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1.  Introduction

Let ¢ be a family of real valued functions on a metric space S and ¥ a family of
probability measures on its Borel o-field. The "integration to the limit" problem
(Billingsley (1968, p 31) is the following: suppose that a sequence f of elements in ¢
(respectively a sequence 4 of elements in ¥) "converges" to an element fin ¢
(respectively p in ¥); under what conditions will jfndun converge to ffdy ? It is
known that a positive answer to this question can be obtained if, informally speaking,
either f converges to f "strongly" (uniformly over S) or if un(A) converges to u(A) for
every Borel set A. A more general result is available in Billingsley (1968) [see
Theorem 3 below]. In this paper we study this problem as well as the problem of
establishing a variation of Fatou’s lemma (limsupn_’m /i nd’l’n < [fdp in the above
framework) when convergence is "weak". Our motivation comes from applications to
"parametric variation" problems of dynamic programming and stochastic optimization
models of mathematical economics. In such applications, S can usually be taken to be
a separable normed linear space endowed with a partial order and the relevant
functions are monotone and uniformly bounded. In Section 2 we collect the basic
definitions. In Section 3 we establish a variation of Fatou’s lemma for such monotone
functions (Theorem 1). In Section 4 we prove a theorem on integration to the limit
(Theorem 4). Examples indicating the critical role of the monotonicity assumptions are
also given. In Section 5 we briefly outline possible applications of our results to the

dynamic programming framework.

2.  Notation and Basic Definitions
Let S be a convex subset of a normed linear space with norm denoted ||-||. Let
> be a transitive, antisymmetric, irreflexive relation on S. The following

assumptions on the partially ordered space (S,>) are maintained throughout:

(A1) s » s implies that there are neighborhoods U and V (of s’ and s respectively)



such that for all x € U, y € V one has x + y.
(A2) For all s € S, (i) P(s) = {s’€S: s’»s} is nonempty, (ii) P(s) = {s’€S: s»s’} is
nonempty.

(A3) For all 5,8 € S, s” » s implies 8’ » As’ + (1 — A)s » s, if A € (0,1).

Example 1: S = R™ with any of the equivalent norms on this space. Let > be
the partial order defined as s’ » 5 & s > 8, i =1,.,m. Clearly we

could also take S to be any nonempty open convex set in R™.

Example 2: S = C([0,1]), the space of continuous real-valued functions on

[0,1], under the sup-norm. Define f » g & f(x) > g(x), for all x € [0,1].

Again any nonempty open convex subset of C([0,1]) also suffices.
It is straightforward to check that each example satisfies (A1) — (A3).

All functions on S that we consider are real-valued. A function f is
non—decreasing if s* > s implies f(s’) > {(s). f is upper semi—continuous at s if s - s

implies that Tim f(s ) < 1(s). f is upper semi—continuous on S if it is upper
- mw

semi—continuous at each s € S. f is lower semi—continuous at s (on S) if —f is upper
semi—continuous at s (on S). Finally, f is said to be continuous on S if it is both
upper and lower semi—continuous on S.

Consider a sequence of functions (f) y, and a candidate "limit" function £
There are two senses in which we examine }unctional convergence. We say that f
converges weakly to f if f (s) ~ £(s) at all continuity points of £t Alternatively, we say
f  converges pointwise to f if f (s) - 1(s) at all s € S.

We say that a family of functions (f ,f) is uniformly bounded above by K < o if
f(s) < K, 1(s) < K, for all s € 5, n20. (f,,f) is uniformly bounded below
if (- ,~f) is uniformly bounded above by some K < w. (f,f) is uniformly  bounded

if it is uniformly bounded above and below.



Let (un,u) be a family of probability measures (on the Borel o-field of S). Then
p, is said to converge weakly to u (denoted p = p) if Iim p (C) < w(C) for all closed

n-w

sets C. We say that a probability measure u’ stochastically dominates a probability
measure g if J fdp’ > J fdy for all bounded non—decreasing functions f (for a discussion
see Heyman—Sobel (1982)).

3. A Variation of Fatou’s Lemma

In this section we prove the following variation of Fatou’s lemma:

THEOREM 1:  Let (fn) 10 be a family of non—decreasing, upper semi—continuous
functions that are uniformly bounded above. Suppose that fn converges weakly to a
non—decreasing upper semi—continuous function f. Let (”n)n>0 be a sequence of
probability measures that converge weakly to a probability met;sure . Then,

Hﬁjfndpn < deﬂ (1)

n-w

ProoF: Theorem 1 is proved by way of lemmas 1-5.
Lemma 1. The set of continuity points of f is dense in S.

