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Abstract We provide several alternative sets of conditions under which the solutions to
parametric families of dynamic programming problems are continuous in the parameters.
The applicability of these results is illustrated using frequently studied classes of
economic models. .






1. Imntroduction

A number of recent papers in economics have been concerned with the effect of
changes in underlying parameters (preferences, technology, government policy, etc.) on
the solutions to dynamic economic modelst. This paper represents an attempt to
provide a general theory of variational analysis in stochastic dynamic programming
problems. Specifically, we investigate alternative conditions under which parametric
continuity obtains, viz., conditions under which the solutions to such problems vary
continuously with underlying parameters?2. A primary objective of this enterprise being
the identification of broad classes of ecomomic models in which such continuity obtains,
the conditions we examine are often motivated by economic considerations. It is our
hope that this paper will also be of use in addressing further questions of interest such
as the parametric differentiability or monotonicity of solutions.

We consider families of general stochastic dynamic programming problems in
which the one—period reward function, the transition probabilities, and the discount
factor are all indexed by an (arbitrary dimensional) parameter . Clearly for each
fixed value of ¢, the solutions to these problems will depend on ¢. Evidently also,
some basic continuity assumption will have to be made on the structure of this family
of problems if one is to obtain continuity of the solutions in . We begin with the
minimal and natural requirements that the one-period reward function and the

transition probabilities are both continuous? in ¢ for each fixed value of the state

See, e.g., Amir, et al (1990), Araujo-Scheinkman (1977), Becker (1985a),
Boldrin—-Montrucchio (1986), or Dutta (1988), in the context of optimal growth models;
Santos (1989a), Boldrin—-Montrucchio (1990), or Kehoe, et al (1990) on dynamic general
equilibrium models; Becker (1985b) and Boyd (1982} on changes in the rate of capital
taxation; and McLennan—Feldman (1989), in optimal learning models.

2By solutions to dynamic programming problems, we mean the value function of
the problem, and the correspondence of maximizers of the corresponding Bellman
Equation. By continuity of these solutions in the parameter, we mean the continuity of
the value function, and the upper-semicontinuity of the correspondence of maximizers of
the Bellman equation, in the parameter. For detailed definitions, see section 2.1 below.

3Throughout, continuity of the transition probabilities refers to weak-continuity



variable4; and that the discount factor varies continuously with ¢. These assumptions,
termed the separate continuily requirements, are maintained throughout the paper.

The usual dynamic programming arguments establish that under the separate
continuity assumptions, separate continuity of the solutions in the stafe variable
obtains. Namely, for each fixed parameter value, the value function is continuous and
the correspondence of maximizers of the Bellman equation is upper—semicontinuous in
the state. It appears a reasomable conjecture that these assumptions will also suffice to
obtain separate continuity of the solutions in the paremeters. An example in section 3
shows that this conjecture is, surprisingly, false. Indeed, in this example, the value
function is discontinuous in the parameter for each fixed stateS.

We therefore turn to an investigation of supplementary conditions under which
parametric continuity obtains. We examine several alternatives. Our positive findings
may be summarized under three headings, as presented below. Section 7 of this paper
shows that in many economic models verification of at least ome of these conditions is

immediate either directly from the primitives or from the Bellman Equation.

A) Primitive Continuity:

Our first positive result shows that parametric continuity obtains if the continuity
assumptions on the primitives are considerably strengthened. In section 4, we prove
(Theorem 1) that if the primitives of the problem are assumed to be jointly continuous

in states and parameters, then the solutions are also jointly continuous in these

unless otherwise specified.

4More accurately, we assume that for each fixed value of the state (resp.
parameter), the one period reward function and the transition probabilities are
continuous in actions and parameters (resp. actions and states).

5This example points to a fundamental difference between static and dynamic
models. In the former, the application of the Berge Maximum Theorem separately to
states and parameters demonstrates that separate continuity requirements on the
primitives do suffice to obtain separate continuity of the solutions.



variables. Unfortunately, joint continuity is, in general, a rather severe restriction to
place on the model. For instance, if the underlying spaces (i.e., the state space and
the parameter space) are compact, as is often the case in applications, this results in

an equicontinuous family of dynamic programming problems.

B) Monotonicity:

In section 5, we supplement the separate continuity assumptions on the primitives
with monotonicity restrictions on the problem. We consider two situations: value
monotonicity, and monotonicity of the primitives.

(i) Value Monotonicity: A great variety of economic problems possess the
property that the value function is a non—decreasing function of the state for each
given parametrization®. In subsection 5.1, we supplement the separate continuity
assumptions with this condition of value monotonicity. We prove two results. First,
with no further assumptions, we show that a partial restoration of continuity occurs:
namely, the value function is now upper-semicontinuous on the parameter space
(Theorem 2(i)). Second, we show that if the problem also possesses afomless transition
probabilities, the full power of Theorem 1 is restored: the solutions are now jointly
continuous in states and parameters (Theorem 2(ii)).

(ii) Monotonicity of the Primitives: In subsection 5.2, we place conditions on the
primitives of the problem that guarantee monotonicity of the value function. We prove
the somewhat surprising result (Theorem 3) that full joint continuity of the solutions in

states and parameters now obtains.

6See, e.g., Burdett and Mortensen (1980) in the context of search models;, Brock
and Mirman (1972), Dechert and Nishimura (1983), or Majumdar, Mitra, and Nyarko
(1989) in the context of growth models; Lucas and Prescott (1971) on investment under
uncertainty; Scheinkman and Schechtman (1983) on inventory models; or Reed (1974)
on renewable resources. It should be emphasized that while all these papers deal with a
one—dimensional state space, the state space in our paper is n—dimensional Euclidean
space, for arbitrary finite n. All references to monotonicity should be taken as
referring to weak monotonicity with respect to the usual partial ordering on this space.



