wlog that ¢n converges weakly to 9. We need to show that v = H(¥).
Recall that V ¥ denotes the payoff in a generalized best-response to 3. For ease of

notation denote V ” by V. Since V is mon—decreasing and right—continuous for each
n

n, Helley’s selection Theorem (Billingsley (1978, p. 290)) implies that along some
subsequence, again denoted n, VIl converges weakly to a right—continuous,
non—decreasing function V. Note also that V_, V are uniformly bounded above and
below on S* by u(s*)(1 - 5)_1 and u(0)(1 - 5)_1 respectively.

For ease of notation, let kn’ k, denote the residual stock under ’t/)n and 9
respectively, i.e., for y € % k (y) =y - g(v)(y) = %(y + ¢,(y)), and k(y) =
y - g(¥)(y) = %—(y + 9(y)). Note that k , k are right—continuous, non—decreasing
functions and since 1/)n converges weakly to %, so kn converges weakly to k.

For each n, V satisfies at each y € S*:

3This step, the continuity of H, is the point where Majumdar-Sundaram (1988) and
Sundaram (1989) critically exploit their respective assumptions of atomless and
deterministic transitions.
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(45 V. (y) = mar {u(k(y) - x) + 6V, (-)da(- %)}

x€[0,k

= ulk,(¥) - %) + 6f V,(-)da(- [, (¥))

Let S ¢ S* be defined by S = {y € S*|V, ¢ and ':/) are continuous at y}. Note that S
is dense in S*. For y € §, ':/)n(y) - ;/)(y) as n -+ o, so q(- |1})n(y)) converges weakly to
q(-l';b(y)). Since V , k_ converge weakly to V and k respectively, taking limits in
(4.5) yields for y € S by Lemma 4.1:

u(k(y) - ¥(y)) + 6 limsup_ ['V_(-)da(-|9,(¥))
u(k(y) = %)) + &/ V(-)da(- |%(y)).

(46)  V(y)

I

A

Since S is dense in S*, (4.4) holds for all y € S*. We now prove that the opposite

inequality also holds, and that, in fact, ;/)(y) solves for each y € [0, s*):

wn V)= mes {u(k(y) - %) + §fV(-)da(- |0}

This will clearly complete the proof of continuity of H.

To establish the desired inequality, consider any y € [0, s*), and an arbitrary x €
[0, k(y)]. Since S is dense in S*, there is a sequence ymly, Y € S, and an associated
feasible investment x_ € [0, k(ym)], x, > x By the strong stochastic dominance
assumption (Assumption 5), there are atomless measures p, m 2 0 such that: a(-1x)
(weakly) stochastically dominates 4~ which (weakly) stochastically dominates q(-|x).

Now,
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Vo) 2wl (r) — =) + 6V ()da(- |xp,)

> u(k (v,) = =) + 6V (-)duy

Since p n is atomless, noting that Vn -V [T N and appealing to the dominated
convergence theorem yields [V (-)du = JV(-)du, . So, taking limits,

V(yy) 2 ulk(yy) — x) + 6V()duy,

> u(k(y,) - x) + 6V(-)da(- |x)

The last inequality follows since p stochastically dominates q(-|x). Letting
ymly, we have

(48)  V(y) 2 u(k(y) - x) + §V(-)dq(-|x), ¥ x c [0, k(y)]

Clearly, (4.6) and (4.8) together yield (4.7) for y < s*. Hence, we have proved

Lemma 7:

The best response function H: ¥* - ¥* is continuous in the weak
topology.

Combining Lemmas 6 and 7 we have a fixed point ¢* of H. But then,

¥*(y) = v - 28(¥*)(y)
=y — g(¥*)(y) = &(¥*)(y)
or g(¥*)(y) = g(¢*)(y) at all y < s* implying that g(¢*) is 2 GBR to itself on s*.

The proof that this is also an equilibrium in the original game, follows Lemmas 2 and
5.
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4.2 Proof of Theorem 2

Let 6,11, and let V denote the value function under a PSSE in the §, - SRG
with the properties listed in Theorem 1. Write ¢ (y) = V_(y) — V(1). Note that in
proving Theorem 1 we showed that V_ is non—decreasing and usc, and hence ¢n < 0.

