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Abstract

- RESOURCE MONOTONIC SOLUTIONS TO THE PROBLEM OF
FAIR DIVISION WHEN PREFERENCES ARE SINGLE-PEAKED

We consider the problem of fairly allocating an infinitely divisible commodity
among a group of agents with single—peaked preferences. We search for methods, or
solutions, of performing this division, that satisfy the following property pertaining to
changes in the amount to be divided: suppose that the change is not "too large" in
that if initially there is not enough to bring all agents to their satiation points, then
after the change, there still is not enough; or if initially there is so much that all
agents have to be brought beyond their satiation points, then after the change, there
still is too much. In any of these circumstances, we require all agents to be affected
in the same direction. We show that essentially, there is a unique selection from the
solution that associates with each economy its set of envy—free and efficient allocations
satisfying this property: it is the uniform rule, a solution that has played a central

role in previous analyses of the problem.

Key words. Fair division. Single-peaked preferences. Resource-monotonicity. Uniform

rule.






1. Introduction. We consider the problem of allocating an infinitely divisible
commodity among a group of agents who have single-peaked preferences. ~Agents are
assumed to have equal rights on whatever amount is available and the question is how
to achieve a fair division.! We search for -desirable methods, or solutions, of
performing this division. The ideal situation is when the amount to be divided is
equal to the sum of the preferred consumptions. Then, every agent can be given his
preferred consumption. If the amount to be divided is less than the sum of the
preferred consumptions, the situation is the usual one since having less of the
commodity will be socially undesirable: there is "not enough" (to bring everyone to his
satiation point). If the amount to be divided is greater than the sum of the preferred
consumptions, the opposite holds and it is having more of the commodity that will be
socially undesirable. Then, one can say that there is "too much". What should be
done in these cases?

This model was recently considered by Sprumont (1991) who searched for
strategy—proof solutions, and by Thomson (1990) who looked for solutions satisfying a
certain property of consistency pertaining to economies of variable size. It can be
given a variety of interpretations: rationing in a two-good economy in which prices
are in disequilibrium; allocation of a task among the members of a team, paid an
hourly wage and whose disutility of labor is a convex function of labor supplied;
allocation of a commodity when preferences are satiated at some point and free disposal
is not allowed.

Our purpose here is a normative analysis of monotonicity issues. We imagine
~changes in the amount to be divided and ask of solutions that if the change is "not so
large" in the sense that if there is not enough initially, there still is not enough after

the change, and if there is too much initially, there still is too much after the change,

tAlternatively, we could imagine agents to be endowed with possibly different amounts
of the commodity. The problem then would be to reallocate it in some equitable way.



then all agents be affected in the same direction. Combined with efficiency, this says
that if there is more of the commodity when more of it is socially desirable, all agents
gain; if there is more of the commodity when such an increase is socially undesirable,
they all lose. We name this property ome—sided Tesource—monotonicity.

On "classical" domains, where preferences are monotone, the property that has
been considered is that all agents benefit from an increase in the amount to divide.
Obviously, if at some point the commodity becomes less desirable, this requirement
does not make sense. A weaker one which is natural in such situations is that all
agents be affected in the same direction: all gain together or lose together as a result
of an increase in the amount to be divided (in fact, as a result of any change in the
amount to be divided). We name this property two-—sided resource—monotonicity. It
turns out that this condition, which of course implies one—sided resource—monotonicity
is actually quite strong, because it forces comparisons between situations when increases
are desirable and situations when increases are undesirable. It can be met, but when
complemented with efficiency and one of several alternative distributional requirements,
it cannot. The weaker requirement of ome—sided resource-monotonicity is compatible
with these other requirements and there is a sense in which it is the most that one
can obtain.

Indeed, our results are as follows. First, we characterize the class of one—sided
resource—monotonic selections from the pareto solution. We introduce a variety of
examples in the class, motivated by intuitive considerations of fairness; these solutions
are based on the special features of the model and would not be well defined in more
general models. There exists an infinite class of one—sided resource-monotonic
selections from the intersection of the pareto solution with the solution that selects for
each economy its set of allocations that pareto dominate equal division, the
"individually rational solution from equal division," but all such selections coincide over

whole intervals. Our main result is that, on a large subdomain of our principal



domain, there is a unique one—sided resource-monotonic selection from the intersection
of the pareto solution with the solution that selects for each economy its set of
envy—free allocations, the "no—envy" solution. This solution is the uniform rule, a
solution that plays a prominent role in the Sprumont and. Thomson papers. We also
offer a characterization without the domain restriction. Then uniqueness is lost but all
admissible solutions are obtained by "piecing together" uniform allocations of certain
subeconomies.

Next, we strengthen the monotonicity requirement and demand that all agents be
affected in the same direction by any change in the amount to be divided. We find
that no two—sided resource—monotonic selection from either the individually rational
solution from equal division or the no—envy solution, exists. However, there are
symmetric and two—sided resource-monotonic selections from the pareto solution and we
give a characterization of all such selections.

These results confirm the central role played by the uniform rule, already
established in previous studies, in solving the problem of fair division in economies with
single—peaked preferences. They should also be seen in the wider context of the recent
literature on the design of allocation rules, whose main objective is to identify the
tradeoffs one faces in this design. The paper is intended as a contribution to this

larger program.

