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Abstract: In this paper we study a repeated moral hazard problem for the following
incentive schemes: an agent is retained on the job and paid a fixed wage provided he has
maintained a specified rate of output during his tenure. We characteize the optimal
contract for this class and show that the payoffs under such a contract approach the
(first-best) efficient outcome at the rate 0(61/ 2 Ind) where & is the common discount rate
of principal and agent.






1. Introduction and Summary

In this paper we study a repeated moral hazard problem in which an agent is paid
a constant wage every period and retained on the job provided his past performance has
met the following standard: he has maintained a specified rate of profits (or output) during
his tenure or if he has not done so, the cumulative losses, net of this rate, are no larger
than an acceptable maximum. Within this class of incentive schemes we characterize the
optimal contract, show that such a contract approximates the (first-best) efficient outcome
if principal and agent are sufficiently patient and, most importantly, give an estimate of
the rate of approach to efficiency as the discount rate goes to zero.

A notable feature of many real life contracts is that they specify simple
compensation rules; i.e. they identify only a small set of contingencies on which the
agent's rewards are conditioned. This is difficult to reconcile with the theoretical work on
second-best contracts, i.e the optimal contract when no restrictions have been placed on the
types of incentive schemes that are admissible (see Rogerson (1985), Spear-Srivastava
(1988) and Lambert (1983)). These papers demonstrate that the second-best contract
should subtly condition on various elements of an agent's past performance.! Perhaps this
seeming paradox can be resolved by modelling the costs of contracting explicitly.

In this paper we start instead by restricting ourselves to the set of simple incentive
schemes described above. These schemes have some of the stylised features of observable
contracts; in particular they employ the threat of dismissal as an incentive device and use
a simple statistic of past performance to determine the necessity of dismissal. Many
managerial compensation packages have a similar structure; evaluations may be based on
the industry-average of profits.2 Insurance contracts in which full irdemnity coverage is
provided only if the number of past claims is no larger than a prespecified number is a
second example. Sales or franchise contracts which are renewed only if the volume of
past business is sufficiently large is a third example.

The simple version of dismissal-contingent schemes that we study here were
introduced by Radner (1986) who called them bankruptcy schemes. He showed that such
incentive schemes generate almost efficient outcomes if principal and agent are sufficiently
patient. We add to the analysis of that paper by explicitly characterizing the optimal
contract within the class of bankruptcy schemes. Such a characterization demonstrates the
optimal mix of incentive and insurance considerations in such contracts.



One difference between complete-information repeated games and repeated moral
hazard is that as long as players are not infinitely patient, i.e. have discount rates of zero,
exact optimality cannot be sustained under moral hazard. Consider the case of a
risk-neutral principal and risk-averse agent. Clearly, even in the repeated context, all
Pareto optimal outcomes require that the agent's compensation be constant regardless of the
output consequences of his actions. So no "punishment” is possible since compensation
has to be independent of the only observable variable. Hence, any asymptotic efficiency
result is necessarily an approximate one. We know from a number of papers
(Fudenberg-Maskin (1986), Radner (1981, 1985, 1986), Rubinstein (1979) and
Rubinstein-Yaari (1983))3 that there are long-term contracts that are asymptotically
approximately efficient, as the players' common discount rate goes to zero. If we believe,
however, that the "true" model involves discounting then the natural question to ask is,
how good are these approximations? For any € > 0, how patient do principal and agent
need to be in order to sustain e-optimality? In other words, what is the rate of
convergence to optimality in a repeated moral hazard situation? A principal purpose of
this paper is to give a first answer to this question, within the restricted class of
bankruptcy contracts. To the best of our knowledge this is the first estimate in the
literature of the rate of convergence to efficiency under asymmetric information.

We turn now to a discussion of the model and results. The action of the agent in
any period determines a distribution of returns in that period. Hence cumulative returns
up to any period follow a random walk. For reasons discussed in the sequel we analyze
the model in continuous time; i.e. cumulative returns follow a controlled diffusion process
(with the distribution of increments at any instant determined by the agent's action at that
instant). The agent's action also gives him instantaneous utility. The agent trades off
myopic utility maximization against improvement of tenure prospects. When the services
of any one agent are terminated the principal is free to hire another identical agent and
offer a second (possibly different) bankruptcy contract. Further, we assume throughout that
the principal commits to his offer and cannot dismiss an agent who is performing
satisfactorily. The principal picks a bankruptcy contract to maximize his (risk-neutral)
returns subject to incentive and individual rationality considerations.

Optimal Choice of an Agent. The agent's optimal choice problem is an example of a
more general survival problem in stochastic control (see Dutta (1990)). We use results
from the general formulation to give a characterization of the optimal choice when the set
of feasible drift-variance choices is an arbitrary convex, compact set in R? (Theorems



3.1-3.3). We then explicitly compute the optimal policy of the agent in the binary case,
in which the agent has only two actions (Theorem 3.4). The charcterization in the binary
case serves to illustrate the general results. It is shown that the optimal policy conditions
the current action on the current level of net aggregative output alone. The optimal
policy progressively shirks, that is the higher is aggregative output the higher is the
instantaneous utility and (under some additional conditions) the smaller the incremental
mean of the control employed. A risk-neutral principal would like to have the control
with the maximum mean used throughout, and the coasting by the agent at "safe” output
levels is precisely a measure of the inefficiency of moral hazard, from the principal's point
of view.

Principal's Contract Choice The principal's return, with a (stochastic) succession of agents,
is derived in Section 5. It is shown that in an optimal contract the allowable shortfall is
the smallest one consistent with individual rationality. This is not a priori obvious since a
lower acceptable loss (or insurance level) implies quicker bankruptcies and hence associated
inefficiencies for the principal. On the other hand we get an efficiency-wage-type result,
that the optimal wage is higher than the minimum wage consistent with individual
rationality.

Pareto Optimality The first-best arrangement involves a constant control exercised by the
agent, no dismissal and full insurance by the risk-neutral principal, by way of paying an
outcome-independent wage (Propositions 5.1 and 5.2).

