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1. Introduction and Summary

This paper studies the class of Bandit problems (cf. Berry and Fristedt, 1985) in
which there are an arbitrary (finite) number of independent arms, and discounting is
geometric over an infinite horizon. The standard version of this framework is detailed in
Section 2. It is well—known that optimal strategies always exist in this model; indeed, the
optimal strategy may be chosen to be an indez sirategy. That is, it is possible to attach an
index to each arm, with the index on an arm depending solely on the characteristics of that
arm, which has the property that the arm with the highest index is an optimal choice at
each point in time!l. The construction of this index, which is known as the Dynamic
Allocation Indez (DAI), or the Gittins Indez, is described in section 2.3.

We consider two generalizations of this framework. In section 3, we consider the
case where the decision—maker is required to pay a fixed cost for switching betvyeen arms;?
this cost is allowed to be arm—specific. We define a modified version of the DAI for this
problem in section 3.3. This modified index coincides with the DAI if all switching costs
are zero. In section 3.4, we demonstrate that the strategy defined by this index is, indeed,
optimal in the class of all strategies for the problem with switching costs.

In section 4, we consider the possibility that arms may "fail" or "die" with
non—zero probability when in use, i.e., that they might switch to an absorbing state in
which they produce a constant reward. This probability is allowed to be arm—specific. In
section 4.2, we prove that an optimal index strategy exists in this case also. Indeed, as we
explain there, the existence of an optimal index strategy in this case follows almost

immediately from Whittle’s (1982) proof of the Gittins—Jones Theorem once the

#This result was first proved by Gittins and Jones (1974). For details and
extensions of this result, see Berry and Fristedt (1985), Whittle (1982), or Gittins (1989).

2Kolonko and Benzing (1983) have studied the special case of this setup where there
are two arms, with one arm generating payoffs according to a known distribution, and the
other according to a Bernoulli distribution with unknown mean. As Berry and Fristedt
(1985, p.239) point out, the Bandit problem in this special case is just one of determining
an optimal stopping rule.



appropriate spaces have been defined.

We note that an index theorem continues to hold if these models are combined,
namely, when there is a cost of switching arms, and there is a non—zero probability of the
failure of an arm.

These results are of special interest in a labor—market setting where the Bandit
framework has found wide applicability. In one interpretation, the decision—maker in a
Bandit problem is viewed as a worker searching over jobs, and the arms of the Bandit
represent the set of available jobs. An alternative version models the decision—maker as an
employer searching over potential employees (the arms). In either case, the payoffs from
an arm indicate the fitness of the resulting "match"3. Allowing for a cost of changing jobs
(or employees), and admitting the possibility of a unforeseen termination of the
relationship (say, the bankruptcy of the firm, or the resignation of the worker) seem

necessary extensions of the basic model in this context.

9. Bandit Problems: A Description

This section is divided into three parts. Subsection 2.1 sets up the notation and
gathers preliminary definitions. Subsection 2.2 outlines the standard framework of Bandit
problems. In subsection 2.3, the Theorem of Gittins and Jones (1974) is reviewed. Since
both the Bandit framework and the Gittins—Jones Theorem are quite well—understood, our
descriptions are necessarily terse. For greater detail than we provide, we refer the reader

to Berry and Fristedt (1985), Gittins (1989), or Whittle (1982).

2.1. Notation and Definitions

D will denote the space of probability measures on the real line R, and D" the set of

3See Mortensen (1985) for more on the use of Bandits in the study of labor—markets.
Our companion paper (Banks and Sundaram, 1991) also contains a discussion of various
applications of the Bandit framework in economics and other fields.



ordered n—tuples of members of D, where n is any positive integer. A generic element of D
[resp. @n] is denoted by p [resp. P = (pl,...,pn)]. 9 is given the topology of convergence
in distribution, and D" the corresponding product topology. It is well-known that under
this topology D inherits many of the topological features of R: D is separable, metrizable,
complete, and its topology is determined by convergent sequences and their limits. The
Borel field on D, and the product o—field (of the Borel field on D) on D" are the only
o—fields that are used throughout.

The set of probability distributions on D" is denoted by @(’Dn), with generic
element G. @(’Dn) is also given the topology of convergence in distribution. The Borel

o—field of D(®™) is again the only o—field considered throughout.