2. The model. An amount M € R n of some infinitely divisible commodity has to be
allocated among a set N = {1,...,11} of agents, indexed by i, each agent i being
equipped with a continuous preference relation Ri defined over R " ‘These preference
relations are single—peaked: for each i, there is x’i‘ €ER n such that for all X, X{ € R L

ifxi<xi_<_x’!‘ orx*gxi<x

5 ' {, then x;Ppxs (P, denotes the strict preference

relation associated with R, and I, the indifference relation). Let p(Ri) €R, be the

preferred consumption according to Ri' The preference relation Ri can be described in



terms of the function rz R, - R +U{m} defined as follows: given x; < p(R;), r(x) 2

p(R;) and x;Lr,(x;) if this is possible, and 1,(x;) = o otherwise; given x; > p(R;), r(x;)
< p(R;) and x;Ir,(x;) if this is possible, and r,(x;) = 0 otherwise. (The number ry(x;)
is the consumption on ‘the other "sideu~of~*‘agent‘?i’sf«preferre'd consumption thét e finds

indifferent to x;, if such a consumption exists; it is 0 or w otherwise.) We define ()

=1lim ri(xi). Let & be the class of all such preference relations. We write R =
X.—/w
i

(Ry);en and P(R) = (P(R;));cy- An ecomomy is a pair (R,M) € & R,.

A feasible allocation for (R,M) € 4R 4 1s a vector x = (xi)ieN € IR_I;_ such that
¥x, = M. Note that free disposal of the commodity is not assumed. Let X(M) be the
set of feasible allocations of (R,M).

Our objective is to distribute the amount M equitably. A solution is a mapping
AL M IR?_ which associates with every economy (R,M) € %'y R , 3 mon—empty
subset of X(M), ¢(R,M). Each of the points in ¢(R,M) is interpreted as one possible
recommendation. Apart from several solutions derived from standard economic notions,
we will introduce others that are specific to the model. A number of them are
single—valued, a desirable property that is difficult to obtain on "classical" domains,
that is, domains of economies with infinitely divisible goods and continuous, convex,
and monotonic preferences.

Note that in our formulation solutions may be required to depend only on the
restriction of each R, to [0,M],2 or they may be allowed to depend on the whole of
each Ri' With only small changes in the exposition, we could have assumed

preferences to be defined over some fixed interval [O,MO],F where M, is possibly different

from M. Such a specification of the domain would be particularly appropriate in the

2[n his analysis, where M is fixed, Sprumont assumes preferences only to be defined on
the interval [0,M].



case of dividing a task among workers, M0 being the maximal amount of time each
worker can work.

The intersection of two solutions ¢ and ¢’ is denoted pp’. If ¢ is a
single-valued solution and {x} = ¢(R,M), we slightly abuse notation and write x =

o(R,M).

3. Basic solutions. In this section, we present the two solutions that have been most
often advocated in the literature on the problem of fair division, and variants of them.
Unfortunately, these solutions typically are not very discriminating. Omne of our
objectives later on will be to identify selection procedures that are well behaved from
the viewpoint of monotonicity. In the course of this investigation, we will be led to
introducing a variety of solutions whose definitions will make use of the particular
features of the model under study. First, however, we take care of efficiency.

Pareto solution, P: x € P(R,M) if x € X(M) and there is no x* € X(M) with x{R.x,
for all i and x{Px, for some i.

It is easy to check that at an efficient allocation, all agents consume less than
their preferred amounts if Ep(Ri) > M, and more than their preferred amounts if
¥p(R;) < M.

Our first fundamental concept with meaningful distributional implications is pareto
domination of equal division. It is often suggested that in order to solve problems of
fair division, each agent be given ownership rights on an equal share of the available
resources; in the present model, in order to allow for cases when there is too much of
‘the commodity so that it has become a burden, we should say "equal rights or equal
responsibilities." From that idea, the requirement that all agents end up better off
than at equal division follows naturally.

Individually rational solution from equal division, I ; x € I, g(R.M) if x € X(M) and
x;R;(M/n) for all i.



A refinement of that notion is that no group of agents on its own be able to make
all of its members better off, assuming each initially receives M/n. The set of
allocations passing this test is "the core from equal division".

- Our second fundamental concept says that no- agent should prefer anyone else’s
consumption to his own.3 This idea has played the central role in recent developments
in the theory of fair allocation. In addition to its direct intuitive appeal, it has the
advantage of being meaningful in situations where indivisible goods are present
(assignment of jobs), and when equal division is not well defined (division of a
heterogeneous good such as land or time).

No—envy solution, F (Foley, 1967): x € F(R,M) if x € X(M) and for all i, j, xiRixj'

We could additionally require that no group be able to make all of its members
better off by redistributing among them the resources received by any other group of
the same cardinality. An allocation passing this test is "group envy—free".

We close with a concept intermediate in spirit between no—envy and individual
rationality from equal division. It simply says that every agent prefers his consumption
to what the others receive on average.

Average no—envy solution, A (Thomson, 1979, 1982; Baumol, 1986): x € A(R,M), if x

€ X(M) and x;R;( % xj/(n——l)) for all i.
i
A general discussion of these criteria and of the way they relate to each other

appears in Thomson (1991). When applied to the present model, a few important facts

are (Thomson, '1990): envy-free and efficient allocations, and individually rational from

3The following definition due to Pazner and Schmeidler (1978), as well as variants and
extensions of it, have been very useful in other contexts: the allocation x € X(M) is
- egalitarian—equivalent for (R,;M) if there exists a reference-amount X' such that iniXO

for all i. Let E*(R,M) be the set of these allocations. Here, this concept will not be
useful, since E¥P(R,M) will typically be empty. Suppose for instance that Ep(Ri) =

M. Then, {(p(Ry),-P(R))} = P(R,M). As a result, if for at least one pair {i,j},
p(R,) ¢ p(Rj), then E¥P(R,M) = .



equal division and efficient allocations, always exist; the "uniform allocation,"
introduced later on, enjoys all of these properties. Any allocation that is individually
rational from equal division is average envy—free. There is no containment relation
between the sets of envy—free allocations and of average envy—free allocations (unless of
course n = 2, in which case the two concepts coincide). There typically is a large set
of allocations (in fact a continuum) satisfying each of these conditions and the need
arises then for more precise selections. Since the set of group envy—free allocations and
the core from equal division may be empty, these two concepts do not help in this
regard. They will not be discussed any further. Moreover, we would like our

selections to be well behaved from the viewpoint of monotonicity.