Now, the optimality equation can be re—written as

(49) (1 - &)V (1) + ¢,() = ulk,(¥) - $E()) + &, f ¢ (-)dal- |9E(x))

¢n is bounded below pointwise by the value boundedness assumption (Assumption
8). It is also non—decreasing and usc by Theorem 1. Hence, there is a subsequence
(again denoted by n) on which, ¢, = ¢, ¥} = ¢* and (1 - 8)V (1) » v, where vis a
subsequential limit of the bounded sequence (1 — 6 )V (1). Let S={yeS:yisa

continuity point of ¢, ¥*}. For y € S, Lemma 1 yields,

(410) v+ ¢(y) < u(k¥(y) - ¥*(¥) + SO ) |¥*())-

Again, exploiting the denseness of S in S, (4.10) can be shown to hold for all y €

S. TIterating on (4.10) and using the fact that ¢ < 0 now results in:

Tv + §(3) ¢ 31 s u'(g)() + Byl € 2o n'(e))

where E[¢(yp)|y] and ut(g*)(y) denote respectively the expected T—th period value of ¢
and the t—th period expected reward under g*, from the initial state y. Dividing by T

and letting T-w, we get

(4.11) v < liminfT_mD [ rlir 2‘{:(1) ut(g*)(}’)]
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or, that using g* as a response to g* yields a LRA payoff of at least v from any 0 <
y € S.

We now show that there is no response to g* which yields a LRA payoff greater
than v from the initial state y = 1. Since g* has a slope bounded above everywhere
on S by 1/2, it is trivial to see that the LRA payoff against g* must be
non—decreasing on S. Therefore, if v is an upper bound on the LRA payoff from y =
1, it is also an upper bound from any other initial state y > 0. Combining this with

(4.8), the proof of Theorem 2 is completed. We proceed in several steps.

Step 1: Identical arguments as in the proof of lemma 7 establish that for any fixed x

€ [0, k¥*(y)l:
(412) v+ ¢(y) > u(k*(y) - x) + [¢(-)dq(-|x)
Combining this with (4.10), we now have:
(413) v+ 0(3) = maxy g ey (00FG) =) + [4()da(-[x)}, ¥ > 0.
Step 2: Let 7 be any (i.e., not necessarily stationary) strategy4 for the player (say, 1)

responding against g* in the U-SRG. From hereon fix the initial state y = 1. Let

ut(7r, g*) denote the expected t—th period reward from using 7 against g*. Finally, let

4Formally, for t > 0, let ht+1 € Ht+1 = xSbea partial history of states and

actions by the 2 players up to period t, and the period—<t+1) state. Then, a strategy
7 is a sequence of measurable maps {=} such that m:H - S and (h,) € [0, y,] for

all t, where Yy is the last element of ht‘ Observe that a stationary strategy = is one
for which 7, depends in a time—constant way only on the last coordinate of h, for each
t, i.e, T =8 for all t where g:S - S.
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u'}‘r denote the period—T marginal distribution over S from using 7 against g*.

Iterating on (4.2) with y = 1,
1 1 T—1 1t T
(411) v+ 2 40) 2 4 [ BT0) whn €)W + [40)aun() Ik
. 1 T Y
Note that if [ T f(i)du7r ] +0as T » o, then (4.13) implies
(4.14) v > limsupp [ r_lr Erf’:‘é ut(7r, g*)(1) ],

thus completing the proof of Theorem 2 by the earlier arguments. We now show that

this must indeed be the case for some e-optimal BR to g* in the U-SRG, V € > 0.