Pf. Suppose per absurdum that there is s € S and an e-neighborhood of s, Ne(s), such
that every point in N (s) is a point of discontinuity of f. By (A2(i)) there is s” € S
such that s » s. Further, by (A3), s(A) » s where s(A) = As + (1 — A)s’, A € [0,1).
Without loss of generality suppose that s()) € Ne(s), for all A € [0,1]. We now prove
that on the "ray" R = {s()): A € [0,1]} there can be at most a countable number of
discontinuity points. This would of course contradict the maintained hypothesis that

each of the uncountable elements of R is a point of discontinuity of {.

Claim (i). Let s(A\) € R, A < 1, be a discontinuity point of f Then for any



sequence A | A, it must be the case that lim f(s(2,)) < 1(s(A)).

n-w

Pf  Since s(A) is a discontinuity point of f there is a sequence z - s(}) such that

lim f(z ) < f(s(})). Note that (z;) need not be a sequence along the ray R, ie. z

- wm

¢ R in general. However by (Al), z » s (without loss of generality) for all n. By

i}

(Al) again z » s(A) for all X sufficiently "close" to 1. In fact, define
A= inf {Ar oz > s(A)} (2)

and let A = A; + -11; (which is in [0,1) for "large" n). Clearly the definition (2) can
be modified straightforwardly to make )‘1’1 a monotonically decreasing function of n. In
fact, by (A3), z > s(A) for all A > Ay and of course A, is a monotonically decreasing
function of n. Finally by (A1) and (A3) it directly follows that A | A, as n - o.
Hence, along this sequence f(s(A)) < f(z;) and s(A n) ~ 8(3). The claim follows for
this specification of the sequence An. More generally consider any sequence A LA
For every m there is n(m) such that Am 2 )‘n(m) and )‘n( m) is an element of the
sequence A . In particular, s(/\n( m)) » s(Ay,) and hence f(s(A n(m)) > f(s(A,)- The

claim follows now for this general sequence. »
Claim (ii). R has at most a countable set of discontinuity points.

Pf. By claim (i), discontinuities are generated through sequences which lie entirely on
the completely ordered single dimensional set R. However f is monotone on this set.

The claim immediately follows. In turn Lemma 1 is completely proved. -

Without loss of generality, set the uniform upper bound K to zero. Note from

lemma 1 that this upper bound also applies to f.

Lemma 2 [Bourbaki (1966, p. 155)]. There is a sequence of bounded continuous

functions (gk)k>0 on S, converging pointwise to f, such that for all s,



f(s) < gk+1(s) < gls) ¢ 0, forallk20 (3)
Pf.  Consider hy(s) = sup {f(s) - k ||s — s’[[}. Then define g (s) = max (b k).

It is straightforward to verify that (6) holds and that each g, is a bounded function.g

Lemma 3 [Billingsley (1968, p. 117)]. For a fixed k,

lim J g du, = J g du 4)

N-mw

Lemma 4. Suppose lim s = s. Along any sequence q(n), n > 0, q(n) -~ w,
- o

TE £y, () € 6) (5)

n’-w

where 8, is a subsequence.

P{. From the monotonicity and upper semi—continuity of f it follows that whenever

z, » s and lim z = s, then lim f(z)) = f(s). From Lemma 1 and assumptions
o N-m

(A2) — (A3) it then follows that for all ¢ > 0 there is a continuity point of f, s’, such

that s » s and
f(s) > f(s’) - ¢ (6)

By (A1), s* » s for all n (without loss of generality). Hence,

fq(n/) (S’) 2 fq(n/) (Snl) (7)

Since s’ is a continuity point of f, 1im f , ,\ (s’) = f(s’). Combining this with
e A1)

(6) — (7) yields

Tim fq(n') (sp.) < f(s) + ¢ (8)

nN-+w



Since (8) holds for all ¢ > 0, the lemma is proved. -

Lemma 5. For a fixed k,

Ti_ﬁjfd glimJ d 9
S n %n i Bx Gy ()

Pf. Fix some € > 0 and define

E, = {s: f(s) <gyls) +¢ foralln?2 m} (10)

We now prove: Em is open, Em 412 EIn and 1L111 Em = §. We first show that

~

the complement of Em, Em is in fact closed. To this end, let s n be a sequence in Em

converging to s. Two cases are to be distinguished.

