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ABSTRACT

Consider a heterogeneous but divisible commodity, bundles of which are
represented by the (measurable) subsets of the good. One such commodity might be land.
The mathematics literature has considered agents with utilities that are nonatomic
measures over the commodity (and hence are additive). The existence of "a—fair"
allocations, in which each agent receives a utility proportional to his utility of the
endowment of the entire economy, was demonstrated there. Here we extend these
existence results to a—fair efficient allocations, envy—free allocations, envy—free efficient
allocations, group envy—free and nicely shaped allocations of these types. We examine
utilities that are not additive and relate the mathematics literature to the economics
literature. We find sufficient conditions for the existence of egalitarian—equivalent efficient
allocations. Finally, we consider the problem of allocating a time interval (uses of a
facility). Existence of an envy—free allocation had been demonstrated in earlier literature.
We show that any envy—free allocation is efficient as well as group envy—free. This last
result is extended to a more general setting.
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I Iniroduction. A farmer dies leaving instructions to divide his land fairly among his
sons. A land reform law stipulates that each latifundia is to be divided fairly among
all the farmers in a village. Several communities undertake a drainage of swamps and
face the problem of dividing the reclaimed land among themselves. How should such
divisions be carried out?

Somewhat more generally, consider a "heterogeneous good" that can be
divided in a variety of ways among a group of agents with equal claims on it.
Imagine each agent to be endowed with a preference relation over the various
admissible subsets. How can the equity of a division be defined and can equitable
divisions be achieved?

This problem has been addressed in the mathematics literature, in the
following abstract formulation which we describe using standard economic terminology.
The good to be divided is modeled as a measure space. There are n agents whose
preferences are defined over the measurable subsets. Each agent’s preference relation is
representable by a function that is a non—atomic measure. A vector of distributional
coefficients « in the (n—1)—dimensional simplex is given. The search is for a partition
such that, using these representations, the utility of each agent i is at least a times
the utility he would enjoy from consuming the whole amount available. The existence
of such allocations is demonstrated.

This literature will be our point of departure. In spite of its great
mathematical generality and elegance, it suffers from several limitations. First, it does
not address at all the issue of efficiency, seriously limiting its relevance to economists.
This requirement will be imposed throughout in this paper.

Second, it does not attempt to allow for general preferences of the kind that
are standard in economics. Instead, preferences are required to have additive numerical
representations. We will explain later that allowing arbitrary preferences would be

unproductive, but one of our objectives here is to investigate how far one can depart



from this case. We will first work with preferences that do have additive
representations but we will also present some results on the non-additive case. These
require that preferences admit representations that exhibit some form of "decreasing
marginal utility", a condition that should be particularly appealing to economists.

Finally, the mathematics literature is unduly narrow in the specification of
the equity criteria that it considers. There now exists in economics a well-developed
literature devoted to the formulation and the analysis of equity concepts. The concept
that has played the central role is that of an envy-free allocation, that is, an allocation
such that nobody would prefer what someone else received to what he received. We
will analyze the question of existence of envy-free and efficient allocations in the
present model. However, other concepts have been found useful and we will consider
several of them as well. Indeed, we believe that the application of these concepts to
the problem of dividing a heterogeneous commodity is long overdue.

In Section II, we specify the model and state the basic definitions. Most of
the focus of this paper is on the no—envy concept and variants of it. In Section III
we consider countably additive utilities and in Section IV, more general ones. In
Section V, we investigate the existence of partitions satisfying the property of
egalitarian—equivalence, one of the main competing notions. In Section VI, we give
conditions on the model sufficient for all envy—free allocations to be efficient. In

Section VII, we conclude.

II. The Model We consider the division of a plot of land among a group of agents
with equal claims on it. We model this plot of land as a measurable subset L of the
Euclidean space RE. Let m be Lebesgue measure on RX. 2 is the o—algebra of
measurable subsets of L, representing the possible parcels into which it can be divided.
Capital letters denote elements of 2 Given A € 2 the topological closure of A in IRk
is denoted by A, and its topological boundary by dA. A, B € 2 are called adjacent if