C) Strongly Stochastic Models:

In section 6, we drop all monotonicity assumptions, maintaining only the separate
continuity restrictions. However, we strengthen the continuity requirement on the
transition probabilities, by requiring them to be sefwise continuous on the parameter
space’. We prove (Theorem 4) that the solutions are now separately continuous in
states and parameters. An immediate corollary of this result is that weak continuity
and atomlessness of the transition probabilities suffice to obtain separate continuity of

the solutions in the state and parameters.

Before proceeding to the main body of the paper, we briefly indicate the related
literature. In simultaneous and independent work, Feldman and McLennan (1990) have
also studied this issue of parametric continuity in dynamic programming problems. The
assumptions they place on the primitives of the model are more restrictive than ours,
and their results correspondingly stronger. In particular, their analysis is conducted for
the case where the primitives are jointly many times continuously differentiable; they
also take a first—order approach to the problem which necessiates the use of convexity
restrictions on the primitives, restrictions which are not present in our framework. On
the other hand, they obtain under these conditions not only joint continuity of the
solutions, but also the many times continuous (joint) differentiability of the value

function and the optimal policy function in states and parameters®.

7Setwise convergence, while less restrictive than strong convergence, is much
stronger than weak convergence, and is not, in general, satisfied by deterministic
transitions.

8]t is, perhaps, worth emphasizing two features of these results at this stage.
First, all results barring the ones in which we assume atomlessness of the transition
presuppose only weak—continuity of the transition probabilities, and consequently apply
to deterministic models as well. Second in a variety of economic applications one is
interested in the continuity of the solutions in the discount factor alone. In this
special case, all joint continuity assumptions on the primitives are vacuuously satisfied,
so that parametric continuity immediately obtains by Theorem 1.

9Twice—continuous differentiability of the value function and continuous



The recent work of Dutta (1989) is also closely related to our paper. The
analyses are complementary. While our paper studies the effect of parametric variation
in discounted dynamic programming problems, Dutta concenterates on the case when
the discount factor is the sole parameter. He examines the continuity of solutions to
stochastic dynamic programming problems as the discount factor approaches unity. In
particular, his focus is on identifying conditions under which solutions under "large"
discount factors approximate the solutions of the undiscounted model under various

alternative undiscounted criteria.

2. The Framework

This section is divided into three parts. Section 2.0 gathers motation, definitions,
and some preliminary results. Section 2.1 describes dynamic programming problems.
The separate continuity assumptions and the formal questions of interest are the subject

of section 2.3.

2.0 Definitions and Preliminaries
We denote k—dimensional Euclidean space by IRk. Given 2 vectors x and y in IRk,

we write x > y (resp. x >> y) if X; 2 Y; for i = 1,....k (resp. X > ; for i = 1,....k).

Functions and Correspondences:

A real valued function f defined on RE is said to be: (a) non—decreasing if for
all x,y € IRk, x > y implies f(x) > f(y); (b) right—continuous at a point x, if for all
sequences x | x (i.e, x > x for all n, and x, x), we have f(x_) - f(x); (c)

upper—semicontinuous or usc at x, if for all sequences x - x, we have limsup, f(xn) <

differentiability of the policy function jointly in states and parameters has also been
shown by Santos (1989b), in the context of the (deterministic) multisector growth
problem under convexity and smoothness assumptions on the primitives. See also
Boldrin and Montrucchio (1990) in this regard.



f(x); (d) lower—semicontinuous or lsc at x if —f is usc at x, and (e) continuous at x
if f is both usc and lsc at x. We note that a non—decreasing function is
upper-semicontinuous iff it is right continuous.

A correspondence G from X to Y (where X and Y are metric spaces and Y is
compact) is said to be: (a) upper—semicontinuous or usc at x € X, if V X, X ¥ €
G(x,), and y -y, we have y € G(x); (b) lower—semicontinuous or lsc at x if for V
x, *xand y € G(x), there is y_ € G(x) such that y - y; (c) continvous at x if
it is usc and lsc at x.

If a_function f is right—continuous (resp. usc, continuous) at each x, then we
simply say that f is right continuous (resp. usc, continuous). A similar statement holds
for correspondences. Appendix I provides a formal statement of the Maximum Theorem

of Berge (1963) based on these definitions.

Convergence Concepts:

By analogy with probability distribution functions, a sequence of non—decreasing
right—continuous functions Fn is said to converge weakly to a limit F, if F is also
non—decreasing and right continuous, and F (x) - F(x) at all x where F is continuous.

A sequence of probability measures }, On some probability space (Q,F) is said to
converge weakly to a limit probability measure u, if any of the following (equivalent)
conditions hold: (i) g (A) - #(A) at all A € F which satisfy #(6A) = 0, where OA is
the boundary of the set A; (i) for all bounded continuous functions £:Q -R, [fdu_ -
Jidp.; or (iii) F_ converges weakly to F, where F_ and F are the (non—decreasing,
right continuous) distribution functions corresponding to u and u respectively.

A sequence of probability measures 4 on some probability space (Q2,F) is said to
converge setwise to a limit x if p (A) » 4(A) V A € F. Observe that setwise
convergence implies weak—convergence, but not vice versa.

