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Abstract

This paper introduces an improved method of inference in cointegrated models,
which uses the VAR prewhitening procedure to estimate shortrun dynamics.
The prewhitening procedure provides a very flexible framework to incorporate
the knowledge of shortrun dynamics, to efficiently estimate the longrun pa-
rameters in cointegrated systems. It can be used for the commonly used non-
parametric methods of inference in cointegrated models. When the shortrun
dynamics is given explicitly, as in ECM’s, the nonparametric methods can be
implemented in a parametric form with the proposed VAR prewhitening proce-
dure. Therefore, they become conformable with the ECM-based methods. Un-
like the ECM-based methods, however, they can also be made valid quite easily
for misspecified models through the analysis of the spectrum for the prewhitened
errors. The effect of the VAR prewhitening and other important issues on the
use of shortrun information in estimating cointegrated models are investigated
through an extensive Monte Carlo simulation.
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1. Introduction

The cointegrating models have increasingly been more popular in applied research,
since the publication of an influential paper by Engle and Granger (1987). The issue
of efficient estimation of cointegrated systems now seems to be largely settled down, at
least in the theoretical domain. The usual least squares estimator is super-consistent,
but known to be inefficient and biased asymptotically. The asymptotic sub-optimality
of course well predicts unsatisfactory finite sample performance of the least squares
estimate, as has been documented in the simulation studies by various authors.

There are two strands in the literature on the theory of efficient estimation of
cointegrated systems: one nonparametric, and the other parametric. The exact ML
approaches by Johansen (1988, 1989) and Park (1990b), for instance, are based on
vector-autoregression (VAR) of known order, represented as an error correction model
(ECM). They require a parametric specification of the shortrun transient dynamics,
as well as the longrun static equilibrium relationships. In contrast, the approaches by
Phillips (1988, 1989), Park (1990a) and Phillips and Hansen (1990) do not presume
any specific transient dynamics. In their approaches, only the longrun equilibrium
relationships are modelled in parametric forms. The shortrun dynamics are estimated
nonparametrically to efficiently estimate the longrun parameters. It is shown in Park
(1990b) that the two approaches are asymptotically equivalent.

We consider in this paper the VAR prewhitening method to estimate the short-
run dynamics of a cointegrated model. The method has recently been used by An-
drews and Monahan (1990) to get improved asymptotic variance estimators for het-
eroskedastic and autocorrelated time series. The finite sample performance of the
aforementioned nonparametric methods is, needless to say, heavily dependent upon
the quality of estimates for the shortrun dynamics, which are effectively concentrated
on the spectrum (especially, at the origin) of the stationary process driving a cointe-
grated model. The VAR prewhitening procedure therefore offers an obvious potential
to improve the efficiency of the longrun parameter estimates in finite samples.

The VAR prewhitening method seems very attractive especially in the context of
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estimating cointegrated models. It provides a very flexible framework within which
we may conveniently incorporate the knowledge (or the assumption, more plausibly)
on the shortrun dynamics of a cointegrated model, to more efficiently estimate the
longrun parameters in finite samples. Often, one may wish to consider a shortrun
ECM, jointly with a longrun cointegrated model, as an essential ingredient of his
empirical model or for the purpose of forecasting. This line of research has been
taken by many — too many to enumerate — authors. For the specification of an ECM,
the assumption of a finite order VAR structure for the underlying data generatng
process (DGP) is unavoidable.

When the true DGP for a cointegrating model is given by a finite VAR of known
order, the VAR prewhitening procedure for the stationary components of the model
yields pure white noise residuals, whose spectrum is flat over the entire range. The
complete prewhitening is possible in this case, and no more dynamic structure to
be analyzed is left over in the residuals. As a result, any of the aforementioned
‘nonparametric’ methods of inference for cointegrated models can be implemented
in a parametric form, since the VAR coefficients in the prewhitening procedure fully
represent the shortrun dynamics of the model. The ‘nonparametric’ methods can
therefore be made conformable with the parametric procedures by Johansen (1988,
1989) and Park (1990b) based on the ECM.