2.2. Bandit Problems

A Bandit problem is a sequential scheduling problem in which a single
decision—maker (hereafter, referred to as the principal) faces K parallel projects, called the
"arms" of the Bandit, indexed k = 1,...,K. At each instant t of discrete time, only one arm
may be activated by the principal. The activation of an arm results in instant payoffs to
the principal from that arm. However, the "true" payoff distribution associated with some
or all of the arms may be a priori unknown to the principal, who begins, instead, with a
prior specifying the initial belief regarding these distributions. Observations accumulated
over the course of play are used to update the initial belief over these distributions. The
principal’s objective is to maximize the expected discounted payoff over the horizon of the
model, by choosing a rule for the engagement of the projects in each period.

More formally, a Bandit problem is described by (i) an arbitrary finite number of
arms K, indexed by k; (ii) a discount sequence D = (50,51,...), with the interpretation that
the principal discounts period—t rewards by 5t; and (iii) a distribution G € @(@K),

representing the principal’s initial belief or the prior.



We place the following conditions on this framework that are maintained
throughout the paper:
(A1) The discount sequence is geometric: 6, = 5t, for some § € [0,1).
(A2) The arms are independent: the initial belief G = Gx..xGg; a generic
element in the support of Gk will be denoted Dy
(A3) Rewards are uniformly bounded: there is a real number A such that for each

k, it is the case that with Gk—probability one

[Iplldn, )] < A (2.1)

Let X denote the subset of all distributions in D that satisfy (A3); %K the set of ordered
K—tuples of members of X; and ’D(%K) the set of all distributions on xK satisfying (A3).
Since the Bandit problem is fully specified by § € [0,1) and G € ’D(%K), we will refer to the
Bandit as the (G,6) Bandit. Formal measure theoretic details are omitted in the sequel; for

these we direct the reader to Berry and Fristedt (1985, Ch.2).

Conditional Distributions:

For any G € ’SD(%K), let G(k,r) denote a version of the conditional probability
distribution that arises when the reward r is witnessed on arm k; and let Gy (r) denote a
version of the marginal Gk of G when the reward 1 is witnessed from the arm k. Of course,
since G = Glx...xGK, so G(k,r) = Glx...ka(r)x...xGK. We note the important point
that for each k, G(k,r) can be chosen to depend measurably on (r,G) (see, e.g., Berry and
Fristedt, 1985, Lemma 2.2.1).

4This uniform boundedness assumption is stronger than required, but makes for
considerable expositional simplification. In particular, it suffices to assume (see Berry and
Fristedt, 1985, Ch.2) that each component py of (pl,...,pK) has finite first absolute

moment with G—probability one; and that this moment has finite G—expectation.



Histories and Strategies:

A t—history for the (G,6) Bandit is a specification of the arms used in each period 7
€ {0,1,...,t—1}, and the consequent rewards witnessed. Let Hy = ¢, and for t > 1, let H, be
the set of all t—histories for the Bandit. A strategy o for the principal may be defined in
one of two ways.

In the usual definition, o specifies an action for the principal for each possible
history. That is, o is a sequence of measurable maps {at} such that o) € {1,...,K} and for
t21, o:H, - {1,...,K}. An alternative definition of ¢ is based on the observation that
each 1-history (k,r) from an arbitrary initial prior G € @(%K) results in the new Bandit
(G(k,r),6). Hence, o could be thought of as specifying an arm k to be played for each F €
@(%K), with two additional conditions appended. First, o must depend measurably on F €
@(%K). Second, since any particular observation may have prior probability zero, versions
of conditional distributions to be used must be chosen in advance. That these definitions
are then equivalent is intuitively apparent; a formal proof may be found in Berry and

Fristedt (1985).

Rewards and Optimal Strategies:
Each strategy o defines in the obvious manner an expected period—t reward rt(a;G)
from the prior G. Hence, each strategy o also defines a total expected reward W(o;G)

from the prior G defined as®

W(0;G) = 2_ 8'r,(03G). (2.2)

The objective is to find a strategy o* such that W(c*;G) > W(c;G) for all other strategies

0. When such an strategy exists it will be termed an optimal strategy, and W(c*;G) will

5W obviously depends on 4 as well as G. However, since all our results are valid for
all § € [0,1), we avoid complicating notation and suppress dependence on § throughout.



be termed the value of the (G,6) Bandit, and will be denoted simply by V(G).