Asymptotic Efficiency We conclude the investigation of bankruptcy contracts by showing
that the values under the optimal bankruptcy contract converge to the first best at a rate
at least as fast as 0(61/ 2 In 8), as 8 » 0, where 6 is the (common) discount rate of
principal and agent.

The principal-agent model is described in detail in Section 2. Section 3 discusses
the optimal response of an agent to a bankruptcy compensation scheme. The principal's
choice-of-contract problem is analyzed in Section 4. Section 5 contains the
characterization of the Pareto optimal policies, whereas the analysis leading to a derivation
of the rate of convergence to Pareto optimality is in Section 6. Bibliographic notes and a
discussion of possible extensions of the current analysis may be found in Section 7.

2. The Model
2.1 Some Preliminaries



Let [B(t): t = 0] be a standard Brownian motion on some probability space (Q, 3,
P). Let St be the smallest family of sub o-fields generated by the Brownian motion, i.e.

St is the smallest o-field with respect to which B(s), se[0,t] is measurable. Let Tf(t): 20]

be a 3 -adapted process* which further satisfies
t
i) Plw : | fz(a),s)ds < w] =1, for each t 2 0.
0

t
The stochastic integral | f(s)dB(s) is well-defined for all t > 0 a.e. A stochastic
0
process [Q(t) : t 2 0] is said to be a diffusion if it can be written as:

12

A t t
L = Y0) + (I) m(s)ds + (I) v2(5)dB(s), @2.1)

where [m(t) : t 2 0] and [v(t) : = Q] are St-adapted and satisfy i), and Q(()) is some

constant. The functions m(-) and v(-) are respectively, the drift and variance components
of the process.

2.2 A Principal-Agent Model and Bankruptcy Schemes

Let us start with a description of bankruptcy schemes in discrete time. At any
period, say nh, an agent picks an action which conditions a distribution for the uncertain
output in that period; call this (random) output R(nh). The agent is expected to maintain
a rate of output, say k, during his tenure. In particular, the net output in that period is
then R(nh) - kh. If we denote the cumulative net output till period nh as Y(nh) then this
grows according to the following equation

Y(nh + h) = Y@h) + R@h) - kh 2.2)

If the agent is able to maintain the required output rate then Y(nh) is evidently
nonnegative. Suppose that the agent is unable to maintain this output rate, possibly on
account of "bad luck". To allow for this eventuality a bankruptcy scheme allows the
agent to run up some losses, say up to y, before his tenure is terminated. Equivalently,
the agent is set up with an initial output level y > O and has his services terminated the
first time at which Y(nh) is less than or equal to zero. (2.2) clearly defines a controlled
random walk.



One problem with discrete time is that the agent could go bankrupt with any
non-positive level of cumulative output. The agent's continuation value should be made
contingent on the level of terminal output but there is no obvious way in which to assign
this value. In turn any assignment clearly affects in a fundamental way the agent's
optimal choices while on the job. To avoid such "overshooting at the boundary" problems
we choose to model the principal agent question in a continuous time framework where
such problems are absent. We turn now to the continuous time analog of (2.2).

An agent controls a diffusion (the cumulative output) process. The agent's action is
the choice of a feasible instantaneous drift-variance pair [m(t),v(t)]. Let the set of feasible
mean-variance choices be denoted A. A choice at t conditions on the observable history
of output during [0,t). An admissible strategy for the agent is a pair of St-adapted

processes [m(t):t20] and [v(t):t > 0] in which (m(t,w),v(t,®)) € A for all (t,@) and which
lead to a solution of the following stochastic differential equation:

t t
Y(0) = Y(0) + (I) m(Y(s))ds + (f) vW2y(s)dBGs) - ki, © 0.

Note that there are several interpretations possible for the formulation in which the
agent directly picks instantaneous drift and variance. One interpretation is that the agent
chooses from a menu of available projects or techniques, each involving different levels of
supervision or skill or effort and having a mean and a variance. An alternative
interpretation would be that the agent chooses (possibly multi-dimensional) effort and each
level of effort corresponds to an instantaneous drift-diffusion pair. To define a termination
date, for any strategy m and initial output y > 0, let

Tn(y) = inf {t 2 0: Y(t) = 0] Y(O) =y, «}.

Let the constant wage paid be denoted w and let the agent's instantaneous utility function
be called U. For any given (w,k,y) the discounted utility over an agent's uncertain
lifetime, for a strategy =, isd

T _(y)
g.(y) = E 5(]) i e"SS U(w,m(s),v(s))ds.

To complete the formulation of the moral hazard problem let the principal's
discounted lifetime earnings under a compensation triple (w.)k,y) and E}gent's strategy 7 be
denoted H(w,k,y;n).6 (In Section 4 we will explicitly derive H(-).) Then the optimal
contract choice problem for the principal is



Max H(w.ky;m),
S.t. gn(y) 2 gn.(y) for any admissible 7, 2.3)
A
g, 2U | 24

Condition (2.3) is the incentive constraint and (2.4) is the individual rationality constraint.

The Pareto-optimality or first-best problem is that of maximizing the principal's
discounted lifetime earnings H subject only to the individual rationality constraint, i.e. in
the absence of moral hazard. For this problem we shall not restrict the set of feasible
contracts. The precise formulation is discussed in Section 5.

3. Incentive Constraint Analysis: The Agent's Problem

The agent's best response problem is: given w, k and y, maximize g n(Y) over the set

of admissible policies. This is clearly a stationary dynamic programming problem, and we
shall denote its value function by V(y;w,k). In much of what follows, we shall
concentrate on the effect of changes in the aggregate output level Y(t) (equivalently
changes in allowable shortfall). Hence the dependence of the value function on w and k
will frequently be suppressed and it shall be written simply as V(y). Any solution will be
called an optimal strategy or policy. If an optimal policy picks controls that depend only
on the level of current aggregate output, it will be called a stationary Markov optimal
policy.