Appendix I provides various integration—to—the-limit theorems based on these



definitions, that we use in this paper.
Finally, a probability measure y; on (R",F) is said to stochastically dominate a
probability measure 4, on that space if for all non—decreasing functions £:R™ - R, we

have jfdpl > jfduz.

2.1 Dynamic Programming Problems: A Description

Since dynamic programming problems are well understood, our description of them
will be relatively terse. For greater detail, the reader is referred to the papers by
Blackwell (1965) or Maitra (1968), or the books by Ross (1983) or Stokey, et al (1989).

A Dynamic Programming problem is described by a quintuple <S, A, r, q, &>
with the usual interpretation that S is the set of stales of some system; A is the set
of actions available to the decision maker; r:SxA -R, a bounded measurable function,
is the instantaneous reward function; q(.|.,.) is the law of motion for the system that
associates Borel measurably with each (s,a) € SxA, a probability measure q(.|s,a) over
the Borel sets of S; and § € [0,1) is the discount factor used by the decision maker.
Throughout this paper, we assume that S = R™ for some m1;, and that A is a
compact Borel subset of some metric space.

A i-history, or a history upto t, for this problem, is a list (sO, ag, sl,al,...,st) of
states and actions upto period t-1, and the period—t state. A generic t-history will be
denoted by ht‘ A policy = for the decision maker is a sequence of measurable maps
{wt}, such that for each t, =, specifies an action to be taken by the decision maker in
period t as a (measurable) function of the history h, upto t. A policy is Markovian if

for each t LA depends only on the period t state s,. Thus, a Markovian policy can be

¢
represesnted by a sequence {gl,g2,...} where, for each t, g, is a measurable map from S

to A. A stationary Markovian policy 7 (henceforth, simply stationary policy) is a

10More generally, S could be any partially ordered linear metric space.



Markovian policy for which g, = g for all t, where g is a measurable function from S
to A. We denote such a policy by g("’).

The decision maker is assumed to discount future rewards by some factor § €
[0,1). Each policy = defines, in the obvious manner, from each initial state s, and for
each t, a period—t expected reward for the decision maker denoted rt(w)(s). Hence,
each policy defines, from each initial state s, a total discounted reward for the decsion
maker over the infinite horizon, denoted W(7)(s) defined by W(x)(s) = X, Jtrt(';r)(s).
The decision maker’s objective is to find a policy 7* such that W(7)(s) < W(7*)(s) for
all 7, and for all s € S. When such a 7* exists it will be termed an optimal policy,
and the associated total payoff function W(7*) will be referred to as the value function.
Note that if #* and =’ are both optimal then W(7*) = W(x’). An optimal policy
which is also stationary will be termed a stationary optimal policy.

The following result on the existence of optimal policies is well-known:

Theorem 0 (Maitra, 1968):

Suppose (i) r is continuous on SxA, and (ii) q s weakly continuous on SxA, i.e.,
if (sn,ang - (s,a), then the sequence of probability measures q(.|sn,an) converges weakly

to q(.]s,a). Then there is an optimal policy for the decision maker. The associated
value function, denoted V, is continuous on S, and is the unique bounded function that
satisfies the following functional equation (Belman’s Egquation), from each s € S:

V(s) = max., ., {x(s2) + § [V(')dq(s’|s,a)}.

Let G(s) denote the set of mazimizers in the above equation ats € S. Then, G is an
upper—semicontinuous correspondence from S to A, and admits a measurable selection;

furthermore, the policy g(m) defined through any measurable selection g from G 3 a
stationary optimal policy.

2.2 Parametric Families of Dynamic Programming Problems
A parametric family of dynamic programming problems is defined by the sextuple
<9, S, A, 1, q, 6>, where ¢, assumed to be a Borel subset of some metric space, is a

set of parameters indexing 6, r and q, i.e., each ¢ in ¢ defines a dynamic programming



problem <8, A, r(.,.,¢), a(-|.,-,¥), &p)>. We make the following weak initial

assumptions of separate coniinuity on this structure, that are maintained throughout the

paper:

Assumption 1. 1:SxAx¢ -R, is separately continuous on SxA and Ax9, i.e., for each
’ﬁ,ﬁd 8, 1(8,.,.) 18 continuous on Ax}, and for each fized ¢, 1(.,.,pp) 18 continuous on
SxA.

Assumption 2. q is separately weakly—continuous on SxA and Ax¢, i.e., for each ¢
a(.|-,-, ) is weakly continuous on SxA, and for each fized s, q(.|s,.,.) 18 weakly
continuous on Ax¢.

Assumpf&z;on 3. §.) is continuous on ¢, and satisfies &p) € [0,0] for some a € [0,1), for
all ¢ € ¢.

Under these assumptions, Theorem 0 applies for each fixed ¢, yielding a value
function V(.,p) that is continuous on S, and a correspondence of maximizers of the
Bellman Equation G(.,p) that is usc on S. The problem we wish to study in this

paper may now be precisely stated:

(i) When will V(.,.) be jointly continuous on Sx¢, or at least,

(i’) When will V be separately continuous on ¢, for each fixed s?

(ii) When will G be upper—semicontinuous on Sx¢, or, at least,

(ii’) When will G be upper—semicontinuous on ¢ for each fixed s?

Remarks: (i) These questions are, of course, just the analogs for the dynamic
programming problem of the Maximum Theorem. Note that the separate continuity in
@ of V is not sufficient to guarantee separate upper—semicontinuity of G in ¢ through
the maximum theorem, since the RHS of the Bellman Equation (in particular, [Vdq)
may fail to be separately continuous.