Ezistence of Optimal Strategies:
It is well—known® that in this class of Bandit problems, optimal strategies exist from

any prior G € TJ(%K) Moreover, the value function V(.) satisfies

V(G) = Vi_ L V(G), (2.3)

where

LY@ =/ ] [r + W(G(k,r))] p, (dr)Cy (dpy ). (2.4)

Indeed, V may be explicitly recovered using the following dynamic programming argument’.
Let @(S{K) denote the state space of the problem, and {1,...,K} the action space.
Transitions from current states and actions into distributions over future states are
implicitly defined through the (measurable) map that for each k, takes (r,G) into the
conditional probability distribution G(k,r). Now, let € be the space of all bounded

measurable functions w from @(%K) to R. Define the mapping T:C - & by

Tw(G) = Vi _| L w(G)
where, once again,

L@ =] ] [r + 5W(G(k,r))] p, (dr)G (dpy):

Endow € with the sup—norm metric topology. Then, €is evidently a complete metric

space. That T is a contraction is easy to see. Consequently, T has a unique fixed point w*

6See, for instance, Berry and Fristedt (1985).

7This argument implicitly invokes the equivalence between the given Bandit
problem (which involves unknown parameters), and a Markovian dynamic programming
problem (which does not). For a proof of this equivalence, see, for example, Rieder (1975),
or Schael (1979).



such that Tw* = w*. By (2.3), we also have TV =V, s0 by the uniqueness of the
fixed—point V = w*.

The optimal strategy may also be obtained via this argument. Let H denote the
correspondence of maximizers in (2.4), and let h be any measurable selection from H.

Then, the strategy, which at any prior G picks the action h(G) is an optimal strategy.

2.3. The Dynamic Allocation Index

In this subsection, we describe a fundamental result due to Gittins and Jones
(1974), which provides a sharper characterization of the optimal strategy in the class of
Bandit problems identified above, than that provided by the dynamic programming
argument. Fix a Bandit (G,§) meeting the assumptions listed above. Pick an arm k €
{1,...,K}, and consider the optimal stopping problem in which the principal’s sole choice in
each period is to play the arm k for one more period, or to accept a "terminal reward" of m
¢ R. Similar dynamic programming arguments to that used above show that the value to
the principal of this stopping problem, denoted V(.,m), can be obtained as the unique fixed

point of a suitably defined contraction mapping; and that V satisfies

V(Gygm) = max|m, [ {x-+ VG (Dmi}n, )Gy (0py) (25)

where Gk(r) is a version of the conditional probability distribution that arises from the
prior Gk when the observation r is witnessed on arm k. The dynamic allocation indez

(DAI) on arm when the prior on the arm is Gy, denoted ,uk(Gk), is then defined as

mGy) = inf{m | V(Gy;m) = m} (2.5)

Since rewards are uniformly bounded, it is evident that for m sufficiently large (say, m >
A), we have V(Gk;m) = m; while for m sufficiently small (say, m < —A), we have
V(Gk;m) > m. The DAI is, therefore, well-defined. The following result shows the



importance of the DAI in Bandit problems:

Theorem 0  (Gittins and Jones, 1974): The optimal initial selections in the (G,0) Bandit
are those arms k for which

Gy = VE_ | ufG). (2.6).

Remark: The importance of independent arms for this result is obvious. What is less
apparent is the result in Berry and Fristedt (1985, Ch.6) that geometric discounting is,

within broad limits, necessary for the validity of this result.

Whittle (1982) contains a proof of Theorem 0. In fact, Whittle defines the Bandit
problem directly in terms of the Markovian dynamic programming problem, without any
reference to the notion of prior beliefs®. The idea of his proof, which we adopt in sections 3
and 4, is to show that the total payoff from the DAI strategy satisfies equation (2.4). An

appeal to the uniqueness of the fixed—point defining (2.4) then completes the argument.