We make the following assumptions throughout:

(A0) Sup U(wmyv) =0w) >0 foral w20
(m,v) €A
(Al Inf {v: (myv) € A} >0

Since the severance pay has been normalized to zero, (A0) is a minimal necessary
assumption for a bankruptcy scheme to have any incentive effects at all. (Al) says that
the agent's actions lead to uncertain outcomes. Clearly this is necessary for the principal's
inference problem to be non-trivial. We also assume

(A2) The set of feasible controls A is a convex, compact set.

(A3) The utility function U(w,m,v) is continuous and strictly concave in the
last two arguments.



The agent's best response exercise is an example of a general survival problem in
stochastic control (it is in fact a version of the gambler's ruin problem). In the
formulation here, an instantaneous choice is being made simultaneously along three
dimensions: drift, variance and utility. In previous investigations authors have allowed a
choice over drift and variance (holding utility constant) or have allowed a choice over
drift and utility (holding variance constant).” Three dimensional trade-offs are extremely
difficult to characterize in a transparent way. Dutta (1990) has investigated the general
control problem and we use those results to describe some basic properties of the agent's
optimal choice. To add to the intuition we then explicitly compute the optimal policy in
the case where the agent has only two actions available at every instant.

Let (w,k) be fixed until further notice. The following characterization of the value
function holds:
Theorem 3.1 i) The value2 function V(y) is strictly increasing in y.
ii) (Bellman equation) V is C and satisfies the optimality equation

Max {%vV”(y) + (m - KV'(y) - V() + SUW, m, v)} =0y20 (31
(m,v)eA .

iii) The marginal valuation satisfies the following
_8T*
V() = VOES T
where T*(y) is the termination datc under the agent's optimal policy. Consequently, the
value function is strictly concave.

Remark: The proof of Theorem 3.1 may be found in Dutta (1990).

Letting the parameters (w,k) vary temporarily, the following comparative statics and
boundary properties of the value function are easy to see:

Proposition 3.2 i) The value function V(y; w,k) is increasing in w, provided the
utility function is increasing in w, and decreasing in k. Further, it is continuous in (w,k).
ii) lim V(y; w, k) = U(w), for all k, and V(0; w, k) = 0, for all (w)k).
y —eo
Turning to a characterization of the optimal strategy, we first define a stationary
Markov policy B: R, — A to be interior if B(y) € int.A for all y € R_. Further, the

utility function is separable if there exist functions éw(m) and ¢w(v) such that U(w, m, v)
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= £, (m) - ¢, (V).

Theorem 3.3 - i)  There is a unique stationary Markov optimal policy p* = (m*, v*):
R, — A, and this policy is given by the maximizers from (3.1). Furthermore, f* is a

continuous function.
ii) y’ > y implies that either or both of the following conditions hold: a) v*(y") 2 v¥(y)

or b) m*(y") < m*(y), m*(y')-k ¢ T*(Y)'k. In words, as the cumulative output level
v¥(y')-k  v*(y)-k

grows, the agent switches to high variance and/or low mean opﬁoné.

iii) Suppose that U is separable and f* is interior. Then, y’ > y implies that m*(y’) <
m*(y) and v¥(y') > v¥(y). If U is decreasing (resp. increasing) in m (resp. v), then
U(w,m*(y"),v¥(y)) > U(w,m*(y),v¥(y)); i.e. at high cumulative output levels the agent
employs high variance-low mean actions that give him higher instantaneous utility.

Proof: That any selection from the maximizers correspondence of the optimality
equation defines a stationary Markov optimal policy follows from a standard argument via
Ito's lemma (e.g. see Krylov (1981, 1.1 and 1.4)). By the Maximum theorem of Berge
(1963) and the fact that the value function is C2 , this correspondence is upper
hemi-continuous. From the strict concavity of the utility function, the set of maximizers is
actually single valued for every y. Hence this function, B*, is continuous.

Suppose we denote the optimal choice at y' by (m',v') (respectively the optimal
choice at y by (m,v)). Then it follows from the optimality equatior that

1 ,

5(v - VIIV'(Y) - V'GO] + (@m - m)[Vi(y) - V()] 2 0 (3.2)
m-k m'-k 1 1

(5 5OV - VOO -8 - SIVG) - V)1 2 0 (33)

Dutta (1990) Theorem 3.1 establishes that V" increases in y. That combined with
Theorem 3.1 and (3.2)-(3.3) yields the second part of the theorem. In the separable utility
case, first-order conditions yield ’

VI (y) = -85 (m*(y)) V'(y) = &'(v¥(y)
From the strict concavity of V (Theorem 3.1 iii), the third part of the theorem follows.

The order of usage of the drifts points directly to the inefficiency, from the
principal's point of view, that persists under a bankruptcy incentive scheme. At low
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cumulative output levels, with the threat of dismissal near, the agent does in fact forego
instant gratification to boost immediate returns for the principal. However at higher and
safer levels, after a run of good luck or "hard work,” the agent coasts on his laurels. Of
course, if the principal could renege on his commitment to the bankruptcy contract, this is
precisely when he would like to do so, and dismiss an agent in order to hire a new one
for whom the threat of dismissal is more effective.?

In order to compute the agent's optimal policy in a specific case we now examine
the binary choice problem; the set of feasible actions contains two elements (ml,vl) and

(m2’V2)' This problem was first studied by Sheng (1980) and the results that follow are

variants of her results. Our formulation is somewhat different. For that reason and for
completeness, the relevant computations are reported in Appendix 1. Denote Ui =

U(w,mi,vi), i = 1,2 and suppose that U2 2 Ul‘

The principal result states that faced with a bankruptcy scheme the agent finds it
optimal to employ a swichpoint strategy of the following kind: above a critical aggregate
output level 9 the agent uses control 2 while below 9 the agent switches to the other
control in order to improve tenure prospects. As long as the preference between the two
controls is strict, i.e. U2 > Ul’ the agent must eventually shirk, i.e. 9 < oo, Typically the

high utility action will also be the control with a lower mean, and hence that which the
principal does not want employed. We compute the optimal switchpoint as a function of
w and k (and the rate of impatience ).