0A n 8B contains a homeomorphic image of (O,I)k"l.1

There are n € N agents. Each agent i, for i=1,...,n, is endowed with a
preference relation Ri over 2 Let Ii denote the indifference relation associated with
R, and P, the strict preference relation. Let R = (Rl""’Rn) be the list of preference
relations. Let II™ be the set of n—element measurable partitions of L, or simply
partitions. A partition B = (Bl""’Bn) € T" is (Pareto-)efficient for R if there is no
other partition A = (Al""’An) € II™ such that AR.B, for all i, with strict preference
holding for at least one i. Assume that each Ri can be represented by a "utility
function" u: @~ R Let u = (ul,...,un) be a list of such utility representations. A
sequence of partitions (Bt)‘;’=1 € II" is Lmit efficient for R if for every ¢ > 0 there
exists t* € N such that for all t > t*, there does not exist A € II™ such that for all i,
u(Ay) - ui(B;.c) > ¢. Note that this definition indeed does not depend on the utility
representations.

We now present our main equity notion.

Definition. A partition B € " is envy—free for R if for all i and j, BiRiBj’

Thus, a partition is envy-free if no agent would prefer someone else’s parcel
to his own. This concept is the central one in the economics literature (to our
knowledge, it has not been used at all in the mathematics literature). It was proposed
initially by Foley (1967), and later developed by Kolm (1972), Varian (1974), and
many others. For a recent survey of this literature, see Thomson (1989). A useful
weakening of the concept is the following.

Definition. A sequence of partitions (Bt)cz’=1 € " is Gmit-envy—free for R if for every
€ > 0 there exists ¢ € N such that for all t > ¢ and for all i and i, ui(Bg) - ui(B})
< €

We will also consider the following utility-based notion.2

IMuch of this notation is taken from Hill (1983).
2t is known under the name "fair", in the mathematics literature, but we avoid this



Let A™! = {a € IR_I*1_|201i = 1} be the (n-1)-dimensional simplex.
Definition. Given a € An"l, a partition B € II" is a—fair for u if for all i, ui(Bi) >
a;-u(L).

Here, each agent is required to receive at least a given fraction of the utility
he would derive from consuming the whole amount available, the fractions being
required to sum to one. This notion was developed by Borsuk (1933), Stone and
Tukey (1942), Steinhaus (1949), Dubins and Spanier (1961), and Hill (1983). It seems
to be the normative standard in the mathematics literature.

Two more criteria will be used below. Note that they depend only on
preferences.

Definition. A partition B € 1" is group envy—free for R if for every pair of groups of

agents C;, C, with |C;| = [Cy| there is no partition {Ai}ieCl of U B, such that

ieC, y
AiRiBi for all i € C1 with at least one strict preference.

This definition is adapted from Schmeidler and Vind (1972). If an allocation
is group envy-free, it is of course envy-free and efficient (take C1 and 02 of
cardinality one to establish the first property, and take C1 = 02 = N to establish the
second one). If the reader finds it more natural to only compare the welfare of
distinct groups, or perhaps of non-overlapping groups, then efficiency should be required
separately.

Definition. A partition B ¢ " is egalitarian—equivalent for R if there is some
measurable "reference" parcel E such that BiIiE for all i.

This definition is adapted from Pazner and Schmeidler (1978). An

egalitarian—equivalent partition is such that each agent is indifferent between his parcel

and some fixed reference parcel.

term, which has been given other formal meanings.



0. Countably Additive Utility. We will open our discussion by noting that the

existence of envy-free and efficient allocations cannot be expected if no restrictions are
imposed on preferences. Indeed, imagine L to be divided into two measurable subsets,
L, and L,, with m(L;) = m(L,). Let n = 2 and let u,(B) = v,(m(BNL,),m(BnL,)),

u,(B) = v,(m(BnL;),m(BnL,)) for some functions v vzzlk_?_ - R. This economy is

1’
analogous to a 2x2 Edgeworth box economy with (possibly) nonconvex preferences
represented by the utility functions V{:V- Thus, the examples of Edgeworth box
economies where no envy—free and efficient allocation exist (Varian, 1974) also apply to
our heterogeneous commodity. Notice also that this interpretation of the model implies
that the commodity space is a generalization of standard exchange models with
homogeneous commodities. However, we shall impose different assumptions concerning
preferences.

We will start by assuming preferences to have representations that are
non—-atomic measures.3 All of the results in the mathematics literature quoted earlier
rely on the well-known Lyapunov theorem, which states that the range of any
real-valued, nonatomic vector measure is compact and convex (see Rudin (1973, p. 114)
for an elegant proof).