3. Bandit Problems with Switching Costs

In this section we consider a generalization of the Bandit framework of section 2, by
admitting the possibility of non—zero switching costs. Evidently, there are two ways of
modelling switching costs. One option is to consider the situation where there is a fixed
cost ¢, 2 0 of switching away from arm k, regardless of which arm is switched to. The
other option is to consider a fixed cost Cy > 0 of switching fo arm k, regardless of from
which arm the switch occurs. We consider the former situation in this section. However,
we note that when the switching costs are not arm—specific (i.e., we have ¢, = ¢ for all k),

then the two problems are formally equivalent. All the other assumptions of Section 2 are

§We note also that Berry and Fristedt (1985) provide a proof of Theorem 0 using
Whittle’s arguments, but without an explicit appeal to dynamic programming
considerations.



maintained.

The definitions of histories and strategies remain unchanged from the previous
section. The total expected payoff from a strategy o requires the obvious modification that
each time the strategy requires a change in the arm in use, the appropriate fixed cost has
to be deducted. In section 3.1, we prove the existence of an optimal strategy for this
problem. Subsection 3.2 consists of an example that explains why if an index theorem is to
hold in this class of problems, the index cannot depend only on the characteristics of that
arm. Subsection 3.3 then defines a modified version of the DAI for this problem. Finally,
in subsection 3.4, we prove that the strategy defined by this modified index is an optimal

strategy.

3.1 Existence of an Optimal Strategy

Once again, we exploit the equivalence between the given Bandit problem and a
suitably defined Markovian dynamic programming problem. When switching costs are
non—zero, the state of the Bandit problem at any time cannot adequately be described by
the prior belief G. Rather, it is also important to know the arm that was used in the
previous period. Therefore, letting A denote the set of all arms {1,...,K}, we define 2 =
@(%K) x A, to be the augmented state space. Let €* denote the set of all bounded,
measurable functions from Q to R. Endow €* with the sup—norm metric topology. We
first introduce some shorthand notation that simplifies exposition in the sequel. For each

H € ¢*, and (G,j) € 0, define
n(Gy) = . / ; 1p, (dr) Gy (dpy ), (3.1)

and

BB(G)IG, = J_f HIGGD.doi(dr)G(dp)) (32)
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Now, define the mapping L from &* to itself by
K

LH(G)k) = Vj=1 LjH(G,k), (3.3)
where, for j # k, we have

LjH(G,k) = rj(Gj) + 6E[H(G")|G,j] — ¢ (3.4)
and

LkH(G,k) = rk(Gk) + SE[H(G")|G K] (3.5)

It is easy to see that L is a contraction, and hence has a unique fixed—point, denoted say,

V. Evidently, V satisfies

V(G k) = va‘___l LV(G.K), (3.6)

where LJ-V is defined as in (3.4)—(3.5) with V replacing H.

Routine dynamic programming arguments now show that V(Gk) is the value of the
Bandit problem with the given switching costs, when the prior belief is given by G, and the
arm the decision maker used in the previous period is k; and that any measurable selection
4 from the correspondence of maximizers in (3.4) defines an optimal strategy for this

problem?.

3.2. An Example

Let I(a) represent the distribution which places point mass at a € R. Consider a
two—armed Bandit in which the prior on arm 1 is pll(l) + (1——p1) 1(0), and that on arm 2
is p2I(1) + (l—pz)I(O), where p,,p, € (0,1), and Py > Dy Let the cost of switching away
from arm i be c;, where ¢, = ¢; = ¢, say. Finally, suppose that ¢ > p2/ (1-6). We will

show that there cannot exist an index strategy which is also an optimal strategy if the

9Tn the very first period of the problem, when no arms have yet been tried, the value

of begining with the prior G is V¥(G) = max; L jV(G,j), and any j that attains this

maximum is an optimal initial selection.
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index on arm i is to depend only on its own characteristics, i.e., on p; and c.