A stationary Markov policy B : R, — A is called a switchpoint policy if
A A A
ﬁ(y) = I[O,)’) (ml’vl) + I[y’“) (m2,V2), y € R+ v {°°]
where I(C) is the indicator function on a set C. Consider the quadratic function é vix2+

(mi - k)x - & = 0 and denote its negative (resp. positive) root - )'i (resp. ei)

Theorem 3.4 i)  There is a unique stationary Markov optimal policy for the agent's
problem, and this policy is a swichpoint strategy.
A
i)  Suppose that U, > U,. Then the optimal switchpoint y is finite. It is zero iff
81y 2 =~ 69
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where &,(A,) = 3v;(-A) + (m, - WA - &
iii) Suppose U, = U,. The optimal policy is: exclusive usc of control 1 (ic. y = =) if
1’1 >120rexclusiveuseofconu'012(i.e.9=O)ifl2>l1. Ifl.1 =12, the agent is

indifferent at all output levels, between the two controls.
iv) The value function satisfies all of the properties that hold for the general case
(Theorem 3.1).

Consider the interesting case: U2 > U1 and m, < m,. Simple algebra shows that

m. -k
51(32) i 0 Al 3 A‘Z Further as § 4 0, li(S) - max [——ITI—' ()]. So (3.4)
ml = k m2 - k
implies that both controls are used by a patient agent if —— > max [—v ) 0].
1 2

It will be shown in appendix 1 that eventually only the principal's preferred action (control
A
1) is used; i.e. as 8]0, y-e.

Note that using Theorem 3.4iv) it can be shown that all of the subsequent analysis,
which is proved for the general case, will also hold for the binary case.

4.  Optimal Principal-Agent Contracts
4.1 Principal's Problem

Given the agent's best response and the individual rationality constraint, the principal
picks a contract triple (wk,y) to maximize net receipts. There are two alternative ways to
model the principal's returns. In the first, a "cash reserve" interpretation which we now
detail, the specified rate of return k is an actual outflow. The principal pays the agent
compensation w and receives a dividend k - w every period. The cumulative index Y is
then a cumulative cash reserve. The principal sets the agent up with initial cash y and
dismisses him when the cash reserve runs down to zero, and hires in turn a second agent.
There is every period an interest payment on the initial cash y. Let us suppose the
principal's discount rate is also & (this is unnecessary for the analysis in the current
section but will be required in Section 5). The principal's net reciepts, denoted
H(w,k,y;7), when the agent follows a strategy 7 and so do succesive agents, is

T 8T
H(wky; 7) = ES (I) T ¥k - w- Sylds - Ee My - Hwky; m)]
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Note that there is of course no loss in generality in restricting successive agents to
the same best response strategy. Collecting terms

H=k-w-—% o @D

1- Ee

T
oT _ ES [T e-6s ds, is the expected discounted time to failure by the

0
agent. No matter which generation of agent is currently employed, the principal always

where 1 - Ee~

gets per period returns of k - w. However, the ‘discounted average cash outlay,
__é)’__m,, depends on the agent's best response. The principal's problem is:

1 - Ee
)
Max k'W'————%r'*T—S
3 1- Ee 010

wky) € R "
s.t. V(y; wk) 2 {\I 20
where T*(y) = min {t: Y(t) = 0; Y(0) = y, # = B*k,w)}.

A second interpretation of the principal's returns is one in which the rate of return k
is not an actual outflow but is used to keep a "score" of the agent's performance. All of
the incremental return, dY + k accrues to the principal out of which he pays the agent
the constant compensation w. The conclusions under these two interpretations are similar
(indeed as & - 0, the two returns converge to the same limit) and so in this paper we
pursue only the cash reserve interpretation.’

42 Individual Rationality

A
The requirement that the agent be able to make at least the reservation utility U,
restricts the set of feasible contracts. Recall that U(w) is defined as the highest
instantaneous utility when the prevailing wage is w. Define the minimum wage w as

U(w) = 0.

Note that the minimum wage is independent of the rate of return k. We know from
Proposition 3.2 that the the agent's value in a bankruptcy scheme is bounded above by
U(w). Clearly, any compensation scheme offered by the principal must pay a wage at
least as large as w. Further, define y*(w,k) as the minimum securiiy level for fixed (w,k)

Vrwk; wh =0, wa2w

Given Theorem 3.1 and Proposition 3.2, y*(wk) is well-defined, and indeed is
decreasing in w and increasing in k. The set of feasible compensation schemes then is
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B = {(wky) ¢ IRi: welw, k], y 2 y*(wk))

4.3 Loss Level Choice

For fixed (w,k), the principal picks a loss level y 2 y*, to minimize the expected

discounted per period setup costs ——b:%.r The loss level is one mechanism by which
- Ee

the principal transfers risk to the agent. Note the a priori conflicts: a lower loss level
implies smaller interest payments for the principal but also quicker failure on the part of
the agent and hence a more rapid outlay of initial capital by the principal.

Proposition 4.1. For fixed (w)k) the optimal loss level choice is y*(w.k).

Proof. From Theorem 3.1, V'(y) = V’(0) Ee 21", Since V is C2, it follows that
ST
V'(y) = V'(0) —g-);Ee oT (Y). Dutta (1990, Theorem 3.1) shows that V" increases in y. It

then follows that Ee'sr*(Y) is a decreasing, convex function, or equivalently that 1 -

- * » . * - - . 3 .
Ee oT*(y) is an increasing, concave function. Hence —5181'7(95 is minimized over
1 - Ee

[y*), at y*.g

It is somewhat surprising to find that in the model under study, under reasonable
general conditions, the principal finds it optimal to transfer all the risk that can be
feasibly transferred through the loss level mechanism. The result may not hold when
there are costs to new hires, e.g. when there are training costs for new agents. However,
it is still the case that an optimal loss level choice will exist in geﬁeral. This is so since
the principal's returns tend to - », as y ] o.