The first result is straightforward: if for each i, agent i’s preferences can be
represented by a nonatomic measure, then efficient partitions4 exist. This follows
immediately from the compactness part of the Lyapunov Theorem. For further
discussion, we refer to section II.2 of Dubins and Spanier (1961).

The next result, due to Dubins and Spanier (1961, Corollary 1.1), addresses

3Many of the papers cited here, such as Hill (1983, p.441), point out that the theorems
in this literature can fail if atoms are allowed in the utility measures. For example,
every utility could be a probability measure that assigns probability one to the same
point x € L.

4We could similarly establish the existence of "utilitarian" partitions (partitions
maximizing the sum of utilities) or "Rawlsian" partitions (partitions whose associated
vector of utilities is lexicographically maximal).



the issue of existence of an o—fair partition.

Theorem 0. Suppose that for each i, agent i’s preferences can be represented by a

nonatomic probability measure u,. Then, given a € A1

, there exists a partition B €
" such that u(B j) = o for all i and j.

Hence, if each u is a nonatomic probability measure, then there exists an
a-fair partition (by taking i=j in the result).

The following results are easy consequences of Theorem 0: first, together with
the compactness part of the Lyapunov Theorem, it implies the existence of an a-fair
and efficient partition. Also, setting o; = 1/n for all i and noting that the last
sentence of the Theorem holds for all j # i, the existence of an envy-—free partition
follows.

Showing that an envy—free and efficient partition exists is more difficult. In
standard exchange economies, such existence theorems generally involve a fixed-point
theorem (or a tool equivalent to a fixed—point theorem). The typical approach is to
divide the economy’s endowment equally among all traders, establish existence of an
equilibrium relative to these endowments, and show that any resulting equilibrium
allocation is envy—free and efficient. In the case of a heterogeneous commodity, there
is no a priori (that is, independent of preferences) way of dividing the total endowment
so that all traders necessarily have the same budget in equilibrium. However, we have
the following existence result which requires preferences to be monotonic:

Definition: A preference relation R, is monotonic if for all B, B’ ¢ & B C B/, m(B)
< m(B’) implies B‘P,B. If u; represents a monotonic preference relation, we will also
say that u, is monotonic.

Theorem 1. If for each i, R, can be represented by a monotonic function u which is

a measure absolutely continuous with respect to Lebesgue measure on IRk, then there

exists a group envy—free and efficient partition.



The proof uses the following result of Berliant’s (1985).
Lemma 1. If p* € Ll is an equilibrium price and (aI,...,a:) € (L®)" is an extreme
point of the associated set of equilibrium allocations, then a: is an indicator function
for a set in & for each i.
Proof of Theorem 1. Since each u; is monotonic and absolutely continuous, using the

Radon — Nikodym Theorem (see Rudin (1974, p. 130)) we can write u,(B) = fhi(x)
B
dm(x), where h; > 0 a.s. Extend this utility to § € L” via ,(f) =

f A(x)-hy(x) dm(x). Let each trader’s initial endowment be (1/n)-1;, where 1; € L
is the indicator function for L. Apply Bewley’s (1972) existence theorem for the
commodity space L®, and fix one equilibrium price system p* € Ll. It is easy to see
that the set of allocations that are equilibrium allocations relative to the given prices is
a convex set that is also compact in the weak topology on (L®)™. By the
Krein—Milman theorem, this set has an extreme point.

By Lemma 1, the extreme equilibrium allocation is a vector of indicator

functions of sets in 2 call it (1B S ). By standard arguments, this allocation is
1 n

efficient. To see that it is envy—free, notice that all traders have the same budget, so

it must be that u,(B;) = ﬁi(lBi) > ﬁi(lBj) = ui(Bj)' To see that it is in fact group

envy-free, suppose the existence of two groups C; and C, with [C;| = |C,| and a
measurable partition {Ai}ieclof igC Bj’ such that AiRiBi for all i € Cl’ with at least
2
*
one strict preference. Then the value of U Ai at prices p exceeds the value of
1601

U B. at those prices. This contradicts the fact that the incomes of all agents are
j€Cy

*
the same at prices p .

Q.E.D.