Step 3: Recall that m(y) = inf.{x|q(y |x) = 0}, i.e, m(y) is the minimum feasible
investment level that will reproduce a stock level of at least y almost surely. m(-) is
increasing in y. By the Inada condition (Assumption 2/), there is 7* > 0 such that
m(y) < y/2 for y € (0, 7*). Note that for all y € 5, k¥(y) = y - g*(y) > y/2. For

small values of £ > 0, let P ¢ denote the following perturbed best-response problem:

Max limsupm,, [ % Erf:(l) ut('/r, g*)(l)]
T
(Fg) subject to: x € [m(§), K*(y)], v 2 ¢

x € [m(y), k(¥)], v < ¢

where x is the action recommended by 7 for any history ending in y. By the earlier
observations, this problem is well-defined for small values of £. Note that £ = 0
corresponds to the original best-response problem from the initial state y = 1, with

"limsup" replacing "liminf" in the objective function.
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Let /\5 and X denote respectively the supremum over all 7 of the objective
function in Pf when ¢ > 0 and ¢ = 0. Clearly X ,\€ for all £ > 0, and /\E is
non—decreasing as £ | 0.

Suppose it were true that A ¢ X as £ | 0 (we prove this in step 4). Let € > 0
be given. Pick any ¢ > 0 such that X - )\5 < ¢/2. Pick any plan 7 in P§ that is
¢/2-optimal. Then, of course, 7 is e-optimal in P

By construction, urfr has full support on [£ 1] for all T > 0. This implies, that
since ¢ is non—decreasing and bounded above, so f ¢du?r is uniformly bounded.

Therefore, % f¢du£ +0as T - o, or from (4.13)
. 1 ¢IT—1 _t
(4.16) v 2 limsupp_ [ T Y=o v (™ g*)(1) ] > )\5 -€/22 X -

But (4.14) holding for all ¢ > 0 implies v > X, which combined with (4.10) proves
Theorem 2.

Thus, as the last step in the proof we show that A ¢ Xas £/ 0.

Step 4: Given ¢ > 0 pick ¢ so that [u(m(¢)) — u(0)]] < e Since m(§) - 0, as £ = 0,
and u is continuous on R 4 this is possible. Let 7* be optimal in PO. (If no optimal
best—tesponse strategies exist, pick 7* to be e—optimal.) Modify 7* to require that the
constraints in P ¢ be satisfied. The maximum loss from using this modified strategy is
clearly [u(m(¢)) - u(0)] in every period, or, in other words, this strategy implies that A
- A ¢ < €

Q.E.D.
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Appendix

We show here a sufficient condition for Assumption 8 to hold. Consider the
deterministic transition game, i.e., g(-|x) is specified by
aylx) =0 ify < ()
=1 if y > {(x)

where f:R +—»IR n is a continuous, increasing function (the "production function")
satisfying f(0) = 0. (This is essentially the framework of Sundaram, 1989.) Assume
also that f satisfies the usual neoclassical conditions: f is strictly concave on R " and
is ¢! on R 44 With limxlof'(x) = o, limmef’(x) = 0. Note that Assumptions 1-5 are
satisfied.

Then, there is a symmetric equilibrium pair (gé, gé) meeting the conditions of
Theorem 1. We will now show that whenever condition (*) below is met, then
Assumption 8 is satisfied.?

*) g‘S is non—decreasing on S.

Note that Theorem 1 has nothing to say about (*), and indeed, it is an open question
whether, in general, g6 can also be chosen to satisfy (*). However, the parametrized
model of Levhari and Mirman (1980) admits such equilibria for all values of the

parameter. (Levhari-Mirman assume f(x) = x* for « € (0, 1), and u(c) = log c§; they

5We also have results that show that if a certain productivity condition is met and

either (a) g6 is differentiable on S, or (b) g6 is continuous on S and satisfies an
asymptotic condition on S, then Assumption 8 is satisfied.

6This utility specification is not coverd by our assumption that u(0) is finite.
However, as in single agent optimization problems, all of the relevant arguments in
Theorems 1 and 2 can be extended to this case, using the Inada conditions on u and

q.
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show that the linear stationary strategies g‘s(y) = [(1—«6)/(2—06)] - y constitute a
PSSE.)

Proposition: Suppose the PSSE of (gé, gé) satisfies (*). Then, Assumption 8 is

satisfied.

Proof: It is easily shown using standard methods that the symmetric first—best

problem is uniquely solved by a pair of symmetric stationary strategies (h5, hé); and

that at all v € S, h® satisfies

Ay wly) = w1l
where sé(y) =y - 2h6(y), and y’ = f(sg(y)).