4.4 Compensation Level Choice

Given the results of the previous sub-section the optimal choice of a compensation

level involves the maximization of (k - w) - _6£76T A lower compensation w
1 - Ee

increases the net dividend to the principal, k - w (for k fixed ). Since the agent's value
increases in w (Proposition 3.2), in order to guarantee the agent expected utility U, the
tolerable loss level y* has to increase, thereby raising interest payments for the principal.
This is the direct cost of lowering w. There is a further indirect cost, in that the agent's
best response is affected, and he may be moved to take actions which lead to
(stochastically) more frequent failure.

Proposition 4.2 For fixed k, there is an optimal choice of compensation level w¥,
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with w < w* < k.

Proof. The optimization problem is: Minimize w + ?%;&;V; , OVer w in
1 - Ee

(w)k], where we write Tw(y) to denote the termination date when an agent uses his

optimal response for wage w and initial output y. It is easy to see that as w is lowered
8T, (y*)
to w, y¥(w) -+ ». Since the expected discounted time to failure 1 - Ee is

bounded between O and 1, the minimand goes to =, as w | w. The agent's value

-8T

function V is a continuous function of w and hence so is y* (and 1 - Ee " ). So a

minimum is achieved over (w,k]. .

Lowering the agent's compensation increases the principal's dividend linearly but also
increases the expected debt and the latter increases "infinitely" fast as the compensation is
lowered to the minimum wage. The result, that wages are strictly higher than minimum
wage, looks like an efficiency wage conclusion although the explanation here is a
combination of incentive and individual rationality arguments and therefore different from
the standard purely incentive-based argument.

45 Rate of Return Choice and the Optimal Contract

The final component of the prmcxpal's choice problem is to pick an expected rate of
return k to maximize k - w* - _Lb'l' The incentive and individual rationality
- Ee

considerations are similar to the case of w. An increase in the standard makes the agent
more receptive to tenure considerations (which the principal prefers). On the other hand
the (binding) individual rationality constraint implies that the allowable shortfall has to be
larger. It is our conjecture that the optimal choice of lies between the highest and lowest
drifts. We have however not been able to prove this.

5.  First-Best Analysis

The first-best or Pareto-optimality problem is one of maximizing the prindipal's net
receipts subject to the individual rationality constraint, but in the absence of moral hazard.
There are two differences consequently: firstly, since the agent's actions are observable
(and agents are identical) there is no need for dismissal as an incentive device. Secondly,
actions are taken so as to maximize a (weighted) sum of principal and agent utilities.

The principal result of this section shows that if the agent's utility is separable in
compensation and action and the agent is risk averse, then the Pareto-optimal policy is to
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choose always the control that maximizes an appropriate weighted sum of instantaneous
returns. Formally, the first best problem is, |

Maximize E& :I; ¢ {[dY + kds] - w(s)ds}

st. ES z e % Utws),(m(s) v(s))s 2 0,

where the compensation scheme [w(t) : t 2 0] is some 3 -adapted proccsé. In the
t

remaining sections we shall strengthen our assumptions on the agent's instantaneous utility.

(A4) U is separable in compensation and action; U(w,m,v) = u(w) + q(m,v).

Further u is increasing and strictly concave, and 1im U’(w) = 0.
W

Recall that the principal and agent's discount rates are the same. Given the agent's
risk-aversion and identical discount rates standard arguments show that the principal should
completely insure the agent in the first-best strategies.

Proposition 5.1. Under (A.4) the agent's compensation is constant in the first-best
strategies, i.e., w(at) = w, for all (@t) in Q X [0, «).
Proof. See appendix 2.

Define the weighted first-best problem as
Max (1 - JL){ES [ &% [ay + kds] - w} + A{Ea (I) e B q(m(s)v(s)ds + u(w)} 6.1)
0

where A is in [0, 1].

It is well-known that the principal-agent values generated by the weighted first-best
problem as A varies, are exactly the Pareto optimal values. Furthct we have

Proposition 5.2. For any A in [0, 1), a solution to (5.1) is a strategy using control
(m,v) exclusively, and a compensation w(A) where,

i)  (mv) e argmax [(1 - )m + Aq(m,v)]

ii) w(A) is the (unique) maximizer of Au(w) - (1 - Y)w, w 2 0.

Proof. See appendix 2.

The reason that constant use of a single control is optimal is clear. The principal,
in the formulation of the first-best problem above, is assumed to have an infinite pocket.
Hence principal (and agent) at every instant face an infinite horizon problem which is
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invariant over the cumulative profits to-date. So myopic optimization, i.e. maximization of
(weighted) one-period utilities, is dynamically optimal. With possible firm bankruptcy the
simple results here would no longer hold; note however that in an optimal solution the
probability of the principal and agent accumulating negative infinite wealth is zero.10

6. Convergence to First-Best Utilities

The following result bounds the rate at which principal-agent values under bankruptcy
contracts approach first-best efficiency. Clearly this is a lower bound for the rate at
which second-best values approach efficiency. It is an open question as to how tight
these bounds are.

Proposition 6.1 For any first-best values (G, H), there exist principal-agent contracts
(W(9).k(),y(d)) such that

Vs(y(8); w(8),k(6)

1. 5 = 0662 n 9
Hg(y(8); w(d),k(d)
1. = - 062 1 &)

Proof. See Appendix 2.

Remark: The arguments in the proof of Proposition 6.1 are completely independent of
the particular Pareto optimal point that is being approximated. So, the result is really a
statement on the rate of uniform convergence of the principal-agent value frontier to the
Pareto optimal first-best frontier.

7. Discussion and Extensions

Second-best contracts have been characterized by Lambert (1983), Rogerson (1985),
Holmstrom-Milgrom (1987) and Spear-Srivastava (1988). The work of Rogerson (1985)
and Lambert (1983) has shown that second-best incentive schemes will, in general, have
"memory"; compensations in any period will depend in a subtle manner on previous
compensations and/or outcomes. The theoretical reason for this is the fact that although
optimal contracts will depend in the expected manner on the information revealed by
observed outcomes, this information can however be linked quite arbitrarily to the
outcomes themselves. Spear-Srivastava (1988) provide some reduction in the dimension of
contingent variables. They show that the second-best scheme conditions on current output
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and the agent's expected continuation value. Unfortunately this last statistic is not easy to
relate to any aggregate of outcomes. As mentioned in the introduction these results are
difficult to reconcile with the simplicity of observed contracts.