Case (i). There is a common index fi > m and a subsequence s 0 such that fﬁ (sn,)
> 8 (sn,) + ¢, for all s;. By the upper semi-continuity of f; and the continuity of

g, it then follows that f- (s) 2 g,(s) + e which implies that s € E_.

Case (ii). There are distinct indices q(n), such that fq(n)(sn) > g (s,) + €
Define for each n, q(n) to be the first index greater than m such that

fq(n)(sn) 2> gk(Sn) + € (11)
Set n, = 1 and write
n, = min {n > 1 3 a(n) > q(1) s.t. fq(n)(sn) > g (s,) + €} (12)
Since we are in Case 2 there exists such a n,. Similarly for i = 3,4,... define
n, = min {n >n_;: 3 q(n) > q(ny_;) s-t. fq(n)(sn) > g (s;) + €} (13)

Since we are in Case 2, the subsequence in (13) is well-defined and q(n;) is a

strictly monmotone increasing sequence with q(ni) ~ o, a8 I; 2 o. By Lemma 5,



Iﬁj fq(n.) (sn.) < f(s). Hence, f(s) > 8k (s) + e. This is clearly a contradiction of
i i

Lemma 2. Hence case (ii) cannot hold, i, s € E_ and E_ is open.

It is clear that Em 4172 E . Finally, suppose that s € Em for all m. Then,

£, (5) 2 gfs) + ¢ (14)

along a subsequence n’ - w. Lemma 4 again yields a contradiction.

We now prove (9). Note that for each m and ndm,

and“n = JE £du + JE £ dp_
m m

< JE fdu (since £ < 0)
m
< -[E gkdl‘n + €
m
= J gy du, — JE gdp, + € (15)
m

Since Em | ¢, one can find some m such that p,(f)m) < €. Since E m 18 closed,
by weak convergence of y there is some N such that un(E m) < ¢ for all n > N.

From Lemma 2 and (15) it then follows that

J fnd,un < j g du, + ke + €

Hence,
Iim J fdu, < lim J g dp, + (k+1)e (16)
n-wm n-w
Since € > 0 is arbitrary, from (16), Lemma 5 follows. -

The proof of the theorem is now a consequence of Lemmas 3, 5 and the

monotone convergence theorem. |



In addition to (A1) — (A3) suppose we make the following further assumption:

(A4) (S,||-l) is separable.

Let fn be a sequence of non—decreasing, upper semi—continuous functions that are
uniformly bounded above. The proof of Helly’s theorem [Billingsley (1985, p. 392)]
carries over to S. Hence there is a non—decreasing, upper semi—continuous function f
which is bounded above such that along a subsequence (£ ,) [of (f)], f,, converges

weakly to f. Hence, we have:

THEOREM 2. Let (fn) be a sequence of non—decreasing, upper semi—continuous functions
that are uniformly bounded above. Let (un) be a sequence of probability measures
converging weakly to a probability measure p. Then, there is a non—decreasing,
upper semi—continuous function f that is bounded above such that
i) a subsequence fn, converges to f weakly

ii) [im ’fn,dp,n, < deu

n’ -w B
Remarks 1. For a result related to Theorem 1, see Royden (1968, Proposition 17,
p. 231). (1) is established there without making any continuity or monotonicity
assumptions on (fn) and f, but under a considerably stronger convergence restriction on

the probability measures (p ): 4 (E) - w(E) for all Borel sets E.

2. M p = pfor all n, Fatow’s lemma yields (1). This is so since from Lemma

4 we know that Tim f(s) < f(s), for all s € S. Fatou’s lemma says:

n-o
Tim J fdp < J Iim f du (17)
n-wm D-wo

From (17) and the above observation, (1) follows. On the other hand if f = f
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for all n, then (1) follows from the weak convergence of the probability measures,
provided that f is an upper semi—continuous function which is bounded above. Hence
the additional requirement in Theorem 1 is precisely the monotonicity conditions on fn’

and this allows both integrands and measures to vary.

3. Theorems 1 and 2 generalize a result proved in Dutta (1990) where the

domain is § = R.

4. Theorems 1 and 2 are both true without (A2(ii)). We require it only

in Theorem 4 but state it with the other assumptions for compactness of exposition.

To clarify the role of the monotonicity assumptions, consider the following

example.

