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Abstract

The paper studies estimation of parameters in the linear—quadratic optimmization
model when the forcing variables are integrated. It is shown that it is difficult to
estimate one of the parameters of this model, the discount rate, when integration
pertains, and there can even be a complete failure of identification. A variety of
estimators is proposed that would enable inferences with standard chi-square test
statistics. These estimators differ in the amount of a priori knowledge about the linear
quadratic model exploited in their construction. A small Monte Carlo study assesses
the sampling properties of the estimators and reveals some difficulties in their use.
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But unlike the economic theoretician, who usually works with
general classes of functions, [the builder of econometric models]
must work with particular functional forms (e.g., linear,
quadratic, exponential.)

— Bergstrom (1967, p. 3)

1. Introduction

When Rex Bergstrom wrote his 1967 monograph, ad-hoc specification dominated in
econometric research. Nowhere was this truer than in dynamics. The intervening
twenty years has seen some progress in rectifying this situation: inter—temporal
optimizing theory has been utilized to suggest suitable dynamic specifications and a
literature has emerged describing classes of models that seem appropriate for many
economic data series. The former development tends to be described as the "Euler
equation approach," while the latter deals with the class of error correction models
(ECM). At a very general level it is hard to reconcile the two traditions, but if one
follows Bergstrom’s pragmatism in adopting specific functional forms for agents’ utility
and production functions, it is possible to achieve a synthesis. Nickell (1985) did just
this, showing that Euler equations derived from quadratic objective functions could be
re—cast as error correction models, so that the approaches are isomorphic. Each has its
advantages. The Euler equation approach enables interpretation of the estimated
parameters as those associated with objective functions, whilst the ECM methodology
allows the "data to speak for itself", and is therefore compatible with a number of
possible objective functions.

What was most striking about the trends cited above was the implication that the
nature of the forcing variables faced by agents determinéd the appropriate specification
for estimating equations. Concurrently with the emergence of this principle, work by
Engle and Granger (1987), Phillips (1987), Sims, Stock and Watson (1990) inter alia,

showed that estimation theory and procedures must be adapted for the type of data



econometricians use. Consequently, it is an obvious step to integrate the themes. It is
this quest which motivates the current paper. Surprisingly, there is little research on

. the interface, the most prominent exception being Dolado, Galbraith and Banerjee
(1989), although one can find reference to some of the issues scattered through applied
papers such as Ilmakunnas (1989) and the book by Pesaran (1987).

The paper is organized as follows. Section 2 sets out the models studied and
describes different representations of them that are found in the literature. Section 3
looks at some general issues of estimability and identifiability of parameters in these
models. It is shown that the ability to identify parameters is dependent upon the
nature of the forcing variables, and that it is quite likely that one of the parameters,
the discount factor, cannot be estimated with much accuracy. Hence, the common
practice of pre-setting this parameter has theoretical support. Broadly, section 3 is
concerned with the ability to find consistent estimators of the unknown parameters, and
ignores questions of inference. Section 4 rectifies this by applying ideas in the
literature concerned with the estimation of co-integrating vectors, for example Phillips
and Hansen (1990), Johansen (1988) and Park (1988), that describe estimators which
enable hypothesis tests to be conducted in a standard way on the co-integrating vector.
One interesting difference between our situation and that in the literature on estimation
with integrated variables is the way in which we arrive at an ECM representation. In
Engle and Granger and Phillips and Hansen, the ECM is derived as a consequence of
co-integration between variables, and it is the co-integrating vector which is of prime
importance. All other parameters are regarded as nuisance parameters and are
effectively ignored by the use of robust estimation techniques. But, when an ECM is a
consequence of a theoretical specification, as in the models studied in this paper, the
"nuisance" parameters become of interest, and some modifications to standard methods
of estimation need to be made to allow for this fact. Finally, section 5 evaluates the

proposed estimators by a small simulation study.



9. The Model and Its Representations

As mentioned earlier, inter-temporal optimizing models vary according to the
_choice of function to be optimized, but a popular variant has been the linear—quadratic
adjustment cost model in which a decision maker solves the following problem in an

*
attempt to track a target value y  over time

®
. ~4 *\2 2
{yg} = 5=t
where the expectation is taken with respect to information available to an agent at
*
time t (‘7'&)‘2 The target variable is y, = x(0 + e, where e, 1s 2 white noise error
known to the decision maker, while x, is a qx1 vector of forcing variables.? It is

. . . o .
presumed that the error e, appears in F, = {et’yt—j’xt—j +1}j=1’ but is not known to

an investigating econometrician, whose information set is therefore a subset of s ?t‘
The popularity of this model is evident in the literature concerning choice of factor of
production levels, for example Kennan (1979), Nickell (1987), Layard and Nickell
(1986), and Wren-Lewis (1986), for which y, would be the level of employment (or
hours worked) and x, variables such as output and the real wage.

The first order condition for the optimization problem is the Euler equation

. v
Ayt = f Et Ayt+1 + C(yt - yt) ) (2)
where ¢ = -6 and E, is the expectation taken with respect to ‘7,5 As is well known,

both roots of the characteristic equation of this second—order difference equation are
positive and they lie on cither side of one. Denote the stable root of the quadratic
ﬂz2 — (1 + f+ 8z + 1=0Dby ) leading to the forward solution to (2) of

*

g, = Aygg + (=X (L= E si By, (3)

Equations (2) and (3) form the basis of estimation techniques advanced for the



linear /quadratic model. As with all rational expectations models (see Wickens (1982))
there are two general approaches to estimation. In the first, EtAyt +1 is replaced by

Ayt+1 + My where Et(nt+1) = 0, and equation (2) could be written as

Ayt = f Ayt+1 + C(yt - X{:H) + Vi (4)

where v, = ﬂnt-}—l - ce, has the property that E(vtl jt) = 0. As suggested by
McCallum (1976), instrumental variable (IV) estimators of the coefficients of equation
(4) might be performed with instruments drawn from %.