Holmstrom-Milgrom (1987) show that if principal and agent utilities are
multiplicatively separable and exponential then the second-best contract has the attractive
feature of being a succession of short-term contracts (and indeed is linearly related to
observed outcomes). Fellingham-Newman-Suh (1985) isolated a couple of other
configurations of principal and agent preferences for which the same conclusion holds.
Unfortunately, the linear short-term characterization is very delicately predicated on the
constant absolute risk aversion specification of preferences.

As described in the introduction, a line of research has indeed looked at some
simple schemes, and shown that any single-period efficient utility level can be attained
arbitrarily closely by such schemes in the limit (Radner (1981,1985,1987) Rubinstein (1979)
and Rubinstein and Yaari (1983)). This is the literature that motivated us directly. In
particular, we have tried in this paper to complement the findings of this line of inquiry
by providing a direct analysis of the optimal principal-agent contracts (within a class of
simple schemes) and by providing an estimate of the rate of approach to efficiency. Note
also that Fudenberg-Maskin (1986) employ ideas used in the oligopoly context by
Abreu-Pearce-Stachetti (1986) to study the entire set of sustainable payoffs in settings of
imperfect information more general than the repeated moral hazard problem. They
establish the asymptotic sustainability of all individually rational payoffs (and hence
first-best payoffs) under some conditions.

In an interesting paper Fudenberg-Holmstrom-Milgrom (1986) argue the general point
that if the agent is allowed to insure himself, then some of the insurance that the principal
has to provide in standard contracts without this feature, becomes unnecessary. In
particular they show that when the preferences of principal and agent are additively
separable and of the constant absolute risk aversion class, then long-term contracts can be
replaced with a succession of second-best short-term contracts. In this context it is worth
noting that Yaari (1976) has shown that, for some specifications of bankruptcy, a patient
risk-averse agent subject to income fluctuations finds it optimal to consume every period
the expected income; i.e. to behave as a risk-neutral agent. This suggests the conjecture
that if the agent is allowed to self-insure and is made the residual claimant in our model,
then the resulting outcomes would again approximate the first-best, provided principal and
agent are sufficiently patient.!!
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Two possible generalizations of the model can be attempted. First one can study
compensation schemes in which the agent's compensation is linked directly to immediate
performance (as well as indirectly through the possibility of being fired), salary plus bonus
schemes. Secondly, as discussed above, the agent can be allowed to insure himself,
allowing for the smoothing of consumption across periods even when income is erratic. In
a model incorporating these features, it is thus far possible to derive some general
results,)2 but not enough to allow an explicit characterization of the optimal contract
choice.
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Footnotes

Fellingham-Newman-Suh (1985), Holmstrom-Milgrom (1987) and
Fudenberg-Holmstrom-Milgrom (1986) have however established that under some
specifications of preferences for principal and agent, history-independent short-term
contracts are (constrained) optimal. See the discussion in Section 7.

Of course, managerial compensations typically also contain bonus provisions which
directly reward immediate performance.

With no discounting and an infinite horizon, Rubinstein (1979) showed that exact
optima could be sustained, whereas Radner (1981) established the sustainability of
approximate optimality in sufficiently long but finite horizon contexts.
Fudenberg-Maskin (1986) and Radner (1985, 1986) show that there exist contracts
which approximate efficiency in discounted models, for sufficiently small discount
rates. Indeed in all of these papers the contracts are additionally incentive compatible
for the principal as well.

A stochastic process [f(t) : t 2 0] on (Q, J) is said to be St-adapted if f(w, t) is
jointly measurable in  and t, and ii) f(-, t) is St-measurable, for each t > 0.

Implicit in the formulation is the assumption that once fired the agent receives a
severance pay or a reassignment to different sinecured position etc., i.e., options which
yield some constant value. That value has been normalized to zero.

Strictly speaking, since the principal hires a new agent if and when the current agent
fails to meet performance requirements, his returns are derived from a succession of
compensation schemes offered and a succession of strategies followed by different
agents. As we shall see in Section 4, the Optimality Principle implies stationarity in
the compensation schemes and strategies and allows us to write H as a function of a
single compensation triple (w, k, y) and a single strategy 7.

Heath et al. (1987), Orey et al. (1987) and Majumdar-Radner (1990), among others,
analyze related versions of the pure survival case where all controls have the same
utility, whereas Benes (1973)and Davis (1977), among others, analyze problems in

which all controls have the same variance. See Dutta (1990) for further references.

Such breach of contract brings into the picture further considerations of reputation
effects for the principal. Further a rational agent foreseeing such a possibility would
also adjust his behavior. At some cost of complexity the present analysis could be
extended to generate the commitment of the principal as a self-enforcing outcome.
Given our focus we prefer just to assume that such a breach of contract is not
possible.

In the second formulation

T
H=ESs| e’aS [AY + (k - w) ds] + Ee'ar
o
Using Ito's lemma (i) can be rewritten as

H. (@)
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T
H =E§ | 6'88[8Y(s) +k-wlds- dy + Ee'SrH
o
T
5 ES | e-b's 6Y (s) ds
=k -w- b + o . s
1 - Ee-bT 1 - Ee~ ol (i)

The difference in the net receipts (4.1) and (ii), is the last term in (ii) which reflects
the fact that in the "score" approach the principal gets, on average, the dividend k -
w plus the excess profits that would go into the cash reserve.

However note that the infinite-pocket assumption is also implicit in the moral hazard
formulation of Section 4 and hence in order to compare moral hazard and first-best
values, as we shall do shortly, we need to maintain this consistency in assumption.

