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Abstract: The Fudenberg and Maskin folk theorem for discounted repeated games
assumes that the set of feasible payoffs is full dimensional. We obtain the same conclusion

using a weaker condition which we term payoff asymmetry. This condition is natural, and
also almost necessary.
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1. Introduction

Fix a finite stage game G(A;, Tj; i = 1,..n) where A; is a finite action set, Z; is the
associated set of mixed actions and m; is the payoff function, for player i. Player i's
minmax payoff is denoted u; = ming.; maxy; ®j(a;,0.i). This is the lowest payoff a
maximizing player can be forced down to. It is important that the minimization by other
players be over mixed strategies. Note also the order of the min and max operators: player

i's maximizing action is chosen "after" the minmaxing mixed strategy choice of other
players. Let F be the convex hull of the set of feasible payoffs. A payoff vector v =
(V1,...vn) is strictly (resp. weakly) individually rational if for all i, vi > (resp. 2) nj. Folk
theorems assert that any feasible and individually rational payoff vector is a (subgame
perfect) equilibrium payoff in the associated repeated game with little or no discounting. It
is obvious that feasibility and individual rationality are necessary conditions for a payoff
vector to be an equilibrium payoff. The (surprising) content of the folk theorems is that
these conditions are also (almost) sufficient.

The earliest folk theorems are due to Aumann and Shapley (1976) and Rubinstein
(1977, 1979). These results assume that payoff streams are undiscounted. Fudenberg and
Maskin (1986) establish an analogous result for discounted repeated games. For the two
player case their result is complete (modulo the requirement of strict rather than weak
individual rationality, which we retain in this note) and does not employ additional
conditions. Their result for three or more players relies on a full dimensionality condition:
the dimension of the set of feasible payoff vectors must equal the number of players. This
condition is sufficient. They present an example in which the conclusion of the folk
theorem is false. In this example players' payoffs are perfectly positively correlated: all
players receive the same payoffs in all contingencies. The full dimensionality assumption,
of course, rules out examples of this sort.

We present a weaker sufficient condition which is also almost necessary. Thus our
charactenzatlon is essentlally complete. The condition is that there exist n feasible payoff
vectors vl, .v" such that v < vJ for alli, j, i*j where v] is the i-th component of the j-

th payoff vector. We may express this condition verbally as follows: there exist n
"punishment" payoff vectors, one for each player, such that player i's payoff in his own
"punishment" is strictly worse than his payoff in any other player's punishment. We term



this condition payoff asymmetry.! Note that this condition would be trivially satisfied if
we replaced strictly by weakly in the preceding description.

Payoff asymmetry is a natural condition. It is clearly implied by full-
dimensionality. For n=3 it implies that the set of payoffs is at least two-dimensional but
does not imply, nor is implied by (n-1) dimensionality. The following example
demonstrates this point.

Example Letn=4and take v = (0, 1, 0, -2), v> = (1, 0, -1, 1), v° = (2, 1, -2, 0)
and v = (1,2,-1,-3). LetF=co (V51 = 1,..4),

This example satisfies payoff asymmetry. Consequently the conclusion of the folk
theorem holds. However v° = v! + 2v% and v* = 29! + ¥2 so that F is two-dimensional. It
is interesting to note that adding any constant to player 3's payoffs yields an F which is
three-dimensional. Thus dimensionality is not invariant with respect to the origins of
players' utility functions although the latter are clearly irrelevant strategically. Itis therefore
not surprising that the notion of dimension does not neatly capture the essence of what is
necessary to prove a folk theorem.