Alternatively, if an assumption is made about how x, is generated, the unknown
expectation in (3) may be found and an estimating equation derived. There are two
cases of particular interest to us about how X, evolves, and the corresponding solved

versions of (3) would bet
Case I (1 -pl)xy = ¢ Biale) = 0
Ay, = 0= Dl - 50 + (0 - DAL - )70 = A,
Cx )+ (- BN - A 5)
Case I (1-pl)1-Lx = & Byle) = 0
By, = (=D~ %0+ Q- oy M1 - N)Ax;0
4 (1= AL - Ny - (6)

If x, is integrated of order ome (I(1)) we would get (5) with p; = 1, while if it is
of order two (I(2)), we would get (6) with p, = 1. Because it is central to later work

it is useful to re-write the special case of (5) when p;=1 as (57).

Ay, = Oy y%q0 + (=N)Ax0 + (1=A)(-A)e, (5")



or in the equivalent form of the partial adjustment model
v = AVt (1 - Ax 0+ (1 = BA)(L = ey - ~ (7)

In turn (7) is usefully re—parameterized in the format of Bewley (1979)

y, = M- Ay, +xl + (= ey (8)

(8) is important since it demonstrates that @ is the co—integrating vector between y,
and x, as all other variables in (8) are I(0). Depending on the context, any one of

(5°), (7) or (8) will be adopted when working with Case L

3. Some General Issues of Estimation and Identification

Estimation procedures for these models vary according to whether they are "single
equation” or "systems of equations" oriented. In the former instance attention is
focussed upon either the Euler equation (4) or the "solved" forms in (5) and (6). In
the latter, if |pll < 1 it is apparent that p, enters both the equation for Yy and that
for X and this points to the likelihood that joint estimation of the two equations
would be profitable. Of the "single equation" proponents, two proposals stand out :
those by Kennan (1979) and Dolado, Banerjee and Galbraith (1989).

Kennan (1979) was essentially concerned with Case I (|p;] < 1), but where x;
followed a p’th order autoregression and was strictly exogenous. With a higher order
autoregression of order p, (5) would contain terms X, .., Xy 5.1 He proposed
regressing y, against y;_1» Xp - Xy_py1 to obtain an estimator of A, solving for 6
from the polynomial connecting (A,8,6) after prespecifying f, and then regressing
5—1(Ayt - ﬂAyt+1) + y, against x, (see (4)) to find 9. Of course if one knew that p
= 1, both § and A could have been estimated directly from (5), replacing pq by f)l,
the OLS estimator of p; from x, = p1X; 4 + &

Kennan observes that some corrections need to be made to standard errors owing



to the use of "generated regressors", see Newey (1984) and Pagan (1984), in finding .
A further difficulty arises when p; = 1, caused by the fact that the regressors y, ;
‘and'xt‘ are co-integrated. This feature means that the regressor cross product matrix
in his first stage regression to find A, namely that associated with (7), is asymptotically
singular, and that fact precludes the estimators of both parameters from attaining the
T—convergence rate normally associated with integrated regressors. Park and Phillips
(1988) deal with this complication by a "co—ordinate rotation". In genmeral, if z;, and
Zo; aI€ cointegrated with co-integrating vector a, so that z,, = zo,@ + Ct, the
relation z;,7; + %947y Can be re-expressed as ('yla +’y2)z2t + Ct'yl, where the two
"new'" regressors, zo, and (i, are respectively I(1) and I(0). Then 7, would be
estimated Tl/ 2 consistently whereas (7101 + 72) is estimated T—consistently. Equating
2y, = ¥y and zg = X, inspection of (7) and (8) shows that y; = A, a = 0 and 7,
= (1-))8. "Co-ordinate rotation” therefore gives the correct asymptotics directly and
means the estimation of (8) rather than (7), and, if one wanted to proceed with
Kennan’s approach, it would seem best to work with the latter equation to determine 6
and A.

Retaining the restriction that p; = 1, Dolado, Galbraith and Banerjee (1989) note
that the ordering in Kennan’s procedure might be reversed. Under these circumstances
y; 1 I(1), the long-tun response of y, to x, in (5) is 6, and the regression of y,
against x, coﬁsistently estimates this long-run response. Having found § they then
suggest that one might consistently estimate § and 8 by applying instrumental variables
(IV) to (4) with instruments selected from .

The sequential estimation strategy espoused by Dolado et al., which is rooted in
the two-step approach in Engle and Granger (1987), and which seeks to exploit
different convergence rates for estimators of parameters of variables exhibiting different
degrees of integration, is an interesting one. However, it is clearly important to know

what its limits would be. One concern that is immediate with all of these models is



whether the parameters can be identified. Identification issues in the linear quadratic
model are rarely treated explicitly, although a parameter that seems to have been

- difficult to estimate has been the discount factor 4. Some authors set it to a
pre—specified number, for example Kennan (1979). Others do this but suggest it is
estimable, for example, Blanchard and Melino (1986, p. 389) who comment, "We could
in principle estimate 8. Recent papers indicate that obtaining accurate estimates of f3
in models such as ours is difficult. Our choice of § = .99 is arbitrary. Varying f
between .95 and 1.00 has however very little effect on the estimated parameters."
Only a few actually estimate it, recent examples being Ilmakunnas (1989) and Dolado
et al. (1989). Such a diverse set of responses does raise the possibility that there may
be a problem of identifiability with this parameter, and we therefore proceed to
examine this question, firstly in the context of (5), and subsequently treating estimation
in the more general environment of (6).

That there is a serious identification problem for some of the parameters of (5)
should be immediately apparent from (5), when py = 1 and ¢ is a scalar, as there are
three unknown parameters f, § and 0, but only two regressors (see (7)). This seems to
explain why those authors who pre-set § do so, as they invariably work with the
solved equation (5). Those who seem to believe that § is estimable e.g Dolado et al,
proceed instead from (4), with the additional assumption that 0 can be consistently
estimated from some other source. Indeed, § can be consistently estimated from the
regression of y, against x,, provided x, is I(1) (Stock (1987)). However, since equation
(4) uses less information than (5), it is hard to see how it is therefore possible to
estimate more parameters. Some reconciliation of these views is needed, and we turn
to that task now.