There are two important differences between our formulation and Yaari's on account
of which we cannot immediately infer that the Yaari result holds here. First, Yaari
allows only a consumption choice for the agent; stochastic returns are generated every
period with mean g and the agent picks a consumption rate ¢ thereby determining an
effective mean of m. In our framework, the agent picks from a given menu a parti
ular project or effort level (corresponding to a mean p) and additionally picks
consumption ¢ (and therefore a net mean m). Second, Yaari formulates bankruptcy in
his (finite-horizon) model in a way that has no analog in the infinite horizon
problem.

Dutta, unpublished notes.
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Appendix 1: The Binary Case

In this appendix we prove Theorem 3.4. Let g(-,?) denote the lifetime returns to
A
any switchpoint policy, with a switchpoint at y. The following Bellman equation is
standard and is proved for the binary choice context by Sheng (1980, Theorems 3 and 4):

Proposition A.1 (Sheng) i) g( -,9) is the unique function, C2 except possibly at ; s.t.

1

5Vig” () + (m-k)g’(y) - dg(y) + oU; = 0,

] A A A A A LA
i=1 on [0,y), i=2 on [y,»), g0,y) = 0, g, y) = U2 if y < » and g(», «) = Ul’ if y= o,

ii) A switchpoint strategy is optimal if and only if its return function saﬁsﬁes the
Bellman equation
max {% vig’'(y) + (moKg’y) - Sgy) + aui} =0, yel0, =) (A.1.1)
(mi s Vi)
The above proposition will be now used to prove the theorem. We start by proving

Theorem 3.4 iii), i.e. the optimal choice characterization when U; = U,. Then we prove

the characterization of Theorem 3.4ii) assuming that there is an optimal switchpoint
strategy, i.e. assuming that Theorem 3.4i) holds. We conclude by proving the first part of
the theorem.

Proof of Theorem 3.4 iii) Suppose that 7L1 > 12. Consider 9 = 0. For notational ease
) A
from here on we write m, instead of (mi-k) and suppress reference to the switchpoint y;

i.e. we write g(y) instead of g(y;g\r). Then,

% Vo' (y) + myg’(y) - Ggly) + U, =0, y 20 (A.1.2)

From the elementary theory of differential equations, the solution to (A.1.2) is of the form

8@ = e + b,e® + U,
where -12 (resp. 62) is the negative (resp. positive) root of the quadratic 1/2 v2x2 +

myx - 6. The boundary conditions imply that b2 = 0, 0 = -U2. Hence,

&) = Uyl - ¢22)

To check that this return satisfies the Bellman equation (A.1.1) we need to show that



25

The hypothesis 1, > Al implies that the term in the square bracket, 51()L2), is

positive. Hence, the inequality follows. The proof is identical for )”1 > AZ (in that case

A
y=w. O

Proof of Theorem 3.4 i) and ii): Suppose momentarily that there is an optimal

A
switchpoint strategy. Let us show that y = 0 iff (3.4) holds. Suppose that the optimal
switchpoint is zero. This implies

-Any 6(U 1 - U2)
61(12)6 27 2 ——UE——, for y 20 (A.1.3)
(3.4) follows immediately. Conversely, suppose (3.4) holds and hence clearly so
does (A.1.3). However (A.1.3) is precisely all that needs to be checked in order for the

optimality equation (A.1.1) to hold. Hence 9 = ( is optimal.
There are two steps to showing that there is an optimal switchpoint strategy. If

U, - Uy A
51(12) 2 —g—— then we are done since we have shown that y = 0 is an optimal
2

_ U, - Uy
strategy. So suppose instead that 51(12) < ———UE——

Lemma 1 There is oy < 0, b1 > 0, oy < 0 and 9 > 0 such that

e = (oY + 5,817 + U IO, ) + (e + UG (A.1.4)
A A
Ay ©y Ay
aye + bye +U; = oe 2Y + U, (A.1.5)
N A A
oy () e*Y + 1,0, = ay(4) ey (A.1.6)
2 0.y 2 0.3 2 Ay
oy (-2 Y+ b,07 € Y = ay(-Ay)" e 2Y (A.1.7)
oy + b1 + U1 =0 (A.1.8)

From the proposition above it follows that the return to any switchpoint policy is of
the form (A.1.4). If this return additionally satisfies (A.1.5)-(A.1.7) then the function is
continuous and so are its derivatives at 9 Finally, (A.1.8) is clearly the boundary
condition g(0) = 0. In other words this lemma will establish that there is a switchpoint
whose returns are C2 and satisfy the appropriate boundary conditions. Using the signs of
the coefficients that we establish in this lemma we shall then prove (in Lemma 2) that the
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Bellman equation (A.1.1) holds.

Proof of Lemma 1:  Since 1/2v1g" + mlg' - 6g + 60U 1= 0 on [0,9) it follows by
simple substitll\ltion that, in the presence of (A.1.5), (A.1.6) and (A.1.8), (A.1.7) implies that
51(12)(126123’ - 6(U2-U1) = 0. But it should also be clear that this condition implies, in

the presence of those three equatlons that the second derivative is contlnuous, i.e. that
(A.1.7) holds. So we will in fact show that there is oy, b2, 0Ly and y such that (A.1.5),

(A.1.6), (A.1.8) and the following hold
él(lz)aze 1.2 6(U2-U1) =0 (A.1.9)

(A.1.8) substituted succesively in (A.1.5) and (A.1.6) yields

)
U, - Uy - U [1+ 1]@13’
A
o, ®) = > ; A, ] (A.1.10)
11,0,y [1 ] Ay
1+ ] Y4 AL - 1leM
IR
which upon substitution gives the following
A
A A A e 6 y
a2(9)e'7‘2y = a1(§)[§1 eMY 4+ 9 eely] Ul e (A.1.11)
2 2 Ay

Denote the left-hand side of (A.1.9) h(g\r). After substituting for (A.1.10) and (A 1.11) we
clearly have an equation in the single variable y It remains to show that h(y) =0 has a
positive solution. Note that upon taking limits we get h(0) = -El(AZ)U2 - 6(U2- P >0
%

by hypothesis. Similarly, h(x) = -[51(12)—@:91 + 0] (U2-U1). From the definitions we
have that §1(12)91 = [1/2v17% + ml(-lz) - 8]91 which upon substituting mlel =
—1/2v19% + & yields 51(12)61 = [1/2v17L291 - 8](12 + 6;). Hence h(») = -[1/2v11261]
(U2—U1) < 0. The function h is clearly continuous and hence by the intermediate value

theorem has at least one value of 9 > 0 at which h(g\r) = 0.