Example 3. S = R and » is the usual strict inequality ordering. Define

f() = (ns)1 + (2-m08) 1, o, and f = 0

{ossdy
pfzt = 1 and g0} = 1

Clearly J fndu11 = 1 and J fduy = 0. Note that fIl is continuous but not

non—decreasing. -

On the other hand consider the following example which shows that the inequality

in (1) cannot be tightened to an equality.

Example 4. S = R and » the strict inequality order. Define

h=1t= I{SZO}
by C3) = 1
wo0) = 1

Clearly, J fnduIl = 0 and J fdp = 1. Of course f is monotone but only upper
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semi—continuous. ' -

5. Integration to the Limit
In this section we revert to assumptions (Al) — (A3). When a function f is
bounded and continuous, rather than merely upper semi—continuous, Py = 4 implies

that lim J fdp = J fdy (e.g., see the Portmanteau theorem [Billingsley (1968), p.

N-w

17]). The question we now turn to is: if the integrands are taken to be continuous
functions, can (1) be improved to yield an exact equality?

We recall the basic result of Billingsley (1968, p. 34) which specializes to our
framework. Let (f ), f be measurable functions on S. Let E be the (measurable) set

of s on which f (s ) - f(s) fails to hold for some sequence s ~s. We then have:

TxeoreM 3 [Billingsley (1968), Theorem 5.5] Let p, = p and suppose u(E) = 0.
Then

lim J fdu, = J fdp (19)

nN-+mw

An application of this result leads to the following theorem.

THEOREM 4.  Suppose that (fn) is a uniformly bounded sequence of non—decreasing
continuous functions on S such that fn converges weakly to a function f, where f is
continuous. Let p, converge weakly to p. Then,

lim J- fdu, = J fdp (20)

-+

ProOF: We want to show that lim f (s ) = f(s), for any sequence s - s. In view
n-w

of Lemma 4, it suffices to show that lim f (s ) > f(s). A direct adaptation of the
proof of Lemma 4 (but using now a comparison point s’ such that s » s’) establishes

this inequality. But then we have shown that the set E is empty. Hence, u(E) = 0
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and Theorem 3 applies and so (20) follows. n

Remarks 1. The proof of Theorem 1 can be easily adapted to prove Theorem 4
without any appeal to Theorem 3.

2. For related results see Royden (1968, Proposition 18, p. 232), Billingsley
(1968, p. 17, problems 7-8) and Parthasarathy (1967, p. 51).

3. Examples 3 and 4 show that neither monotonicity nor continuity of the

functions (f ) can be relaxed.

5.  Parametric Continuity of Dynamic Programming Problems

In this section we report and briefly discuss two applications of the results to
establish parametric continuity in dynamic programming problems. In
Section 5.1 the structure and assumptions of dynamic programming are detailed. Then
we examine the continuity of the value function and the continuity of optimal actions,
in a sense made precise below, in some exogeneous parameter . The first result is in
discountéd dynamic programming. This result is an application of the integration to
the limit theorem (Theorem 4). Next we report on a result on continuity between
discounted and undiscounted problems (Dutta (1990)). This is an application of the

variation of Fatouw’s lemma (Theorem 1).

5.1 Dynamic Programming Problems

A parametric dynamic programming problem is specified by a sextuple
<S,A,q,r,6 H>. S is the set of states of a dynamical system and is taken to be a
nonempty separable Banach space. A represents the set of actions available to a
decision maker at any time and is assumed to be a compact, metric space. H should
be thought of as a set of exogeneous parameter values, and is taken to be a metric
space. The triple (s,a,d) is a generic element of SxAxH. q is the law of motion of the

system — it associates (Borel measurably) with each triple (s,a,f), a probability
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measure q(-|s,a,0) on the Borel o-field of S. If the exogeneous parameter has value 0,
and this value remains fixed throughout, then whenever the system is in state s and
action a is chosen, the system moves to state s’ according to the distribution
q(-|s,a,6). It will be assumed that the transition probabilities are separately
continuous on SxA and HxA, ie., (sj,a ) - (8,4) (respectively (6,8,) - (8,3)) implies
q(- [sp,ap,0) = a(-[85,3,6) for all @ (respectively q(-[s,ap,0)) = q(- |s,3,0) for all s).
Further, it is also assumed that s’ » s implies that q(-|s’,a,d) stochastically dominates
q(-|s,a,f) for all (a,f). The one period return function is r, which associates with
every (s,a,f) a return 1(s,a,f). In other words, if the exogeneous parameter has value
6, then whenever the system is in state s and action a is chosen, the immediate payoff
is 1(s,a,0). We shall assume that r is bounded and separately continuous on S x A
and H x A and further that r(-,a,f) is a non—decreasing function of S. Finally, §0) €
[0,1] is the discount factor, also determined by the exogenous parameter § and this
relationship is taken to be continuous.