Our result is for the standard case in which mixed strategies are unobservable. But
to develop some feeling for our condition and the argument assume, for the moment, that
mixed strategies are ex-post observable or simply confine attention to pure strategies (and
define individual rationality in the latter case through pure strategies). Let w be a strictly
individually rational and feasible payoff vector. Then, as we argue explicitly below, payoff
asymmetry implies that there exist strictly individually rational vectors v1,..v™ such that v;
< v{: Vi,j, i=j and vi < wj. Leta and al be (correlated) action profiles which yield the

payoff vectors w and vi, i=1,..n respectively. Let QU be the path in which a is played in
every period and Q! the path in which player i is minmaxed for T periods (during which he
plays a best response) followed by the action al forever after. Consider the simple profile
(Abreu (1988)) in which QU is played initially and any deviation by player i alone from an
ongoing path is responded to by imposing Q! (and simultaneous deviations are ignored).
Let T satisfy T(vj-u;) > maxa; T,(aj, a%) - Ti(ad), for all i. Then, using the criterion of
"unimprovability" (which only checks one-shot deviations) it can be directly verified that

for high enough discount factors, the described simple profile is a subgame perfect
equilibrium. (Since v; < wj a one-shot deviation from QU is unprofitable. Player i will not

1This condition was first presented at the International Game Theory Conference at Ohio State in July
1989. Our proof then did not however cover unobservable mixed strategies.



deviate from Q! since by the above inequality any one-period gain is wiped out by T
periods of minmaxing. Player j=i will not deviate from Q! since v% < v]?). That is, with
observable mixed strategies and given payoff asymmetry the extension of the undiscounted
folk theorem to the discounted case is straightforward. The subtleties in the argument
derive primarily from the consideration of mixed strategies.

This note is organized as follows. Section 2 presents the model. Section 3
contains our results on the necessity and sufficiency of payoff asymmetry. Section 4
concludes.

2. The Model

We consider a finite n-player game in normal form defined by < Aj, wj; i=1,.n >

n
where Aj;is the i-th player's finite set of actions, and let A = ] Aj. The i-th player's
i=1
n
payoff is Ti:A—R. Let X be the set of player i's mixed strategies and let X = JJ ;.
i=1

Abusing notation, we write 7j(c) for i's expected payoff under the mixed strategy ¢ =
(61,..0p) € Z. For any n-element vector X =(X1,..Xp) let X.j denote the corresponding (n-
1) element vector with the i-th element missing. Let n?(o_i) = maxjy; 7i(a;,0-i) be playeri's
best response payoff against the mixed profile ¢_;. Denote by mi = (mi,.. mril) € Xa
mixed strategy profile which satisfies ml1 € argming.; n:(o.i) and m: € argmaxami(ai,m_ii).
In words, m_ii is a (n-1) profile of mixed strategies which minmax player i and m.i is a best

response for i when being minmaxed. We adopt the normalization ni(mi) =0 foralli. Let
F = co{n(0): 6 € X} and denote by F* the set of feasible and (strictly) individually rational
payoffs; F* = {w € F: w; >0, for all i}, .

We will analyze the associated repeated game with perfect monitoring. That is, for
all i, player i's action in period t can be conditioned on the past actions of all players. In
addition, we permit public randomization. That is, in every period players publicly observe
the realization of an exogeneous continuous random variable and can condition on its
outcome. This assumption can be made without loss of generality. A result due to
Fudenberg and Maskin (1991) shows explicitly how public randomization can be replaced
by "time-averaging".



Denote by ¢ = (0li1,..O4t,..) a (behavior) strategy for player i in the repeated game
and by (o) his expected payoff in period t given the strategy profile o.. Player i's

average discounted payoff under the (common) discount factor d is: vi(o) = (1-9) E‘: ot

7y (o). Let V(8) denote the set of subgame perfect equilibrium payoffs.

3. The Theorems
The new condition we propose is

Payoff Asymmetry  There exist payoff vectors Ve F, for i = 1,..n, such that \7; < {;Jl ,

for all i and j, i=j.

Let Fj;, j=i denote the projection of F on the i-j coordinate plane. An implication of
payoff asymmetry is:

Lemma Under payoff asymmetry dim(Fj;) 2 1 for all i and j, j*i. Furthermore, if
dim(Fj;) = 1 for some i and j, then dim(Fjx) = 2 for all k=i,j.