Dolado et al. (1989) have as a maintained assumption that x, is strictly exogenous

“in both Cases I and II, i.e., the correlation between € and e, is zero. Assuming that

0 is known they would recommend estimation of § and § in Case I by performing IV



on (4) with instruments z, | = ¥y, 4 ~ Xt—10 and Ay, 4 for z, and Ayt+1
respectively.5 For this scenario we now show that only one of the two parameters f
‘and § in (4) is in fact identifiable.

As all the variables in (4) are 1(0) a requirement for asymptotic identification of
‘the parameters of (4) is that the nrelevance" condition be satisfied, namely that the
covariance matrix between instruments and regressors is non-singular.6 When py = 1,
z, = v 0= (1- )\L)_l[(l - A)(1 - BAle, - OAe,), and, under standard assumptions,
the covariance matrix converges to

B(Ay, 1Ay 4q) | BBy %)

B(zy 48 441) | B(z_2)

()2 1,-0(1-0)%a + (-1 | (D)7 +8(1-M)a + d

= )
(A-1)m 71 (

where a = E(Axt—lzt)’ T = E(tht—k) and d = (1——5L)2(1—A)2)\ag. Clearly this
matrix is singular. Of course one can still estimate unidentified models, although
estimators cannot be consistent and, as Phillips (1989) shows, the distribution of both
of the IV estimators of § and § will be rendered non-standard.”

It is interesting to speculate about the identifiability of f when ‘p1|<1. If 0 1s
known there are two regressors and two parameters in (5), suggesting that § might be
identified. Pesaran (1987, p. 134-147) deals with identification issues in Euler
equations such as (2), although some modification is needed to it to fit the variant
that he conducts an identification investigation on. Specifically, he excludes e from
the conditional expectation in (2). Consequently, replacing y, — y: by v, - x{ﬁ - e

= z, — ¢, his version of (2) would be Ay, = ﬂEt(Ayt+1) + cz; - cey After allowing

t
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z, to be a stationary AR(r) process, he gives a necessary condition for identification as
r > 2, suggesting that when z, is only a first order autoregressive process there will be
identification difficulties. In fact, when p; =1, z, = (1- AL)_l[(l — A1 = BA)e, -
BAet], and therefore it is an AR(1), which agrees with our finding. Such an outcome
should be contrasted with what happens when p; # 1. Then, (1 — AL)(1 - plL)zt =

(@ = A = A - oyl + [( & ‘f@ﬁliﬁ" A 1)+ ALle,f}, making 7, an

ARMA(2,1) process. Applying Pesaran’s rule, the necessary condition for 3 and ¢ to
be identified is therefore satisfied. The reduction from an ARMA(2,1), when plaél, to
an AR(1), when p; = 1, occurs because the MA(1) in the latter case becomes —)\Aetﬂ
+ (1 = A)(1 = BA)Ae,, and the common unit root to both the AR(2) and the MA(1)
cancels. In summary, once py = 1 it is no longer possible to separately identify 4 and
6.8

Modification to these conclusions is needed if Xy is allowed to evolve as in Case IL
Suppose that 0 and po are known (p2 can be consistently estimated by regressing Axt
against Axt-l)’ and focus on the simple TV estimator discussed previously. The forcing
variable becomes z, = (1—)\L)_1[(1—)\)(1—ﬂ/\)et—0)\(l—pzﬂ)\)_l(l——p2ﬂ)Axt], and the fact
that Ax, is an AR(1) means that z, will be an ARMA(2,1), satisfying the necessary
condition for identification. It seems likely that this will be sufficient as well, although
it is hard to verify the conjecture. Perhaps a more relevent concern is not whether
there is a complete failure of identifiability, but whether the estimation problem is
sufficiently well determined to enable precise estimation of § and § even in very large
samples. One way to address this issue is to conceive of the demonstrated failure of
identifiability when py=0 (Case II coincides with Case I) as arising from perfect
collinearity between the instruments, thereby leading to a singular correlation matrix.
Then it may be asked how far away from singularity the correlation matrix between

instruments and regressors becomes as po inCreases. There seems little to be said
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analytically about this feature, as the covariance matrix is a complex function of f, 6,
Poy 02 and a For this reason we have simply computed the eigenvalues of the

-+ correlation matrix for many configurations of Case 11, finding that the- smallest
eigenvalue was always less than .1. For example, in the Monte Carlo "basic
experiment" described in equation (20), and with (1-pyL)Bx, = € the smallest
eigenvalues are .01(py= 5), .05 (pg=- 8) and .07 (pg=- 9).9 This finding points to the
extreme difficulty of jointly estimating both § and é. To see that the source of the
collinearity is due to f, assume that § is known, form ﬁAyt 41 and move it to the
LHS of (4), after which 6 may be estimated by IV with z, ; as an instrument for z,.
Then the corresponding eigenvalues (now the correlation coefficients between the two
variables) would be .5, .49 and .48 respectively.

