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ABSTRACT

The paper models a competitive industry in which both the discovery and spread of
new technological know-how are endégenous. Allowing for aggregate shocks and
informational linkages, general results are provided concerning the evolution and long run
behaviour of the distributions of knowledge and other observables; these include firm output,
growth and rank within the industry, and the time path of the product price and industry
output. Further, equilibrium does' not coincide with a social optimum, with both innovative
and imitation activities possibly being too low from tﬁe planner's perspective. Several special
cases are analysed, one yielding S-shaped diffusion of new technology; this is used to organize

data on the spread of diesel locomotion in the U.S. Railroad industry.:






1. INTRODUCTION

This paper models a competitive industry in which the discovery of new technology
and its spread are endogenous. The model is motivated by two kinds of evidence. The first is
the observation (Solow, 1957) that the better part of growth in economic activity cannot be
explained by increasing quantities of factors producing output subject to a fixed technology. It
has been argued widely that a theory of the development and spread of new technology is
needed to resolve this anomally; see Solow (1988), and for a contrasting view, Becker (1988).
The second type of evidence is in Figure 1. The top panel displays the fraction of shipments
of bits of dynamic random access memory (DRAM) by chip density and over time. Low
density (1 kilobyte) chips are displaced by those with higher density (4k), which are then
overtaken by those with yet greater density (16, then 64 and then 256 k). In the meantime, the
total quantity of bits delivered explodes, and price falls dramatically. The bit industry displays
the waves of change and improvement stressed by Schumpeter (1934, 1939). Such data call
for a theory in which new developments occur periodically and do not spread instantaneously.

The theofy has three main primitives: product demand, cost, and a learning
technology; all three are allowed to vary with calendar time and on exogenous "aggregate"
shocks. In addition, however, the learning technology can depend on the current (cross-firm)
distribution of technological knowledge -- this will allow informational linkages to affect the
spread of knowhow.!

Section 2 sets out the model, in which there is a fixed population of measure-zero
firms. Theorem 1 asserts the existence of a unique, symmetric equilibrium in Markov
strategies. Next, Lemma 2 shows that the distribution of knowledge over firms improves over
time, occurring because each firm's knowledge either moves forward or stands still, but does

not regress or depreciate. Theorem 2 then states that information gathering must eventually

1The other primitives are initial conditions and a transition law for aggregate shocks,
and an initial distribution of knowledge.



Figure 1

Diffusion of Density in the
DRAM Industry
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cease-- the distribution of knowledge over firms approaches a limiting long-run distribution.2

Describing this distribution is easiest when the environment is stationary. For that case
Theorem 3 shows that the set of equilibrium long-run distributions of knowlédge has a simple
representation. With this result in hand, Theorem 4 asks under what conditions the population
of firms will remain heterogeneous forever. The answer is that heterogeneity will not survive
forever if a firm can easily acquire better technology through either innovation or imitation. If
innovation is easy, all firms will end up discovering improved technology for themselves; if
imitation is cheap, followers will employ it to catch up.3 |

Knowledge is typically not observed, but some actions are. Under mild conditions, the
distribution of actions will have positive variance if and only if the distribution of knowledge
does; this correspondence carries over to the limiting distributions as well. In fact, the
distribution of output over firms does not collapse as an industry matures. This was found
when Stigler's "survivor test" was applied to over a hundred industries (Stigler 1958, Saving
- 1961). Evidently, in most industries the best technology is hard to come by through invention,
and the best "state of the art" technique is hard to imitate. Were this not 80, firm sizes would
differ less than they do.

Theorem 6 states that when there is no learning by doing, the monotonic improvement
in the distribution of knowledge will lead to a monotonic decline in price and a monotonic
increase in industry output, holding constant exogenous shocks to demand and cost. This
prediction squares with Gort and Klepper's (1982) findings about the time path of industry
price and quantity for over twenty products for which data are available since birth.

Theorems 8 and 9 deal with two fundamental properties of the evoiution of firm size.

First, the corrolary to Theorem 8 asserts that firms having superior knowledge today are less

2This is one way to interpret the result (Scherer 1980, p. 56, tables 3.3) that among the
top 100 corporations in the U.S., the amount of turnover seems to have decreased over the past
century. The correspondence with the model is weak, however, because these corporations’
activities are spread over many markets and are continually expanding into new ones.

3Empirically, the time-path of inequality as industries mature has received little
attention. One exception is Hart and Prais (1956). In a sample of all companies quoted on the
London Stock Exchange from the mid-nineteenth to the mid-twentieth century, they found that
inequality in valuations of firms first increased and then decreased over the hundred-year
period. »



likely to learn anything new. If the firm's output decision is increasing in its knowledge, this
also means that while firms that are large today will probably be large tomorrow, they are less
likely to grow much. That is, there is positive persistence in firm size in the levels. On the
other hand, Theorem 9 asserts that smaller firms will grow faster than larger firms. In a
similar vein, Theorem 10 shows that the expected gain in rank is larger for smaller firms.4

Finally, Theorem 11 states that relative to what a surplus-maximizing social planner
would prefer, equilibrium information-gathering activities (including imitation) are too low in
that the planner's payoff would be raised by a one-shot increase in these activities. This result
may surprise those who think, as did Schumpeter, that the best way to encourage invention is
to limit imitation through, say, a patent system. A planner who can control invention and
imitative effort directly can do better by exploiting the fact that current imitation makes
imitation easier later.

Section 3 specializes the model to permit only two kinds of information gathering:
innovation and imitation. Innovation yields a firm new technological know-how as a function
of its present knowledge and effort; imitation yields the firm improvements as a function of its
effort and others' knowledge. Attention then shifts to (i) a numerical example that illustrates
and supplements the theorems; and (ii) a specific case focusing on the diffusion of a single
new technology, heterogeneity in firm outputs, and the time paths of industry aggregate R & D
“expenditures. Both (i) and (ii) model imitation like a generalized contagion: the extent of
imitation depends positively on the number of firms that seek to imitate a new technology and
how hard they try, and on the number of firms that already have it. When imitation is easy,
S-shaped diffusion of technology is the likely outcome, for roughly the same reasons as
S-shaped diffusion of a disease occurs in contagion models. Indeed, such diffusion will

explain the wave-like behavior depicted in the top panel of figure 1. Finally, (i), the specific

4These predictions also match some data: In levels, firm output exhibits positive serial
correlation, (Gort 1963) but growth rates of smaller firms tend to exceed those of larger firms
(Evans, 1987, Hall 1987). This is so even after controlling for sample selection, which is not
an issue in the model because it has no entry or exit. Entry and Exit are studied in Jovanovic
and MacDonald (1990). Note that not all samples show a tendency for small firms to grow
faster -- see Singh and Whittington (1975).



model is put to use organizing data on the diffusion of diesel technology in the U.S. railroad
industry.

Section 4 contains concluding remarks; proofs are in the Appendix.

2. GENERAL MODEL

The situation is as follows. At any date, the behavior of consumers implies demand for
a homogeneous good. A group of firms may supply this product, behaving as perfect
competitors in product and factor markets. A firm's technological knowledge may change in
response to what the firm does, to what its competitors know, and to what is known more
generally (in other industries, science, etc.). Thus, given what it knows and how easily it can
use various sources of new information, the firm must allocate resources to production and
information-gathering activities. This allocation problem is the center of attention in what
follows. What determines this choice? And what about the time-series and cross-section
properties of the distribution of knowledge across firms, and of related entities such as the

-distribution of output over firms?

a) Structure

Time, ¢, is discrete and the horizon is infinite: te T = {0,1,...}.5

5The following notation will be used. First, whenever time is an argument of a function,
or some element of a set is to be interpreted as being associated with period ¢, ¢ will appear as
a subscript.

Next, for any real valued function f with domain ¥,

If |l = sup|f ()]
yeY

When some arguments of f are to be held fixed, they will be displayed as arguments. That is,
write y = (yo, yl), then for fixed yO:
0 0
”f(y :)”E OSUII) If(y ,)l
0.y )eY
Finally, the statement "f is Lipschitz in yO with Lipschitz constant £" will mean: V yo, yo ,

o7, 60, Ol <y’ -0



Outside-the-industry entities follow a Markov process {Xt} with compact state space K
c [Rk, k < =, A realization of Xz’ denoted by X, is observed by all agents before they act at ¢,
and comprises exogenous factors influencing product demand, firm costs, or possibilities for
learning new production technologies.

Consumer behavior is summarized by the continuous inverse market demand function
D:Tx[0,0] xK = [Qb], where 0 <D <D <= and 0 <. Q ¢ [0,0] represents total industry
output of the commodity, assumed nonstorable. The function D is nonincreasing and Lipschitz
in Q with Lipschitz constant d. The vector x is an argument of D that allows for
economy-wide shocks, changes in tastes, endowments or incomes of consumers and variation
in the prices of other goods; in particular, declining demand due to introduction of new
products elsewhere may be included. In general D will depend nontrivially on only a
subvector of x.

Define a firm-specific state variable 6 € ®, where 8 = [0,0] c R. Let .2 be the class of
Borel sets in @, with typical element b, and £ the set of probability measures on & with
generic element m, endowed with the topology of weak convergence (Billingsley (1968)).6

The description of firms, Strategies and payoff to an arbitrary strategy now follows. At
any ¢, 6 indexes technological know-how, and firms differ only to the extent that 8 varies
among them.” Any heterogeneity at ¢ is captured by V€ M, 2 is exogenous.

In general, a strategy would be a function specifying a feasible action for each
opportunity at which the firm might act. These opportunities would be indexed by the prior
history of the game. Here it is assumed that the vector 5, = @, Gt, Xp vt) suffices as a

description of history. This implies that the firm cannot condition its behavior on any

6The sup norm ||- || defined in footnote 3, as applied to .4 does not coincide with the
Prohorov metric (Billingsley). This distinction arises only in the proof of Theorem 1, in which
all topologies are taken to be compatible with || - ||.

It will prove convenient to order probability measures in .#according to whether the
associated distribution functions may be ranked by first order stochastic dominance. To that
end, let > be the reflexive pertial order on #x defined by m > m’ & V 6, m([0,0]) <
m’ ([0,0]). :

7Since 0 is a scalar, costly-to-adjust capital inputs are ignored here. Also, the model
may be interpreted in terms of product instead of process innovation in a manner similar to
Spence (1984), fn. 2. :



elements of history apart from s p SO that, the "state space" is simply S =T x 8 x K x 4 with
generic element s.

A firm's action at ¢ is a vector o= (ait)iz]l, also written (q,a_q). q represents the firm's
output and a_q is interpreted as comprising the levels of other activities influencing the firm's
technological know-how: R&D, measures of the éxtent of attempts to learn from others, and so
on. It is assumed that (g, a_q) e [0,0] x A_q = A, where A_q is a convex, compact subset of

[RI-I

,2< <, Let Qq = (¢,0,...,0) € A and 0 = (0....,0), with length clear from the context.
A strategy for a firm is, therefore, a function a: S = A.
How does the firm evaluate a given strategy? First, consider the return a firm would
earn from an arbitrary sequence of actions, {at}, product prices {p t} and states {st}. Itis

assumed that this return is the present value of profits:

I Blpg, - c o8 (1)
In (1), Be (0,]) is a discount factorand c: Tx A X O x K = R " is the cost of taking action o at
t given B and x. The function ¢ is i) continuous for each ¢; ii) strictly decreasing and Lipschitz
in 8 if g # 0; iii) strictly increasing and convex in ¢, and equal to zero if o = 0; and iv)
continuously differentiable in ¢ with the gradient V of satisfying a) Vx and for some open
interval 7 , ¢ = 0 and 8 € I imply dc(0,6x)/dg < D; and b) Y(os”), [IV c(es-) - V c(a’, )|
> e lle-a’]ls e, € O, ). |

This structure guarantees that (i) the firm's maximal action is unique and solves first
order conditions; (ii) a higher 8 corresponds to a better technology; (iii) there are some 6 for
which production must occur in any equilibrium; and (iv) actions are not overly responsive to
the state variables. Only those components of x not referring to technological knowledge are
allowed to enter ¢ nontrivially, so that 8 represents fully the firm's knowiedge at t. Any other

contributions to the firm's knowledge--for example, those having origins outside the

industry--are embedded in the transition function for 8 given below.8

8This specification permits technology-specific factors provided there are no costs of
adjustment and the evolution of the prices of factors is independent of the extent of their use in
this industry, in which case these prices may be subsumed in x.