(ii) If continuity of solutions in the discount factor is the sole question of
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interest, all joint continuity assumptions are vacuuously satisfied (for Assumption 3, let

¢ = [0,a] and &(.) be the identity function). Theorem 1, thus, applies.

3. An Example

We now provide an example to show that while the separate continuity
assumptions suffice to obtain separate continuity in the state, they will not suffice to
obtain separate continuity of the solutions in the parameter. Indeed, the value function
in the example is discontinuous on ¢ for each fixed value of s.

The example is constructed as follows: let S = R, A = {0}, and ¢ = [0,1]. Let

&.) = 6 € (0,1). To ease notation, we suppress dependence of r and q on the single

action available. Define r as follows: r = 0 if ¢ = 0, and if ¢ # 0, then
r(s,p) =0, ifs<0ors>2p
= s/, if s € [0,0)
=2-sfp, ifs€[p2¢;

and let q be defined for any ¢ by:
q(H[s,¢) = 1, if peH

= 0, otherwise

It is readily verified that r and q satisfy Assumptions 1 and 2. Note also that r is
not jointly continuous on Sx¢. Now pick any initial state s € R, and any sequence Yy
>0, g, = 0. For a fixed § € (0,1), V(s,0)) = 1(s,)) + §/1-6 2 §6/1-6 > 0. But
V(s,0) = 0. Thus, V fails to be continuous on ¢ for any value of 5 # 0.

4. Joint Continuity
This section presents our first positive answer to the parametric continuity

question. We show that if r and q are both jeintly continuous on their entire domains,
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then the solutions are also jointly continuous on Sx¢.

Theorem 1: Suppose T is continuous and q is weakly coniinuous on SxAx¢, and
Assumption 8 holds. Then, V is continuous on Sx$, and G is usc on Sx¢.

Proof Let Z = Sxp. For any set X, let B(X) define the Borel sets of X. Define the
family of (conditional) probability measures Q(.|z) on B(Z), where z = (8,p)€ Z, as
follows: for sets of the form HxI € B(Z) where H € B(S) and I € B($), let Q*(HxI|z)
= q(H|s,p) if ¢ € I, and Q*(HxI|z) = 0, otherwise. Then, by the Caratheodary
extension theorem, Q* has an extension to B(Z), denoted Q. We show that Q so
defined is weakly continuous on Z. Let f:Z -R be any continuous bounded function,

and suppose z, = (sn,<pn) -z = (s,p). We are required to show that
J{(z)Q(dz’|z)) - [i(z’)Q(dz’]z).

Note that for each ¢, Q(.|s,p) places full mass on S x {p}. Thus, defining kn(s) =
i(s,p,) and k(s) = {(s,), this is the same as showing
Jk (s)da(s|s,0,) - Jk(s)da(s'|8,¢)

(where now the integrals are being taken over S). But, since f is continuous on Sx¢,
so V s] - 8, we have k (s)) - k(s). Therefore, the set D, defined as {s’e S| 3 s) -
8’ but lim kn(sl’l) # k(s")}, is empty, and hence has q(.|s,p)-measure zero. Also by
hypothesis, q(.lsn,gon) converges weakly to g(.|s,p). The desired result now follows
from Billingsley (1968, Theorem 5.5; see Theorem A in Appendix I).

Next, let C(Z; R) be the space of all continuous, bounded functions from Z to R,

endowed with the sup-norm topology. Define a map T on C(Z; R) by
Tw(s,p) = max., ., {1(s:2,¢) + &p) [w(®,¢)AQ(",¢'|5,2,0)}

It is routine to check that the hypotheses of the Theorem combined with the continuity
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of, and the upper-bound on, &.) imply that T maps C(Z; R) into itself, and is a
contraction. By the contraction mapping theorem, T has a unique fixed point, denoted
say, V. Standard arguments, as those used in the proof of Theorem 0, show that
V(.,tp) is the value function of the problem pertaining to the parameter ¢. By
construction V is continuous on Z. The upper-semicontinuity of G now obtains from

this by applying the Berge maximum theorem to the Bellman Equation. o

5. Monotonicity

This section is divided into two parts. In subsection 5.1, we examine the impact
of supplementing the separate continuity assumptions with the assumption of value
monotonicity. Subsection 5.2 then explores the effect of imposing conditions directly on

the primitives that will guarantee value monotonicity.

5.1 Value Monotonicity

In this subsection, we supplement the separate continuity assumptions first with a
requirement that for each fixed value of the parameter, the value function be a
non—decreasing function of the state (condition M below), and then also with an
atomlessness requirement (condition A below), and show that strong implications for

parametric continuity result. The formal conditions are:

Condition M: For each fized o, V(.,p) s monotone non—decreasing on S, i.e., 5,8’ € S,
and s > 8 implies V(s,) > V(8',0).

Condition A: For all (s,a,p), the measures q(.|s,a,p) are atomless.
With Assumptions 1 through 3 maintained, we now have:
Theorem 2:(i) Under Condition M, V(s,.) is upper—semicontinuous on ¢ for each s.

(i) Under Conditions M and A, the value function V is continuous on Sx¢,
and the correspondence of mazimizers G is usc on Sx¢.
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Proof: See Appendix II. o

5.2. Monotonicity in the Primitives

This subsection proves a somewhat surprising result in the light of Theorem 2(i):
under the weakest conditions on the primitives that are sufficient to guaraniee
monotonicity of V on S, the value function turns out to be jointly continuous on Sx¢.

No restrictions beyond Assumption 2 are required on the transition probabilities.