A different view of the estimability of {3 is to be had from the ECM (6). Again
fixing 0 and p, estimation would proceed by linearizing (6) around some initial
estimators of A and f§, performing a regression to get updated estimates of these
parameters, and continuing to iterate this sequence until convergence. At the
termination of iterations 5 is recoverable by solving the polynomial ﬂ)\ -1+ B+
25)5\ + 1 = 0. The precision of estimation depends upon the covariance matrix of the
derivatives of (6) with respect to A and f, and these derivatives are
[—(1—p2ﬁ>\) (pzﬂ—l)AX 0+ z,_4] and —(1—p2ﬁ}\)-2p2)\(1—)\)Ax’0 respectively, where z,

= (1 - ML) [(1 ~ A)(1 = BAe - o1 - pzﬁ)\) (1 - p2ﬁ)Ax] Correlation between
these terms is high for values of po TeEAT Z€I0 but weakens quickly as pq increases.
For the example mentioned above, which led to a near singular matrix in the IV case,
the correlation between the derivatives is —8 when Py = .1 but —.28 when py = 5.
This feature shows that the ECM has performed a successful re-parameterization 8O as
to ensure a low correlation between regressors, whereas the Euler equation variant (4)
does not do this. Despite that fact, the ability to estimate § accurately depends not

just upon the correlation between derivatives but also their variances; in particular we
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are interested in the magnitude of the variance of the derivative of (6) with respect to
B. Setting py=0 (Case 1) makes this variance identically zero, and so f is not
‘identified, but it is equally apparent that the variance will tend to be-small unless P
is quite large. Moreover, this variance will tend to be much smaller than that of the
derivative with respect to A unless po is large, illustrating the point that it is f which
is generally hard to estimate. In the basic experiment being referred to the ratio of
the variance of the f-derivative to that for the M\—derivative is forty when p2=.5 and
thirteen when p2=.8.

As 2 approaches unity, both derivatives become I(1) processes, creating the
potential for sharp estimation. Some care has to be exercised with the argument
however. If =1, it can be seen from the formula for Zy that this variable would be
1(0), and so both derivatives are dominated by terms in Ax 0 ie. they would be
co-integrated, meaning that only one of the parameters could be estimated
T—consistently. Interestingly enough, if one reverts to estimating from the Euler
equation, it would be B that can be estimated T—consistently, as it attaches to an I(1)
variable Ayt—i—l’ whereas § is associated with the 1(0) variable zt.lo It is hard to know
what to make of this case. Theoretically § could not be unity, although the fact that
it is generally in the range 96-.99 might indicate that the limiting case might be of
interest as an approximation. Moreover, it also seems unlikely that most x, variables
would be 1(2), at least after a log transformation. Nevertheless one should keep this
extreme configuration in mind as 2 counterexample about the ability to estimate f ,
even if one’s presumption is that the difficulties in estimating 0 documented above
point in the direction of pre-setting it. It is hard to escape the feeling that this is
exactly what happens in applied studies, with the discount rate being fixed after poor
estimates are obtained in initial (or previous) investigation. Our analysis might
therefore be seen as providing a pragmatic justification for fixing f in applied work

with the linear/quadratic model.
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Systems estimation has been outlined in Hansen and Sargent (1980) (when
|p1|»<1), and has been extensively used in the literature e.g. Sargent (1978). If py=1,
9 would be the co-integrating vector, and in principle any estimators. of such a vector
could be utilized, e.g., Johansen (1988), Phillips (1988b) and Park (1988), although
there are other parameters to be estimated here, namely §, and that may demand a
modified response. For the objectives of this section however, it is sufficient to note
that, as all the discussion given previously concerning identification of § and B
proceeded under the assumption that p, was known, it must apply equally to systems

estimators.

4. FEstimation of the Linear/Quadratic Model

In this section we consider the estimation of the unknown parameters in (4) and
(57), i.e., it is assumed that a unit Toot appears in the equation describing the
evolution of X, and that this fact is known to an investigator. As the analysis closely
follows that for Case I mention of Case II will be made only when necessary. Because
the discussion in the previous section pointed to severe difficulties in estimating £, it

will be treated as known throughout this section.

4.1 Single Equation Estimation from the Euler Equation
With § assumed known (4) could be re—defined as

¥, = c(y, = x(0) + vy » (10)

where ¢t = Ayt - ﬁAyt 41 and ¢ = 8. A simple estimator of the two unknown
parameters ¢ and c is available from the logic of Engle and Granger’s (1987) two-step
method. First, @ is estimated by regressing y, against x, to produce 9, and then c is

estimated by doing instrumental variables of @bt against y, — X{O to produce €. The
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regression to get 0 is essentially from (8), where the error term is -1 - )\)_1)\Ayt +
(1 - fXle,. As Ay, = (A =1)z, 4 + (1 - N)Ax0 + (1 = AN = A)e, from (57),
* and z, was shown in section 3 to be a stationary AR(1), it follows that T(6 - 0 ) has
a limiting distribution, provided that € and e, are restricted as in Phillips and Hansen
(1990). It is then an easy matter to demonstrate that Tl/z(é - ¢,) will be
asymptotically normally distributed, provided that this is so for the IV estimator using
instruments based on the true 4.

Now it is well known that ? will not be asymptotically normally distributed when
X

%
that inferences about # can be made from the t—statistics associated with the regression.

is I(1) unless x, is strictly exogenous, necessitating some adjustments to it in order

There are a number of suggested adjustments, €.g., Park’s (1988) "Canonical
Cointegrating Regressions" method or the "fully modified estimator" of Phillips and
Hansen (1990). As it is the latter which is adopted in this paper, a brief description
of its modus operandi seems in order.

Consider equation (8) and the equation describing Ax, collected below as (11a)

and (11b),

(11b)

where §t = —1 - )\)-1)\Ayt + (1 - ﬁ)\)et. Two corrections to # are made by Phillips
and Hansen. First, they correct a "bias" in T(0-6) due to endogeneity of Ax,. This

involves replacing y, by y_,{; =y - 912022AX where ) is an estimator of 2, the

"long run covariance matrix of (% = [{ Ax] " 11 and regressing yr against x; t0

produce 6% = (% tht) 1y Xty+ A further correction is then made for

~

"autocorrelation bias" by modifying 0¥ to OPH = 0 - (I xx t) Tg, where g = A
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1 N ®
a7l @ and A is a consistent estimator of A = ¥ E (Ax, (). After these
22 21 k=0

modifications t-statistics formed with bPH are asymptotically normally distributed.
Some comments on this estimator are in order, particularly since it forms the
backbone of many of the other estimators that we study. First, it applies immediately
to Case TI, since (8) would just be augmented by an extra 1(0) term [(1 -
)\ﬂp2)—1(1 -2 - 1]Axt0) and by its very nature the estimator adapts to serial
correlation in Axt. Second, the procedure works only if it is known that there is a
unit root in the X, equation and that root is prescribed rather than estimated — see
Philips and Hansen (p. 103).
Now, if x; had been an I(0) process, it would have been desirable to exploit the
non-linearity in parameters that characterizes (10). To do so involves the linearization

of (10) around some initial consistent estimators, say 0 and T, to give

W, = zc + (3}({)0 + v, , (12)