4. One—sided resource—monotonicity. We now consider changes in the amount to be
divided, limiting our attention to single-valued solutions.

Suppose that the amount to be divided increases. Given that all agents are
assumed to have equal rights on the goods, if they had monotone preferences, it would
be desirable that all gain. This property of "resource monotonicity" of solutions has
been the object of much attention recently in the context of classical economies
(Roemer, 1986; Chun and Thomson, 1988; Moulin and Thomson, 1988). This is also
what we would like to require here if initially there is not too much of the commodity
and after the increase, there is still not too much of it, so that each agent initially
receives less than his preferred consumption and still does after the increase, as
efficiency requires. If there is initially too much of the commodity, so that all agents
have already passed their preferred consumptions — again, this is as efficiency requires
— we would like to ask that all agents should lose as a result of a further increase: if

M< M < Ep(Ri) or Zp(Ri) < M’ < M, then goi(R,M’)Riwi(R,M) for all i.



However, we believe that it is important fully to separate out considerations of
monotonicity from considerations of efficiency, so that we will use the following
alternative condition:

One-sided resource monotonicty. For all R € A ,for al M, M/ e R, if M < M’ <

+
Yp(R,) or if ¥p(R;) < M’ < M, then either <pi(R,M’)Ri<pi(R,M) for all i or
goi(R,M)Ri(pi(R,M’) for all i. Strict one—sided resource monotonicity holds if, in
addition, whenever one of the preferences is strict, then they all are.

The general requirement that all agents be affected in the same direction as their
environment changes is the essence of solidarity. An application of this idea to the
theory of bargaining appears in Thomson and Myerson (1980).4 Its usefulness in the
theory of quasi-linear social choice with a variable population was observed by Chun
(1986).

Our first example of a solution satisfying one—sided resource-monotonicity is the
"proportional solution". This solution (mentioned by Sprumont) is the natural
expression on our domain of a fundamental principle which underlies much of the
theory of allocative fairness (Young, 1988, quotes Aristotle: "What is just ... is what is
proportional and what is unjust is what violates the proportion").

Proportional solution, Pro: x = Pro(R,M) if x € X(M) and there exists A € R, such
that x, = Ap(R;) for all i; if no such A exists, x = (M/n,...,M/n).

Note that A exists as soon as the preferred consumption of at least one agent is
positive. In the rare case when all preferred consumptions are zero, we propose equal
division. Since in that case, all agents have identical preferences, this choice is quite

natural. Unfortunately, it causes the rule to be discontinuous with respect to

preferences.5 Unless Ep(Ri) = M, at a proportional allocation, no agent with a positive

4"Any change in the feasible set affects all agents in the same diretion."

5Sprumont (1991) discusses issues of topologies. Note that continuity with respect to
the amount to be divided would hold.



preferred consumption reaches it. Clearly, a proportional allocation is necessarily
efficient.

The following variant of the proportional solution is continuous with respect to
preferences. Moreover it treats units of the good above or below the preferred
consumptions symmetrically (as do all of the other solutions that we will discuss).

This is desirable for some of the interpretations of the model, such as rationing.6 Of
course, it remains efficient.

Symmetrically proportional solution, Pro*: x = Pro*(R,M) if x € X(M) and (i) when
¥p(R;) > M, there exists X € R, such that x, = Ap(R;) for all i, and (ii) when Zp(R;)

< M, there exists A € R, such that M-x, = A[M-p(R;)] for all i.

+

The symmetrically proportional solution is also one—sided resource-monotonic.

Both the proportional solution and its symmetricized version are strictly one—sided
resource—monotonic if all preferred consumptions are positive.

A version of the proportional solution that depends only on the restrictions of the
preference relations to the interval [0,M] is obtained by requiring proportionality to the
~ "constrained" preferred consumptions: pyr(R;) = p(Ry) if M > p(R;) and py(R) =M
otherwise. The resulting solution as well as the solution obtained in a similar way
from the symmetrically proportional solution are one-—sided resource-monotonic, and
strictly so if all preferred consumptions are positive.

These properties should be compared with those of the next solution. When it is
not possible to give every agent his preferred consumption, and sacrifices have to be
imposed on them, it is natural that all agents be required to sacrifice and the

proportional solution achieves this (again, except in the special case when some of the

preferred consumptions are equal to zero). But the idea of proportional sacrifice is not

the amount to be divided would hold.

6Aumann and Maschler (1985) use a similar requirement in their study of bankruptcy
problems.
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the only one that merits attention. The next solution is based on comparing distances
from preferred consumptions unit for unit as opposed to proportionally. It selects the
allocation at which all agents are equally far from their preferred consumptions, except
when boundary problems occur, in which case, those agents whose consumptions would
be negative are given zero instead.
Equal-distance solution, Dis: x = Dis(R,M) if x € X(M) and (i) when Zp(R;) > M,
there exists d > 0 such that x, = max{0,p(R;)-d} for all i, and (ii) when )Jp(Ri)g
M, there exists d > O such that x, = p(Ri)b+d for all i. i

The equal-distance solution is single-valued and produces efficient allocations. It is
one—sided resource—monotonic. However, the variant of the solution obtained by using
the restrictions of the preference relations to the interval [0,M] instead of the whole
preference relations is not (except for the two-agent case). This is illustrated in Figure
1 which depicts the amount received by each of three agents as a function of the
amount to be divided. Note that as M increases from the smallest preferred
consumption to the second smallest preferred consumption, agent 1 is made

progressively worse off whereas agents 2 and 3 are made better off.

]
p(R1)+p(R2)
p(Ra)————s—— T Pt U,
o)
—_— - —— - - = %+

p(Rl)

B R I

2p(R1)—p(R2) el - - - - - £
3

-
-~

PR p(R) 2p(R) PRy
An illustration of the equal-distance solution in the three—agent case.