The product price (p[) and state vector (st) evolve as follows. First, suppose there is a

function P: T x K X - [D, D] such that

p,=Pxy) 2)
Next, assume there is a function ¢: T x K X #- 4 and that
Vier = 00V 3)

with Vo given. Since ¢ depends on ¢, any sequence {vt} can be represented this way. -
Consistency of P and ¢ with the equilibrium behavior of firms is required as part of the
definition of equilibrium below. Finally, Gt follows a Markov process on 8, with transition
function ¥: Zx T x A x0 x K x A~ [0,]], written ¥ t(b,a,e,x,v). Note that given o and s,

Ye M Y isassumed to satisfy i) Vs with 6 < 8, max ‘I‘t[(G,G], o, 6, xv]e(0,]);i)IfB¢
o

0,81, Vst, Vo, ‘I‘t[[O,G), o 0,x,vV]=0;iii) f6> 6", a>a” and v Vv, then V(x, 1),
¥ t(~ ,0,6.x,v) » ¥ t(-,a',G’,x,v'); iv) Y(z, b, ), W is Lipschitz in 6, x and v with Lipschitz
constants Y, Y and ¥/, ; v) V(b,s) W is differentiable with respect to «, with the gradient Va‘I‘
a) uniformly bounded by v, and b) Lipschitz in ¢, 6, x and v with Lipschitz constants Voo
Voo Vo and 7% vi) Y(8’,5), ‘{’t[[O,G’], o, -] is convex in ¢; and vii) ¥ is continuous in v.
Conditions (i) and (ii) require first that if there is anything to learn, learning is not
impossible but cannot be guaranteed, and then that the firm not implement any technology
having index lower than that which it currently knows. (Given (iii) and that c is never
increasing in 6, the latter is included solely as a notational convenience.) (iii) imposes that
learning is never impeded by increases in either 6 or a, or by other firms knowing more.
Given 5, = (Go,xo,vo), ¥, %, P and 0, an arbitrary strategy a induces a probability
measure over sequences {s§ }°1°. Let E (‘ |6 ,xO,VO,a) be the associated conditional expectation
operator. Then, for any (6 Xp ¥ ) the firm's evaluation of the arbitrary strategy a is the

expected discounted value of profits
{Z B‘[P (x,v)q,(8,x,v)-c [a(6,x,V), Gt,xz]} 16, X, v, a] 4

Below, the definition of equilibrium will require that the firm select a strategy that

maximizes (4). Since (1) is bounded by DQ/(I-B), a maximal policy, written o (6,x,), obeys:



W, o (Oe)ear gmas {P Gvig-c @620+ [V, 1183 0 v @6 o0z @ 2} ©
‘ 10/3

where V: S = R satisfies:

W, V(0x) = mazx {Pt(x,v)q-ct(a,e,x)+ﬁ J v, 107X 0 V¥ (6’ 0,85, (dx’ ,x)}. ©)
(043

b) Equilibrium
Two sets of conditions hold in equilibrium. First, given P and 9, firms are to select a
maximal strategy. Secondly, P and ¢ should agree with the behavior of firms as a group.
| Formally, an equilibrium is a set of functions {V,a,P,0} such that (5) and (6) hold, and,

Y(z,x,v) both

P,v) =D,[J q,(e,x,v>v(de>,x] ™

and

o (x,v) = ['¥ [0 (6:x,V),0.,VIV(dO). , (8)
v | Conditions (5) and (6) ensure the maximality of each firm's strategy; (7) imi)oses product
market clearing; and (8) requires the distribution of technology in use at #+1 to agree with that
in use at ¢ coupled with what was learned during that period.

This definition demands that equilibrium be symmetric: All firms must select the same

strategy. Their actions at ¢ will, of course, generally differ when v, is not a point mass.%

9The imposition of symmetry is particularly convenient if v, has atoms. It does not

yield nonexistence of equilibrium because there are no fixed costs; compare Mas Colell
(1984). Next, by substitution of (7) and (8) into (6), the model can be represented as a normal
form game with the set of players described by Vg the strategy space being functions from § to

A, and payoffs obtained from (5) and (6). Since each firm's policy is required to be maximal
given any s € S, the equilibrium strategies form a perfect equilibrium in the derived game.
This game has much in common with an anonymous discounted sequential game; see
Jovanovic and Rosenthal (1988). The difference is that, unlike Jovanovic and Rosenthal, the
~ present structure allows for the "aggregate shocks” Xr but places additional structure on

payoffs. Existence of equilibrium in a general anonymous sequential game with aggregate
shocks has been demonstrated by Bergin and Bernhardt (1989). The additional structure
imposed here yields existence of a unique symmetric equilibrium.
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Also, if D,¥,y and ¢ do not depend on ¢, the environment will be referred to as stationary.

When this is the case, V, @, P, and a do not depend on  and the subscript ¢ will be dropped.

c) Remarks

The model has many interpretations. First, suppose that at ¢ all firms freely learn
others' technological know-how and may implement at ¢+ or later what they have learned. In
this case the motivation for R&D is purely the return to utilizing superior knowledge one
period earlier than others do. Empirically, the length of the period would be the duration of
effective protection (patent, or other) new knowledge enjoys. Second, suppose knowledge can
be sold and transferred costlessly, say through a simple announcement of ingredients. Then
the equilibrium price of information is zero, and given that other firms sell what they know, no
firm is harmed by doing likewise, in which case announcement by all is part of an equilibrium
strategy. Third, a patent system might prohibit a firm from using a technology unless it has
invented it itself, perhaps simultaneously with other firms. Under this specification ¥ is such
that 6 el = 6t unless R&D yields the firm a technology characterized by 6 outside the support
of v, Finally, inventions arriving from outside the induSU'y can be included by structuring ¥
so that, for particular x, learning certain 8 requires minimal effort; for example, K =8 x K’
R“! could be assumed, and the first component of x interpreted as knowledge available to any

firm at low cost.

d) Results
d.1. Technical Properties

The first proposition provides a condition sufficient to guarantee existence of an unique
equilibrium.

| o Buy, R
Theorem 1. Assume max(d,l;/a) < [(1 -B)c o a—u/aaDQ [I - Waa( T- Wv)( 1'/5)” X {1 -3+ﬁ1/faQ] .

Then, an equilibrium exists and is unique.
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Observe that the parameter restriction in Theorem 1 is always met if ¢ o is sufficiently

o

large, or d and v, sufficiently small.10

Lemma 1: In any equilibrium (i) V, o, P and ® are continuous, and ii) V is increasing

in 6.

d.2. The Sequence of Distributions of Technologies in Use
The first result states that the distribution of technology increases over time in the sense

of first order stochastic dominance.
Lemma 2: Vt, x and v, d)t(x,v) > V.

Lemma 2 follows from condition (ii) on ¥, which requires any firm not to implement
any technology inferior to the one it currently uses.

To proceed, let x = {x [}: be an arbitrary sequence. The equilibrium law of motion ¢
then generates a deterministic sequence {vt}°0° via (3). Theorems 2-4 focus on the properties of
this sequence. Theorem 2 states that from any initial distribution of know-how and for any

evolution of aggregate shocks, {vt} converges.
Theorem 2: For each (VO,Z), there exists v*¥ € M such that v, V¥,
Intuitively, Theorem 2 holds because the distribution of knowledge is always improving

(Lemma 2) but cannot advance beyond the distribution under which all firms have technology

B. Thus knowledge cannot advance indefinitely.

10This restriction guarantees satisfaction of the hypotheses of the Contraction Mapping
Fixed Point Theorem (Kolmogorov and Fomin, p. 66), which yields uniqueness along with
existence, and will be assumed in all that follows. Strictly, the contraction mapping argument
gives existence and uniqueness of ¢ and P. Existence and uniqueness of V and o then follow
from standard arguments (similar to those exposited in Stokey and Lucas (Ch. 8)) utilizing
properties of the operator defined by the right hand side of (6).
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In all that follows, stationarity will be assumed. While many of the propositions have
nonstationary analogues, they are much easier to state and prove under stationarity. Theorem
2 states that, for large ¢, v f is close to v*, and may even equal v*. Thus further properties of
{vt} may be obtained from those of v*. Results on v* follow.

When the environment is stationary, & does not depend on z. Let

M= n {ve M,V =V}
xeK

be the set of measures such that v, € M implies V=V, forall ¢’ > ¢, for all x. A#*is
nonempty since it contains v satisfying v({8}) = 1.

Given Xy let % be the probability measure on F x & x... consistent with x (Ash, Sec.
2.7). That is, ¥ is a probability measure over sequences whose first element is X Also, let

27 |x) be the 7-fold iterate of x; ie. Vb e B, x'(b|x) = Pr(X

i4r € D|x). Finally let K be

a countable dense subset of K.

Theorem 3: Assume that for each (VO, xo):

@ x{x|3r such thar X ¢ K'})=0;

and

(iiy Foreachbe & having nonempty interior, 3 € > 0, and t < such that
min x'®|x)2e

xekK |
te{l,...,t}

Then Z({X|v* ¢ ) = 0.

- Informally, the argument underlying Theorem 3 is as follows. Theorem 2 indicates that
the distribuﬁon of knowledge v, settles at v¥*. There are two ways v, can come to rest. One is
~.that the coupling of firm actions and possibilities for learning.are such that no learning will
..occur irrespective of aggregate shocks: v¥ e #*. The other way for v, to settle is that
aggregate shocks can conspire to prevent learning even though learning would go on for
certain other values of x ;@ 'Lriviai example is that in which Vy € *, learning is prohibitively

costly if x = x’,and x = {x’x’,...}. The proof shows that such conspiracy of events is
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"unlikely" and therefore that the set of sequences x for which the associated v* is an element
of  has full measure.

By asserting that v* € ¢ almost surely, Theorem 3 raises the possibility of obtaining
features of v* from those of 4. The next result displays a useful characterization of 4

when information acquisition requires some action beyond production of output.

Lemma 3: Assume that Vs, Yq, ¥ ({8}, Qq, 0,x,vV)=1. Then M ={ve H|Vx,VOc¢

supp Vv, 3 q such that a(8,x,v) = Qq}.

Since some effort is required if learning is to occur, without such effort there can be no
learning, and no growth of knowledge. On the other hand, if the distribution of knowledge .
does not evolve, the set of 8's for which continued learning is maximal must have measure 0.
Moreover, firms knowing such 6 necessarily have technological know-how distinct from most
others, for otherwise (since o is continuous) many others with similar knowledge would also
find it to their advantage to learn as well, causing the distribution of knowledge to evolve. -

Given Lemma 3 and Theorem 3, properties of v* can be obtained from the requheﬁent
that (6, x, v*) = Qq for 0 in the support of v*. Theorem 4 first shows that in general v, # V¥,
so that v* approximates v, closely only for large ¢. Second, the Theorem establishes some
properties of v¥*. In particular, sufficient conditions are given for (i) all possible knowledge
eventually to be acquired by nearly all firms; (ii) some knowledge to remain undiscovered by
many firms; and (iii) some knowledge to remain undiscovered and nontrivial heterogeneity in
technological know-how to persist.

Theorem 4 uses the following notation. For given x and v, let P(x,v) and g(6,x,V) solve

q(8.x,v) = argmax {P(x,v)q -¢(0, 6, x)}
q q

and
P(x,V) = D[ §(8.x,V)V(d6), x].
Let V(6,x,v) be the expected present value of profits obtained by a firm selecting g(6,x,V) at

each date when vt = vforall z.
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Theorem 4: Along with the conditions in Theorem 3, assume (i) Vs, Yq, Y({ 6} ,Qq, 0, x,
V) =15 ) olo) = (g, ) + ol @ ) (i) 0 = o implies W(-,0,0) = ¥C0,0);
and (iv) (VO, xo) is such that 36 € supp Y such that some component of

‘Va_q ¢! (Q,G,xo) +B V(G’,x’,vo)Va-q‘I’(dG’,Q,G,xo,vo)x(dx',xo) is strictly positive.
Then, except for a set of measure 0 in K, (a) Vt, v e M5 OO IFY0e[0.8),V (v, ),

in some component Va ! (0,6x) equals zero and Va F[(6, 8], Qq, 6, x, v} is strictly
-q -q
positive, then v¥({B8)) = 1, (b)(ii) if V0, Vx, Va cI(Q,G,x) > 0, then v*({8}) < I; (b) (iii)
-q
assuming, in addition to the condition in (b)(ii), that Vo, ¥ 6 € supp Vi VY6’ ¢(6,0),

¥[(0,0], c, 6, X5 VO] > 0 implies P[(6”,8], «, 6, Xp VO] > 0, then supp v* contains at

least two points.

Condition (i) states that learning requires effort. Conditions (ii) and (iii) separate
production from information gathering.!! The final condition is a restriction on primitives
guaranteeing (by virtue of Lemma 3) V)¢ M.