The structure above is standard and is described in greater detail in Maitra
(1968), Heyman-Sobel (1982) and Stokey-Lucas (1989).2 The only difference in our
formulation is that we make the underlying decision—problem dependent on an
exogeneous parameter § and hence generate a family of decision problems, one
associated with each value of §. The continuity requirements on g, r and & are
modified accordingly. Finally, we impose some monbtouicity restrictions on the problem
which are motivated by examples in economics and operations research.

A policy <g> is a sequence g;, gy, - where 8; selects the action at the t-th
period as a function of the previous history h = (sO,a.O, ey at—l’st) of the system by
associating with each h (Borel measurably) an action gt(h). A policy g® is stationary
if g = 8 for all t, for some Borel measurable g. Each policy induces a distribution
on the state and action at each period, conditional on the initial state s (and the

exogeneous parameter ). Let 1, (<g>),(s) denote the expected return in period t
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under policy <g>, if the initial state is s and the exogeneous parameter has value 4.

In the discounted problem, i.e. when §(§) < 1, the total discounted expected return is
m
1587(s) = 3 #06)' 1y (<g>),(5) (21)
t=0

If §6) = 1, the decision criterion will be the long-run average which is defined

as
T—1

I587(s) = %i—f-.’,—"i' B 1 (<e),(0) (22)

*

A policy <g*> is optimal under 0, if I?g >(s) > I§g>(s) for all policies <g>

and all initial states s € S. The value function for initial state s and parameter @ is
V(s,0) = sup I587(s) (23)
<g>

5.2 Parametric Continuity in Discounted Problems

Suppose that we look at a class of discounted problems. To this end consider the
dynamic programming problem of Section 5.1, < S,A,q,r,6, H >. Recall (Maitra (1968))
that for each 6, the value function, V(-,d), is the unique bounded continuous solution

to the Bellman equation:

V(s,0) = max {r(s;a,6) + 5J V(-,0)dq(-[s,3,0)} (24)
a

Let a(s,d) be the set of maximizers in the right side of (24) for all s. For a
given 6, optimal policies in the dynamic programming problem are selections from the
correspondence of -,6). If g(-,d) is a (measurable) selection from of-,f), then standard
techniques show that g® is a stationary optimal policy. The parametric continuity

result for discounted problems is:

TreoxeM 5.  Conmsider (A1)~(A3). Suppose that § - 6 and 80) < 1. Then,
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i)  Value continuity: V(s,0 ) - V(s,0), for all s € S
ii)  Policy upper semi—continuity: 6 € a(s,0n), a, - a implies that a € afs,d),

for all s € S.

*
Proor : Let C (SxH) denote the space of bounded functions on S x H which are

*
separately continuous and non—decreasing on S.3 Let W € C (SxH) and define

TW(s,d) = max {r(s,,0) + 5] W(-,8)dq(- |5,3,6)} (25)
a

Suppose that § - § and a_ - a for some sequence (6,,a;)- Then q(-[sza,0)
= q(-|s,a,6). Further, W = W(-,0 ) is a continuous non—decreasing function such
that W_(s) » W(s) = W(s,0), for all s € S. By Theorem 4, J W, dq - J W dg.
Since r(s,-) is continuous on A x H, an application of the maximum theorem (Berge
(1963)), then establishes that TW is continuous on H for fixed s. The arguments that
show that TW is continuous on S and bounded are standard (see, e.g., Maitra (1968))
as also the argument that establishes that TW is non—decreasing on S. Hence, TW €
C*(SxH). But C*(SxH) as a closed subset of a complete metric space is itself a
complete metric space. Standard contraction mapping arguments then establish that
there is a unique element of C*(SxH), say V, such that TV = V. That proves i).

The Berge maximum theorem applied to TV yields (ii). -

Remark  Dutta—-Majumdar-Sundaram (1990) give a number of other conditions under

which value and policy continuity hold in discounted dynamic programming problems.