Figure 1
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The propositions below, which should not be surprising, relate the above rules to
our primary distributional criteria of individual rationality from equal division and
no—envy.’

Proposition 1. ' Neither the proportional solution nor the equal-distance solution
necessarily selects individually rational from equal division allocations.

Proof Let N = {1,2}. (i) Let p(R) = (3,6) and M = 6. Then Pro(R,M) = (2,4).
Since M/2 = 3 and 3P,2, Pro(R,M) ¢ Ied(R,M). (ii) Let p(R) = (3,6), r;(2) = 4,
and M = 7. Then Dis(R,M) = (2,5). Since M/2 = 3.5 and 3.5P,2, Dis(R,M) ¢
Ied(R,M). Q.E.D.

Proposition 2. Neither the proportional solution nor the equal—distance solution
necessarily selects envy—free allocations.
Proof. Let N = {1,2}. (i) Let p(R) = (2,4), r;(1.5) = 4, and M = 4.5. Then

Pro(R,M) = (15,3). Since 3P,1.5, Pro(R,M) ¢ F(R,M). (ii) Let p(R) = (3,4), and M

1
= 5. Then Dis(R,M) = (2,3). Since 3P 2, Dis(R,M) ¢ F(R,M).

Q.E.D.

In light of Propositions 1 and 2, it is natural to attempt redefining the two
solutions so as to recover either individual rationality from equal division or no—envy.
An appealing way to do this is to perform lexicographic operations. Such operations
are standard in game theory and social choice. Taking the differences di(x) =
|xi—p(Ri)| as a point of departure, for example, we would look for allocations x in
I, dP(R,M) or in FP(R,M) at which these differences are not equal, as in the definition
of the equal-distance solution, but as equal as possible, according to the lexicographic

ordering.

TThe results also hold for the versions of the solutions obtained by using the restrictions
of the preferences selection to the interval [0,M].
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Formally, given t € R™, let t be obtained by rewriting the coordinates of t in
decreasing order. Given t and t’ € R", say that t is lezicographically greater than t',
written ¢ >, ¢, if [t;> t4], or [t; = t{ and t5 > t5], or ... Also, let d(x) =
(dy(x),...,d (x))- '

Then, we define selections from Ie dP and FP as follows:

Definition. Dist (RM) = {x € I,;P(R,M)|d(y) > d(x) for all y € I,;P(R,M)}
ed © L €
Definition. Diso(R,M) = {x € FP(R,M)|d(y) > d(x) for all y € FP(R,M)}.
L
Similarly, we could define selections from Ie dP and FP in the spirit of the
X X
. . N 1 n

1 solution b th t here 0/0 = w b

proportional solution by considering the vector (HR—J’ ,m) (where 0/ o by

convention), and looking for allocations in I, dP(R,M) and FP(R,M) whose associated
vectors are lexicographically minimal in T, dP(R,M) and FP(R,M).

Unfortunately, so adapting the solutions will cost us one—sided resource—
monotonicity. It is therefore with some relief that we encounter our next solution,
which does satisfy one—sided resource—monotonicity and always selects an allocation
that is efficient, envy—free and individually rational from equal division. This solution,
called the uniform rule, already played an important role in Sprumont (1991) and
Thomson (1990), who characterized it on the basis of strategy—proofness and consistency
respectively.

Uniform rule, U: x = U(R,M) if x € X(M) and (i) when Ep(R;,) > M, x =
min{p(R;),A} for all i, where A solves ¥min{p(R;),A} = M, and (i) when Ep(R;) < M,
x; = max{p(R;),A} for all i, where X solves Zmax{p(R;),A} = M.

If Ep(Ri) > M, the uniform allocation is obtained by successively making the
agents who receive the least as well-off as possible, and if Ep(Ri) < M, by successively
making the agents who receive the most as well off as possible. Here are the
payments as a function of M (Figure 2 illustrates the rule for n=3). For M small, all

agents receive the same amount; this holds until all have received an amount equal to
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the smallest preferred consumption. Then, the agent with the smallest preferred
consurﬁption does not receive anything for a while. Instead, any increase in M is

" divided equally among the remaining agents until each of them has received an amount
equal to the second smallest preferred consumption. Then, the agent with the second
smallest preferred consumption does not receive anything for a while... This process
continues until each agent has received his preferred consumption. Any increase beyond
Yp(R;) goes first to the agent with the smallest preferred consumption until he has
received an amount equal to the second smallest preferred consumption. A further
increase is divided equally among the agents with the two smallest preferred
consumptions until they have received an amount equal to the third smallest preferred
consumption ... This goes on until all agents have reached the largest preferred

consumption. Afterwards, they share equally any further increase.8

X} = X2 = x3
p(Ra) X3 /
X3 X1 = X2

P(Rs) X3

X2 = X3
p(R1) X

Xt =l X2 = X3 '
3p(Ry) 3p(R Tp(Ri)  Ep(R;
D @ty - 3R M

An illustration of the uniform rule in the three-agent case.

Figure 2

8The similarity between the uniform rule and the rule proposed by Maimonides for the
adjudication of conflicting claims (O’Neill, 1982; Aumann and Maschler, 1985) should
be noted. Indeed, the algorithm describing that solution is identical up to the point
where each agent has received his preferred consumption, by replacing the vector of
preferred consumptions by the vectors of claims.
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As noted above, the uniform allocation is efficient, envy—free, and individually
rational from equal division. Also, it depends only on preferred consumptions.
Equipped with this new solution, we now understand that Proposition 2 was simply an
illustration of a more general fact: the uniform rule is the only selection from the
envy—free and efficient solution to depend only on preferred consumptions. Since the
proportional and equal-distance solutions are efficient solutions that depend only on
preferred consumptions, they have to violate no—envy. To prove the fact, let ¢ be
such a selection, and suppose by way of contradiction that for some (R,M) € Ay R 4
x = p(R,M) # U(R,M). Suppose, without loss of generality, that Ep(Ri) > M. Then,
for some i, j with x; < X5 X # p(Ri)‘ Since ¢ C P, x; < p(Ri). Now, let R{ be
such that p(Ri) = p(Ri) but ij {x;,. Since ¢ depends only on preferred consumptions,
p(R{,R_;M) = ¢(R,M). But x ¢ F(R{,R_;,M) since agent i now envies agent j at x.9
(It is not true however that the uniform rule is the only selection from the individually
rational from equal division and efficient solution to depend only on preferred
consumptions).