~ -~

where Z, = ¥, — x( 0wy = %y -~ tx;fand vy = vy - x;(0 - 6)(c — ¢). This
expansion is exact as the second derivatives of the function with respect to § and c are
zero, and it is only the cross derivative which is non-zero. (12) suggests the possibility
of producing another estimator of 0 by regressing w, against bxt. A complication
however is the presence of the I(0) term Z,c on the RHS of (12), although an obvious
solution, employed by Hansen (1989), is to purge (12) of that term by subtracting 2,C
from both sides, making the new dependent variable LM 2t6, and then to run a
regression of (w, — itc":) against (Ext) to find an estimator of §. Conceivably one
might iterate this process.

Although the estimation strategy described above is a straightforward application of
classical non-linear regression methods, its properties are not immediately obvious. For

this reason an alternative derivation of (12), which aids understanding and is very
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useful, is to return to (4) and invert it, obtaining
1
v, = x 0 + 5 (BAY 41 ~ Ay, + Vi) - (13)

1f § was known, § might be estimated from the regression

1 , 1
yt+b"¢t=xt9+b"vt, (14)
or
by, + ¥, = bxi0 + vy - (15)
Replacing 6 by § in (15) makes the dependent variable 3yt + Y = ¥, + 3}{1079 +
5(yt 0) = W, ~ z,C, and (15) is therefore equivalent to (12), where the error term

in the latter absorbs the terms created by the shift from § to 6. Hence, the new
estimator of @ arising from linearization can be computed from the regression of y, +
3'_1(Ayt - ﬂAyt+1) against x,.!2 Of course, just like 9, some adjustments need to be
made to enable standard inferential procedures to pertain, but that can be

accommodated by applying the Phillips—Hansen technology to

w1
v, * 0 (Ay, - BAY,4) = x 0+ v (16b)

Ax, = €

t (16Db)

t?

rather than to (11a) and (11b).13 The resulting estimator will be designated bE’ with
the E to represent the fact that it derives from the Euler equation. Notice that in
Case 1 yt—xfcﬁ in (8) and (13) must be identical, so the difference between oPH and ?E
resides solely in the fact that &9 is purged from the RHS of (8) when constructing 9E

Prima facie, it might be expected that the resulting estimator of 6, 0E, would have
better small sample behavior than QPH’ as it uses prior knowledge about the structure
of the error term in (13), rather than requiring that the long-Tun covariance
adjustments described earlier do all the work.

In the analysis above attention has centered upon how to estimate 6 in such a
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way as to be able to atilize standard test statistics. Corresponding to each way of
estimating @ would be alternative estimators of z, = ¥ ~ x{ g, and these would

. -generate different IV estimators of & In all cases however, the choice of instruments
could be made according to the principles of GMM estimation set out in Hansen
(1982), although because of the one—dependent nature of the error v, the optimal
instruments involve all past lags of Ayt and z, — see Hansen and Singleton (1988).
Thus, there is more than one way of setting up the IV estimator. In all instances
however, the fact that 0 can be estimated T—consistently means that T(E—éo) will have
a limiting normal distribution whose exact covariance matrix will depend on the type of
IV estimator selected. Notice that the one—dependent nature of vy makes it necessary
to do a robust computation of the standard errors of ¢ in order to make proper

inferences.

4.2 Single Equation Estimation from the ECM

If the expectation is solved for, estimation can be done with the ECM’s (5) or (6).
Here, the information that x, is known to possess a unit root has been exploited in
settling on a specification, and s0 prior knowledge of a unit root is extremely important
to this approach. Just as for the Euler equation discussion, § will be taken to be
known so that the task is to estimate 0 and X in Case I (plzl); once A has been
quantified § can be recovered by factorizing the polynomial (1—)\z)(1—-}\z—1) =
ﬁz2—(1+ﬁ+5)z + 1. An initial consistent estimator of A, X, could be found by
Kennan’s method, i.e., T€gress y, against y,_; and x, and use the estimated coefficient
on ¥, 1 but there would be other alternatives such as 2SLS on (8), with instruments
Vi1 and X, for Ay, and x, — see Bewley (1979)- or OLS on (5) with 6 replaced by 9.
It is the last of these options that we select.

Linearizing (5) around ? and X gives

Vi ~ x,’L~05\ = [z - AX{;O])\ + [(1 - :\)Xi]O + uy (17)
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where u, = x((0 - DA - X) + (1= AN - Ne. U x was 1(0), one would perform
the regression in (17) to get updated estimates of ¢ and A and, if the u, were normally
- distributed, this two-step estimator would be asymptotically efficient_relative to the
MLE. Because zt_l—A)%H is 1(0) in Case I( p'1=1), rather than perform the full
regression in (17), one might proceed with the following sequential estimator.14 First,
[2t_1—Ax£~0])\ is moved to the LHS of (17) and § is estimated. Second, with that
estimate of 0 replacing 0, move (1—:\)}%0 to the LHS of (17) and determine A by a
regression.

To relate this way of estimating # to those presented previously, observe that the

regression equation it is based upon is

~ _1 ~ ~ -~
(1 =2 "ly, - % Ox = (Z,_4 - Ax,’cﬁ)/\] =.x{0 + m (18).

In (18) the LHS is (1 - Ny, — Ayyq) = v + (1 - %) AAy,, and this would be
identical to the LHS of (8) except that A has been replaced by A. Comparing (18)
with (1la) reveals that the estimator of 9 differs from @ in the fact that the
disturbance term in (11a) has been purged of a known component. The factor
extracted differs from that for ?)E (see (16b)), because of the different informational
assumptions. If the process generating X, is exactly known, the error term in any
(yt,xt) regression can be reduced to a function of the "econometrician error" alone.
Without this knowledge, there is a remaining component that depends on the
"expectation error’ as well.