Proof: It is immediate that dim(Fj;) 2 1 for all i and j, j=i. Suppose now that dim(Fj;) =
dim(Fy) = 1 for some j*=k. Payoff asymmetry applied to the payoffs of players i and j
(and similarly players i and k) implies that these pairs of payoffs are negatively correlated.

This in turn implies that the payoffs of players j and k are perfectly positively correlated.
Such correlation is ruled out by payoff asymmetry.e

Theorem 1  Under payoff asymmetry, any point in F* is a subgame perfect
equilibrium payoff when players are sufficiently patient. That is, for any
w € F* there exists § < 1 such that w € V(3) for all &2 3.

Proof: Fix w € F*. Let wi denote the payoff vector which yields player i his lowest
payoff in the game; i.e. wi =min { vi: (v.4, vi) € F}. Define

vi=Bwi+ By v + (1-B1-B) w
where B1>0, B2>0 are convexifying weights. Clearly one can pick these so that the
payoffs vi satisfy Vi,j, i=j

Strict individual rationality vi>>0
1l
Asymmetry vi<vy



Target payoff domination vi <Wwj

(The wi's are needed because it might be the case that v L wj for some i).

We will assume without loss of generality that in addition the vi's lie in the relative
interior of F*. We now specify a strategy profile which yields payoff w and which for
sufficiently high d is also a subgame perfect equilibrium. The strategy is as follows.
Players play the (correlated) action that generates w at t=1 and continue to do so unless
some player i deviates singly in some period t. The key element of the specification is the
"punishment" for player i which is invoked for any (single person) deviation by player i
from prescribed behavior. Assume that for some k=i, dim(Fjx) = 1. (The proof when
there is no such k is a corollary). Then by the Lemma, dim(Fj) = 2, for j=ik.

Furthermore, by payoff asymmetry Fix is a straight line with negative slope. Let mi
minmax player i. Then, fixing m for j=i,k 1nduces a zero-sum game between i and k and

we may assume without loss of generahty that m and mk are equilibrium minmax strategies

in this induced game. The lemma and this observation are the key new elements of our
proof.

The punishment for player i consists of T periods of play of mi as specified above.
The difficulty now is to induce minmaxing players j=ik to play pure strategies in the
support of their mixed strategies with the appropriate probabilities. As noted by Fudenberg

and Maskin (1986) the only way to do so is to make them indifferent across their pure
strategies. Note that player k's mixed strategy m is a best response to m_k, and that for

j=*ik deviations outside the support of mj are easily deterred by directly punishing player j.

For j*ik, since dim(Fj;) = 2 and the vi's are in the relative interior of F*, there
exist payoff vectors ull € F* such that

Asymmetry vll < u‘lJ, ) I=i
Indifference for i Vli = ulil
Differential for j v} > u}J

At the end of T periods of minmaxing player i, play moves probabilistically (via the

public randomization device) to vi or to the ull's, where the probabilities are chosen to
maintain the incentives of minmaxing players j=i. Let p (aJ) satisfy for all aj, a'j in the

support of mj, and t<T, |

(1-8) nj(aj,m_ij) + T+l Pitj(aj)(u;j - V}) = (I'S)T‘j(a'j’m.ij) + 8Tl pitj<aj')(uijj ) Vj')



If the realized sequence of action profiles is a;, t = 1,..T then for all j=i,k play
proceeds to ull with probability ZT p (ajt) Notice that the p‘J's are independent across

players j=i and across periods and are chosen to make players indifferent across the
support of their minmaxing strategies. Let Pii(ag,...aT) = ZT p (ajt) Then with

probability 1 - Ej Pij(al,..aT) play goes to vi. For high enough 8, the Pii's defined above

can be made small and positive for all possible realizations of aj,...aT and so we indeed
have probabilistic transitions. Since all the relevant inequalities are strict, no detectable
one-shot deviation is profitable. By construction, minmaxing players are indifferent over

the support of their mixed minmaxing strategies. It follows that the profile specified is a
subgame perfect equilibrium.e

We turn now to the necessity of payoff asymmetry. To avoid trivialities, from here
on F*=¢. Recall that minmax payoffs have been normalized to zero. The necessity of

payoff asymmetry is shown for games in which no two players can be minmaxed
simultaneously.