The fact that there exists a one—sided resource-monotonic selection from the
envy—free and efficient solution (the uniform rule) should be emphasized. On classical
domains, there is no such selection satisfying the counterpart of this property, as shown
by Moulin and Thomson (1988). Next, we ask whether there are ome—sided
resource—monotonic selections from the envy—free and efficient solution other than the
uniform rule. The answer is no, provided a fairly weak domain restriction is imposed,
namely, that for each agent, there be a finite consumption indifferent to 0: if there is
too much of the commodity, it eventually becomes a "bad". (Technically, this

restriction prevents the consumption of the agent with the largest preferred consumption

9Note that the argument would apply to any solution simply required to be such that
the consumption received by any agent depends on his own preference relation only
through his preferred consumption.
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to become infinite while the consumptions of the others remain finite, without his
becoming envious of them.) We describe after the theorem all the additional solutions
that would become admissible if the domain restriction were removed.

Theorem 1. Let :92“ be the domain of preference profiles such that each I, is bounded.
On the domain :%n,, R " the uniform rule is the only one—sided resource-monotonic
selection from the envy-free and efficient solution.

Proof. Let ¢: :9?“, R L lR_I’l_ be a one—sided resource-monotonic selection from FP.

(i) ¢ is continuous with respect to M. Suppose not. Then, there exist sequences {MV }

. 2, | 0 0 v 0 v 0 v _
1an+and{x}mIR+,M E[R+,x €R+suchthatM - M, x —x,x =

(BM) for all v and x° # p(B,M?). Tet y = ¢(R,M’). Since ¢ ¢ P, M’ # Sp(R,)
(otherwise y = p(R) and 0 = go(R,MO)). Suppose, without loss of generality, that M

< Ip(R;). There exists v such that for all v > v, MY < Yp(R;). Then, since 0 $y,

and since ¢ C P, there are i, j such that x? <y £ p(Ri) and ¥ < xg’ < p(Rj).
There is 7 so that for all v > 7, x’i/ < y; and y; < x'j/. Let v > max{y,7}. In the

change from MY to M°

, agent i gains and agent j loses, in contradiction with
one—sided resource—monotonicity.

(ii) For all M such that Ep(Ri) > M, ¢(R,M) = U(R,M). Suppose, by way of
contradiction, that for some M with EP(Ri) > M, x = ¢(R,M) # U(R,M). Since ¢ C
P, x; < p(R;) for all i. Then there are i, j such that x; < p(R;) and x; < X Since
¢(R,M’) > 0 for all M", ij(R,M’) — 0 as M” — 0. Since ¢ CF, p(R;) < r(x) <
X; Therefore, by (i), there is M < M such that wj(R,M) = p(R;). Since p C F, for
agent i not to envy agent j at ¢(R,M), we need goi(R,M) = p(R;). Therefore, in the
change from M to M, agent i gains and agent j loses, in contradiction with one—sided
resource—monotonicity.

(iii) For all i, cpi(R,M) — o a8 M — w. If not, there exists i such that Ei =

sup{y;(R,M)|M € |R+} < w. Also, since p(R,M) > 0 for all M, there exists j such
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that goj(R,M) — o as M — o Let ij = max{rj(O), x;}. Then for M large enough,
gaj(R,M) > '}_(j. We have (pi(R,M)ijj(R,M) so that agent j envies agent i at ¢(R,M),
in contradiction with ¢ C F.

(iv) For all M such that Z‘p(Ri) < M, o(R,M) = U(R,M). Suppose, by way of
contradiction that for some M with ¥p(R;) < M, x = o(R,M) # UR,M). Since p C
P, x; > p(R;) for all i. Then there are i, j such that x; > p(R;) and x, > X; By
(iii), gpj(R,M) — o a8 M — . Since ¢ C F, X; < r(x;) < P(R;). Therefore by (i),
there is M such that cpj(R,Nf) = p(R,). Since ¢ C F, for agent i not to envy agent j
at ¢(R,M), we need ¢(R,M) = p(R,). Therefore, in the change from M to M, agent i
gains and agent j loses, in contradiction with one—sided resource-monotonicity.

Q.E.D.

Theorem 1 would actually hold if the domain were restricted by the weaker
condition that, assuming agents numbered so that p(R;) £ ... < p(R)), 1 () < p(R,).
The only change in the proof would occur in step (iii), which would continue after the
second sentence as follows: - "We claim that this implies that gon(R,M) — oas M —
o. Indeed, either i = n, and then we are done; or if i # n, for every B > p(Rn),
there is M large enough so that p(R;) < p(R)) £ B < p(R,M) < ¢ (R,M), where
the last inequality follows from the requirement that agent i not envy agent n at
¢(R,M). Now, since r () < p(R;), there is M large enough so that r (v, (R,M)) <
p(Rl) < <p1(R,M) < <pn(R,M) where the middle inequality follows from ¢ C P, and
agent n envies agent 1 at ¢(R,M), in contradiction with ¢ C F."