It is easy to see that the uniquely optimal strategy in this problem is simply to play
arm 1 forever. Now consider any indices ui(pi,c) for the arms. Since the arms are identical
up to the prior, we must have foy = fy = iy 82Y. Moreover, if 4 is to have any chance of
being optimal, it must be monotone in p (i.e., we must have u(p,c) > p(q,c) if p > q), since
an arm with prior p is always then more attractive than an arm with prior q. Therefore,
we must also have 4(0,¢) < p(pq,c)-

But now it is easy to see that the strategy defined by u cannot be optimal. For
although the strategy recommends arm 1 in period 1, it recommends a switch to arm 2 in
period 2 if the first period reward is 0. This continuation is suboptimal, since ¢ >

py/(1-6), by assumption. o

3.3. A Modified Index

The reason an index on arm k cannot depend solely on Gk and Chr is that these
arguments, taken collectively over k, still do not sufficiently capture the "state" of the
Bandit problem at a point in time. Namely, at any given time calculation of the optimal
continuation strategy requires knowledge of the priors (Gy ), the switching costs (cy), and
the arm j that was in use in the previous period.

In this subsection we define a modified version of the DAI that does rely on this
additional piece of information. We note that our modified index will coincide with the
DAI of Gittins and Jones (1974) if all switching costs are zero.

So consider an arm k, and let Gk be the prior belief on k. Let Qk =XxA. Fixa
terminal reward m € R. We introduce more shorthand notation in the spirit of (3.1)—(3.2).

For any bounded measurable function Hy defined on Qk, let

EHk[GfJ Gk] = J x ijk[Gk(r),k;m]pk(dr)Gk(dpk). (3.8)

Once again, using contraction mapping arguments it can be shown that there is a unique
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bounded measurable function Vi (.;m) on €y that satisfies
Vk(Gk,j;m) = max{m — CJ': Lka(GkJ;;m)} (3.9)

where, for k # j, we have

L Vi (Gpojm) = . (Gy) +8EV, [G{ |G ] - C; (3.10)
and

L Vi (G kim) =  (Gy) +EEV[G{ Gyl (3.11)
Now define for each (Gy.j) € &y,

i (Gyd) = inf{m| Vk(Gk,j;m) = m —cj}. (3.12)

For m large (say, m > A + max cj), we clearly have V, (;m) = m, while for m sufficiently
small (say, m < —A), we also have V, (.;m) > m. Therefore, i () is well—defined. We will
refer to p,k(Gk, j) as the modified indez on arm k when the state of the Bandit problem is
given by (G,j). We note that for any k and j, ,uk(Gk,j) also depends on ¢ and ¢ In the

interests of notational brevity, we suppress this dependence.

3.4. Optimality of the Modified Index Strategy
We will prove the following Theorem that establishes the optimality of following the

prescriptions of the modified index.

Theorem 1  The optimal choices in the Bandit problem with switching costs at the state
(G,j) are those arms k for which

:U’k(Gk)j) = SupiGA lffi(Gi;j)- (3.13).

The proof of Theorem 1 follows an analogous procedure to that used by Whittle (1982) in
proving Theorem 0. For expositional ease, we organize the proof in a series of steps. First,
we define a modified version of the original Bandit problem, which is parametrized by M €

R. For "low" values of M, the value function ¢(.;M) of the modified problem is
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independent of M, and coincides with the value function V of the original problem. Next,
for each M € R, a function U(.;M) is defined on {2 using the functions V, of section 3.2.
Then, it is shown that we have U(.;M) is identically equal to ¢(.;M). Hence, U coincides
with V for "low" values of M. Finally, it is shown using properties of the function U, that

an arm k is a maximum of the RHS of (3.6) at a state (G,j) if, and only if, (3.13) is met.

Step 1:

We begin with a modification of the original Bandit problem. Specifically, we add a
(K+1)st arm to the Bandit, where this additional arm pays a constant reward of M € R.
The cost of switching away from this arm is zero0. The usual arguments show that the

value function ¢(.;M) of this modified problem satisfies

$(Gk;M) = max{M —c,, max;e \ Ljd)(G,k;M)} (3.14)
where, as usual,

Lj¢(G»k§M) = rj(Gj) + SE[§(G;M)|G,j] - Cx (3.15)

and

LA(GIGM) = 1(Gy) + GE[O(G M) | G K] (3.16)

Observe the important point that the uniform boundedness of rewards implies the existence
of constants B and C such that for all (G,k) € 2, we have (i) ¢(G,k;M) = M for all M > B,
and (ii) ¢(G,k;M) = V(G,k) for all M < C, where V is the value function defined in section
3.1. Note also that if M > B, we must have M > ui(Gi,k) for any G, and k.