The argument underlying part (a) is as follows. If learning comes to a halt at date ¢/,
(i.e. v, € ) it is easy to show that efforts to learn would not pay at ¢”-I; this is largely
because the distribution of others' knowledge is more helpful at ¢” than at z’-1. Thus learning
must in fact halt at ¢"-1: Vyr € . Repeating the argument yields no learning at =0,
contradicting the assumption Vg £ . Thus V& ME.

Part (b) follows because while there must be some learning at every date, it must
gradually vanish, so that at large ¢ some firms must be on the margin about whether to try to
learn. In part (i) this cannot happen unless all firms know 8; in part (ii) it cannot if all firms

know 8. Part (iii) also precludes all. firms knowing 8, but also requires leaming to be varied

~enough so-that for all firms to know some other 6 cannot be the ultimate outcome either.

11These conditions do not rule out learning by doing. They merely insist that if
production might generate new knowledge, some aspect of noting what the information is and
putting it to use is both required and not literally costless. Imitation too is unlikely to be
costless. Mansfield, Schwartz and Wagner (1981) find that imitating something is about 70%
as costly as inventing it, and Evenson and Kislev (1973) find that to imitate successfully, the
imitator must do some research himself.
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d.3. Sequences of Distributions of Observables

Identifying technologies indexed by 6 may be straightforward; the diesel/steam
locomotive case studied below is an example. In general, however, focusing directly on
technology may prove extremely difficult. Therefore, implications about observables such as
output, R&D expenditures, or net revenue are now developed.

Let fFAXAOXKX A~ R, I € n < =, be continuous. (f might simply be f = @, or given
any P, f = P(x,V)q - c(®,0,x)). Continuity of policies, and of continuous transformations of
policies, follows by lemma 1.

Given equilibrium of-), define a probability measure v/ on the class of Borel sets of K" ,

ékn, by:Ybe .é‘n, xeKand ve 4 \f(b,x,v) = v{{6| floB.x,v),0x,V] € b}]. Also, let
V() E\f(-,x,v*).

Theorem 5: VY x, v, - v* = vf(-,x,v[) - \/*,(-,x).

While cumbersome, the dependence of V" on x cannot in general be eliminated. An
example may prove helpful. Suppose that x is a scalar entering the model only via D and that
f=gq. Then, even if growth in 6 comes to a halt, the distribution of output will vary in
response to current shocks to demand, and hence \/‘* will fluctuate endlessly.12

The limiting measure V" is no more directly observable than is v*; interest attaches to
\/* to the extent that it is informative about \/: A result analogous to Theorem 4 can be stated;
it provides conditions under which heterogeneity in observed actions will exist for large ¢, and
others under which homogeneous‘ actions will prevail. For example, when whatever f
describes is one to one with technological know how, the distribution of observables is

degenerate if and only if the distribution of technological know how is.

12The stationary distribution of f is
* A~
/ V),

where #(-) = IJ( x(- x)x(dx).
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dA4. The Evolution of Price and Output
Lemma 2 states that the distribution of technology in use improves in the sense of first
order stochastic dominance. Under the conditions below, this implies that for fixed x, price

will decrease and industry output increase over time.

Theorem 6: Assume i) ¥ does not depend on q; and ii) c(a,*) = co(q, )+ cl(a_q,-),

where acolaq is decreasing in 8. Then ¥ x € K, P[x,0(x,V)] < P(x,V).
Corollary I: YV x ¢ K, | q[0x,0(x,V)] ®(x,V)(d6) > | q(6.x,v)V(db).

A related result removes the conditioning on x as follows. Each X implies sequences
{p t} and {Q t}; thus ¥ induces a measure on the spaces of such sequences, and (unconditional)

cumulative probability distributions F’; and F ? on price and quantity at f.
Corollary 2: F’t’ (F?) is stochastically decreasing (increasing) in t provided x, isii.d.

The next result focuses on the time path of the distribution of "normalized" output,

again taking x as given. Assuming g(-) >0, let g(6x,v) =q(0x,v)) min [q(6x,V)].
Be supp v

Theorem 7: In addition to the hypotheses of Theorem 6, assume that co(q,e,x) =
EO(q)EO(G,x), where 20 is homogeneous of degree strictly larger than I and 0 =o.
Then for fixed x, the distribution of q increases over time in the sense of first order

stochastic dominance.

The conditions in Theorem 7 ensure that the scaling factor in the denominator of g is
bounded away from zero, without which g is undefined, and then impose that the relative
outputs of firms knowing distinct 6 be independent of the product price. If éO(G,x) =

&?(G)Eg(x) is imposed, the conditioning on x may be dropped; if xtis ii.d., a statement
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| analagous to Corollary 2 can be made.

d.5. Cross-Section Implications

(i) Learning

If the costs of, and prospects for, learning do not depend on the firm's knowledge or its
rate of production, firms having higher 6 learn less in the sense of first order stochastic
dominance.

Define a probability measure ‘I‘A: Bx 8 x K x H#— [0,1] pointwise as follows:
Y(b.0.1.v), WAb,0x,v) = WI(b + (6)) N 8, a6,5,1),0.5,V]; that is, P2 is a probability measure
on learning taking current 8 as the reference point. Further, .let w0, A x Kx #4—[0,1], wl
Bx Kx M— [0,1] and, I: Bx O — {0,1} where I(b,0) = 1 if and only if O € b.

Theorem 8: Assume (i) ¥(b,a,8.x,v), ®(b,0,0.x,v) = ¥(ax,v) Wb 1 (6,81x,V] +
1,68) (¥%(0rx,v) P (0,61, x,v) + I-¥tx,V)]}, where o, = o implies i, ) =
W', +); and (i) ¥(,6x), c(ct,0) = c(g,0,0) + ¢! (o ). Then ¥ (x.V), o> =
w0 xv) > B8 ).

Corollary: 0 > 6° = P[(6°,8], a6’ x,v), & x, v = ¥[(8.81, (6 x,v), & x,vI.

The conditions in the Theorem have two effects. First, the separability restriction on ¥
makes learning a two-step process in which the likelihood of learning anything at all (i.e. ‘PO)
is influenced by o and 6, but given that some discovery has been made, just what is learned is
independent of o and put to use if it exceeds the existing 8. The second c_ffect is to separate
production from learning. Under these conditions, learning a superior technology is no easier
for firms that are already ahead and since there is less for them to learn, they invest fewer

resources in learning, and so are less successful.
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(i) Growth and Firm Size
Given 6{, the growth of firm output is a random variable g[8 D e r <D(xt,v[)]

/q(Gt,xt,vt) with distribution function G(- ,Gt,x,v).

Theorem 9: Under the hypotheses of Theorems 6-8, and if ¥(6,x), éO(G,x) = E?(O)ég(x),

then Y(6,x,v), G is decreasing in 6 in the sense of first order stochastic dominance.

Since g(-) is monotone in 8, the result may also be stated as conditional on g, x and Vv; that is,

defined that way, G is stochastically decreasing in g.

(iii) Turnover in the Size Distribution of Firms

Define d:0 X K x #x 4~ R pointwise by V(6,x,v,v"),

d(Bx,v,v") = v/ ([0,6D¥[{6},a(6:x,v),0x,V] + (GI 5 v’ ([0,68’ DY¥[dE’ ,a(6.x,V), B,x,v]-V([0,6]).
b ]

d(0.x,v

Vs 1) is the expected change in rank between ¢ and ¢+ for firms currently knowing 6.

Theorem 10: Assume the conditions in Theorem 8, along with: Y(axx,V) such that
& < & implies Yox,v), ¥la(@ x,v). V] = ¥O[a(6 x vV,
w66 > ¥ 110,6°], a6’ x,v),8° x,v1 x OJ J w1(6°,6', a(8.x,v), 6.x,VIV(d6).
[0,6] ,

Then d(G,x,Vt,vH_ 1) is declining in 6.

Whether a firm's rank advances or falls back depends on what those who know less learn, as
- well as learning by those knowing more. The (sufficient) condition in the Theorem limits how

fast those who know less learn new technology.

d.6. Equilibrium and Surplus Maximization

The presence of v as an argument in ¥ represents an externality. Thus a "social
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optimum" is unlikely to coincide with equilibrium. While a social optimum is hard to analyse
fully, the next result shows that there is a sense in which a social planner would prefer
information gathering efforts beyond those taken in equilibrium.13

Given (x VO), any strategy a, followed by all firms, generates a probability measure

07
over sequences {x o vt}°1°. Let E(- |x0,v0, a) denote the associated expectation operator, and

Qt(x,v) = J q[(e,x,v)v(de). Surplus generated by strategy a is

. R Qx v
Wa) = E[trz_oﬁ’ UO 7 Dezxdz - | c[a(e,x,,vg,e,xgvt(de)]

Assume W reflects the planner's preferences over common strategies a.

For fixed ¢’, suppose that o, € Int A on a set of 6's of positive v,, - measure, and let a’
be a feasible strategy differing from o only at date ¢’, the period ¢” difference being that the
last /-] components (i.e., other than q) of a” exceed those of ¢, for all 8 for which o, € Int A.
Thus a’ involves a one time increase in pure information gathering activities for a positive

measure of firms.

Theorem 11: Assume that i) c(o,6.x) = co(q,-) +c! (a_q,~), where o, = O implies
3c/«9al. = 0; ii) ¥ is independent of g, iii) Y(,0,0,x,x’ V) and any strictly increasing
function &: @ -4 R,

d_ J £6%) ‘I’[de’, o, G,x’,J‘I’[-, ed +(1-9d, B, x, v]v(da)] >0

at € = 0, where al and a2 are feasible strategies such that a{q > a%q; and iv)

Y(e,B8,x,v,v"),

J W([0,0’],0,0.x,ev + (I-€)v')[ev(dB) + (I-e)v’ (dB)]

is differentiable with respect to €, at €=0. Then, at e=0, for any t’,

' %W[ea’ + (-8a] > 0.

13The social optimum for a specific case is given in Section 3.(c) below.
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Corollary: If ¥ is independent of v, equilibrium and the planner's optimum coincide.

Condition (ii) and the separability in condition (i) eliminate learning-by-dong. This
allows the planner to evaluate information-gathering activities without regard to their
immediate impact on consumer's surplus. Condition (iii) guarantees that even small
improvements in the distribution of knowledge are of some use in learning. The other-
restrictions validate the variational method of proof.

This result is usefully thought of in the innovation/imitation setting described below.
There, innovation is an information gathering activity in which success depends on 6 but is
independent of v, while imitative success depends on v but not 6. Theorem 11 indicates that a
planner would prefer that both innovative and imitative effort be raised at the same date
relative to the equilibrium outcome. That imitative effort, in particular, is too low. from the
planner's viewpoint follows because in making their imitation decisions, competitive firms do
not account for the fact that they too may be imitated later. Put differently, in comparison to
equilibrium, the planner would prefer both that there be more new discoveries, and that they
spread faster.

The result obviously does not say how optimum compares to equilibrium. However, it
does suggest that surplus-maximization and active discouragement of imitation -- say by a
patent system where patents are long-lived -- are likely inconsistent. Also, without further
structure, it does not state that if the planner could make a small adjustment to equilibrium at
some ¢, greater information gathering would be a maximal adjustment; it merely asserts that for
the planner, such an adjustment is better than no adjustment at all; in particular equilibrium is

not a social planner's optimum.

3. INNOVATION AND IMITATION
This Section distinguishes innovation from imitation. The force of this distinction is
that innovative success depends on what the firm knows and on how hard it tries to learn,

whereas imitative success responds not to what the firm knows, but rather to what others know
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together with how hard the firm tries to learn from them.

a) More Structure

First, the vector of actions « is restricted to length three and written o = (¢,1,44), with
N e [0,1] and i € [0,1]. As before, ¢ is output; 77 and p stand for innovative and imitative
effort.

Second, possibilities for learning--the probability measure ‘¥'--are required (along with
the restrictions imposed earlier) to agree with the distribution function 7 defined by:

V', 0,x, VVeBXAXOXKX M

0 6'< 6
e By ={[1-n + N, 6, 0)] [1-0+ uM(8" x, V)] 6 <6,

Here N is a distribution function on 8 given 6 and x, representing innovation possibilities; M is
also a distribution function on 8, but takes v and x as given, and M(- x,V) > v. 7 is the |
probability with which the firm gets a draw from N, the distribution of new technological
know how; this draw is interpreted as an innovation. Similarly, with probability p a draw
from M is obtained, interpreted as the firm's learning the technique known by some other firm,
say via reverse engineering. Given Gt, 61+ ] is then the maximum of Gt and what (if anything)
is learned from innovative and imitative effort.13

Finally, c(,0,x) = co(q,G,x) + c](n,/,t,x); that is, production and information gathering

are separate activities, and 6 influences production cost only. Given the previous restriction,

13The distribution relevant for imitation is taken to be M rather than F(=w([0,60"])) to
capture the notion that the firm may direct its imitative efforts towards others it sees as likely
to have superior technological knowledge. For instance, the decision about which firm to try
. to imitate could be based on a noisy signal of other firms' know how. .This captures the
intuition of Mansfield et al. (1977) and others who suggest that more significant technological
advances would be imitated more quickly.