This is obviously an extreme case. One may hope at best that a postulated VAR
closely approximate the true model. First, the order of the underlying VAR is typ-
ically unknown, even when it is justifiable that the true DGP has a VAR structure
of finite order. Second, the underlying DGP may deviate from the standard finite
order VAR in various directions. For instance, the errors may have MA and/or het-
eroskedastic, unconditional or conditional (such as ARCH), components. Economic
models generated by optimizing behavior often suggest linear cointegrating relation-
ships, but typically with the shortrun dynamics much more complicated than a simple
finite order VAR structure. For the concrete examples of such models, the reader is
referred to Cooley and Ogaki (1990), Gregory, Pagan and Smith (1990) and Ogaki
and Park (1990).
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The VAR prewhitening for the stationary components of a cointegrated model
is therefore rarely expected in practice to produce pure white noise residuals. The
motivation for the pseudo-VAR prewhitening is to obtain residuals whose spectrum is
flatter at the locality of the origin, and easier to precisely estimate in finite samples.
The more closely a postulated VAR approximates the true model, the less dynamics
would be left over in the prewhitened residuals. Here we simply use a parametric
specification of a VAR model, for presumably more complicated shortrun dynamics,
to get better estimates for the spectrum of the stationary components of the model.
Of course, it is allowed that the prewhitened residuals are serially correlated and/or
heteroskedastic. The ML methods by Johansen (1988, 1989) and Park (1990b) are
not asymptotically efficient, unless the complete prewhitening is possible.

We perform an extensive Monte Carlo experiment to evaluate the effect of VAR
prewhitening, and to study some of the important issues on the use of the shortrun
information to efficiently estimate the longrun parameters in finite samples. In the
simulation, the VAR prewhitening method is applied to the canonical cointegrating
regression (CCR) estimator developed by Park (1990a). The resulting estimator
performs truly well in finite samples. Especially when the complete prewhitening is
allowed, it in many cases yields virtually zero bias and mean squared error (MSE)
really close to the theoretical asymptotic variance even for the samples of size 100.
In terms of MSE, the CCR estimator with the VAR prewhitening outperforms the
exact ML method in small samples, unmbiguously and often very substantially. The
VAR prewhitening method appears to be quite effective in estimating the shortrun
dynamics of cointegrated models.

Several other important issues on the use of shortrun information in estimating
cointegrated models are also examined in our simulation. As we mentioned above,
the specification and estimation of the shortrun dynamics becomes unimportant in
asymptotics. Clearly, it is a finite sample issue. The method of VAR prewhiten-
ing makes any of the ‘nonparametric’ methods mentioned above applicable in both
parametric and nonparametric form. This versatility makes it by far easier and more

straightforward to see how important for the efficiency of the longrun parameter esti-
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mators it is ‘to use the information on the shortrun dynamics. The question has been
raised by several authors, including Gozalo (1989) and Inder (1990), but answered
only indirectly by comparing different estimators.

We found by comparing the same CCR estimator implemented in parametric and
nonparametric form that the precise information on the structure of shortrun dy-
namics greatly improves the efficiency of the longrun parameter estimates. The CCR
estimator performs substantially better in finite samples, when the information on the
shortrun dynamics is utilized. The information on the shortrun dynamics, however,
provides only a potential to improve the longrun parameter estimators. In particular,
it seems that estimators using the exact specification of the shortrun dynamics do
not necessarily perform better than any other estimators not relying on such specifi-
cation. Our simulation results indeed show that the exact ML method is in no sense
better in small samples than the other ‘nonparametric’ methods which do not use any
information on the shortrun dynamics. It very often yields completely nonsensical,
and unacceptable, estimates in small samples.

The rest of this paper is organized as follows. The models and estimators are
given in Section 2. The parametric and nonparametric specifications of a cointe-
grated model are compared, and their implications on the structure of the shortrun
dynamics are contrasted. The existing ‘nonparametric’ procedures for inference in
cointegrated models are briefly discussed. The VAR prewhitening procedure is intro-
duced in Section 3. The method of the VAR prewhitening procedure to estimate the
critical shortrun parameters is proposed. It is also explained how to implement the
procedure to do inference in a cointegrated model. Section 4 reports the simulation
results for the effect of the VAR prewhitening on the finite sample efficiency of the
CCR procedure. Several other issues on the use and importance of shortrun informa-
tion on estimating cointegrated models are investigated there too. The finite sample
performance of the CCR estimator with the VAR prewhitening is also compared with
that of the exact ML estimator. Section 5 concludes the paper, and the mathematical

proofs are given in Appendix.