Step 2:

Easy arguments, akin to those used in Whittle (1982, Theorem 14.2.1), or Berry and

10Note that the switching cost on this arm is really irrelevant, for if it is ever
optimal to play this arm at any point, this must remain an optimal choice forever, since no
new information is obtained by playing this arm.
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Fristedt (1985, Lemma 6.1.2) show that for each k, the function Vk(Gk,j;M) is
non—decreasing and convex as a function of M for each fixed (Gk, j) € Qk' Consequently,
the derivative with respect to M exists almost everywhere. For notational ease, let
vk(Gk,j,;M) = 0V k(Gk,j;M)/ 6M. For completeness, we shall assume that at points of

ambiguity, v is given the value of the right derivative.

Step 3:

Define the function

K
J:

u@kM) = B — [B[nt_ v(G km)dm — ¢ (3.14)
M )

Fix any j € A. Define Dj(G,k;M) = Hi#j [Vi(Gi,k;M)]. Note that for any i € A, M 2
pi(Gi,k) implies vi(Gi,k;M) = 1, by definition of ui(.). Therefore, for M > max, 4 ui(Gi,k),
we have D j(G,k;M) =1, and dej(G,k;M) = 0. Integrating (3.14) by parts, and noting
that VJ-(.;B) = B —¢;, we obtain

U(G, kM) = V(G kM).D(GM) + [ V(G km)d D.(G.km),
i j M 3 m-]

From the convexity of Vi(Gi,k;.) in M, it follows now that

U(G,k;M) > M — ¢, with equality if M > max, ui(Gi,k).

Step 4:

We now show that the function U of step 3 is the same as the function ¢ of step 1;
and that i maximizes the RHS of (3.14) whenever (3.13) holds. To this end, we hold (G,k)
fixed, and suppress dependence of all functions on these arguments. Thus, V j(Gj>k;M) is

written simply as Vj(M), uj(Gj,k) as i E[$(G/;M)| G k] as E[p(M)], etc. Now, let

£(M) = V(M) ~ LV (M), (3.17)
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Note that fj >0, and fj(M) =0if M« ,uj. First consider the case when j # k. We have
L. = 1. — (M)D.(M ® V.(m)d_D.(m)].
U(M) rj%+&m();n+mmjmun@m

Using the fact that D J.(.) does not depend on Gj’ we obtain

Um) ~LU(m) = o =+ SDM)V{(M) — BV, (M)]

+ 5]1(\';[ [Vj(m) - E[Vj(m)]]dej(m).
Since, D j(m) + j;{ dej(m) = 1, this gives us

UM) —LUM) = DM)EM) + j;lfj(m)dej(m)

> 0. (3.19)

Now note that if m € B then fj(m) = 0; while, if m > max, M then we also have

d D j(m) = 0. Putting these together, we obtain

U(M) — LjU(M) =0, if Mj > max{M, max;y ; p:}- (3.20)

An identical argument shows that for j = k, we again have U(m) - L jU(m) > 0, with
inequality if H > m, and By > i foralli# j.

We now return to full notation. Recall that we have U(G, kM) > M — Cheo with
equality if M > max; A w(G; k) (see step 3). Together with (3.19)—(3.20), this implies

U(G ;M) = max{M —c,, MaXe LjU(G,k;M)} (3.21)
where, letting p*(G,k,M) := max; .z {M, max;. 5 (G k)1,

UG GM)  =M-—c, if M = p*(G,k,M) (3.22)
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Equation (3.21) implies that U must coincide with ¢, for the contraction mapping
defining ¢ has a unique solution. But ¢ itself coincides with V when M < C (see step 1).
Together with (3.22) — (3.23), this completes the proof of Theorem 1. O

4. Bandit Problems with Stochastic Termination

We now turn to the second of our generalizations of the model of section 2. We
assume in this section that at the end of each period in which arm k € {1,...,K} is in use,
there is a probability A, € [0,1] that it will "fail" or "die", i.e., transit into an absorbing
state in which it produces a reward of Ay foreveril, We assume that failure is observable by
the principal, i.e., the principal recognizes immediately the fact that failure has occurred.
Formally, let I(a) represent the distribution with point mass at a, for any a € R. Suppose
Ge D(%K) is the prior at the beginning of a period in which arm k is the chosen arm, and
suppose that the reward r is witnessed from arm k. Then, with probability (I—Ak) the new
posterior on arm k will be Gk(r); and with probability A, the arm will "fail" at the end of
the period and the new posterior will be I(a, )12