Assumption § 1(.,a,p) is monotone non—decreasing in s for each pair (a,p).
Assumption 5 For all (a,p), q(.|8,3,p) stochastically dominates q(.[s’,a,) if s 2 5"

Theorem 8: Under Assumptions 1 to 5, V is continuous on Sx¢, and G is usc on Sx¢.

Proof: Let C*(Sx¢) be the space of all separately continuous bounded real-valued
functions on Sx¢, that are also monotone nondecreasing in 5. Endowed with the
topology of sup norm convergence this is a complete metric space. Define the operator
T on C*(Sx¢) by

Tw(s,p) = max, , {;(s,a,gp) + &) fw(s’,p)dq(s’|s,a,90)}.

We will show that Tw is also in C*(Sx¢). For notational ease, let Lw(s,a,p) =
fw(s',p)dq(s’|s,a,). First, note that the separate continuity of Lw on SxA follows
immediately from Assumption 2 and the hypothesis that w is continuous on S for each
¢. To see separate continuity of Lw on Ax¢, let (an,cpn) -+ (a,9), and denote by wn(.)
and w*(.) respectively the functions w(.,¢,) and w(.,p). By hypothesis, w_ and w* are
both monotone nondecreasing functions on S that are continuous. Further, w_(s) -
w*(s) for each 5 € S. Therefore, by lemma 1 (see Appendix II, proof of Theorem 2(i))
the set {s € S| 3 s - s, but lim w(s,) # w*(s)} is empty. Since q(.|s,a ,¢ ) = q,
converges weakly to q(.|s,a,p) = q, it now follows from Billingsley (1968; see Theorem
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A, Appendix I) that jwndqn converges to fw*(.)dq, i.e., that Lw is separately
continuous on Ax¢ also as required. That Tw is separately continuous now follows
easily from the separate continuity of Lw and r by applying the Maximum Theorem
separately to s and ¢. Finally, since w is nondecreasing on S, Assumption 5 implies
that Lw also has this property. So, therefore, does Tw, which then maps C*(Sx¢) into
itself.

Routine arguments show that Tw is a contraction, and hence has a unique
fixed—point, denoted say V. It is evident by construction that V(.,p) is the value

function of the problem with parameter ¢. To complete the proof requires a lemma:

Lemma 8.1 Let f:SxAxd -+ R be separately continuous in (s,a) and (a,p). If fis
monotone non—decreasing in s, then f is jointly continuous on Sx

Proof: Let (s a,,¢ ) - (82,¢"). Let { (s) = f(s,a ,p ) for all s and {(s) = 1(s,2',¢’)
for all (a,p). By assumption, each fn (as also f) is monotone and continuous on S,
and f (s) » f(s) for each s. Since each s € S is also a continuity point of , it follows
that f is the weak limit of the sequence fn. Lemma 1 now implies that for any

sequence s - §, fn(sn) converges to f(s), completing the proof. o

By this lemma V is continuous on Sx¢, establishing one part of Theorem 3. To
see the other part, note that r and Lw as separately continuous and monotone
functions are also jointly continuous on SxAx¢. Hence, so is r + 8LV, and the joint
upper—semicontinuity of G now obtains by the Maximum Theorem applied to the

Bellman Equation. o

6. Setwise Convergence and Parametric Continuity
We now consider a stronger concept of convergence for ¢ — namely, that for
each s, q is setwise conlinuous on Ax¢ — and show, without any further assumptions,

that now V and G will both exhibit separate continuity.
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Assumption 2’: For each s, if (an,gon) =+ (a,p), then the sequence of probability
measures q(.ls,an,tpn) converges setwise to the probability measure q(.|s,a,p); while, for
each ¢, if (sn,an) - (s,a) then q(.[sn,an,cp) converges weakly to q(.|s,a,p).

Theorem 4: Under Assumptions 1, 2’ and 8, V is continuous on S for each ¢, and on
¢ for each s, while G is upper—semicontinuous on S for each ¢, and on ¢ for each s.

Proof: This result follows from simple modifications of the proof of Theorem 1,
exploiting additionally the setwise convergence assumption and Proposition 18 of Royden
(1968, Chapter 11; presented here as Theorem C in Appendix I). For completeness, we
have included a formal proof in Appendix III to this paper. o

In the event that the transition probabilities are atomless for each (s,a,y),
weak—convergence implies setwise convergence. This translates into the following

obvious corollary of Theorem 5:

Corollary 6: Under Assumptions 1 through 8 and Condition A, V is separately
continuous in s and ¢, and G is separately upper—semicontinuous in s and ¢.

7. Illustrations

We present in this section a series of economic models to illustrate the
applicability of our results. For expositional purposes, we choose the simplest member
of each class of models, although our results typically apply to a much more general
formulation of the respective problems; we also present the unparametrized form of the
problems to save on notation. As a final point, we note that in each case we exploit
the result whose hypotheses are easiest to check (and, indeed, in each case this is
almost immediate). Other results that we have provided may also, of course, apply,

but may be harder to check.
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7.1 Search Models

In the simplest version of the search model, a worker samples from a wage offer
distribution in each period while unemployed. Upon receiving a draw of (say) w, the
worker must decide whether to accept the wage. If he accepts it, the problem
terminates, and he receives that wage in each period thereafter. If he rejects it, he
receives unemployment compensation of ¢ for that period. Denote the wage offer
distibution by F(.). I § denotes the worker’s discount factor, then his value function
V satisfies the following functional equation:

V(w) = max{w/[1~§, c+ & [V(w)dF(w)},

where w is the wage currently under consideration. It is immediate from the form of
the equation that V is a mon—decreasing function of w, so that value monotonicity
obtains. If F is atomless (in particular, if F admits a density) then Theorem 3 applies
immediately: the solutions (the value function and the reservation wage) vary
continuously with the parameter ¢, provided c(.) and &_.) are continuous functions of ¢,

and F(.|p) is weakly continuous in ¢.0

7.2 Inventory Models

Here, in each period of an infinite horizon, an inventory of q units of a
commodity is used to meet the stochastic demand that period which is the realization
of a given distribution F(.). We assume that F satisfies limq_m q(1-F(q)) = 0. The
price at which sales take place is fixed at some level p. Hence, expected one—period
revenues from holding an inventory of q in any period are given by p.[f R(x<q)xdF(x) +
q(1-F(q)] (= h(q), say), where R(x<q) denotes the indicator function which takes on
the value 1 if x < q, and is 0 otherwise. Costs are incurred from two sources. First,

there is a holding cost of of b per period per unit of inventory held. Secondly,
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inventories can be replenished to any desired level by paying a fixed cost!! of c.
Summing up, the one period return r(q,y) from begining with an inventory level of q
and reordering a quantity of y is:
1(q.y) = h(q) - bg - ¢, ify >0,
= h(q), ify=0
z U(q) - cR(y>0), say.

The Bellman equation for this dynamic programming problem is:

V(g) = maxyg {U(a) - r>0) + & [V(aHyx)dF(}

We assume that U() is single peaked. It is not too difficult to see that an
implication of this assumption is that V is also single peaked. Moreover, since
]imq_mU’(q) = -b, it is also possible to show that V is not increasing throughout.
Thus, this is a non-monotone problem. If F is atomless however, Theorem 3 applies
immediately!?, yielding continuity with respect to any parameter ¢ that indexes U, c,
and/or F.

It is worth noting that the inventory model bears a very close resemblance to the
example in section 3 of this paper. Evidently, then, the deterministic transition rule

drives that counterexample, but the discontinuity vanishes in the presence of strongly

stochastic transitions.

7.3. Aggregative Growth Models

Here we have the case of a single representative agent (a social planner) who

A proportional cost to restocking could be admitted as well without altering any
of the arguments that follow.

12Not quite immediately, since the one—period reward function here is not
continuous in the state! But this causes no problems in {rying to demonstrate
continuity in the parameter.
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must in each period t of an infinite horizon decide on the allocation of the available
stock vy of a commodity between period—t consumption C; and period—t investment x,
(= Yy — t). Consumption of ¢ units in any period gives instantaneous utility of u(c),
where u:R 4+ R is a continuous function. The investment x in any period gets
transformed to the available stock y at the begining of the next period as the
realization of a conditional probability distribution q(.|x). It is customary to assume
the following : (i) u is an increasing function on R 4 (ii) q is weakly continuous, and
(iii) q satisfies stochastic monotonicity, namely q(.|x) first-order stochastically
dominates q(.|x’) whenever x > x’. The planner aims to maximize total (expected)
discounted utility from any initial stock Yo

This problem has been extensively studied in economic theory. Consequently, we
will confine ourselves here to a few informal remarks. Note that Assumptions 4 and 5
are automatically satisfied given the monotonicity of u(.) and q(.|.). Thus, joint
continuity obtains immediately in this problem as a consequence of Theorem 3, if u
and q are part of a parametrized family meeting only the weak separate continuity
assumptions. Indeed, in this model, even the separate continuity conditions are
considerably weaker than they are in general!3.

Secondly, it is well known that the imposition of appropriate strict convexity
restrictions on this model results in the existence of a unique stationary optimal policy
under which (for each fixed parameter value) the distribution of stocks from any
(non—zero) initial state converges to a unique invariant distribution. An immediate
implication of parametric continuity is now that this distribution will itself be
continuous in the parameter. As a special case, the "modified golden rule" of

deterministic models is a continuous function of the parameter.o

13A1] that separate continuity requires is that u(c,p) be continuous in its
arguments, and that q(.|x,p) be weakly continuous in 1ts arguments. Regardless of
whether we treat ¢ or x as the decision variable, y affects only one of u or q in a
non-trivial manner, and at that it enters additively (as y — ¢ or as y — x).
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7.4 Optimal Stopping Problems and Bandit Problems

Consider the following simple optimal stopping problem. In each period, a
decision maker has the option of either terminating the process and collecting a
terminal reward of M, or of continuing to play a one-armed Bandit. Assume that the
Bandit generates rewards according to one of two possible known densities fl(.) and
fz(.), which share the same support. Let p € [0,1] represent the decision maker’s prior
belief that the arm is of type 1. Let f§(.,.) represent the Bayes updating map on
beliefs when the Bandit is chosen; [ is defined by

Bps) = ot (1)),

where () := pf;(.) + (1 - p)fy(.) is the expected density generating rewards, p is
the decision maker’s prior and r is the reward witnessed. For notational convenience,
let (i) R, denote the expected one-period reward from type i = 1,2, where wlog we
assume R; > R,; and (i) R(p) = pR; + (1 - p)R,, denote the expected one period
reward from playing the Bandit with a prior belief of p. To avoid trivalities in the
solution assume M(1-6) € (R,, R;). The decision maker’s problem is to maximize
from any given initial belief the expected discounted sum of rewards by optimally
choosing when to terminate the process.

Standard techniques show that the decision maker’s optimization problem may be
converted into a dynamic programming problem with state space the space of beliefs
[0,1], whose associated Bellman Equation may be written as:

V(p) = max{M, R(p) + § [V[A(p.0)lP(r)dr}.