The following example shows that Theorem 1 would not be true if the doma,in‘
restriction were dropped altogether. TLet N = {1,2}, p(R) = (1,3) and ry(w) = 2. Let
¢ be such that ¢(R,M) = U(R,M) for all M < Y¥p(R;) and ¢(R,M) = (p;(R),M—p,(R))
for all M > Ep(R;). It is easy to check that ¢ C FP and that ¢ is one—sided

resource—monotonic. It is also possible to modify the definition of ¢ so that the
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amount received by agent 1 would actually increase beyond p(Rl) (the main thing is
that it should not increase beyond Iz(m)).

A complete characterization without the domain restriction can be obtained by
generalizing this example. First of all, it follows from steps (i) — (ii) of the proof of
Theorem 1, that even without it, any ¢ C FP satisfying one—sided
resource—monotonicity is such that ¢(R,M) = U(R,M) whenever M < Ep(Ri). If M
increases beyond Ep(Ri), ¢(R,M) is obtained by "juxtaposing" the uniform allocations of
certain subeconomies, as follows (We omit the proof of these assertions, most of which
are patterned after the various steps of Theorem 1).

(i) The agents are partitioned into groups, each group consisting of agents with
successive preferred consumptions, two agents with the same preferred consumption
belonging to the same group. (Therefore, there is a natural order for the groups, the
preferred consumptions of all the members of any group being strictly lower than the
preferred consumptions of all the members of the next highest group). For any i such
that sup{p,(R,M)[M € R+} < w, let s; be this supremum. If p(RM) - o as M —
w, let 5, = o

(ii) The consumptions of all the members of the highest group become infinite
with M. For any agent i in that group, 5, = .

(iii) The consumptions of the members of any other group have a common finite
supremum. For any i in such a group and for any j in the next highest group, 5, <
rj(sj). (Therefore, there will be only one group if for all i, r(w) is less than the
smallest preferred consumption, as explained in the paragraph following Theorem 1;
also, the consumptions of all the members of any group other than the highest group
remain finite).

(iv) What each group receives as a whole is allocated between its members by

applying the uniform rule.
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(v) What each group receives as a whole is a continuous increasing function of M.
These functions add up to M.

A direct consequence of Theorem 1 is that on :%nx R n there exists no selection
from the envy—free and efficient solution satisfying strict one—sided
resource—monotonicity.1® This is because the uniform rule does not satisfy this stronger
property, as can be seen from Figure 2.

What if no—envy were replaced by individual rationality from equal division?

Since, when n = 2, no—-envy is a weaker condition (Thomson, 1990), it follows from
Theorem 1 that, if ¢ C I e dP C FP is one—sided resource-monotonic, then ¢ = U on
~332 « R. However, if n > 2, the uniform rule does not remain the only one-sided
resource—monotonic selection from I o dP on s x R.

It is possible completely to characterize all these selections but they constitute an
infinite—dimensional family. In order to give the reader an idea of what they look like,
we only indicate the features shared by all of them for n = 3, and, after numbering
agents so that p(R;) < p(Ry) < p(R3), under the assumption that 2p(R,) >
P(R1)+P(R2)-

Then any one—sided resource—monotonic ¢ C Ie dP is such that for all M €
[0,3p(R1)] U [3p(R3),m[, o(R,M) = (M/3,M/3,M/3) = U(RM); for all M €
3p(R,)5(R))], @y (R,M) = p(R;); for all M € [Sp(R;),3p(R,)], p(RM) =
(M-p(Ry)-p(R4),p(Ry),p(Rg)) = U(R,M); for all M € [3p(Rq)af, p5(R,M) = p(Rg).
Otherwise, some indeterminacy exists. However, precise bounds can be established.
(Details are available from the author.)

It follows from these remarks and the inclusion Ie d C A that the uniform rule is

not the only one—sided resource~monotonic selection from AP. However, at least for

10This is true even if all preferred consumptions are positive. (Recall that this restriction
had helped in the case of the proportional solution.)
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n = 3, the class of one—sided resource-monotonic selections from AP is not any larger
than the class of one—sided resource-monotonic selections from I o dP.

We conclude this section with a characterization of all one—sided
resource—monotonic selections from the pareto. solution:‘ for each R € A -simply - .choose
n non—decreasing functions <pi(R,-):lR L R n adding up to M and such that
¢i(R.Ep(R;)) = p(R,) for all i.

5. Two—sided resource—monotonicity. We now turn to an analysis of the following
stronger monotonicity condition: aeny change in resources affects all agents in the same
direction, whether or not the two amounts remain on the same side of the sum of the
preferred consumptions.

Two—sided resource—monotonicity. For all R € A , for al M, M’ € R e either
wi(R,M’)Ri(pi(R,M) for all i, or wi(R,M)Rigo(R,M') for all i. (Here too, a further
strengthening could be obtained by requiring that in addition, if one of the preferences
is strict, then they all are.)

The non—existence of two—sided resource—monotonic selections from the individually
rational from equal division and efficient solution follows from (i) Theorem 1, (ii) the
fact that the uniform rule does not satisfy this property, and (iii) the fact used earlier
that for n = 2, any allocation that is individually rational from equal division is
envy—free (Thomson, 1990). The next proposition states an even stronger impossibility
since it makes no use of efficiency. It also provides a proof of (ii), as it involves
economies for which there is a unique allocation that is individually rational from equal
division. This allocation is therefore the uniform allocation.

Proposition 3: There is no selection from the individually rational solution frorﬁ equal
division satisfying two—sided resource-monotonicity.

Proof. Let ¢ C L Let N = {1,2}, p(R) = (1,2), M = 2 and M’ = 4. Tet x €
Ied(R,M). Since M/2 = 1 = p(Ry), x = (1,1). Let y € Ied(R,M’). Since M’ /2 = 2
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= p(Ry), y = (2,2). Since ¢ C I 4, x = ¢(R,M) and y = ¢(R,M’). In the change
from M to M, agent 1 loses and agent 2 gains, in contradiction with two-—sided

resource monotonicity.