The next result, due to Hill (1983, Theorem 2), extends the Dubins and
Spanier result to obtain nicely shaped parcels.
Theorem 2. Let k > 2. Suppose that L, Al,...,A]1 are open, connected subsets of IRk
with Ai adjacent to L for each i. Suppose also that for each i, agent i’s preferences
can be represented by a nonatomic probability measure on L. Then, given a € An—l,

there exist disjoint, open, connected subsets Bl""’Bn of L with (i) Bi adjacent to Ai

n
for each i, (ii) ui(Bi) > a; for each i, and (iii) U B. =L
i=1

Here L is the land to be divided, while the Ai are intended to represent the
extant land holdings of n property owners or countries (the Ai are not subject to
reallocation). We say that an allocation B is nmicely shaped if for each i, Bi is open,
connected, and adjacent to Ai’ From Theorem 2, one can conclude that there exists a
nicely shaped o—fair allocation. Hill (1983, p. 442) remarks that Theorem 2 can easily
be extended in two directions.

First, nicely shaped limit—efficient partitions exist, as do nicely shaped
similarly defined limit-utilitarian and limit—-Rawlsian optima. It is also clear that a
sequence of nicely shaped a—fair and limit—efficient partitions exist.

Second, the result can be extended so that for any ¢ > 0, there is a
partition B € II" satisfying the conclusions of the theorem with "u,(B;) 2 o for all i"
replaced by "lui(Bj) - ajl < e for all i and j". Again taking a = 1/n for all j, we
conclude that there exists a sequence of nicely shaped limit envy—free allocations.
Finally, using Theorem 1 in conjunction with the proof of the Hill result, there exists a
sequence of limit—envy—free and limit—efficient partitions that are nicely shaped (open,
connected, and adjacent to Ai)' Analogous results hold for the concept of a limit
group envy-free partition (which we have not defined formally).

We refer to Dunz (1987) and Berliant (1985) for facts about the core of this



model. We simply remark here that under the assumptions of Theorem 1, the core is
nonempty. Combining this fact with the proof of the Hill result, nicely shaped e—core

partitions exist.

IV. Nonlinear Utility. Here we introduce preferences that cannot be represented by
measures. As noted earlier, we cannot prove much about general set functions, so we
make an assumption that is stronger than subadditivity of utility (see the lemma
below), and is intuitively related to decreasing marginal utility of a point as sets
become larger through set containment.

Definitions. A utility function u, is concave if u, = fhi(x,B) dm(x), where for all B,
B
B’ € # and for all x such that x € B’ C B, hi(x,B’) > hi(x,B).

Since this assumption will be used in the context of a—fair partitions, this
assumption is highly cardinal. Notice that it is a generalization of the assumption that
u is a nonatomic probability measure. An example of a concave representation is
h(x,B) = f(x)/[m(B)+1], where f is some positive density on L. Another example is
h(x,B) = f(x)/[rad(x,B)+1], where rad(x,B) = sup{e > 0 | B (x) ¢ B} and where B (x)

={yeL | |x-y|] <€ Nextwe useour new assumption.

Theorem 3. Let k ‘2 2. Suppose that L’Al""’An are open, connected subsets of le

with A, adjacent to L for each i. Assume that for each i, u; is concave, with u,(B)

n
= fhi(x,B)dm(x). For each 1 <i < n, let a > 0 be such that ¥ o < 1. Then,
i1
B 1

there exist disjoint, open, connected subsets Bl,...,B11 of L with Bi adjacent to Ai for

each i such that u,(B;) > a;-u(L) for each i.
n
Proof. For each i, let u(B) = fhi(x,L) dm(x) / u(L). Let ., =1- iglai, 50
B =

n+1 _
that ¥ a. =1 and let En_l_l(B) = m(B)/m(L). Then for each i, u, is a nonatomic
i=1
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probability measure on L, so by Theorem 2 of Hill (1983), there exist disjoint subsets

(Bl""’Bn+1) such that u,(B.) > o; for all i. Hence for i = 1,2,...,n we have u,(B)
r r

J b(xB) dm(x) > [ h(xL) dm(x) > a;-u(L).

B B

Q.E.D.

One can conclude from this result that fhere exists a nicely shaped a—fair
partition. The same result but without nicely shaped parcels holds for all dimensions
(even k = 1) if Theorem 0 is used in place of the Hill theorem. Next we examine a
second concept of decreasing marginal utility.