Now this connection means that ¢ can be estimated by applying the
Phillips—Hansen estimator to (8) and (11b), after adding (1—-5\)—15\Ayt to both sides of

(8). The resulting system is
v, + (1—5\)—15\Ayt = x{0+ (19a)

(19b)
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and the estimator of ¢ will be designated bECM‘ To get S‘ECM’ the second part of
the sequential procedure is implemented with Zy being regressed against [zt_l—Ax,’E g] to
-produce 3‘ECM' Because of the T—consistency of bECM the asymptotic distribution of
S‘ECM is the same as if 0 was known. If Case II is entertained (8) would have an
extra term [(1—)\ﬂp2)_1(1—)\)—1]Ax£0 in it, which would change the linearized equation.
Nevertheless, by re—arranging the terms into those which are I(1) and those which are
1(0), it is simple to apply the same sequential approach to the estimation of # and A
(although different formulae would emerge). There is an additional complication
though, caused by the use of an initial consistent estimator of Py This induces a

"generated regressor” effect into the regression determining 5‘ECM’ and a correction to

the covariance matrix needs to be done following the formulae in Newey (1984).

Actually, because p, appears in both (8) and in the equation generating Ax;, it might
be sensible to adopt a systems estimator to exploit the efficiency gains coming from

such cross equation restrictions.

4.3 Systems Estimation

The estimators described in sections 4.1 and 4.2 are single equation estimators in
the sense that they estimate the parameters of (4) or (8), ignoring the equation for
Axt, except insofar as information on Axt is used to perform '"bias adjustments". As
the parameters to be determined are essentially the co-integrating vector 0 and the
"adjustment parameter" 6, there may be some gains to jointly estimating the system.
For this to be so Ax, would have to possess an autoregressive structure, such as in
Case II. Johansen (1988) describes a LIML-type joint estimator of 0 and A when
(v, xt) follow a finite order VAR, Phillips (1988b) discusses FIML estimation of the
parameters 0, A and P, and Phillips (1990) outlines a spectral estimator of 8 and A
Conceptually, it is hard to apply the first two of these procedures to the estimation of

parameters of the Euler equation, as the vector (yt Xt) does not follow a finite order
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VAR owing to the MA(1) in the composite error term of (4). Hence, the spectral
estimator looks most appealing, as it does not need to explicitly estimate the
-parameters of the autocorrelation process of Axt'

A similar problem arises with the ECM version. Take Case II and replace Axt in
(6) by (1-ppL) e, Multiplying (6) by (1-ppL) gives VAR in (y, x,) but with 2
disturbance term of the form €, + (1-—p2L)(1——ﬁ)\)(1—-}\)et for the y, equation, i.e., an
MA(1) again. Consequently, the assumption of Johansen’s method that these errors até
white noise will be invalid. Moreover, it is not possible to replace this composite error
with a single error term and then to proceed to maximum likelihood estimation, see
Phillips (1988b). These facts raise interesting problems about joint estimation of A and

§ by systems methods that deserve fuller exploration. Most work with systems

approaches has begun with the presumption that there is a finite order VAR for

(yt Xt) and then derived an ECM representation that is compatible with such a VAR.
Utilizing theoretical analysis t0 derive the ECM reverses this sequence and it highlights
the fact that there may be no finite order VAR which encapsulates the theoretical
model. Hence, estimation methods that emphasise a VAR structure are not necessarily

appropriate to estimation of the linear quadratic model.

5. A Monte Carlo Study of the Estimators

A brief investigation was made of the sampling properties of the proposed
estimators, with special emphasis being placed upon the correspondence of the size of
test statistics with the theoretical predictions of the asymptotic theory. Specifically,
the prediction is that the re—centered estimators of 0 should have t—values that behave
like a standard normal deviate in large samples. To aséess this prediction, one
thousand replications of each experiment were performed, and the proportions of times
the t-values exceeded the critical values associated with the 10%, 5% and 1% levels of

significance of a standard normal are reported. These are taken to indicate the true



21

sizes of the test. All computation was done with programs written in the GAUSS
language.

The basic experiment consists of the two equations

Ay, = (A= D(yq ~ xt_10) + (1 = A)bAx,
+ (1 = B = Aey (20a)
Ax, = € (20b)

where [et Et] are drawn from a bivariate normal distribution with covariance matrix

Y = { Tee  ee ] and the parameters 6, 6 and Y vary across experiments.15  West

g g
€e €€

(1986) has a similar experimental design. Our basic experiment puts ¢ = 1, §=.5

and ¥ = t é 5{ ], meaning that the forcing variable x, is-actually an endogenous
variable with zero drift. For ease of reference estimators are given a designation that
refers to the procedure that gemerated them. Hence Ogpg is the OLS estimator 0
described from the regression in (11a); bPH is based on this OLS estimator but now
centered properly as suggested in Phillips and Hansen(1990); HE is the Phillips—Hansen
estimator of § from (16) while 5 is the IV estimator from (4) with @ replaced by QE’
and bECM and SECM are the Error Correction Model variants arising out of (19).

For the IV estlmator of § the instruments employed were Ayt 1 Ayt__2 and Et_l.
The estimator HOLS is included in order to illustrate the effects of ignoring the
integration in x, upon the sizes of test statistics.