Also, since no individual action can influence aggregate behavior, no firm has an
incentive to take any "evasive" action to thwart imitation. If the firm knows 6, there are
always many firms that have this information as well. Evasive action by one firm is costly
and does not lower the probability that 8 will be learned by others from those that also know 6
currently.
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the correct interpretation of the absence of 8 in ¢! is that higher 6 does not make it any less
difficult to fabricate some new technology or learn from others. Rather, 6 operates by
influencing the distribution of what innovations are discovered, via N, and the set of new ideas
put to use.

To eliminate clutter, assume that i) any firm's policy involves & € Int A; ii) o and V are
continuously differentiable with respect to 6, and iii) 7 is continuously differentiable with
respect to 8 for 6’¢ (6,6]. It is trivial to provide conditions under which this will occur; let
n(- ,0,x) and m(~,v3x) denote the densities associated with N and M. First order conditions

_characterizing o(-) are:

PGy - 3 “leOxv), 6,41 =0, o BN

- Geclta0 Al + B 1 VIO " 00xv)] G PId0” O )02V 2’ 3) =0 (9)

and

- 9l Ta8a VA + B [ VIO X’ 0eV)] G HIdO a8x).05,v] (e’ ) = 0. (90)

b) The Effect of Knowledge on Innovative and Imitative Activity

Given an additional restriction, imposed below, the structure set out in subsection a)
satisfies the hypotheses of Theorem 8: firms with access to more technological know-how are
less likely to learn more. The issue addressed here is whether anything be said about the
underlying innovative and imitative behaviour that implements this fundamental outcome.
This question is of interest because, for example, the empirical literature on R & D
expenditures supposes some relatively simple relationship between effort devoted to R & D
and other observables such as firm size.

While clear results are available under strong conditions, the central conclusion is that
there are forces at work rendering it impossible to produce simple results more generally,

either in cross-section or time-series experiments. The formal analysis follows.
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Since 7(6,x,v) > 0 and pu(6,x,v) > 0 for some 6 < 6, and N(B.x,V) = w(Bx,v) =0, N and
i must be declining in 6 for some 6. The result to follow provides conditions under which 7

and p are declining in 6 throughout.15

Theorem 12: Assume i) Y x, N(-,8,x) does not depend on 0, and i) V(6x,),

2
- B%aﬁ ! INOxV)u(BxV)x] + B | {V[G,x’,d)(x,v)][N(@',@x) - 1[M(6° x,v) - 1]

+ J_vie'x V)] [n(9',9,x)[M(9',x,V) -11 + m(8" x,V)IN(6’,6,%) - 1]] d9’}
(6,6
x(dx” x) 2 0.

Then 1 and U are declining in their first argument.

The first condition states that having greater technological know-how does not improve
the distribution from which innovations are drawn. Obviously, significant violation of this
restriction may allow 1], in particular, to be non-monotone in 8. The second condition limits
the size of "cross effects"; if reducing imitative activity raises the marginal return to innovation
sufficiently, for example, both will not respond to greater 8 in the same direction (although the
degree to which greater innovative activity can compensate for reduced imitation, for example,
is limited by Theorem 8.)

This cross effect is a basic source of ambiguity in results on 1 and p. Greater imitation
makes it less likely that whatever is learned from innovation will be put to use, and
conversely. In this sense innovation and imitation are substitutable. At the same time, greater
0 reduces the firm's incentive to try to learn by any means, and for this reason innovation and
imitation are complementary. The interplay of these two forces works against clear-cut results

on the policies consistent with the basic result in Theorem 8; the situation is even more

15The conditions are not stated solely in terms of primitives; however, doing so is neither
difficult, nor, in this case, very helpful. That is, the restriction in question involves c], oV
and O. To state it in terms of primitives, 1ndex o, V and & by c then restate the condition in

terms of c and the indexed functions.
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difficult when N depends on 6 nontrivially. The same kind of considerations interfere with
time series results on how 7] and { vary as {vt} unfolds. The theory is likely to be of much

greater use in organizing evidence on the kind of result displayed in Theorems 8, 9 and 10.16

c) Example

The theory set out above contains a variety of testable restrictions, and in a specific
example will now illustrate them.17 Let

D@ =d;-d; 0,

0={ oy 91, 62},0<60< 91<62,

0 1 2 2 2

c’(q,0) +c (nw = cq q°/(26) + CTI m/2 + C# w2,

M=F,

Vo({e()}) =1,

and N be consistent with the markov transition matrix

6:+1
6o 61 62
90 1 501‘502 501 502
6 91 0 1-5]2 6]2
92 ~ 0 0 1 J

The parameters are do, d], cq, CT?’ CIJ’ 601, 502 and 8]2.
All firms start with technology 60. Given 9=60, innovation yields 6=91 (62) with
probability 1160 1 (n602). If 6=6,, innovation produces 6=6, with probability n5]2. (The case

studied in subsection a) imposes 502 =0 ]2.) Imitation involves random sampling of firms,

16The evidence on the relationship between firm size and the likelihood of adoption of
new technologies is very mixed; see Rose and Joskow (1988) and the references therein.
Evidently, in terms of the present model, N(-,6,-) depends on 6 nontrivially in many cases.

17In all that follows, the aggregate shocks (X) will be suppressed since they play no role
in the results derived.
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yielding, at ¢, 9=61 with probability uvt({()]}) and 9=62 with probability uvt({ 92}) regardless
of 6. Letv' = v((6))), i € {0,1,2}.17

Table 1 lists the parameters values used in the example.

Table 1

Parameter Values

B =98 6,=
dy=2 6, =

d1 =25 62 =15
¢, = 1 50] =.05
cn =1 502 =.01
cu = .666 612 =.05

The parameters chosen have no particular significance, except for ¢ ,U/Cn = .60, approximately
in line with Mansfield et. al. (1981).

Figure 2 displays evolutions of the distribution of knowledge, innovative and imitative
effort, and price. "Low" tech, "medium" tech and "high" tech refer to 90, 9] and 92.
Appendix Section A.16 provides the underlying values of ‘}z , n(GO,vt), “(GO’Vr)’ n(el,vt),
u(GI,vt) and p, These figures, taken together with the parameters, yield the evolution of
various objects of interest; for example, aggregate R&D expenditures, the distribution of
output, etc.

Perhaps the most striking feature is the evolution of imitative effort. As was indicated
above, the interaction of scale and substitution effects renders the time path of imitative
behaviour a highly irregular one.

For comparison, Figure 3 displays corresponding entities in a full social optimum; i.e. a

complete solution to the planner's problem. As might be anticipated, the optimum evolves

very quickly relative to equilibrium, and resources devoted to information gathering vanish

17These parameters used below do not guarantee 7 € [0,1] and i € [0,1]; however, all
probabilities just mentioned are so restricted.
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Figure 2
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Figure 3
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sooner. Medium tech makes a very brief appearance as the large information gathering efforts

yield rapid diffusion of high tech.

(d  Two-State Example

The next example is like the previous one, except that here it is possible to proceed
analytically because @ = {90,61 },and d; = 0. Thus there is but one technological improvement
to be learned, and p .= dO’ all . Since 92 is absent, 501 may be written §. Again let Vo=

v({6,}). The final difference is that M(6), 6, v) = I - o1)/2, ie. the probability of imitation

1/2

is u(vl)]/ 2. In contrast to the previous example, since (vI )y > vI, the imitator's efforts are

directed towards firms that already have the more advanced technology.

Since firms knowing 62 need neither innovate nor imitate, a complete description of
equilibrium is given by

0m)((6,)) =T + (I - V1) (B, 18 + G, v) OHY2 - 1B, vy @) 8611 (100)

V(18D =1, (10b)

V(6,,v) = 0,4 f@c,) - ¢ 106, vy2-c A )z

+ B{LL - 18, vIEIT1 - (6, VO VIB 0]

+ [106 118 + (8, Y (883 | Vie,, o), (11a)
V(8 v) = 0,d/2e (I - B, | (11b)
- ey (8, + B 811-(6, )] [V19,.00)] - V18,6091 =0, (122)
- ¢y H(Oy) + BLI - (8B /2 [V[Gl,d)(v)] - V[OO,(D(v)]] =0, (12b)
and
e €y [/3 soh!2 [V[GI, o)) - VI8, <1>(v)]”2 >0. (12¢)
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(10) corresponds to (8) above, (11) to (6), and (12) to (5).

From (12) it is immediate that if (/)2 Aw) = wH/2 [V[GI, o)] - V[BO,(D(v)]] is
rising in v , n((—)o, v) declines and u(GO, V) rises as {vt} unfolds. The intuition is as follows:
A(v) is the net benefit from learning 91, which declines as v . evolves, this decline occurring
because the value of knowing only 90 increases as imitation becomes easier with rising Wl
Falling A(v) works to reduce both innovation and imitation. However, that imitation is
becoming easier makes it more likely (for fixed 71 and p) that it will be imitation, not
innovation, that yields knowledge of 91. This effect further encourages a substitution of
imitation for innovation. When (vl )1/ 2 A(v) is rising in v], the substitution of imitation for
innovation dominates the influence of declining net benefit to learning, so that imitation must
rise, and innovation fall.

])1/2

That (v A(v) is rising in v! must hold "on average', since vé A(vO) = 0 (ie. vé =0)

1)]/2

and lim vi A(vt) > (. In what follows, assume that (v A(v) is invariably increasing in vl .

[—00

This restriction leads to the simple results put to use in the subsection following.19

The variety of behaviors possible in industries in which technological advance is
endogenous can be illustrated by two polar cases--pure imitation and pure innovation. Pure
imitation results when innovation is very difficult: &= 0. In this case -- similar in spirit, as
well as in implications, to Schumpeter's (1934) model--innovation is rare, and nearly all
diffusion of new technology is imitative. Pure innovation is obtained by introducing the
parameter £ into M via M(8,, 60, V=1 - §(v] )1/ 2, and then éonsidering & =0; € will be
suppressed until it is used below. Pure innovation is related to the situation studied in the R &
D literature(for example, Scherer (1967), Kamien and Schwartz (1972), Telser (1982) and

Nelson (1982)) in that diffusion of any new technology is solely a consequence of independent

efforts to implement it; however, this example improves matters by specifying production and

19That it is indeed possible to satisfy this condition has been checked numerically;
indeed, it appears to be difficult to produce a case where it is not satisfied. In an earlier
version of this paper (available from the authors) it was shown that this restriction is satisfied
whenever a condition on i and 1 holds. A variety of comparative dynamics proposition are
also provided for the pure models.
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innovation as simultaneous, ongoing processes instead of requiring innovation to precede
production.

Three basic questions can be answered in each pure model: (i) What are the
characteristics of diffusion of new technology? (ii) How does the distribution of firm outputs

evolve? (iii) What is the time path of aggregate R & D expenditures?

Diffusion of New Technology

In the two-state setting, diffusion is fully captured by {vlt}. Under pure imitation,

1 _ .1 1 1,1/2

VSVt - vt) /.1(60, vt) (vt ,

where
— . d\1/2

e, v) = ﬁ(vt) A(vt) / c“.

Observe that firms knowing only 60 are more likely to leamn 91 as time passes; i.e.

weo, v )(vl )1/2 increases as v, evolves. Using the expression for u, diffusion is given by
0Nt t gt

vtil - vlt = B - vi) vi A(vt) / cu,
which is small both early on and for large ¢, and achieves a maximum before a majority of
firms have learned 6], since A is declining in 120 n this sense pure imitation must result in
the "S-shaped" diffusion familiar at least since the work of Griliches (1957, 1963) and
Mansfield (1963).

Under pure innovation, the absence of effective opportunity to learn from others

renders A(V) nearly constant; it follows that n(60,vt) is nearly constant as v, evolves, in which

case diffusion is concave and most rapid at the outset.

Evolution of the Distribution of Firm Outputs
Since the price of output is constant, firm output given 6 is also constant; thus define

¢ = q(6,,) and q = (8,,v).

200bviously this result is dependent on the particular structure assumed for M. Indeed,

that (vI )]/ 2 A(Vv) is rising in vI implies that maximal diffusion occurs for Vi e (1/3, 1/2).
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Average output at ¢ is given by vgq] + (1 Vi )qo = qo + vi (ql - qo); ie. a simple
rescaling of vi . It follows that the time path of average output displays the same qualitative
features as diffusion.