5.3 Continuity Between Discounted and Undiscounted Problems

Consider now a problem in which only the discount factor changes. So 1(s,a,0) =
1(s,a) and q(-|s,a,0)= q(-|s,a) but &§6) = 0, where § € [0,1]. In particular we are
interested in the following question: suppose 0n 1 1, ie., we go from a discounted to
an undiscounted problem. Does value and policy continuity hold? In general the

answer is no (and Ross (1983) contains a number of counter—examples) but in
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monotone problems one can give a positive answer. We need however a boundedness

condition and in order to state it, let us define:

A Normalized Value: Fix z € S and § < 1. Then, define 1/)z by:
’¢Z(S,5) = [V(S,(S) - V(Z,&)]
(A5) Value Boundedness: There is z € S and a bound M such that

|9,(s)] < M forall s and 6 < 1

THEOREM 6: Suppose (A1)—A5); There is v € R such that

i) Value continuity: v = lim (1-6) V(s,8) for all s and v is the long—run
61

average value of the undiscounted problem.

ii)  Policy upper semi—continuity: a € a(s,&n), a, - a, implies that a € ofs,1).

A closely related result is proved in Dutta (1990) and so we only sketch some
steps to indicate the applicability of our result.

Proor (sketch): The optimality equation (24) can be re—written as
U(s,0) + (1-0) V2, = max {i(s,2) + 6 | #,(-,8)da(-|5,8)} (26)
: a
Under our assumptions, 1/)2( -,0) is a non—decreasing, continuous function on S, for

each § € [0,1). By Theorem 2, there is a weak limit of ¢z( -,6n), say 9 which is

non-decreasing, upper semi—continuous and Tim J ¢z( -,5n)dq(- |s,an) < J W )dq(- |s,a),

N-m

where a € ofs,6 ) and a is a (subsequential) limit of a . Write v = 111:2101 (1-6,)

V(z,5n) possibly on a subsequence. Suppose that s is a continuity point of %. Then

we have

Ws) + v < max {r(s,2) + J - )dq(- |5,2)} 27)

a

Indeed (27) actually holds for all s € S since the continuity points of ¥ are dense
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in S and {b is upper semi—continuous. To see this let s, be a continuity point of 7,

s, > s and s, - 5. By the maximum theorem, m:x {r(s,,a) + J (- )dq(- |s,a)} -

max {r(s,a) + J H-)da(- |5,3)}-

a
Since '¢ is upper semi—continuous, by the Dubins—Savage selection theorem (Maitra

(1968)) there is actually a (measurable) function h such that
o) + v < x(sh) + | #o)da(- 18.0(6)
= max {r(sa) + | 9(-)da(-|s2)) (28)

a
A finite iteration of (28) yields

- T-1 h -
¥wWs) + Ty ¢ % r(hm)t(s) + Eq 9 (29)

where E,lf 1/) is the expectation of 1/) under the T-1 period distribution on S, induced
by h®. Dividing both sides of (29) by T and letting T » » implies that the long-run
average returns from h” are at least v, i.e., that the long-tun average value is at
least v.

Similar arguments establish that v is also at least as large as the long-—run
average value. Finally, the state z that was used to normalize the value function is

arbitrary (as can be checked from (A5)) and hence we actually have v = lim (1-§)
n-o

V(s,6). Finally, policy continuity is proved as in Theorem 5. -

Remarks 1. The critical requirement that both Theorems 5 and 6 exploited is the
fact that the discounted value functions are monotonic on S. This is a natural
assumption in many economic models where starting from a "higher"

initial state cannot be any worse than starting from a "lower" initial state. Examples

of economic models that satisfy value monotonicity may be found in Burdett—
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Mortensen (1980), Brock-Mirman (1972), Dechert—Nishimura (1983), Reed (1974),
Stokey-Lucas (1989), among others.

2. Counter-examples for models without monotonicity can be constructed. For
instance, modify example 4 in the following way. Let S = R, A = {3} and H = [0,1].
Define 1(s,3,6) = % I(Ogssﬂ} + (2 - %) I{05s$20} for § > 0 and 1(s,3,0) = 0. Further,
q({6}|s,a,6) = 1, for all s. Then, V(s,0) = 1(s,3,0) + -1-5_5-5, whenever 6 > 0, and

V(s,0) = 0 for § = 0.
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Footnotes

For this definition to have any bite ciearly the set of continuity points of f needs
to be "large." We show that for non—decreasing functions this set can be shown to be
dense in S. The definition is motivated by the definition of weak convergence of
distribution functions.

2The latter authors’ formulation is slightly different from the one presented here
(see Stokey—Lucas chapter 9 for details). However the assumptions are virtually
identical to those made above with the exception that Stokey-Lucas require S to be a
subset of R™,

30f course these functions are then jointly continuous on S x H .
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