Corollary 1. In the Theorem above, the hypothesis that for each i, u, is concave can

be replaced by the weaker hypothesis that ui(B) = fhi(x,B)dm(x) and for all B, B’ €
B
2 with B’ ¢ B, ["h(x,B’) dm(x) > | 'h(x,B) dm(x).
B’ B’

Next we want to discuss how subadditivity is related to our assumptions. A
set function u: @ - R is subadditive if for every A, B € Zwith An B = ¢, u(A U B)
< u(A) + u(B).
Lemma. If u(B) = ['h(x,B) dm(x) and if for all B, B’ € Bwith B’ ¢ B, ['h(x,B’)

B B’

dm(x) > J"h(x,B) dm(x), then u is subadditive.

B/
Proof. For any disjoint A, B € 3 u(A) + u(B) = J'h(x,A) dm(x) + | "h(x,B)

A B

dm(x) > J'h(x,AUB) dm(x) + J"h(x,AUB) dm(x) = J* h(x,AUB) dm(x) = u(AUB).

A B AUB

Q.E.D.

In order to discuss compactness of the set of efficient partitions when

preferences cannot be represented by additive set functions, it is necessary to impose a
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topology on 2 The topology we employ is given in Berliant and Dunz (1989,
Appendix), and is closely related to the topology used in Berliant and ten Raa (1988).
Since we only need to know that the set of measurable partitions is compact in this
topology, there is no need to reproduce the details of the topology. That the set of
measurable partitions is compact in the topology is proved in Berliant and Dunz
(1989). We call a set function continuous if it is continuous in this topology. It is
immediately apparent that if each u is continuous, then efficient partitions exist5. It
is also apparent that a—fair efficient partitions exist if utilities are continuous and

satisfy one of the above decreasing marginal utility conditions.

V. [Egalitarian-Equivalent and Efficient Partitions. Existence of egalitarian—equivalent
and efficient partitions requires less structure and weaker assumptions than those used
for our previous results. What is needed is that the preferences be representable by
utility functions that are continuous with respect to a compact topology on 2 such
that sequences of nested sets converge. We employ any one of the topologies discussed
above.

Theorem 4. Suppose that L is a compact, connected, k—~dimensional manifold (with
boundary). If for each i, agent i’s preferences can be represented by a function u that
is continuous and monotonic, then there exist egalitarian—equivalent and efficient
allocations.

Proof. First we rescale the utility functions. Without loss of generality, suppose that
u,(8) = 0 for all i. Let y be an arbitrary point in L, and let B (y) be the closed ball
in RE of radius r with center y. Define v;(r) = w(B(y) n L). By definition of the
topology and continuity of u;, v,(0) = 0 for all i. Let T = inf {r20|LCB (y)} < .

Given the assumptions on L and monotonicity of u, v is continuous and monotone

5Again, this is true of utilitarian and Rawlsian partitions. See footnote 4 for definitions.
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increasing on [0,f]. Let i, = u,(L). Then, the function r defined by r(u) = vi'l(u) for
all u is a well-defined, continuous and monotonic function from [0,5;] to [0,T]. Let
wi(B) = ri(ui(B)). Then w, is simply another representation of u;. Let the utility
possibility set be W = {(w,,...,w ) € R" | 3 B e II" s.t. Vi, w,(B;) = w;}. Notice
that W is comprehensive, i.e. if w = (wl,...,wn) € Wand 0 ¢ wi < w, for each i,
then w’ = (wi,...,wl’l) € W. Also notice that since .Zis compact, W is compact. Let
1 be the vector of n 1’s, (1,...,1). Since (0,...,0) € W and W is compact, max {t-1 |
t 20, t-1 € W} is finite and attained. Let ¢ be the value of t attaining the
maximum. Let B* = (BI,...,B:) be the partition associated with utility level t*,
Wi(B:;) =t for all i Then, B is efficient, and wi(B?) =t = r,(5(B,*(y))), so
ui(B:) = 15,(B*(y)), and B’ is egalitarian—equivalent.

Q.E.D.

VI. When does No-Envy Imply Efficiency? Here we examine the general question of
when envy—free allocations are group envy—free and therefore efficient. We present a
general model and sufficient conditions for this implication to hold.

Our result will hold for the model presented above as well as on another
domain. Consider the problem of allocating a set of indivisible objects among a group
of consumers of equal or greater cardinality (tasks among a number of workers), each
consumer receiving at most one object and all the objects being allocated. In that
context, an envy—free allocation is also efficient and group envy-free, as was first noted
by Svensson (1983). This result will be a special case of our theorem below.