It is also not too difficult, using (*) in conjunction with methods used in section 5

of Dutta—Sundaram (1989), to show that the corresponding first—order conditions

satisfied by (g‘s, g5) at all y € S are:

A2 vy ¢ aElenrelyna - pele)

where y* = f(?/)ﬁ(y)), ¢6(y) = y——2g6(y), D+g6 is the right upper Dini derivate of gé.
(A.1) and (A.2) together can be shown to imply:
Claim 1: go(y) > h¥(y) for all y € S
aim 1: g (y) 2 h'(y) for all y € S.

Proof: Suppose for some y, gé(y) < ha(y). Then, u’(gé(y)) > u'(h‘s(y)), and ¢5(y) >
sé(y), so from (A.1), (A.2), and the strict concavity of u, gé(y*) < h‘s(y'). Moreover,
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since f is increasing, y* > y’, so once again u’(gé(y*)) > u’(hé(y’)) and 1/)5(y*) >
sa(y’). Thus, if yt*, y,  represent the period—t values of the state from y under

(gﬁ, g6) and (h‘s, h5) respectively, iterating this argument reveals yt* >y, for all t.
1/)6 non—decreasing (by Theorem 1) combined with f increasing implies yt* is a
monotone sequence. Similarly, y;’ can be shown to be a montone sequence. By the
continuity of g5 which follows from Theorem 1 and (*), y*= lim yt* is a steady-state

of the game under (ga, g‘s), ie.,
7 = 14°GY)

Standard arguments imply similarly that y’ = lim y,  is a steady—state under (hé, h5).
From (A.2), & (v%3*) (@ - DTE’F*) 2 1, while from (A.1), 6 (s%F')) = 1. There

are two cases to consider. If D+g5(§*) = 0, then z/;‘s is strictly increasing at y* and

v

hence, yt* - y* asymptotically (i.e., yt* # y* for any t). Theorem 3.2 in
Dutta—Sundaram (1989), then establishes that y* < y’, a contradiction. If D+g5(§*)
> 0, then 5f’(1,[)6(3?*)) > 1, ie, ¢5(§*) < s5(§’), from the concavity of f. This too is
a contradiction, since by the claim from previous arguments, y* > y’, and the fact
that these are steady states implies, 1/)6(3?*) > s5(§’).

To complete the proof of the proposition, it would be simpler notationally to
assume the everywhere differentiability of the payoff functions (Vé, V‘S) associated wih
the PSSE (gé, gé), although this is not necessary.” (Observe that Theorem 1, in any

)

event, ensures that V® is almost everywhere differentiable.) Sundaram (1989, Lemma

"Strictly speaking, let UX(y) = V¥ (y), if V? is differentiable at y, and 0 otherwise.
Let ,ué(y) = sup Ué(y) and suppose, for some ¢ > 0, z is such that V6'(zy) exists

and Vﬁ’(zy) > ué(y) — ¢, z €[y,1]. From the fundamental theorem of calculus, the

first equality above can be replaced by, V5(1) - Vé(y) < [V‘S'(zy) + €(1~y). The rest
of the arguments follow.
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II1.1) shows that V5 is differentiable at y € S iff g6 is differentiable at y, in which

case

V() = wiglya - g8 m).

Finally, we need the result from Dutta (1986) where it is shown that there is a
function «:S - S, «(y) > 0 if y > 0, such that the symmetric first—best strategies (hé,
h5) satisfy h's(y) > ay) for all §€ (0, 1), forally e S,y > 0.

Now note that for some z. € (v, 1)

V6(1) - V‘S(y) = V5'(zy)(1—y), by the mean value theorem
= w(g'(z,)1 - g (2,1 - ¥)
u’ (g (Z )(1-y), by (*)
u’(h (Z ))(1-y), by claim
u’ (x(z ))( y).

IA I

A

Defining M(y) = (y ~ Du’(x(z,)), it follows that Vi) - vi1) > M@y) for all y € .
Q.E.D.