The variance of output at ¢ is proportional to vi(l -vi ). Thus, given the diffusions
discussed above, under pure imitation heterogeneity in output rises slowly and is driven out
quickly. Pure innovation rapidly yields heterogeneity, which then dies off slowly.

Note that endogenous imitative activities, spillovers, etc. occur only when the
distribution of knowledge has positive variance, here equivalent to variance in the distribution
of output. In particular, attempts to uncover the extent of spillovers empirically by focusing
on mean output instead of its variance are doomed since variance drives the spillovers, but
mean and variance are not even consistently positivély correlated in this model. For example,
in the 3-state example studied in Section 3(c), the time-series correlation of average output and
output variance is -.66. Aggregate imitation expenditures are positively correlated (.77) with

the variance of output, but negatively and weakly correlated (-.19) with average output.

The Time Path of Aggregate R & D Expenditures
Assuming R & D expenditures comprise both the costs of innovation and imitation
(evaluation of others' methods of production, reverse engineering, etc.), industry expenditures
2 2
onR & D are (z-vi)[cnn(eo,vr) 2 + cuu(eo,vf) 121,

Under pure imitation, industry expenditures are proportional to (/ -vi )vﬁ A(vt)2 =

A

L - VDA(v), which peaks before maximal diffusion.

In contrast, pure innovation yields a strictly declining aggregate expenditure path,
proportional to (J -Vi).

Using the expressions given above, these results may be cast as follows: pure imitation
predicts a rising hazard of new adoption, a rising ratio of output variance to diffusion, and a
rising ratio of diffusion to aggregate R & D expenditures; pure innovation yields a constant
hazard, a rising ratio of output variance to diffusion, and a constant ratio of diffusion to R & D

expenditures.
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e) Death of the Steam Engine

The displacement of steam locomotives by diesels is a phenomenon to which the
two-state model usefully applies.2! The twentieth century has seen a host of innovations in the
railroad industry, but they plausibly are dwarfed by the switch from steam to diesel.

The first usable diesel locomotive was invented by Rudolf Diesel in 1912 (Schmookler,
1966). Diesel locomotives were first used in the U.S. in 1925, and by 1968 they had displaced
* steam engines entirely.22 The top panel of Figure 4 displays data for the U.S., 1925-67, on the
fraction of all locomotives that were diesels. Evidently, the distribution of technology
increases over time in the sense of first order stochastic dominance (here equivalent to Vi
rising over time).

Modelling imitation as involving spillovers implies that the likelihood of switching
technologies reflects the degree to which new technology is currently utilized. - Most starkly, in
the pure imitation model, the hazard is strictly rising. If pure imitation is an adequate -
description of the railroad industry, the hazard ht = (vf vl v;)/(l - Vi), should be increasing
over time. Figure 4 also displays {ht}, which certainly increases throughout most of its fangc;
indeed the declirﬁng portion of {ht} is precisely that period during which less than 1% of all
locomotives were stream-driven, in which case I - vf < .01, and erratic fluctuation in the £ ;

series is to be anticipated. The pure imitation framework has the stronger implication that

/.L(Go,vt) is rising as v, evolves. The bottom panel of Figure 4 depicts B, = h /(vi )1/2 which,

like {ht}, is generally rising and falls only during the period when I - vf is very close to zero.
While these illustrative calculations do not prove that an informational fnodel is indeed

generating the data, it is worth noting first that a key implication of the main

alternative--namely a vintage capital model--fails here for two reasons. First, new stream

211n the earlier version, a similar exercise, but exemplifying pure innovation, was carried
out using data on mechanized loading techniques in U.S. underground coal mines.

22A few electric and "other" locomotives are ignored in what follows; as a group they
never amounted to more than 2% of the total. ‘
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locomotives were produced long after the introduction of diesels; see Interstate Commerce
Commission (1950, Tables A-4 and A-5). And second, there appears to be no evidence that
the age distribution of steam locomotives was bell-shaped in 1925; a bell-shape is key for a
vintage explanation of the S-shaped diffusion displayed in Fig. 4.23

Nor did the case that the substitution of diesels for steam locomotives merely reflect
the cheapening of oil relative to coal over time. In fact, over the period during which the
primary displacement of steam engines occurred (approximately, 1940-60), the ratio of coal to
oil prices fell by about 13%; see U.S. Bureau of the Census, Historical Statics of the United

States, series M93-106 and M138-142.

4. CONCLUDING REMARKS AND RELATED EVIDENCE

This paper has analyzed competition among firms that differ only in their productive
knowledge. All lags in the diffusion of technology stem from informational barriers between
decision units that are labelled "firms" here. There are good reasons why the informational
unit may indeed be the firm: patents, for instance, are granted to firms, and
information-sharing mechanisms such as patent-swapping arrangements and licensing deals are
made among firms. On these grounds, it is natural to think of the firm as the owner of a piece
of information, information that other firms can try to acquire.24

On the other hand, further theoretical and empirical considerations suggest that the
informational unit is not the firm, but perhaps the plant. Holmstrom (1982), among others, has
highlighted the incentive problems that may arise within the firm -- problems that may deter a
plant manager from sharing his technological know-how with his peers. And on the empirical
side, Mansfield (1963) has shown that the spread of a new technology within the firm can take
almost as long as its spread within the industry. To explain diffusion lags within the firm the

model must interpret them as resulting from informational barriers inside the firm.

23Furthermore, Manstield (1963, p. 355) finds that, contrary to the vintage hypothesis, the
process of dieselization was no quicker in firms who had older steam engines on hand prior to
starting dieselization.

24Pprescott and Visscher (1980) elaborate on this point.
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Now if plants are treated as decision units, then the concept of the firm is lost, and the
model's predictions are about plants, not firms. But whether the informational unit is the firm
or the plant, this paper has related the nature of discovery and imitation to some key properties

of the evolution of an industry. This is the paper's positive contribution.
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APPENDIX
A.1  Proof of Theorem 1
The proof employs the following result.
Lemma: Let (i) Z be an arbitrary set; (ii) v 7 and v, be positive measures on a
o-algebra of subsets of Z; and (iii) f] and f2 be positive, real-valued, measurable

functions on Z, bounded by f. If v(2) <V <=, fori=1,2,then

|[£yav, - [£,a0, | <208 - 1+ F llv v,

Proof of Lemma:

J f,dv, - J fdv, = J (f, - f)dv, + J fdv, - J fdv,

For the first term on the right-hand side,

[ ¢, -rpany < | [ 0,-tpav, | 18,101 [ dvy <911, -1,

Turning to the second term

+ -

szd"z ) szd"z = szd("z vy = szd(vz vy - szd("z VY
where (v Ih v2)+ and (v I vz)' are the positive and negative parts of v 77V,
Since J f,d0, - v2)+ and J f,dv, - vz)' are both positive,

Hf]d(vl V) I < max [ Jf]d(vl )b, Jf]d(vl i vz)‘] <Flv,-v, Il

since f] is positive. Thus
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l JdeVj i szdvz ‘ - | J(f] - £)dv, +Jf1d(v] V) ’

+ ‘ Jfld(vl -v) ‘

< | J(f] - fdv,
sV ”fl 'fz ” +f “ Vi=V, ”’
completing the proof of the lemma.

The proof of Theorem 1 follows. For any strategy a, let
§,xv) =D, [I q.6, x, v)V(dG),x],

&, o) =¥, a6 xv),6,x,v] Wdb)
and

£,00v) = (8, (x, ), &, (%, V). |
Let (Z, ||-||) be the space of functions that are also continuous on K X .4 with the topology on
A being weak convergence. Then (&, ||-||) is a complete metric space.

For fixed &, let Vé be the unique fixed point of the operator defined by the right-hand
side of (6), and aé the policy that uniquely attains Vé Existence of equilibrium is equivalent

to existence of & e E such that: V(z, x, v),
£ (xv) = [(Dt[I PRCERNCORINL T ,af(e,x,v),e,x,v]v(de)]. (A.1.1)

Let R(&) be the map from E to E defined by the right hand side of (A.1.1). Then, it
remains to prove the existence of & € Z such that & = R(§). To do so, it is shown that (a) R

preserves continuity of & and (b) R is a contraction mapping, in which case R has an unique
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fixed point. For (b), it suffices to show that ¥(§,£")e E x E, ||R(§) - R(E")|| < A€ - &’|| for
some ye (0,1). (b) is proved first.
Evaluated at (¢,x,v), for any (§,€") € =2,

R© - RE") < sup max{d] (@} - 4¥ WOy, [ (@ - o ias)|

< sup max(d, v, )f(a - oc5 w(de) < max(d,u/a)”aé - ocg,”.
t

Thus , it suffices to show that for some 7€(0, 1), and all (€, '), € &

lob - o) Sm—a—xéyl,;;llé - (A.12)

To demonstrate (A.1.2), let Bé 0 xv)=| V~§

t+1 H.][e”x,sézt(xav)]X(dx,,X). Then

fv ¥ (d67,0°,6,5,)

107X E, () (46" 05,6y’ ) = o 35

t+1

= S, (Bx) - BS, (1) [10,6],0°,6:x,] - (61 " W [10.0'1,0°.6" xVIB, 51<de',x,v>

=B (Bxv)- [ P[10,6], o560 xv1B S (a6’ xv),
t+1 [6 9] t t+1

where the second equality follows from an integration by parts. Thus the first order condition

for maximal oc‘5 is: YV (0,t.x,v),

€ a0’ N = '
&,1- .8, 'B[eje]v o E B, @8, =0. (A.1.3)

~where / is an n X 1 vector with 1 as its first element and zeros elsewhere. (This argument
assumes ¢ € Int A. A Lipschitz condition will first be shown for regions of S X Z where o is
‘interior. Subsequently, the argument is extended to allow o € Bndy A) = ~

Forany s € S, let (¢ ‘P[) and (c ‘I’ ) indicate that ¢ and ¥ are evaluated using a‘s and

oc‘5 respectively, (A.1.3) implies
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’ ’ é ’ é ’ —
€7, &1+ Vol Vol +B[ [ej ]V ot Bi11(d0) - [G{G]V ot 18140 ")] =0.

Since B‘: is measurable as a function of 8,||V a‘PtII < Y has been assumed, and

B <D Q /(I - B) must hold, the Lemma gives

I¥,c,- Vel < & - ¢||+ﬁ[wan35 B | + D25 1w, -7, n}

’
where the supreme is taken over that subset of S on which aé and a€ are both interior. Since
’
it has been assumed that |[V ¢ - V ¢’ 2 cglla® - o° | and [V - V ¥7 <

’
Y, a”aé - a‘: ||, rearrangement gives

oa WaocIY_)_-Q'B] laf - o |5 |l &- &1 + By B - Bl

or

’ & &I
’ - + B> - B
A 71 Ll Lo

caa - Waa DQ/(J-ﬂ)

where the condition in the Theorem guarantees that the denominator of the right-hand side is

positive.

(A.1.4) holds on that subset of S x Z on which o € Int A. To extend inequality (A.1.4)
to those s for which océ or a?l is not in Int A, it is most straightforward to argue
componentwise in o, then fix s and use a triangle inequality on Z.

Taking the supremum over ¢ in (A.1.4) gives

oo BBt - B ) +g- ¢
Conr * Voo DOIUTP)
It remains to provide an expression relating ||B5 _B% | to |I€- &7l
To that end, let {v‘;}g be the sequence of measures implied if all firms select the

arbitrary strategy a. For fixed %, v‘:, evolves according to
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H_]"I‘P( a, 6, x, v)v(d@)

Next, for any T2 ¢, ¥ and 9t, if a firm selects strategy az, while all others use al, the predictive

probability distribution of 8 r is that consistent with the measure H(-, al, az, 9:’ X), which

evolves according to
1 2 g =
Ht({et}’a » a4 ’et’x)—l
1 2 2 aI 1 2
H_  (,a,d,6,% =(£‘I‘T(- a’, 6,x, v )H (d6, a', ", 6, %).

Finally, let 55’(- , xt) be the measure over sequences = consistent with ¥ and

{xt+1:} T=]
conditional on x -
Since océ is feasible given &’, (6) and the definition of B give
185 - BS|| < sup { B f [f né(e a, DH (48, o5, 4,6, %)

a >t

e a mide. o a6 o]) T
[ 7@, @ DH 8, " a6, x)]} P, x),

where nf.(ej, a, %) is the firm's period j return to following strategy @ when others follow océ,
knowledge is Gj, and X is given; n:g is defined analogously.