Let F be the consumption set of every agent (F need not be a subset of a

n
linear space or even have a topological structure). Let FCII F be the set of feasible
i=1

allocations. As before, each agent has a complete preference preorder Ri'

To simplify notation, we restate the definition of a group envy—free allocation.
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An allocation x = (xl""xﬁ) € Fis group envy—free for R = (Rl""’R n) if for every

group of agents C, for every injection m C - {1,2,...,n}, and for every y € & with v

=x Vig 7(C), X; Rj Y () for all je C or X Pj Y (i) for some j € C. Note that

this is just the usual definition of group envy—free where C and #(C) are groups of

agents of equal cardinality, y is a feasible reallocation of the consumptions (given by x)

of the agents in #(C), and = is an assignment of this reallocation to the agents of C.
Now we state and prove the main theorem of this section.

Theorem 5. Suppose that

(1) there exists a partial order » on F such that for all i, x; » y, implies x; P, y;

and

(2) if x, y € Fare such that there does not exist a bijection = {1,..n} = {1,...,n}

with X, =y (i) for all i then there exist i and j such that X; > ¥;e

If x € Fis envy-free then it is also group envy—free and therefore efficient.

Proof Let x € Fbe envy-free, let C be a group of agents, let = C - {1,...,n} be an

injection, and let y € F with y, = x; for all i £ 7(C). Suppose 7’: {1,..,n} - {1,...,n}

is a bijection such that y7r’(i) = X; for all i. Then for every i € C, yﬂ(i) = X; for j

= 7r’_1(7r(i)). No-envy implies x; R, X; = Yo() for all i € C. So we can assume the

hypothesis of condition (2) holds. Therefore, X ¥ for some i,j. If i ¢ n(C) then y,

= x; and (1) implies x; P, x;, which contradicts that x is envy—free. So i € 7(C).

j i
Let 7r"1(i) =i’ € C. Then x envy-free implies x;, R,, X and (1) implies X P, ¥
=y w(i’) So X, Pi’ yw(i,) and x is group envy-free.

Q.E.D.

Notice that (1) is a (strict) monotonicity assumption. Condition (2) implies
that the situation is one of "pure division" in the sense that giving more to some
agent means another agent gets less. This property is always true when two agents

are dividing a single commodity. Theorem 5 can be strengthened by replacing (1) and
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(2) with:

if x, y € S are such that there does not exist a bijection = {1,...,n} -
{1,...,n} with X = Ya(i) for all i then there exist i and j such that for all agents a, X;
Pa. ¥i
Clearly (1) and (2) together imply this condition.

Next we consider several applications of this result. A particularly interesting
version of the model presented in the previous sections is obtained by supposing that
there is a one—dimensional continuum which has to be divided into intervals. The
most natural example here is time.

It is easy to think of situations where the availability of a facility or a
service is beneficial only in intervals. For of a variety of reasons (transportation to
and from the facility, preparation, coordination with partners), splitting up the time
available into small intervals with each agent receiving several of them, mutually
disjoint, would be inefficient. We will then assume that preferences are defined over
intervals. (If so desired, and without loss of generality when efficiency is insisted upon,
we could extend preferences to unions of intervals by identifying each such union with
the most preferred of the maximal intervals it contains.)

The existence of envy-free allocations for that model has already been
established by Stromquist (1980) and Woodall (1980). The equity notion they use is
no—envy, but they make no mention of efficiency. Our contribution here is to show
that in this model and under a natural monotonicity condition, any envy—free allocation
is necessarily efficient, and in fact group envy-free (according to our definition above,
group no—envy implies both no—envy and efficiency). This is quite surprising since
there is no reason in general why the normative concept of no—envy (or for that
matter, any equity concept) should have any implication concerning efficiency.

Corollary 2. Let I = [a,b] be a connected interval in R. Assume that each agent has

preferences over intervals such that A > B implies A P, B. Then every envy—free
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partition of I into n intervals is group envy-free.
Proof Here Fis the collection of all partitions of I into n intervals. Define the
partial order in condition (1) by 2, so condition (1) holds. Hence only condition (2)
needs to be verified. We can identify an interval in such a partition by its right
endpoint. So z represents the partition {[a,z], [7;,25},..., [z_;.z ]} where z = b.8
We will order feasible allocations by position in this manner instead of by agents.