Since the return to a switchpoint policy must be increasing it follows that a, < 0.

From (A.1.6) and (A.1.7) it follows that oy < 0. Substituting (A.1.6) in (A.1.7) we get
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A

AN
o0 MY A, Ay - Ay = 5,21 @0, + 4y (A1.12)
By hypothesis, )‘1 > 7&2 It follows that b; > O.g

Lemma 2. Let H(y) = %(VI'VZ) g’y + (ml-mz) g'(y) + 5(U1-U2). Then, H(y) 2 0, as

< A
ysy

Proof: For y > 9,

H(y) = 51(12) aze‘;\'

y
The inequality follows from the fact that o, < 0 and H(g\') =0. Fory< 9

H(y) = -6,(4)) ale'lly - £,0) b,%1 + &U, - Uy

Substituting from (A.1.5) - (A.1.7) straightforward algebra gives
A A A
Hy) = ae 1 [6,0eM0 P + w010V + 9
A (Ag-Ap) Ayh MG
where Kk = ——— and y= 83N
2

61(12+91)
we have éz(ll) > 0. By hypothesis ¥ < 0 and v > 0. H(Q) = 0 then implies that

). Recall that 7‘1 > 7L2 and hence
1

52(01) < 0. In turn this implies that H(y) > O for y < ? The proof of Theorem 3.4 is
complete. U

A
Remark: A little algebra in (A.1.12) reveals that as &-0, y]«=; i.e. as the agent becomes
more and more patient he asymptotically employs the action that the principal prefers.
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Appendix 2
In this appendix we prove the results of Sections 5 and 6.

Proof of Proposition 5.1. Consider any sample path with agent compensation

w(®,"). Write w(@) = 8 | e'asw(w,s)ds, the "mean wage" for the measure induced by the
0

discount rate &‘68. By Jensen's inequality,

ww@)] > 8 Z ¢ uwws)] ds.

Denote w = Ew(w), taking the expectation now with respect to the measure induced by
the given control strategy. Since u is concave, again, by Jensen's inequality,

u(w) = Eu[w(w)] > ES Z e'asu[w(w,s)]ds.

Since the principal discounts the future at the same rate as the agent and is risk-neutral,
along any sample path the principal's returns are identical under time varying compensation
w(w,-) or mean wage w(w). From risk-neutrality it follows that the principal is indifferent
between environment-varying compensation w(®w) or a constant compensation w.0

Proof of Proposition 5.2. The weighted first-best maximand is
a - A){Ea [ e%[ay + kds] - w} + 28] q(s)ds + u(w)} (A2.1)
0 0

and a strategy is of course the choice of instantaneous controls (m,v) for every time
instant and environment, and a constant compensation level w. From (A.2.1) it is clear
that the two choices can be made independently. Further, the maximand for w is Au(w) -
(1 - M)w and this is clearly maximized for w s.t. u’(w) = }—i:—& when w > 0 or at w =

-0s

0, e.g., when A = 0. It is further clear from (A.2.1), that E§ { [ €7 [dYd - ) +
0

q(m,v)?t]ds} is maximized by the constant use of the control which maximizes m(1 - A +
q(m,v)l..

Proof of Proposition 6.1. One way in which one could estimate the rate of
approach to efficiency would be to directly analyze the asymptotic behavior of the optimal
bankruptcy scheme (w*(8)k*(8),y*(6)), as 8 | 0. Since explicit expressions for these
parameters cannot be obtained, such a direct line of attack is not very fruitful. Instead,
we concentrate on finding a particular set of schemes (w(8),k(6),y(6)) for which the rate of
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convergence stated in Proposition 6.1 is valid. Clearly, such a rate is therefore a lower
bound for the rate implied by (w*(8),k*(6),y*(8)), which in turn is a lower bound for the
general class of all admissible compensation schemes.

Suppose the first-best constant control is (m,v) and the associated wage is w.
Consider, k(8) = m, w(8) = w, for all §, We will specify y(8) shortly. For any y 2 0,
let B*(m,w,8) denote the stationary Markovian optimal best response policy of the agent.
Define

U = Uw,m,\v)
Tg(y) = min {t > 0: Y(® = 0] Y(0) =y, p*(m,w,5)}

T(y) = min {t > 0: Y(@®) = 0] Y(0) =y, # = (m, V)}
Clearly,
Vy) S U (@ - EOT50 (A2.2)
Vsy) 2 0 (1 - 50T 50 (A2.3)
(A2.2) and (A.2.3) imply that

1-BSTs0 >0 . g STO)
Uw)
= b(1 - EeOT))

Now, by standard arguments (e.g. Dutta (1990)) it follows that

1 - BT _ g L Ny (A.2.4)

where 1= [

S
LI}
5

From (A.2.4) it follows that

e dy()
Hyly) = @ - W) - (A2.5)
b1 - e

Collecting (A.2.4) and (A.2.5) together we have
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ACALUN 10
18]

where ¢! = (m - w)b.
The remainder of the proof will be as follows. We shall demonstrate the existence
of y(8) such that i) 8y(6) = O(/S Ind), ii) e-xy(5) = O(y/0 Ind). Clearly, the proof will

then be complete.

For an arbitrary integer n 2 1 define
y(§ = 212 ;‘5‘ 0
It follows that 8y(8) = -nyS In§ = O(y3 Ind). Further, -Ay(§) = an Ind and so MO _

8", If n is chosen such that an > %, then & goes to zero faster than /0 In 8. Hence,

1

for n 2 5, e-Zy(S) = O(y/0 Iné), and the proof of Proposition 6.1 is complete. O