Since V &, 25<D 0, the Lemma yields

185- B || DO S B | H(- 05, ) - H-08 ] + T 557

>t j>t
_1&,-¢511
<D z"’ H(- aé)H(ag- +0 417 Al5

The definition of H, in conjunction with the Lemma, gives

CdE N-He o5
I 0% ) - H 0, )]

o5 o5
SHH._I(-,ag,-)-H}._I(-,ag S RA L JORUORE JEa]

o & j 5 3
<z||\1'( vE) - (v <y, $vE-v3 ), (A.1.6)
s=t

s=t §
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by the Lipshitz property of ¥. Using the Lemma again,

: £ oL
1% - W < 195 )+ vy I o

implying

5o,

’

& & ¢ . & &
v -v7>||swa;0w;na-a I
J=

Thus, substituting in (A.1.6) gives

’

X
WG 05 - H Ol < vy, $ 3 vi]na o |. (AL7)

s=t I=0

Then

- &
S FH vy -G < b of Ty, TE(E T V]

Jj>t >t s=t =0
s
<l - o v v, z(1+mﬁ“ L__1o- o) ‘_"w 1 (A.13)
v (1- ﬁ)
Substitution in (A.1.5) then gives
S 7. ’ & - &
1B5-B% || sDQ—2% % —|lof-of ||+ 0| Sy
1-y,) (1-B 2
I WaWV 5 g' — - ’ .
<D0 —27 |l of-of ||+ 01l & | (A.19)
A-y,) U-B’ |

Thus, using (A.1.9), since || o - o° || < || & - & ||, (A.1.4) will hold if

lof-af | < e - & |
DQ / -B)

Cace ~ Yoo
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By DOv v, ’ 2

¥ o { O || of-of | + 2 ué-e'u],

Can - Vool L U-v,) (1P TP

or
By,0
) 1l + -

I o -0 || s ———7 ] o I&-¢ 1

oo T oo m [1 + oA’y - ]

Vo~ ¥, )P
Thus referring to A.1.2., it suffices to require that

_ By, v,
I-Bepy - Voo P2 [1 t T }

1-B + By,Q

max(d,y,,) <

This shows that R is a contraction mapping. That R indeed preserves continuity of & is shown

as part of the proof of Lemma 1 (immediately following). I

A2  Proof of Lemma 1

The operator on the space of bounded functions from S to R defined by the right hand
side of (6) preserves monotonicity in 6; thus V is increasing in 6, proving part (ii). Let & be as
defined in (A.1.1). Let £” be the sequence generated by iterating the right hand side of
(A.1.1), beginning with an initial £2. If it can be shown that R preserves continuity of &, then
Theorem 1 proves that " converges strongly to the fixed point of (A.1.1). Now assume that
50 is continuous. Since (8, ||-||) is a complete metric space, the fixed point 6f (A.1.1) will
also be continuous if it can be shown that if £” is continuous, then 5”” is as well.

The latter task is accomplished by using Hildenbrand (1974, p. 51, property (38)). If <

is continuous then v will be Lipschitz in 8 if V" is- - this occurs because ¢ and ¥ are

Lipschitz in 6. Moreover, given that B < 1, it easily follows that the Lipschitz constant on V
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can be established independently of n. Now, on compact sets Lipschitz functions that
converge pointwise also converge uniformly. Therefore, V':+ 1[6’,x’,<b’: (x,vk)] converges

uniformly on 8 as Vv, oV weakly, so long as V" and <I>': are continuous; here "(x,v) = (-,

n
oc‘5 , 0.x,V)W(dB). Hence the n-th iterate of (A.1.1) preserves continuity of V" that is, property

(Dn+]

(38) of Hildenbrand implies that V"+] is continuous. Now if it can be shown that is also

continuous, this will establish that the limit, V, is continuous.
. s . . . e .
To establish this, it is first shown that the policy maximal at the n-th iterate, &> , is

n
continuous. The policy a‘}; will also be continuous if the bracketed portion of the right hand
side of (6) is concave in & when evaluated at equilibrium V. Since -¢ ; is concave in ¢, it

suffices to prove that Vs,

J V10, x, O I (d6,0,05,V) is
9

concave in o.
To that end, let &= ya! + (I-p)o? for ye (0,1) and of, of € A. Let P be the

distribution function implied by ¥. It is enough to show that (suppressing 6, x, v and 9)

Y(y.ol ,0f):
[ve.av 6 2 yiV"(O’,-)d\Pt(G’,al )+ (]-V)E‘[V”(G’,)d"}”t(e’,az,-). *)
@ .

Since V" is increasing in 6, (¥) will hold if ‘T’t(- ,@) exceeds ﬂ"t(= ol )+ -y)‘?t(- o, ) in

the sense of first order stochastic dominance. This holds since ¥ is assumed convex in o.

(]
This establishes that ozg is continuous. Next, the Lipschitz property of ¥ in 8, and hence of
n
V" in 6, and the assumptions on ¢ and ¥ involving the constants €t and Yoo imply that oc5

is Lipschitz in 6, uniformly in 2. This, Hildenbrand's property (38), and (A.1.1) imply that

n+l
CD”J'] is also continuous, as is prl = D({ qé (6,x,V)Vd6), x). Hence V, o, P and ¢ are

continuous since continuity of these objects is preserved at each iterate of (A.1.1); moreover, R

preserves continuity of & ||

A.3  Proof of Lemma 2
Let 5 =[0,0"]. Then



® (x,v)*b) = é [b,0 (6.x.),8.x,v]v (d6)
=] ‘P[b,at(e,x,v),(),x,v]vt(d())
b

<] v (d6)
=v (b). Il

A4  Proof of Theorem 2:

Consider the sequence of distribution functions {F t} corresponding to the sequence of
probability measures {v t}. By Lemma 1, for each 8¢ [0,6] - [0;1]. Define F *: 8 — [0,1]
pointwise by F*(6) =lim F 1(9). Note that F* is increasing with F*(6) < F I(O) for all 8 and .

{00

Since F*(0) = 0 and F*(8) = 1,F* is a distribution function if it is right continuous.
Suppose not, then for some 8 € [0,6] and sequence {Gn}, with an there exists € < 0 such that
. foralln, F*(8) > F *(@) + €. Thus F(6), >F*(0) > F*(0) e. Since F  is right continuous
and ¢ is independent of n, Gnla yields F t(@) > F*(0) + g ie. {F t} does not converge to F*
pointwise, a contradiction. Thus F* is right continuous.

Next, for all 6 ¢ 0, 8" € 0, define v[6,8”]] = F*(6). v can be extended uniquely to a
measure v¥ € 4 (Ash, p. 24).

Finally, since F t(G) - F*(0) pointwise, it does so for all points of continuity of F*,

implying weak convergence of v, to v* (Billingsley, p. 18). i

A.5  Proof of Theorem 3:
By the Monotone Class Theorem (Chung, 1968, p. 20, property (ix)) if

¥(x|v* ¢ #4))>0,3e>0suchthat ¥ x({x|plv* 0(x,v*)] > €}) > 0, where
x€K’

p: Mx K- R_is the Prohorov metric. Since K’ is countable, 3% € K~ such that
x({x| plv¥, &E&,v¥)] > &) > 0. *)
Forany x € K and § ¢ R, define N6(x) ={x" € K| ||x” - x|| < 6}. The proof uses the

following lemma.

Lemma A.5.1 If (*) holds, 38 > 0 such that x({x | p[v*, d(xv*)] > €2, x € NS(R)}) > 0.
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Proof of Lemma: For any 6 € R . define
Bg= (x| plv*, 0&v¥)] > 8}. *)
(*) yields x(B o > 0.
Next, define A 5= {x|plv*, &(x,v*) > &2, xe N 5(,%)} and AO = téA 5 observe that 6 - 0

implies AgTA . If xA o > 0, the Monotone Class Theorem gives ¥(A 5 > 0, some §>0,
completing the argument. To show x(A o > 0, it suffices to prove B C A, since (B Q>0
Letxe B e SO that p[v*, ®(%, v¥)] > €. Note that (i) p is continuous in the topology of
weak convergence; and (ii) ¢ is Lipschitz in first argument, and therefore continuous in both
the topology induced by the sup norm and the weak convergence topology. Thus 38> 0 such
that
xeN 8()2) = plv*, d(x,v¥)] > €/2;
that is, X € Ay Since Agc A, x€ Ay Thus B cA) I

Observe that the set of sequences x such that X, € N 3()2) infinitely often has positive
measure given assumption (ii), (*) and Lemma A.5.1.

To proceed, for any x (with tth component x l) and associated (v t} , the triangle
inequality gives

p[vf",(I)(x[,v*)]sp(v*,v1)+p[vt,d)(xt,vl)]+p[<b(xt,vt),®(xt,v*)]., (**)
Let T’ denote any infinite subset of T.

Lemma A52.: Vx" e KandneR_,,35eR_, such that x{x|3T’ suchtharte T =

++
both p[v*, (I)(xt,v*)] <mnand x € N.5(x’)} =],

Proof of Lemma: For each x’ € K, condition (ii) of the Theorem guarantees that

x({X|3T’ such thatte T" = X, € Na(x')} = ]. For any X, denote the associated T* by 7.
X



46

Next, choose 1, fix x and consider (**). By Theorem 2, p(v*,vt) -+ 0. Since {v t} is,
therefore, a Cauchy sequence, and Vi = d)(xt,vt), plv P d(x oV r)] -0 as well. Let TTI be the
infinite set of dates for which the first two terms on the right hand side of (**) sum to less
than 1/2.

Focusing on the third term on the right hand side of (**), since v, v¥ and ¢ is

continuous, for £ € T’ and ¢ sufficiently large, p[d)(xt, v[), b(x o vl < n/2.
x

Altogether, let T’ be the infinite subset of T’ for which the right hand side of (**) is
X

less than 7. Some such T’ exists for all x off a set of measure 0 in K.

The proof concludes by selecting ¥ =x", < g2 and 6 < 8. Then Lemma A.5.1 and

A.5.2 are contradictory. I

A.6  Proof of Lemma 3
Let A4 ={ve H|Vx. Y6 e supp v, Iq such that a(6.x,v) = Qq}.
1) M c M. Letve A ,then V(x,b), d(x,v)(b) = v(b), implying v e
ii) M c A . First, it can be shown that if for some x, v and open interval I c 8,

inf“a_q(@,x,v)” > 0 holds, then Y0 € [ there exists € > 0 such that
el

inf  W[(6,8], B x,v), 6" ,v] > 0.
0’e(6-£.6]

Now, let v e . The measure space (8, Zv) can be decomposed into an atomless part
and countable union of atoms; see Hildenbrand (p. 45). Let {8} be an atom and suppose
v ¢ A ; that is, for some x, o(8,x,v) # Qq. Then

S)(OF) = v((O)PI6,B,a(6x%),65]

+ [ P[(6,8],(6" x,v),0.x,v[v(d6")
[0,6)

+ | P[(8,6],(6 x,v),0’ x,v]v(d6")
(CN) ~

> v({8)YPI(8,86], a(B.x,v), 6,v] + v[(6,6]]
> v[(6,61],
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since W[(6,0], a(O,x,v),0x,v] > 0 is necessary for a(6,x,v) # 0_. Thus, v ¢ 4, a contradiction.
q

Therefore ve A .

Suppose instead that 8 € supp v is not an atom and v ¢ 4'; again for some x, o(6.x,v) #0_.
q

Continuity of ¢ in its first argument, in conjunction with 8 € supp v, implies there is an interval J,

with v(I) > 0, 8 ¢ I and (6’ x,v) # O_ for all 8’ € I. By the above, there is £ > 0 such that
q

inf W[(6,6],0(6’ x,v),0” x,v] > 0. Thus
6’ e(6-£.6]

OCx,v)[(8,61] = [ WP[(8,6],0(6" x,v),0" x,v]v(d6")
[0,6-€]

| WI6,81,0(6" x),8" xvIv(dE’) + v[(B.8]]
(6'8?6]

>v[(8-€,6]] inf P[(6,8],0(8’ x,),0" x,v]+v[(6,6]] > v[(6,6]].
67e(6-¢,6]

Thus v ¢ ¥, again a contradiction. Altogether,ve 4. I

A.7  Proof of Theorem 4

First, using Lemma 3, note that condition (iv) implies Vo ¢ M.

a) For some ¢t € T\{0}, let V€ . 1f it can be shown that Vg € M 1t will then follow
inductively that Vg€ A a contradiction.