In section 4.1, we show the existence of an optimal index strategy in this class of
problems. Indeed, this result is an immediate consequence of Whittle’s (1982) proof of
Theorem 0, once we have defined the state space of the problem appropriately. Section 4.2
then shows the importance of assuming that an arm fails only when it is in use. A
counterexample there establishes that if failure can occur even when arms are not in play,

then the use of index strategies may be suboptimal.

1tAs will become apparent, it suffices that in the absorbing state the arm produce
rewards from any distribution whose mean is a; .

12With transparent modifications of the arguments, it is easily seen that an index
theorem is valid even if the arm may fail while in use, i.e., upon selection it generates a
reward from the support of Gk with probability (1—)\k), and generates a reward ay with

probability )‘k'
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4.1. Existence of an Optimal Index Strategy

We define the relevant probability spaces first in order to set up the above problem
as a dynamic programming problem. Let 5 € {0,1} be an index that indicates if arm k is
still active or not, where 81 = 0 implies the arm has not yet failed. In this notation, the
state of arm k at any time can be represented by (Gk,sk) € X x {0,1}. The reward from

arm k, denoted Rk(Gk,sk) is given by

The state of arm k changes, of course, only when arm k is employed. In this case, there are
two possibilities. If S = 1, then with probability one, the state remains at (Gk,sk).
While, if 5, =0, and the reward r is witnessed from the arm that period, then with
probability (1-,) the state will move to (G (r),0), and with probability Ay to (Gy(r),1).
Since the distribution of rewards 1 is calculable from knowledge of Gk’ this gives rise in the
obvious manner to the transition mechanism for (Gk,sk). Denote this transition by
Q- Gy,5;)- Finally, for notational convenience, let oy denote a generic state (Gy.8) of
arm k.

The dynamic programming problem is now easily defined. Let a:= (ak)k A denote
a generic state of the problem, and A = {1,...,K} the action space. Since the state of arm k
changes only when it is employed, the probabilities Qk define the transition mechanism
completely for this problem. Letting (a__k,;zk) denote the vector a = (al,...,aK) with oy
replaced by ‘;‘k’ the usual methods now show that the value function V of this problem
satisfies

V(ia) = maXe A LjV( @) (4.2)
where

LV(a) = Ria) +6 [V(a_po o) Qp (dy | o) (4.3)
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We now define the indices 4 (.) in the familiar way. Let V| (o;M) denote the value
of the stopping problem in which the initial state of arm k is o, and the principal is
required in each period to choose between playing arm k one more period or accepting the

terminal reward of M. Routine arguments show that the problem is well—defined. Now let

i) = inf{M]| V,(0q;M) = M}.

We have

Theorem 2  The RHS of (4.2) is mazimized by those k for which

mlay) = MaX;e A uj(aj).

Proof: This is an immediate consequence of Whittle’s (1982) proof of Theorem 0, which
requires only that the problem is Markovian, and that the state of arm k change only when

arm k is employed. o

4.2. An Example

When arms may "fail" even if not in use, the use of index strategies need not be
optimal. Consider the following example in which there are two arms. Let § = %; )\1 =1,
Ay = 0; and a; = 0. (a, is irrelevant since A, = 0.) Suppose the initial belief on arm 1
places point mass at %; and that the belief on arm 2 is pI(1) + (1-—p)I(0). Direct
calculation reveals that the index on arm 1 is %, while that on arm 2 is 4p/(1+p). Forp >
%, the index on arm 2 is strictly larger than %, so that an index strategy would indicate
playing arm 2 in the first period. Since arm 1 fails at the end of period 1, the value of
following the index strategy for p > %—is just p/(1-6) = 2p.

Now consider the strategy which begins with arm 1, and switches to arm 2 in period

2. The value of this strategy is evidently [% + 62p] = % + p. Since % + p > 2p whenever p

< %—, the index strategy is strictly suboptimal for p € (%,%) o
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