Standard techniques also show that V(.) is convex and continuous on [0,1] (see, e.g.,

Berry and Fristedt, 1985). We ignore the absorbing states 0 and 1 in the sequel!4. It

14There is no loss in this, for by the common support of f; and £, B(p,r) € (0,1)
a.s. if p € (0,1).
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is easy to see that limpl0 V(p) = M and ljmpTl V(p) = Ry/[1 - 6). Since M also
forms a lower bound for V(.), it follows from convexity that V(.) is non-decreasing on
(0,1). Since the transition is induced by densities, it is atomless on this subset of the
state space. Weak—continuity is straightforward from the assumptions. Theorem 2(ii),
therefore, applies and the value function and the optimal action correspondence are
joinly continuous on (0,1)x¢, when this problem is represented in parametric form with
fl, f2, m and § all depending continuously on 15,

Optimal stopping problems of this sort are used in constructing the Dynamic
Allocation Index of Gittins and Jones (1974) to solve n-armed Bandit problems.
Similar techniques as used above may be employed to show that in a large class of

these problems, the solutions vary continuously with any underlying parameters.n

15Note that the application of Theorem 3 is not straightforward since stochastic
monotonicity is not only not immediately apparent, it may also not be true depending
on the form of f1 and f2
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setwise to p. Then

lim_ [fdu = [fdp

Appendix IT
II.1 Proof of Theorem 2(i):

Pick a sequence ¢ - ¢, and for ease of notation denote V(s,<pn) and V(s,p) by
Vn(s) and V(s) respectively. We follow a two—step procedure to prove the theorem.

Step 1: Observe that Vn and V are continuous functions on S, by Assumptions 1
and 2, and Theorem 0. Therefore,(i) by Helley’s Theorem (Billingsley, 1986), there is
a right—continuous function V* which is the weak-limit of (some subsequence of) the
sequence V , ie., such that V (s) - V*(s) at each continuity point s of V*. Fix any
such s. We will show that V(s) > V*(s) in this step.

Let a € G(s,<pn) and assume without loss of generality that a| - a € A. By
Assumption 2, it follows that (ii) the sequence of probability measures q(.ls,an,qpn)
converges weakly to the probability measure q(.|s,a,p). Combining (i) and (ii), and
invoking Theorem 1 of Dutta (1990; Theorem B in Appendix I), we have:

limsup [V (s')da(s’|s,a;,0,) < fV*(s)dq(s’|s,a,¢).

But for each n, we also have

V6) = tsa,0,) + Ky IV (8)da(® 52,0,

so that, taking limits, and noting that s was chosen as a continuity point of V*, we

obtain:

V¥s) < 1(s.a,0) + &) [V¥(e')da(s[s,3,¢)

Since this inequality holds for all s at which V* is continuous, and the set of
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Appendix I

1.1 The Maximum Theorem

Theorem (Berge, 1963): Let X and Y be metric spaces and Y be compact. If £:XxY
- R is a continuous function, and G:X - Y is a continuous correspondence, then f::X -
R is a continuous function and G*:X » Y is a usc correspondence, where

f*(x) = max{f(x,y)| y € G(x)}
G*(x) = argmax{f(x,y)| y € G(x)}-

1.2 Integration-to-the-limit Resulis:

We provide here formal statements (without proofs) of integration-to—the-limit
results that we have used in this paper. Let 2 be a linear metric space and F be its
Borel sigma-field. Let fn, by be sequences of functions and probability measures on
(Q,F), and let f, u be limits of these sequences. The sense in which these are limits

varies from result to result, and is specified precisely below.

Theorem A. (Billingsley, 1968, Theorem 5.5) Suppose py, converges weakly to p.
Suppose also that the set E € F defined by E = {x | 3 x - x, but f(x,) does not
converge to f(x)} has p—measure 0. Then

im [fdp = Jfdu.

Theorem B. (Dutta, 1990, Theorem 1) Let fn be o sequence of non—decreasing
upper—semicontinuous functions that are bounded above, and suppose fn converges weakly

to f (i.e., pointwise to continuity poinis of f). Suppose also that p, converges weakly to

u. Then
limsup jfndun < [fdp.

Theorem C. (Royden, 1968, Proposition 18, Ch.11)  Suppose fIl is a sequence of
uniformly bounded functions that converges pointwise to f. Suppose also that p  converges
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continuity points of V* is dense, standard arguments, exploiting the right continuity of
V* now show that this inequality holds for all s € S.
Now define G* by

GHs) = argmax,,, {r(s:2,9) + &¢) JVH(E)da(e]5.2,9).

Let g* be any measurable selection from G* (such a selection will always exist by
Parthasarathy, 1973, Lemma 2.1 and Theorem 2.2). Once again using standard
techniques, it is not too difficult to see by iterating on the above inequality and using
the defintion of G*, that, in fact, W(g*("’))(s) > V*(s) for all s € S. Since g* does not
necessarily define an optimal policy at ¢, it follows that V(s) [= V(s,¢)] > V*(s) for
all s € S.

Step 2 Finally, to complete the proof, we show that for any s € S, we must
have limsup_ V_(s) < V*(s). [Combining this with the inequality obtained in step 1
yields limsup Vn(s) < V(s), which is, of course, by the arbitrariness of the choice of s,
Yy and ¢, just the statement that V(s,.) is upper-semicontinuous on ¢.] We actually

prove a stronger result:

Lemma 1: If V* is continuous from the right (resp. left) at s’ then V 5, - 8 we have
limsup V(s ) ¢ V¥(&’) (resp. liminf) Vo (s5) 2 V¥(s)).