To demonstrate that v, € M implies Ve € ¢, observe that restriction (i) on ¥ gives supp
Ve
the Theorem)

<96 + B INCER T

Csupp v, Let 6 € supp v e By Lemma 3, Vx, a(6,x,v t,) =0 7 implying (using (i) and (ii) of

1 ’r L7 ’ ’
= -C (a_q,eyx) + ﬁ I V(e X ’vt'_*_])\y(de ’a’eyxavt’_l_])X(dx ,X)-

Since (i) V=V (by hypothesis); (ii) v REAY (Lemma 2); (iii) ¥(-,,0,x,v t,) >

t’-1

Y(- ,a,G,x,vt,_ ]); and (iv) V is nondecreasing in 6, it follows that Vx,

-c'(Q 02 + B | V(Bx" v, )x(dx’ )
K

tl

>-cl(a OO+ B [ V(0 x" v, (O 0B, _)x(dx” ).

Given uniqueness of «, this inequality implies a(e,x,vt,_ P= Qq. Since this holds V6 € supp v, and
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thus V 8 € supp v T Lemma 3 and condition (i) of the Theorem give Vi€ M

b) First, except for a set of measure 0 in K’ , v¥ € Bd #. To see this observe that since o is
Lipschitz in v, it is also continuous in v in the topology induced by the sup norm on 4 Since
convergence in sup norm implies weak convergence, ¢ is continuous in v under weak convergence.
Lemma 3 establishes the equi?alence of a(B.x,v) = Qq and v e *. Thus, since a is continuous,every
convergent sequence of elements in #* has o = (q,Qq) as its limit; i.e the limit is #*, Thus £ is
closed. Next, if Vo ¢ M, except for a set of measure O in K , v¥ ¢ Int 4. This follows because
every open ball containing v* contains v, ¢ A for t sufficiently large. Altogether, * being closed,
v¥ ¢ ¢ and v* ¢ Int yield v* € Bd A*.

Second, since v* € * almost surely, Lemma 3 and the differentiability assumed for ¢ and ¥
imply: almost surely, Vx, V0 e supp v¥,
Y, @60+ B I VO Xy ¥ (d67 01" v’ ) < 0. *)

-q Kx® -q

Next, almost surely, 30 € supp v* and x such that some component of (*) holds as an equality.
To see this, suppose that each component of (*) held as a strict inequality for all 6 € supp v* and all
x. By the assumed continuity of V of and V a‘I’, there is an open ball B ¢ #* containing v* such that
Y0 e supp v*, Vx, Vv e B, a(Bx,v) =0 ” But then v* ¢ Bd #*. Therefore, 3 0 € supp v* and x such
that some component of the condition holds as an equality.

(i) follows immediately. Unless v¥({8}) = 1, some component of (*) does not equal 0 for any
8 € supp v* or x. Similarly, if v¥({8}) = I and the conditions of (ii) hold, (*) cannot hold as an
equality for 8 = 8 = supp v*. Finally, in regard to (iii), (i) gives v*({6)} < I. Suppose, however, 38
< Band v*({8)) = 1. Since vy M 3b c supp v, such that 8 € b implies a_q(@,xo,vo) #0. Leth’ =
(8,8]. Given 9,v*(b’) = 0 must hold. But

v¥(b’) > i P’ ,0,0,X,7,)v,,(d6)

>0

given the condition in part (iii), a contradiction. Thus supp v* must contain at least two points. I
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A.8  Proof of Theorem 5
For fixed (%, Vor x) and associated {v t) and v*, let f t(G) = f[oc(e,x,vr), 6.x,v z] and f*(e) =
f[a(O,x,v*), 6,x,v*] Fix 6 ¢ 8 and let {Ot} be a sequence such that 6 = 6. Since f and « are

continuous and v, - v*, ft(et) -+ f(e). Since this is for any 6 € 8, Theorem 5.5 of Billingsley gives that

£ 3
for each x € K| v{(-,x)-»vf (- x). I

A9  Proof of Theorem 6

Assume P[x, ®(x,v)] > P(x,v). Since under the stated conditions ¢g(8,x,v) solves P(x,v) - dclog <
0, with equality for ¢ > 0, and & ¢/dqo6 £ 0, it follows that V 6, ¢ is nondecreasing in 8 and
ql6x, (x,v)] 2 q(6x,v). Thus,

({) q(8x,v)v(d) < é q[6,x,0(x,)Iv(d6) < ({) qL6.x.0(x,v)]0(x,v)(dh),
where the first inequality follows from the above, and the second from the monotonicity of ¢ in 8 and
Lemma 2. Since D is nonincreasing in its first argument P[x,0(x,v)] £ P(x,v) is implied, a

contradiction. The corollary is immediate, again since D is nonincreasing in its first argument. ||

A.10 Proof of Theorem 7
By the conditions imposed in Theorem 6, along with 0 (0) =0, q(6.x,v) is positive and

increasing in 6 and solves
~0", | 20 _ *
P(x,v) - ¢’ (@) ¢°(6x) = 0. *)

From property (i) of W, inf supp v .= inf supp Vy = 6. Thus Y(x,v), inf g(0.x,v) = q(8.x.v);
g 9 A%

moreover g(6,x5,v) = g(8,x,v)/q(8.x.v).

From (¥),

r-1
q(6.x,v) = [P(x,v)/Z‘O(G,X)]

,-1
= Pad 3 e

for some &, by homogeneity. Thus
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,-1
IR
-] *

& e

q6x.v) =

That is, fixing x, g(-) is a fixed, positive, nondecreasing function of 8; in particular, q(+) does not
vary with v.

Now, for any g € R_and fixed x, let B=inf {0 | q(6x,v) >g). Observe that 8 is also
independent of v. Vb C[0,0], let va(b; xv)=v{0e @ | §6,x,v)e b} Then

o~

vl [[O,q]; x, vt] = | q6xy, v, @0
[0,6]

= | 40xvv,,,d9
[0,6]

> | q(6xv)v(db)
[0,6]

=¥ |10, 5] | [

A.11 Proof of Theorem 8
Let 6 < 6' and V b e 2 write ¥/[b  (8,8], -] as P g(b,). The maximality of o implies

c'ler. q(91 xw)x - clle 4(90 X,V)X]

> (P10’ xv).x] - POl )

x B {[‘Pl([O,G{) 1xv) - I} [ VI X 0w xdx’ )
K

+ [ VIO x 0] ‘I’Iea(de’,x,v) xdx’ ,x)}o ™
kx(6°,8]

and
cl[a_q(GI )l - ¢l q(OO X,V)x]
< {‘Po[a(el X)) x] - Yoo xv) 11}

x B {[\PJ [0.6"1.x.v) - 1] [ Vo X’ G)Ixdx’ x)
K
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+ [ vie’ x",0(xv)] ‘Flel(de',x,v) x(dx’,x)]; (%)
kx(6',8]
Combining (*) and (**), noting ¥ ((6°,6'1,-) = 0, gives

¢’

(P20 )] - ¥oLo 6 x ) x1)

x B {[‘I”([o,e] 1) - 1] If( VI8! x BCe,v)]x(dx’ x)

i [\P1<[0,90],x,v> i 1] II{ V& x 0Gem)x(dx’ %)

V16! x’ 0] ¥ (@6’ xv) - P (de’,x,V)]x(dX’,X)] 2 0.

* Ki(eo,é] o’ ¢

Since V (x,v), V(GI V) 2 V(GO x,Vv), and V(bx,v), ‘P]

¢°

1

o'

(bx,v) 2¥" (b,x,v), the second factor in braces

is negative. Therefore
P60 )21 < WL ) xl. )
Now, for any He®
wA1(6,81,6 101
= ‘I"[(Oo +0,8] n 8, a(OO X)), ¢ xv]
= Y6 ), 11 ¥ [(67+B.811]

¢

> 9006 xv) ] 11121

1

o'
= w21(6,81,6" xv1.

[(6°+0,8] x.v]

> a6 xv) a1 ¥ [(67+6,81,x.1,

The penultimate in equality follows from (***) and V (b,x,v),‘}‘leo(b,x,v) 2 ‘I’;I (b,x,v); the last follows

from (67+8,8] c (67+0,8]. Thus, ¥ B¢ 8, ¥2[(0,81,6°xv] < ¥21[0,81,6" xv].
The corollary sets 6=0. | |

A.12 Proof of Theorem 9

Proceeding as in the proof of Theorem 7, and removing conditioning on X

e growth given

0’, Ox and v is
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o o
ZJ Plx’, o(x, 1|

a?(el) Plx, v]

£7(0)

[ [q[e', %', 0(x, 1/ 416, x, v]] 2(dx’ %) =
K

ég (x) 62
A (dx’, x)

0 s
¢, (x7)

for some 5] > 0 and 62 > 0, in which case the dependence of growth on 6 and 6’ is captured by the
first factor on the fight hand side. It thus suffices to show that the distribution of &7 (6) / £%(6") is

stochastically declining in 6. For any & 2 I, the probability that &(1)(9) /e 1(9') < € in equal to the

1 -]
probability that 6” 2 6‘(1) [(‘:? 0/ &], or ‘I‘o[x(e, X, V), X, V] ! [(E‘(]) [&?(9) / €1, 81, x, v]. The proof of

Theorem 8 demonstrates that the first factor is declining in 8. The second factor is also declining in 6

0—1

since the composition of ¢ 1

and 2‘? is increasing.
A.13 Proof of Theorem 10
Let 6 < 6" and Vb ¢ 3 write ¥/[b 1 (6,8],] as Pi(-). Then, since ¥ gi(6",6") =0,
d(eo,x,vt,vH_]) ) d(91,x,vt,vt+1)
=v (10,6 - v (10.6°D + v, (0. DLW, (& xv).6 xv)
-y, (0.6D%(10,6), a6 xv) ,0xv)

+ I v 106D [‘Po[a(eo ,x,v[),x,vl]‘Pleo(dB’,x,vt)
©°.8)
- ‘PO[OC(OI SADN 2 vt]‘PéI(dG',x,vt)] )

By Theorem 8, the final term on the right hand side is ndnnegative. Also

w([0,6'1,-,6",-) > ¥(0,6"1,-,6°,-). Thus

d(GO,x,vt,vH]) - d(,GI,xI,v )

Y
£+l

> v (6.0 - (0,61, o6 xv ). xv) v, (6D
=v (@68 - ¥(10,6), a(@ ). xv)
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x | w6, (@1, )05,V Iv (d6)

[0,6"
20

by the condition in the Theorem. I

A.14 Proof of Theorem 11
Fixing ¥, any strategy a, followed by all firms, is equivalent to the function @: T x 8 x K'-A
defined pointwise by a)t(é),)?) = at(G,xt,vt) where x, is the tth element in X, v, is given, and

V.= J;‘P[- a(6,x,v),6 ,v ]V (db); in particular, let o Tx8xK” - A be equivalent to the

equilibrium strategy o.. In this section, "strategy” will refer to functions from T x 8 X K®-A. To
emphasize the dependence of {v t} on o and X, {vt} will be written {Vt(co,i)}.

Writing qt(e,i) for the first component of wt(Gj), and Qt(a),?c) = l qt(ejc')v t(a),k')(de), period ¢

surplus given @ and x is
Q (x, )
S (@) = JD(z,xt)dz ) i c[aXB3),0 1V (@3)(d6). (A1L1)
0
Recalling that (- ,xO) is the probability measure on K" consistent with ¥, given X the social planner's

expected surplus-—W(a) in the text--is equivalent to

W(w) EJ DS B'S (@D)x(d%, x,). (A.11.2)

Fix t’, and let strategy @ differ from @’ only at ¢, and then only in that w:q > a)fq. For any
g ¢ (0,1) the strategy e’ + (I -e)a’ is feasible.
The following applies Theorem 1 of Luenberger (1969,p. 178). Assuming, temporarily, that

the derivative exists,

d Wiew' + (-90f)| =3 BngE'£=0Sk[8m’ + (1-9)0 Fx(dix). (A.11.3)

e=0 k=t’
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Now

B, (ew’ + (1-900, 7] l ) J V_clot(65).6:,/1' [ /(B3) -

wi,(ej)]vt,(wf,,i)(de). (A.11.4)

Fork>1t’,

gtz,k[eco’ + (-8, 7] le:O = D0, (@" ), xk]géj COF)V [ew” + (1-90, F1(d6)

-4 | clef0), 8. x)v e + U-00f F1(a0),

= gé J”k(“’e""e’ej)"k[ew' + (I-9)’, X1(d6), (A.11.5)

and, in general, for any k0! ,0,0%),
7, (0] ,0%,6%) = 0,(],D)g2(6,%) - c[a’(6,%),6x
k IR T *k k k ? k]

is defined as the net revenue earned at £ by a firm following strategy @’ when all others select .