Table 1 records the outcomes for the initial experiment and is intended to show
how the sizes of the test statistics are related to variation in the cost of adjustment.
Based on this initial experiment the ECM estimators work well with samples of 200
observations, and are acceptable even with T=100. As expected, the OLS estimator,
being uncentered, has a large size distortion that can be reduced considerably by the

Phillips—Hansen modifications. However, DPH still has bias in its size relative to the
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ECM-based estimator. What is striking, and surprising, is the poor performance of bE’
To explain this phenomenon, recall that the equation defining this estimator is (16a),

and in our experiments the error term of (16a) would be-
v, = &e, — )‘et+1) — 01 = A q (21)

Equation (21) and (16b) comprise the "system" for the Phillips—Hansen procedure. A
crucial part of the adjustment is to compute the long run covariance matrix of the
disturbance terms in the two equations. It is easy 10 show that as § becomes small
this matrix becomes singular as the two errors will be approximately —f(1-A)¢, 41 and

e.. Accordingly, one of the maintained assumptions in the Phillips-Hansen theory, that

¢
the long run covariance matrix is non-singular, is violated.16 This fact leads to a

failure of the correction to "work" and in this instance means a bias towards the null

as § shrinks. By comparison the ECM estimator of 0 is insensitive to & as the error
term in (19a) involves only &, and so the long run covariance matrix of (19a) and
(19b) disturbances does not depend on 6. For pPH the relevant errors are in (11);
that in (11a) is quite complex being (-0re, + Exe,)(1 - )\L)—l. Since the long run
covariance matrix is proportional to the spectral density at the origin, its determinant
can be shown to be proportional to (1—)\)_262)\2. Obviously, this also becomes singular
as § shrinks to zero, but the presence of (1-}) in the denominator rather than the
numerator (as is true for bE) provides an offsetting factor, in that A changes inversely
with 6. Thus the determinant of the long run covariance matrix of the disturbances
underlying each estimator is (.29, .28), (.19, .05), (.10, .004) and (.06, .0005) for
6=1,.5,.2,.1, where the first value in each bracket relates to Z}PH and the second to bE'
Clearly the singularity problem is much less marked for bPH' Even so, there is a
tendency for it to over—reject. For small § both 25E and ;SECM have accurate test

sizes. However, as § rises (the cost of adjustment falls), the rejection frequency rises
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dramatically, especially for 5E’ the reason being that the instruments become very poor
as both Ayt and z, resemble white noise processes.

‘Table 2 reveals what happens as the degree of endogeneity of x; increases. To
achieve such an effect the covariance matrix Y is altered to ¥ = [% I ] All results
appear to be insensitive to this change. Our final experiment in Table 3 examines the
influence of the value of the long-run response, 0. Since the error term in the
estimating equation for ?E is essentially —0(1 — A)et 41 and that in the equation for
Axt is €, the long-tun covariance matrix of these two quantities is singular. A
similar problem occurs for bPH' For large 0 the error term in the regression yielding

it is effectively (1 — AL)—10(1 - Mg, Only the ECM estimator is immune to this

singularity problem as the error term in its regression is the last term in (8), namely

(1 - ﬂ}\)et. This explains the outcomes observed in Table 3 for the estimators of 6.

What is odd in this table is the failure of the ECM estimator of 6. Given that g is
very accurately estimated by bECM’ % is effectively the OLS estimate from (17) after
fixing 0, and we would therefore expect good performance for ;5ECM' Exactly why this

outcome is observed is a subject for future study.

6. Conclusion

The paper has examined the estimation of equations coming from linear quadratic
optimisation models when the forcing variables are integrated. After demonstrating
that there is frequently a lack of identification for some of the parameters in such
models, we fixed one of them — the discount rate — and proceeded to look at how
estimators of the remaining parameters could be derived. By the nature of Euler
equation solutions there are two sets of parameters to be estimated; one associated with
I(1) variables and the other with I(0) variables. Previous literature has largely
concentrated upon the estimation of the parameters attached to I(1) variables, the

co-integrating vector. Unfortunately, standard procedures for this have undesirable side
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effects upon the estimation of the I(0) variable parameters. Nevertheless, simple
adjustments are implemented to overcome this problem.

We devise two general classes of estimators for the unknown parameters,
corresponding to the two procedures normally used for estimating models with rational
expectations. The first of these works with the Euler equation (E) and is found by -
replacing the unknown expectation with the observed value of the variables expectations
are being formed about. The second solves for the expectation; in our context this
leads to an error correction model, and the derived estimator is termed an ECM
estimator. In all instances some corrections must be made to the estimators of the
long—run response in order to allow for standard inferences. Within the category of

F-estimators we investigated two different approaches aimed at effecting such

adjustments, but differing by the amounts of information exploited about-the structure

of the error term.

A final section puts all these estimators to the test in a simple simulation study.
It is found that the ECM estimator of the long run response generally works very well,
while E estimators are much less reliable. Within the E—estimator class it was found
that attempting to exploit knowledge about the structure of the error term in the
estimating equation was generally harmful, as it led to certain matrices tending to be
singular. When estimating adjustment cost terms the situation is not so simple. In
fact, it sometimes seems as if there is an inverse relation between the ability to
estimate long run responses and adjustment parameters.

Some interesting questions emerged from the study. Normally an Euler equation
estimator is preferred in many rational expectation estimation contexts since it does not
require the specification of an expectation generating prdcess, and hence it exhibits a
degree of robustness. Its poor performance in many of the experiments here might
therefore be viewed as rather disturbing for applied research. But it has to be realized

that the robustness property cited above is much less advantageous for determining the
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long-Tun response when there are integrated regressors. Then, to consistently estimate
the long run response it is only necessary to determine which integrated variables
appear in the expectation generating process; all others may be subsumed within an
error term. This fact is not to deny that E—estimators aré appealing; the adjustment
cost parameters attach to I(0) variables and an incorrect specification of expectations
means the ECM method will be working with 2 mis—specified model, and so
inconsistent estimators of those parameters will be found. In these circumstances an E
estimator is very attractive. Since the best estimator of the adjustment cost
parameters frequently seems t0 COME from the Euler equation, while the best estimator
for the long run response is that from the ECM, the possibility is raised of using each

estimator for the task at which it has a comparative advantage. Whether this

conclusion holds up to further analysis will be dealt with in future work Another