Proof: Suppose V* is continuous from the right at s’., and s, - 8. Pick a sequence
s} >> 8 such that (i) s} is a continuiuty point of V* for each k, and (ii) s} 1 s
(Since the continuity points of V* are dense in S, this is possible.) For each fixed k,
we have V_(s) ¢ V_(s}) for all sufficiently large n, since V_ is monotone, and 5, - &
<< 8. Therefore, limsup Vo (s;) ¢ lim, v () = V*(sp), since s is a
continuity point of V*. But s’ is a point of right—continuity of V*, so we also have

V*(sf) » V*(s’) as k + «. Combining these statements, we have limsup Vo (s,) <

V*(s’), as desired.
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The argument for the case of left—continuity is completely analogous, and is
established by considering a sequence sﬂ << 8, with si; 1 8’, where each sﬂ is a

continuity point of V*. o

Since V* is continuous from the right at all 8 € S, the proof of Theorem 2

follows. o

1.2 Proof of Theorem 2(ii):

Consider any sequence (s l’l,cpn) -+ (s’,p). Once again simplify notation by denoting
V(s,p,) by V (s) and V(s,p) by just V(s) for all s € S. Also let V* denote any
weak-limit of (some subsequence of) V. Lemma I1.1 above showed that at any
continuity point s of V*, we had V (s ) - V*(s) for any sequence s - 5. We show
that under the addition of Condition A, it is, in fact, the case that V¥*(.) = V(.). But
every point of S is a continuity point of V(.) by Assumptions 1 and 2, so that the
proof of the Theorem now follows immediately. So fix any a € A, and let s be a

continuity point of V*. For each n, it is certainly the case that

Va(6) 2 t(saey) + 8wy JV,(")a(s" 58,0y,

By choice of s, V (s) » V*(s). Certainly, 1(s,3,50,) - 1(8,3,p), and Kpy) -+ Ko).
Finally, note that by lemma IL1, the set E defined as {s | 3 5, ~ s, but V*(s,) does
not converge to V*(s)} consists at most of the discontinuity points of V*. But V* is a
monotone function, and hence possesses at most a countable set of discontinuity points,
so that E is at most countable; by Condition A, E must have q(.|s,a,p)-measure 0.
Therefore, by the integration-to-the-limit result in Billingsley(1968, Theorem 5.5; |
presented here as Theorem A in Appendix I) [V _(s")dq(s"|s,a,@,)
JV¥(s’)dq(s’|s,a,¢). Therefore taking limits in the inequality above

V¥s) 2 1(s,a,p) + &yp) JV*(s")da(s"]s,3,0).
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But a was chosen arbitrarily, so that, in fact we have:

V*s) 2 max, ,{r(s,3,¢) + &y) JV*(s")dq(s"|s,2,0)}-

Combining this with the reverse inequality that was established in the course of

Theorem 2 (see step 1 of the proof of that result), we have:
V() = max,gy {x(sa9) + Ke) [VHE)A6" 5,80},

Standard arguments from dynamic programming now imply that V* must in fact be
- the value function of the problem given ¢, or that V*(.) = V(.,¢). Since V* was
defined to be any weak limit of V , and V(.,) is everywhere continuous on S (by
Assumptions 1 and 2), lemma IL.1 now implies that for all s/ - s, we have v, (s,) -
V(s).

Finally, note that since V is continuous on Sx¢, so G is the correspondence of
maximizers of a continuous function over a constant (therefore, continuous)

correspondence, and hence is upper—semicontinuous by the Berge maximum theorem. o

Appendix IIT
Proof of Theorem 4:

The continuity of V and the upper-semicontinuity of G on S for each ¢ are
immediate consequences of Theorem 0, but we offer a unified proof here of the results.
Let Z = Sx¢, and let C’(Z) denote the space of all functions from Z to R that are
separately continuous on S and ¢, i.e., functions that are continuous in ¢ for each s,

and in s for each . Define a map T from C’(Z) by:

Tw(s,p) = max, , {r(s,3,0) + &¢) [w(s’,p)dq(s’[s,2,0).

We claim that T maps C’(Z) into itself. To see this let Hw(s,p) = r(s,3,¢) + &)
fw(s’,p)dq(s’|s,a,p). Note that separate continuity of Hw in s, for each fixed ¢ is



29

trivial and follows directly from weak—continuity of q in 5. Suppose ¢, & ¢ By
Assumption 2’, the sequence of measures q(.ls,a,zpn) converges setwise to q(.[s,a,p).
Moreover, w(s’,p) » w(s’,p) for each s’ by the separate continuity of w in ¢.
Certainly, &¢,) ~+ 6(¢) by Assumption 3. Consequently, by Proposition 18 of Royden
(1968, Ch.11; presented here as Theorem C in the Appendix), jw(s’,gan)dq(s’|s,a,gon)
-+ [w(s’,p)dq(s’|s,a,p). Therefore, Hw is also separately continuous on Sx¢, by
Assumptions 1 and 3. By the Berge maximum theorem (applied separately to s and
¢), so is Tw.

Next, note that C’(Z) is a complete metric space in the sup-norm metric. The
usual methods show that T is a contraction on this space, and by the Contraction
Mapping Theorem T has a unique fixed-point V. Standard arguments establish that V
is the value function of the problem. By construction it is separately continuous in s
and ¢, proving the first part of the theorem; the Berge maximum theorem establishes

the second part. o