Substituting (A.11.4) and (A.11.5) in (A.11.3)

g-éW[ew’ + (1-8)f]

e=0

H i ' J Vo c[e’ (608, [ ,(8%) - coj,(ejc')] vt,(we,i)de

+ kZ ﬁl‘ggj ﬂk(a)e,me,ej)vk[eco’ + (]-e)coe,}'](de)}x(di, x,). (A.11.6).
>t

Next, for any 7 > ¢, define H 1_(- . a)], a)z, Gt, X) to be the probability measure on @ at T given 6:
and x, should a firm select co2 while all others utilise a)I. Since n
V(@3 = [ H(.0000v,@5d0), | (ALLT)

the maximum value of (4) that a firm may attain in equilibrium, given 8 ,is

f/(eo) Emax{ T B J nt(we,a),e,})H (de,we,w,eo,f)ﬁ'g(df,xo)}. (A.11.8)
o |=0 ¢

Since af attains V(GO) for each @, it also attains JV(GO)VO(we,})(dGO). Thus using conditions (i) and
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(ii) of the Theorem, the Gateaux derivative in the direction @’ must be zero:
0= %ié-{tgolf J nt[coe,sa)’ + (1-e)wé,93]Ht[d9,a)e,eco’ + (I-)a’, Goj]vo(we,’f)(dea)i(d)?,xa)}.
Using (A.11.7),
=B [ 7,010 0303, 1 [0, (65) - 0 (0D, (& D(d®)
+ 3 d‘géj 7 (0 OT)H,[d0,0 e’ + (1-€0,0,F1V (0 (6T, (A.11.9)

Since (A.11.9) equals 0, it may be subtracted from the right hand side of (A.11.6) without altering its

value. Thus

il

4 Wlew' + (1-6)a] 1 B[ %l| oot 0Bt + 00 F1a0)

e=0 k>t’

] Jnk[af,af,ej]Hk[de,af,sw' ; (1-e)w",eo,iz]vo(we,i‘)(deo)}x(di,xo). (A.11.10)
Differentiation of (A.11.7) gives
d ’ g -
TE vt[s o +(l-ew, x] l£=0
=I {CHZE H[-0 +( -&)w,0f,0x] + gEHz[' ,af e’ +(I -e)coe,ejc']} vo(mej)(de).
Thus, since ﬂk(we,we,ej) is independent of 90, (A.11.10) becomes

gg Wle @’ + (I-€)a’]

=3 Jgé U irk(a)e,we,GE)Hk[dG,ew’+(1-£)we,we,905]vo(a)e,?c)(dGO)} x(di,xo). (A.11.12)

k>t’
-1 Bkjgg {mg)x Jnk(we,w,e,i)Hk[dG,eco'+(1-8)we,a),905c]VO(coe,E)(dGO)} (). (A1113)

The second equality uses the envelope theorem and the interiority of o’ implied by condition (i).
Differentiability of W with respect to € at € = 0 follows if it can be shown that J n:de i in (A.11.13)
is, (a) differentiable for each %, and (b) bounded uniformly in k. Now (b) follows directly from
(A.1.7); (a) follows because condition (iv) of the theorem, along with the def_inition of Hz preceeding

(A.1.5), implies that H ; is differentiable if H s is. Hence dW/de exists at £ = 0.
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Next, define V& Tx 8 x K x K~ — R pointwise by

VE(Ox) = max {ﬂt(a)e,a),eﬁc') + ﬁJ VE (O X F) ‘I‘[de’,w,e,x,vt[ew’ +(1-8) af,?c]] x(x’,x)},

and note that both V[ew’ + (I-8)@®x] » (&’X) and *¥[-,m,0.x,View” + (I-9)a°X]] +
Y- ,w,G,x,v(a)e,Z)]; thus V¥ is strictly increasing in g, since P(x,v) > D > 0. VEis the expected
‘discounted value of profits, when profits are given by n(o°,w,0,%), but learning is instead governed by

¥(.,0,0xvVien + (1-)w’X]). Substitution in (A.11.12) gives

gg Wiew’ + (1-8)0f]

_pt’+1[d '
€=O—Bt JZEV:'H(G X’ X)

H, [dfe0” + (1-9)a”,0%,0,%] v (0 X)(d6)2(d%), (A.11.14)
Ht,+1 is independent of & i.e. learning at ¢’ is a consequence of v, and the firm's assumed choice
a)i,. The remaining step in the proof yields a strictly positive lower bound for the derivative on the
right hand side of (A.11.14).
Since V&is increasing in g, and feasible actions are independent of &,
VE, 01D - VO (6" 2 B [ V0, 05" B 1¥e’ ) - ¥e”, ) e’ ),
where V0 = VE for e=0, W&(-) = ¥ [ @ O xVew” + (J-e)afjc‘]] and ¥O(-) = ¥ [ ,we,e,x,v(af,i)].

Using condition (iii) of the Theorem,

tim £ [ V9, (0 x DI¥EE0’, ) - ¥’ ) 2’ )
&40

exists and is strictly positive. Thus, from (A.11.14), since gE W exists, it is also strictly positive.
The corollary is proved by first checking that if ‘¥ is independent of v, dW/de = 0 at &=0,

&
where the variation allows arbitrary @. Next, it is verified that if some @ yields dW/de = 0, the

* *
associated strategy is an equilibrium, say a@ . Finally, uniqueness of equilibrium gives a = . I

A.15 Proof of Theorem 12
Since 7 has density, say 7, on (6,0], the separability of production from information gathering

implies:
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V(0xv), (1(6.%,v), p(Bx,v)) = argmax - (1,11,%)
mnu

+8) {V[e,x',<b<x,v>1[1-n+n~<e,ex>][1-u+uM(e,x,v>]

. [ vte',x',d><x,v>]r'<e',n,u,e;x,wde'}x(dx',x).
©.,8]

Total differentiation of the first order conditions associated with the maximization gives (after
simplification):

P)
g MOxV) = ap,, a,9- 3y 9ng
and

P
gg HOXY) = 8y, @ng=dpy Byg
where

%

c
n

[
a
Y

apg =B I T 10" SIIN(E.80-11[1-4 + KMOX V2’ 5) SO,
K

]
A
=]

“m

[ ]
v

i

I% o
~

IA

0,

5]
)

a49=B | T 162" 0w IM(6xv)-1][1-n + IN(6,6]2(ex" ) <O,
K

and a_ , is the expression in restriction (ii) of the Theorem, whose conclusion is

nu
immediate.



A.16 Evolutions in the 3-State Examples

a) Equilibrium

t

WO AR

VO
t
1.000
0.981
0.964
0.948
0.933
0.918
0.903
0.887
0.870
0.850
0.828
0.803
0.773
0.737
0.694
0.648
0.599
0.550
0.498
0.445
0.395
0.347
0.302
0.258
0.215
0.180
0.150
0.124
0.103
0.086
0.072
0.060
0.051
0.043
0.036
0.031
0.026
0.022
0.019
0.016
0.014

0.012

0.010
0.009
0.008
0.007
0.006

0.000
0.016
0.030
0.042
0.054
0.066
0.077
0.090
0.103
0.117
0.134
0.153
0.175
0.202
0.234
0.267
0.302
0.337
0.371
0.405
0.436
0.463
0.485
0.502
0.512
0.514
0.509
0.499
0.484
0.465
0.443
0.420
0.395
0.370
0.345
0.320
0.295
0.272
0.250
0.229
0.209
0.190
0.172
0.156
0.141
0.128
0.115

0.571
0.530
0.497
0.470
0.446
0.424
0.404
0.384
0.364
0.345
0.325
0.304
0.283
0.261
0.239
0.219
0.201
0.184
0.170
0.156
0.145
0.135
0.126
0.118
0.110
0.103
0.097
0.092
0.088
0.084
0.080
0.077
0.074
0.072
0.070
0.068
0.066
0.065
0.063
0.062
0.061
0.060
0.059
0.058
0.058
0.057
0.056
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nyv)

0.323
0.280
0.246
0.217
0.191
0.168
0.146
0.125
0.105
0.086
0.069
0.053
0.042
0.039
0.037
0.030
0.022
0.017
0.015
0.014
0.013
0.012
0.010

0.007

0.007
0.006
0.006
0.005
0.004
0.004
0.004
0.003
0.003
0.003
0.003
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002

u(6,,v)

0.000
0.020
0.037
0.052
0.066
0.080
0.093
0.107
0.122
0.138
0.155
0.174
0.195
0.209
0.210
0.208
0.204
0.205
0.212
0.201
0.197
0.201
0.209
0.219
0.212
0.204
0.198
0.193
0.186
0.180
0.174
0.170
0.165
0.161
0.158
0.155
0.152
0.149
0.147
0.145
0.144
0.143
0.141
0.140
0.139
0.138
0.138

0.439
0.381
0.335
0.296
0.262
0.231
0.203
0.175
0.149
0.125
0.103
0.084
0.072
0.069
0.067
0.056
0.043
0.035
0.033
0.032

- .0.030
0.027

0.024
0.021
0.020
0.018
0.016
0.014
0.013
0.011
0.010
0.009
0.008
0.008
0.007
0.006
0.006
0.005
0.005
0.005
0.005
0.005
0.004
0.004
0.004
0.004
0.004

mo,,v)

0.000
0.015
0.026
0.035
0.043
0.049
0.055
0.059
0.063
0.065
0.065
0.063
0.055
0.046
0.051
0.070
0.088
0.097
0.096
0.088
0.092
0.106
0.128
0.153
0.149
0.145
0.144
0.144
0.140
0.137
0.134
0.132
0.129
0.127
0.125
0.124
0.122
0.121
0.119
0.118
0.118
0.117
0.116
0.115
0.115
0.114
0.114



a) Equilibrium (cont'd.)

OO NS LI

0

Vi
0.005
0.004
0.004
0.003
0.003
0.002
0.002
0.002
0.002
0.001
0.001
0.001
0.001

Optimum

1.000
0.966
0.939
0.915
0.891
0.866
0.840
0.810
0.777
0.737
0.689
0.633
0.568
0.498
0.427
0.361
0.299
0.246
0.199
0.157
0.120
0.089
0.065
0.046
0.032
0.022
0.015
0.010

0.104
0.093
0.084
0.075
0.067
0.060
0.054
0.048
0.043
0.039
0.035
0.031
0.028

0.000
0.028
0.047
0.061
0.073
0.083
0.092
0.098
0.101
0.098
0.087
0.070
0.053
0.041
0.038
0.033
0.029
0.024
0.020
0.017
0.014
0.011
0.008
0.006
0.005
0.004
0.003
0.002

0.056
0.056
0.055
0.055
0.054
0.054
0.054
0.054
0.054
0.053
0.053
0.053
0.053

0.571
0.502
0.448
0.402
0.363
0.327
0.293
0.260
0.228
0.195
0.164
0.137
0.116
0.100
0.089
0.080
0.073
0.068
0.064
0.061
0.059
0.057
0.056
0.054
0.054
0.053
0.053
0.053
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n6yv)

0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002

n(6v)

0.567
0.436
0.355
0.293
0.242
0.197
0.156
0.118
0.079
0.044
0.031
0.017
0.007
0.000
0.000
0.000
0.001
0.001
0.001
0.002
0.002
0.003
0.003
0.003
0.003
0.003
0.004
0.004

u(6y,v)

0.137
0.136
0.136
0.135
0.135
0.134
0.134
0.134
0.133
0.133
0.133
0.133
0.132

K(6,v)

0.000
0.046
0.076
0.100
0.120
0.139
0.158
0.180
0.207
0.238
0.258
0.276
0.285
0.282
0.274
0.265
0.257
0.250
0.266
0.280
0.291
0.301
0.308
0.314
0.318
0.321
0.323
0.324

(Gl,vt)

0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.003
0.003
0.003
0.003

(Ol,vt)

3.817
2.943
2.394
1.976
1.627
1.320
1.040
0.774
0.502
0.269
0.205
0.137
0.076
0.030
0.024
0.019
0.014
0.011
0.010
0.009
0.009
0.008
0.008
0.007
0.007
0.007
0.007
0.007

u(,,v)

0.113
0.113
0.113
0.112
0.112
0.112
0.111
0.111
0.111
0.111
0.111
0.111
0.111

uo,,v)

0.000
0.376
0.618
0.805
0.966
1.115
1.265
1.434
1.654
1.821
1.658
1.418
1.025
0.493
0.439
0.387
0.341
0.304
0.296
0.288
0.281
0.275
0.271
0.267
0.265
0.263
0.261
0.261



b) Optimum (cont'd.)

VO
t

0.007
0.005
0.003
0.002
0.001
0.001
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.002
0.001
0.001

0.000
0.000

0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
0.052
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(60, vt)

0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004
0.004

V)

0.325
0.326
0.326
0.326
0.326
0.326
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327
0.327

(6],v[)

0.007

0.006

0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.006

uo,,v)

0.260
0.260
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
0.259
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