No Simultaneous Minmaxing For all ¢ € X such that n?(cs_i) = ( for some i, it is the case
that 7;(6) > 0 for all j=i.

Under the above assumption we obtain a complete characterization.

Theorem?2  Suppose no simultaneous minmaxing is possible. Then,

payoff asymmetry is both necessary and sufficient for the conclusion of the
folk theorem.

Proof: Since the conclusion of the folk theorem is valid, the set of subgame perfect
equilibrium payoffs is non-empty for sufficiently high 8. Denote by Wi(3) an equilibrium
payoff vector which yields player i his lowest subgame perfect equilibrium payoff. By the
arguments of Abreu (1988), Wi(8) exists; denote by o an equilibrium strategy profile that
generates Wi(8). By definition, W](S) < W‘(S) for all i,j. By the folk theorem hypothesis,

WI(S)-%() as 6—1. Clearly, Wl(5) > (1- 8) . (y ) + SWI(S) or equivalently Wl(5) >
. (y (6)) where Yi(8) is the first period strategy vector in the play of al. It then follows
that 7, (y (3)) — 0, as 8—1 and hence any subsequential limit of y_ (8) minmaxes player i.

Clearly W‘(S) > (1-d) . (y (8)) + SWJ(S) Hence if W1(8) WI(S) it follows that
WJ(S) 2T, (y (8)) We claim now that there is 8 < 1 such that WJ(S) < W‘(S) for all i,j,



j=i. A contradiction to this claim implies the existence of a sequence dy, — 1 and fixed
indices 1,j, j*1 such that Wfi(ﬁm) > n;'f(y_‘j(ﬁm)). The left hand side of the inequality goes to
zero while the right hand side is strictly positive since limyi(8) minmaxes player i and

simultaneous minmaxing is impossible. This yields the desired contradiction. Now take v
= Wi(3).e

Remark: For general games a condition slightly weaker than payoff asymmetry can
be shown to be a necessary condition for the discounted folk theorem. For any player i, let
N;j denote the players who cannot be simultaneously minmaxed with playeri. Thatis Nj =
{j=i: there is no 6 Z such that nj(c_i) = n’;(o_j) =0}. Then a (weak) payoff asymmetry

condition is: there are feasible payoff vectors v' € F, for i = 1,..n, such that \7; < ‘}Ji and

whenever j € Nj, \"; < \'/JI In other words, this condition requires the strict inequality of

payoff asymmetry to hold only if players cannot be simultaneously minmaxed. Arguments
analogous to those above establish that weak payoff asymmetry is a general necessary
condition for the discounted folk theorem. This then is the sense in which payoff
asymmetry is almost necessary.

4. Discussion

A recent paper by Smith (1990) weakens full dimensionality of F to dim (Fyj) =2,
for all 1,j, j*1. However his result does not generalize Fudenberg and Maskin (1986) in
that it confines attention to pure strategies, or equivalently observable mixed strategies. As
noted earlier, a "pure" folk theorem follows directly under payoff asymmetry. Smith's
condition can be shown to imply payoff asymmetry but the converse is not true, as can be
immediately ascertained either from the two player case or from the example above where
dim(F13) = 1. Dutta (1991) uses some of the ideas presented here in proving a folk
theorem for the more general class of stochastic games. An interesting question is whether
payoff asymmetry has a natural extension in other environments, such as imperfect
monitoring, in which full dimensionality has been invoked (see Fudenberg, Levine and
Maskin (1989)) to prove folk theorems.
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