Let w and z be distinct partitions of I. If W, <2y then we are done since
[a,2;] > [a,w;]. So we can assume W, 2 z;. Suppose that w; > z; for all i < j-1. I
w. < z, then we are done since [z, ;2] 3 [w; 1’Wj]' So it must be that w; > z, for

J J 10 =

all i. But, since w and z are distinct there must be some j for which Lf > z;

Therefore Wirl > Zgp for otherwise Wirl < Zi41 and [zj,zj+1] p) [Wj’wj+1] §0 we are
done. Again by induction it must be that W, > 2 for all i > j since otherwise w; £
z; while w, ; > z_,, 50 [z_;,z] 3 [w,_;,w;], and we are done. But w; > z, for all i
> j is impossible, since w = z = b. Therefore (2) is verified.

Apply Theorem 5 to obtain the desired result.

Q.E.D.

As mentioned previously, Stromquist (1980) and Woodall (1980) have shown
that an envy-free partition exists in this one-dimensional model provided that
preferences have a utility representation that is continuous with respect to interval
endpoints. (This type of continuity is the same as the more general form of continuity
given in Berliant and ten Raa (1988) or Berliant and Dunz (1989) when specialized to
this one-dimensional model.) Hence envy—free and efficient partitions exist provided

that preferences admit a continuous utility representation and are monotonic in the

6For standard measure — theoretic reasons, two intervals that differ on a set of measure
zero are considered equivalent, so elements of a partition are allowed to overlap at a
common endpoint.
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sense of Corollary 2.

An interesting application of Corollary 2 is to models of urban location, such
as Alonso (1964). Each agent’s utility depends on the interval of land he receives and
how close it is to the central business district given by a. Distance to the city center
will be measured from the beginning of the agent’s interval of land.

Corollary 8. Given the structure of Corollary 2, suppose agent i’s preferences are
represented by a utility function u, where for all e > 0 ui([c—e,d—e]) > ui([c,d]), and
[ce,d] > [c’,d] implies u;([c,d]) > uy([c’,d’]). Then all envy—free allocations are group
envy—free. If each u, is also continuous, then there exists an envy-free and efficient
partition.

The proof of Corollary 3 is an easy consequence of Corollary 2. Corollary 3
depends crucially on measuring the distance to the central business district from the
beginning of a parcel. If this distance were given by a "weighted average" of distances
from each point in the parcel to the city center (e.g. distance from the middle of the
parcel to the city center), then Theorem 5 might not apply. In this case, condition
(1) need not be satisfied.

Corollaries 2 and 3 can easily be extended to cover models in which I is a
finite union of disjoint intervals in the real line. This can be accomplished by
identifying the endpoints of consecutive intervals.

Finally, we demonstrate how a result of Svensson (1983) is captured by
Theorem 5.

Corollary 4. Consider the problem of allocating J indivisible commodities and an
amount M > 0 of a divisible commodity among n (> J) agents so that each agent
receives at most one of the indivisible commodities. If agents strictly prefer more of
the divisible commodity to less, then envy—free allocations are group envy-free.
Proof If n > J, "null" indivisible commodities are added to the model so that the

numbers of agents and indivisible commodities are the same. As in the proof of
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Corollary 2, we index the vectors representing feasible allocations by the indivisible
commodity instead of the agent. That is, if x € & then X gives the quantity of the

divisible commodity consumed by the agent receiving the ith indivisible commodity.

n
Feasibility requires that x; 20 for all i and that ¥ X, = M.
i=1

First we consider the case M = 0. So there are only indivisible goods in
this case. Since a commodity bundle never contains money, a bundle consists of only
an indivisible commodity. Hence, every envy-free allocation is clearly group envy-free.

Let M > 0. We define the partial order » required by condition (1) as
follows: x, » ¥; iff i = jand x; > ¥ This implies that condition (1) holds. Now
let x and y be two distinct feasible allocations. So there must be an i such that x >
Yy otherwise x and y are not distinct or all of the divisible commodity is not

allocated. Hence, x; > y;. This shows that (2) holds and Theorem 5 can be applied.
Q.E.D.

VII. Concluding comment. We have examined the existence of allocations satisfying
various equity criteria in economies in which a heterogeneous good has to be allocated.
- Beyond existence, there are a number of important issues that should be tackled next
pertaining, in particular, to the existence of selections from the no-envy solution
satisfying additional properties. Examples are monotonicity with respect to the amount
to be divided (all should benefit from such an increase), and with respect to changes in
the number of claimants (all claimants initially present lose in such circumstances).

We hope that our existence results will contribute to setting the stage for a thorough

investigation of these issues.
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