extension is to models with expectations that do not derive from Euler equations. The
estimation methods advanced here would continue to apply if conditions can be found
that would enable the solution of models with expectations and integrated variables; an
important advantage of the linear quadratic model is that a substantial literature can
be drawn upon for that purpose. Wickens (1990) takes up that problem elsewhere in

this volume.
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TABLE 1

s the Cost of Adjustment Term Varies
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T = 100 T = 200
1 05 01 1 .05 01
B B (1 5
9_1,5_.5,2_[_5 1]
boLs 24 16 .06 27 18 07
- 16 10 03 14 08 02
?)E 04 02 01 03 01 .00
bpoM 14 08 02 11 05 .02
EE .09 .04 01 08 05 02
EECM 10 04 01 10 04 01
_ _ (1 5
9_1,5_.2,2_[_5 1}
boLs 31 22 10 34 25 11
foy 16 .09 03 14 08 02
"BE 03 01 .00 01 .00 .00
bpom 15 .09 02 12 .06 02
BE 11 07 03 10 .06 02
bEoM 07 03 01 07 04 01
_ _ (1 5
9_1,5_10,2_[‘5 1]
boLs 14 08 .00 13 07 02
foy 15 08 03 10 .06 02
bE .09 05 01 07 04 01
beom 10 06 01 08 05 02
ZSE 82 78 70 69 65 56
; 23 20 15 17 14 08




TABLE 2

Size of Test Statistics as Endogeneity Increases
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T = 100 T = 200
10 .05 01 10 .05 01
B B 1 5
0_1,5_.5,2_[_5 °
boLs 24 16 .06 27 18 07
boy 16 10 03 14 .08 .02
bE 04 .02 01 03 01 .00
bpom 14 08 02 11 .05 02
ﬁb .09 04 01 .08 05 02
SpoM 10 04 01 10 04 01
B _ (17
0=1 6=5 %= [.7 1]
boLs 24 16 .06 27 19 07
by 15 10 03 14 08 02
Oy 03 01 01 02 .00 .00
becn 14 08 02 10 05 02
Sy 10 04 01 09 04 01
Spom .08 05 02 10 04 01




TABLE 3
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Size of Test Statistics as the Long Run Response Changes

T = 100 T = 200
10 05 01 10 05 01
_ _ 5
§=1 6=.575 ® ]
boLs 24 16 .06 27 18 07
boy 16 10 03 14 08 02
?JE 04 02 01 .03 01 .00
ey 14 08 02 11 05 02
JSE .09 04 01 08 05 02
bpom 10 04 01 10 04 01
B B 1 .5
=10, 6= .52 PR
boLs 26 18 07 29 20 .06
by 07 .03 01 .03 02 01
?)E .03 02 .00 01 .00 .00
bpc 10 05 01 11 .05 01
ZSE 11 07 .03 10 05 .02
bpoM 02 01 .00 02 .00 .00
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Footnotes

2Pesaran (1989) derives results when the cost function is augmented by higher
_order adjustment terms such as (A2y S)2.

3Tt would be possible to allow e, 10 be serially correlated provided it remained an
integrated process of order zero. This last restriction cannot be relaxed as it would
mean that the error term in "regressions" would be the same order of integration as
the regressors.

4Xt is taken to be a scalar here for expositional purposes.

5Actually, in their simulation study they have a third instrument. It is not hard

to show that the result we give is invariant to the mumber of instruments. Notice that

the assumption of a fixed 0 is for convenience only. If the model cannot be identified

even when @ is known, the sitnation will be worse-when 9 needs to be estimated

6This point 18 emphasized in the context of models such as these by Pesaran
(1987, p. 193).

THe mentions that, by conditioning upon B, i.e., {forming Ayt - BAyH_l as a
dependent variable, it would be possible to get asymptotic normality for an IV
estimator of .

$Fven though @ and § may be identified when 0 is known, the conclusion does not
extend to the situation when 0 is unknown, as there are then three parameters in (5)
but only two regressors, ¥y 4 and X, 8 X¢_g cancels. Consequently, one of the three
parameters cannot be identified even when p; < 1. In many contexts § will in fact be
known. For example, if ¥y and X, are logs of variables, and the ratio of the levels is
a constant, @ would be unity. Notice that the "counting rule" just used is only a
necessary condition, as evidenced by the case p; = 1 discussed in the text, where there

were two parameters and two Tegressors, but only a single parameter was identified.
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9The eigenvalues were found by estimating the correlation matrix from 2500
observations generated according to the theoretical model. This introduces a slight
error.. For example when p2=0 the smallest eigenvalue is truly zero, but computed
from the simulation it was 2.5x10—5. However, this discrepency is clearly not
important for the point we wish to make. Programs to perform the simulations and
eigenvalue computations were done in GAUSS.

©0Dolado et al. (1989) were the first to motice the curious result that, when f = 1,
z, i 1(0), whereas for § # 1 it is I(1).

u1f Ct is a covariance stationary process the long run covariance matrix is
proportional to the spectral density at the origin.

2]t is interesting to observe that this is exactly the regression employed by

Kennan (1979) for estimating 9.

13]t is easy to see that T—lflxtnt - T_lﬁxt(l—ﬁ)\)et is op(l) (Case I, p1=1) owing
to the Tl/ 2 consistency of )\ and the fact that T—lExtAyt converges in law to a
random variable. Consequently, the disturbance term in (19a) can be regarded as
(1-BA)e,.

14The fact that zt_l—Ax£0 is 1(0) and x, is I(1) means that the regressors are
asymptotically uncorrelated, thereby enabling a sequential approach.

15) is a function of § once f is prescribed, and the latter is set to .97 in these
experiments. All long run covariance matrices are estimated as in Newey and West
(1987) using T3 lags.

16Singularity in the long-Tun covariance matrix has been the Achilles heel of many
"non—parametric adjustments" such as those being made here. An early example arose
in testing for unit roots in the presence of an MA(1) error with a negative coefficient
close to unity—see Schwert (1987). If the coefficient had been —1 the matrix would be

singular.
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