Q.E.D.

It also follows from Theorem 1 and the fact that the uniform rule does not satisfy
two—sided resource-monotonicity that there is no two—sided resource-monotonic selection
from the envy—free and efficient solution. This impossibility is also a consequence of
the next proposition, in which again no use is made of efficiency.

Proposition 4: There is no selection from the envy—free solution satisfying two-—sided
resource—monotonicity.

Proof. Let ¢ CF. Let N = {12}, p(R) = (2,7), 1{(1) = 4, ry(5) = 8, with r;
linear in the interval [0,2] and I, linear in the interval [0,77, M = 5 and M’ = 13.
Let x = ¢(R,M). For agent 1 not to envy agent 2 at x, weneed 1 < x; < 2.5 or 4
< x; £ 5. Since agent 2’s preferences are monotone in the interval [0,5], for him not
to envy agent 1 at x, we need x| £ Xy Altogether, we have 1 < X; £ 2.5,

Now, let y = ¢(R,M’). For agent 2 not to envy agent 1 at y, we need 0 < y,
< 5or6.5 <y, <8 Foranyy, in the second interval, p(Rl) < ¥1 £ ¥q S0 that
agent 1 does not envy agent 2. But for any ¥q in the first interval, vy 2 8, and
agent 1 envies agent 2 at y.

We conclude by noting that any x € F(R,M) is preferred by agent 1 to any y €
F(R,M’) whereas the reverse holds for agent 2, in contradiction with two—sided
resource monotonicity.

Q.E.D.



21

When n = 2, no—envy and average no—envy coincide. Therefore, Proposition 4 also
establishes the non—existence of two—sided resource-monotonic selections from the
average envy—free solution.

What about simply looking for two-—sided resource-monotonic selections from the
pareto solution? The next proposition says that neither the proportional nor
equal-distance solutions satisfy this property.

Proposition 5. Neither the proportional solution nor the equal-distance solution satisfies
two—sided resource—monotonicity.

Proof. Let N = {1,2}. (i) Let p(R) = (2,4), 1{(1) = 2.5, h(2) =7, M =3 M =
9. Then Pro(R,M) = (1,2), Pro(R,M’) = (3,6). In the change from M to M’, agent
1 loses and agent 2 gains. (i) Let p(R) = (1,2), 1;(0) = 15, 1o(1) = 4, M = 1, M”
= 5. Then Dis(R,M) = (0,1), Dis (R,M’) = (2,3). In the change from M to M’,
agent 1 loses and agent 2 gains.

Q.E.D.

A noteworthy feature of several of the rules that we have examined is that they
depend only on preferred consumptions. This property plays an important role in
obtaining strategy-proofness (Sprumont, 1991). Unfortunately, it is this aspect of the
proportional and equal-distance solutions that is largely responsible for their violating
two—sided resource—monotonicity as follows from the next result, which also involves
the very mild requirement that identical agents be treated identically. We state the
requirement for solution functions.

Symmetry: For all (R,M) € AR, for all i,j, if R, = R;, then cpi(R,M)Iigoj(R,M).

Note that efficiency plays no role in the next result.

Proposition 6. There is no two—sided resource-monotonic and symmetric solution that

depends only on preferred consumptions.
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Proof. Let ¢ be a symmetric solution that depends only on preferred consumptions.
Let N = {1,2}, R ¢ % be such that p(Ry) = 2, 1,(1.5) = 4.5, 1, being linear on the
segment [0,2], R, = Ry, M = 2, and M’ = 6. Let x = ¢(R,M). By symmeiry,
x,I;x,. This is possible only if x = (1,1).-, Let y = o(R,M”). Again, by . -
symmetry, y;I,y5- By the choice of ry, this is possible only if y = (3,3), y =
(1545) or y = (45,1.5). Iy = (3,3) or y = (1545), let R’ € & be such that Rj
= Ry, p(Ré) = 2 and r2(1) = 2.5. Since ¢ depends only on preferred consumptions,
o(R,M) = p(R’,M) and ¢(R,M’) = ¢(R’,M"). If preferences are R, as M increases
to M/, agent 1 gains and agent 2 loses. If y = (4.5,1.5), we repeat the same
argument by changing agent 1°s preferences in the same way we just changed agent
2’s preferences. In either case, we obtain a violation of two—sided
resource—monotonicity.

Q.E.D.

Fortunately, two—sided resource-monotonic selections from the pareto solution do
exist. The class of all such solutions can even be characterized, in spite of the fact
that it is large. This characterization is given in Theorem 2 below. This theorem
essentially says that any of these solutions can be obtained as follows: first fix R €
#*. Then choose any n non—decreasing functions wi(R,-):[O,Ep(Ri)]-—iR N such that
Zp,(R,M) = M for all M in that interval and ¢,(R,2p(R;)) = p(R;) for all i. Once
this choice is made, the solution is also specified on [Ep(R;)2r,(0)[. This is because
with any M’ in that interval can be associated a unique M € [0,Xp(R;)] and x’ €
P(R,M") such that x{ L (R,M) for all i. Two—sided resource—-monotonicity requires
that x* = @(R,M’). This completes the construction if Eri(O) = . If not, choose any
n non—decreasing functions wi(R,-):[Eri(O),m[-»lR N such that Yy,(R,M) = M for all M in
[2r;(0),0] and ¢, (R,3r,(0)) = r,(0) for all i. The reason for this freedom of choice in

that interval is that by giving to each agent more than ri(O), we ensure that each is
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worse off than at any amount to be divided that would require that each receives less
than his preferred consumption.