2. The Models and Estimators

We consider time series {y;} and {z:}, which are respectively £ and m-dimensional

integrated processes of order one. Let {y;:} and {x:} be cointegrated, and write
M(a) : v = ey + uy

where {u;} is stationary. It is assumed in M(a) that there is no cointegration in
{z;}, and II is uniquely determined. The model M(a) represents only a static longrun
equilibrium relationship. No specific dynamic structure is presumed in the model.
When it is desirable to specify the shortrun transient dynamics, as well as the
longrun static equilibrium relationship, we may look at an ECM. To define it precisely,

let
z = (yp, Ty)’ (1)

be an r-dimensional, r = £ + m, time series, and define an r x £ matrix
B =(L,-I') (2)
The usual ECM for {z;} in (1) is given in the form

p-1
M(b) : Nz = AB'z_p + Z CilDNzi— + €&
k=1

where {¢,} is assumed to be white noise. In M(b), A is r x £ matrix of error correction
coefficients. The error correction model M(b) is derived in Johansen (1988) from a
p-th order VAR model for {z;} under the assumption of the presence of unit roots
and cointegration that is implied by M(a).
In M(a), the process
wy = (ug, Azy)’ 3)

which drives the model is assumed to be a general stationary process, without any
precise specification of its dynamic structure. Only the presence of the unit root in
{z,} and cointegration between {y;} and {z,} to insure, respectively, that {Az;} and

{u;} are stationary.
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The process is, however, specified in M(b) in an exact parametric form. To see

this, define an (£ 4+ m)-dimensional matrix

1 I
1= (s 1)

and let I, be an r X r matrix the £ x £ northwest block of which is an identity and zero
elsewhere. Also, define A, to be an r x r matrix which is obtained by augmenting

r X m zeros to A. Then we have

Lemma 1 Suppose DGP is given by M(b). Then {w;} defined in (3) follows VAR of

order p

P
wy = Z Qrw;_g + e

k=1
with ®, = HCyH™ — HCy_11,, for k =1,...,p — 1, &, = HA, — HCp1 1, and

e; = He;.

The existing nonparametric estimators for II in M(a), such as those developed in
Phillips (1988, 1989), Park (1990a) and Phillips and Hansen (1990), do not rely on any
specific dynamic structure of {w;}. They simply assume that it satisfies an invariance
principle. The invariance principle is known to hold for a very wide class of stationary
and possibly heteroskedastic processes, including of course the process generated by
M(b). The reader is referred to Phillips (1989) and the references cited there for the
explicit conditions. On the other hand, the parametric methods of Johansen (1988,
1989) and Park (1990b) are based on the ECM M(b). Therefore, they use the exact
parametric specification of the dynamic structure of {w;}, as shown in Lemma 1. They
also impose the normality of the error distribution to derive the exact ML estimators.
The ML estimate for Il may be obtained either using the Johansen’s (1988, 1989)
method with the posterior normalization of B, or following the procedure by Park
(1990b) with the a priori identification of B. The posterior normalization or a priori
identification of B is, of course, given by (2).

We define
S = lim =3 E(wa) (4)

n—oo
nia



n t—1
o= Jim =3 B(wwly) 0
N =2 k=1
n n !
Q0 = lm —1-E EW) (Z wt) (6)
n=een t=1 t=1

Notice that Q = £ +T 4+ I". Also, we let A = ¥ 4. Partition  and A conformably
with {w,} in (3) as

Qi Qe Ay Ag
0= d A= 7
(nn Op ) ™ An A (M

Qo= Oy — D57 Qar and Ay = (Apy, Ag,)’ (8)

and define

The aforementioned nonparametric methods of inference in cointegrated systems
require consistent estimators of some of the parameters defined in (4) - (8). In the
paper, we specifically look at the canonical cointegrating regression (CCR) method
by Park (1990a). The procedure requires the transformation of {y:} and {z.}, using
the stationary components {w;} of the model. The transformed series {y;} and {z7}

are given explicitly by

Tz, = mt—(E‘lAz),wt 9)

’ !
y: = Y- (2_1A2H+ (0,91294;21) ) Wt (10)

The regression reformulated with these transformed series is called the CCR.
The efficient estimation of the parameter IT may now simply be based on the OLS
in the CCR
=z} +u] (11)
Note that the cointegrating relationship between {y;} and {z.} in M(a) is preserved

in (11), since the transformations to obtain {y;} and {z;} only involve stationary

terms. Notice that

him — ZE ziu;
n—oo n
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i.e., the usual orthogonality between the regressors and the regression errors holds in

the CCR. Moreover, the CCR errors {u}} become
’U,: = U — 912Q;21A.’17t

which is asymptotically independent of {Az;}. This is the reason that the OLS in
CCR (11) is asymptotically equivalent to the ML estimator. The longrun variance of
{ur} is given by ., which is defined in (8).

In this paper, we are primarily concerned with purely stochastic models, where
the individual series {y;} and {z;} do not have any deterministic trends. The CCR
method for more general models containing deterministic trends, however, is essen-
tially identical. It only requires some obvious modifications in the definition {w:} in
(3) so that {w;} represents purely stochastic stationary components of the underly-
ing model. Any deterministic regressors included in the regression do not need the
transformation in (9). The reader is referred to Park (1990a) for more details.

The method by Phillips and Hansen (1990) is quite similar to the CCR procedure
introduced above. It also requires the nonparametric estimation of the nuisance pa-
rameters § and A,, defined respectively in (6) and (7). More precisely, their estimator

is given for our model by
-\

It =1t —n (Z :vtcc;) AS(T, ——9120521)'

t=1
where IT* is the least squares estimate from the regression of {yf} on {z:}, yi =
y: — Q99055 Az,. Their estimator therefore modifies {y;} in the first step, and then
corrects in the second step the OLS estimate from the regression of the modified {y;"}
on {z;}. In contrast, the CCR method modifies both {y;} and {z;} simultaneously.
The Phillips’ (1988, 1989) procedures are based on an ECM, just as those of
Johansen (1988, 1989) and Park (1990b). He, however, uses an essentailly nonpara-
metric ECM, and its asymptotic likelihood function, to derive the quasi-ML estima-
tors. The procedure, in particular, does not presume the specification of the explicit

shortrun dynamics; instead, it requires the nonparametric estimation of the longrun

variance ) in (6), similarly as Park (1990a) and Phillips and Hansen (1990).



3. VAR Prewhitening Method

We consider a p-th order VAR model

P
wy = Z Srwir + e (12)
k=1

for the process {w;} in (3) which generates the cointegrated model M(a) or M(b).
When the model is generated by M(b), {w;} follows the VAR process exactly as
given by (12) with white noise residual {e:}. The VAR coefficients ®;’s are defined,
in a one-to-one fashion, from the coefficients Ci’s in the ECM. This was shown in
Lemma 1. The VAR model in (12) is, however, not meant to be a true model in
general. 1t is to be understood here primarily as a pseudo-model, with the coefficients

®,’s defined trivially as

1 n
lim — Y E(wixe;) =0 (13)
TN ok

fork=1,...,p.

The pseudo-VAR model has recently been considered by Andrews and Monahan
(1990) to obtain an improved heteroskedasticity and autocorrelation consistent esti-
mator of covariance matrix. Their method is directly applicable for the estimation
of O defined in (6). The basic idea is to estimate the asymptotic variance of {w;},
indirectly through fitting the VAR model (12) by the least squares and analyzing the
spectrum of the prewhitened residual {e;}. As they explain, we may easily obtain
a consistent estimate for the asymptotic variance (or the longrun variance, in our
terminology) of {w,} from that of the residual {e;} and the estimates of the VAR
coefficients @, for k = 1,...,p, i.e., by ‘recoloring’ the spectrum of the prewhitened
residual {e;}.

The VAR model (12) is used here simply as a tool to get residuals which possess
a decreased temporal dependence. In general, the prewhitening procedure leaves a
process whose spectrum is flatter at the locality of the origin, which may be esti-
mated with a smaller error. Clearly, this does not necessarily imply that we may

more precisely estimate the spectrum of the original series, due to the errors involved