Putting these observations together, we have:

Theorem 2. A subsolution ¢ of the pareto solution satisfies two-—sided
resource—monotonicity if and only for each R € A,

(i) for each i, ¢(R,-) : [0,%p(R;)] — R, is non—decreasing with ¢,(R,%p(R;)) = p(R;),
and the list (;(R,-));cpy Satisfies Zp(R,M) = M for all M in that interval,

(ifa) if 2r;(0) < o,

(*) for all M’ € [Ep(R,),3r;(0)], let M € [0,Zp(R;)] be such that for some x €
X(M*), XiIi‘(pi(R,M) for all i. The value M exists uniquely. Then @(R,M’) = x’.

(**) for each i, ¢(R,-): [Br;(0)0 — R 4 18 non—decreasing with ¢,(R,¥r;(0)) =
r.(0) and the list (<pi(R,-))ieN satisfies E<pi(R,M) = M for all M in that interval.
(iib) if ¥r,(0) = w, ¢ is extended to the interval [Ep(R;),o[ by the operation described
in (*).

Tt is important to note that the specification of ¢ in steps (i) and (**) can be
made to depend on other features of preferences than the preferred consumptions.

We conclude with the discussion of a solution that is based on the idea that the
size of agent i’s upper contour set at x, can meaningfully be taken as a measure of
the sacrifice imposed on him at x. Then the solution equates sacrifices across agents,
an adjustment being made to guarantee that all consumptions are non-negative.
Equal—sacrifice solution, Sac: x € Sac(R,M) if x € X(M) and (i) when ¥p(R;) > M,
there exists o > 0 such that r(x;)—x; < o for all i, strict inequality holding only if x,
= 0, and (ii) when ¥p(R,) < M, there exists o > 0 such that x-1,(x;) = o for all i.

The existence of allocations satisfying this definition is guaranteed under the

domain restriction used in Theorem 1 (that each r, be finite).11 It is easy to construct

11The version of the equal-sacrifice solutions obtained by using the restriction of the
preferences to the interval [0,M] (equating "constrained sacrifices") is one—sided
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examples showing that this solution satisfies neither individual rationality from equal
division nor no-envy. It is one—sided resource—monotonic but not two-—sided
resource—monotonic, -as revealed by the following example: N = {1,2}, rl(O) =1, .
r(1) = 3, M = 0, M’ = 5. Then Sac(R,M) = (0,0) and Sac(R,M") = (2,3). As M
increases to M’, agent 1 loses and agent 2 gains.

If the domain restriction is not imposed, generalizations of the idea can be

obtained as follows: For each i, let x; = inf r,(x;). Then, let o(R;;+):[0,5%] — R

X.—m®
1

be n non—decreasing functions such that %p,(R;,M) = M for all M € [0,Xx;] and

+

¢(R;,2x;) = x; for all i. For each M ¢ J2x;,0f, let x € X(M) be such that L (%)% =
rj(xj)—xj for all i, j € N. I r.(0) = w for all i, this natural adaptation of the
equal-sacrifice solution satisfies two—sided resource—monotonicity.

An alternative generalization, which under the same domain restriction has the
same properties is defined as follows: given a continuous function R, — R such

+ 7 Pt
that [®f(u)du < o, pick x € P(R,M) such that the "f-weighted sacrifices"
0

r,(x)
jxl “f(u)du be equal across agents (again, since boundary problems may occur, some

i
agents may have to be given 0; this is as in the definition of the equal—-sacrifice

solution).

6. Conclusion. Tt is instructive to compare the conclusions we obtained here for the
~ problem of fairly dividing a commodity among agents with single-peaked preferences to
what is known for classical problems of fair division.

The condition of monotonicity with respect to resources that has been analyzed in
“classical ‘domains (all agents-benefit from an increase in-the available resources) would

be unnatural for the current model. However, conditions which take into account the

resource—monotonic if n = 2, but not if n > 2. It is not two—sided
resource—monotonic for any n.
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special features of the model can be formulated. We proposed two such conditions,
which we named one—sided, and two—sided, resource-monotonicities. Although it is
easy to define one—sided resource—monotonic selections from the pareto. solution, and

- many one—sided ‘resource-monotonic selections-from the individually rational from:equal
division and efficient solution exist, there is a unique one—sided resource-monotonic
selection from the envy—free and efficient solution on a large subdomain of our primary
domain. There are two-—sided resource—monotonic selections from the pareto solution,
but none from either the individually rational solution from equal division or the
no—envy solution.

Although not all of these results are positive, they are in sharp contrast with the
results pertaining to the classical domain. There, resource monotonicity is satisfied by
no selection from the envy—-free and efficient solution, nor from the individually rational
from equal division and efficient solution. (See Moulin and Thomson, 1988.)12

Our results are summarized in the following table. A "yes" in cell (a,b) means
that the solution in row a satisfies the property in column b. A "no" means the

opposite.

22[n fact, the property is incompatible with considerably weakened distributional
requirements, as is established in that paper.
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Individual One—sided Two—sided
rationality from resource— resource—
equal division No-envy monotonicity monotonicity
Uniform rule yes yes yes no
(Prop 3,4)
Proportional no no yes no
solution* (Prop 1) (Prop 2) (Prop 5)
Equal-distance no no yes** no
solution (Prop 1) (Prop 2) (Prop 5)
Equal-sacrifice no no yes** yes**
solution****
w C Ied yes may Or may or no
(by Def) may not may not (prop 3)
o CF may or yes only if no
may not (by Def) e=U(Th1)*** (Prop 4)

*  The same properties hold for the symmetrically proportional solution.
*+  This result holds on the domain of economies for which r,(0) = o for all i. It

does not hold for the version of the solution obtained by using the

restrictions of preferences to the interval [0,M], unless there are only 2 agents.
***  This characterization of the uniform rule also involves the requirement ¢ C P.

It holds on the domain of economies for which each I, is bounded. Otherwise,

variants of the rule are obtained.
*kkk  This solution is well-defined on the domain of economies for which each I, is

bounded. Variants of this solution that have the same properties can be defined
for the whole domain.

Table 1
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