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Abstract

POPULATION-MONOTONIC SOLUTIONS TO THE PROBLEM OF
FAIR DIVISION WHEN PREFERENCES ARE SINGLE-PEAKED

We consider the problem of fairly allocating an infinitely divisible commodity among
agents with single—peaked preferences. We search for methods of performing this division
satisfying the following property pertaining to changes in the number of agents. Consider
changes that are not so large, in the sense that if initially there is not enough to bring all
agents to their satiation points, then this still is the case after the change, and if initially
there is so much that agents have to be brought beyond their satiation points, then again,
this remains the case. The requirement is that such changes affect all agents that are
present before and after the change in the same direction. Our main result is that there
is essentially only one selection from the envy—free and efficient solution satisfying this
property. It is the "uniform" rule. The stronger requirement that any change in the
population affect all agents that are present before and after the change in the same

direction is met by no selection from the no—envy solution.

Keywords. Fair division. Single-peaked preferences. Population—monotonicity. Uniform

rule.
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1. Introduction. We consider the problem of fairly allocating an infinitely divisible
commodity among agents with single—peaked preferences. By this, we mean that each
agent has a preferred consumption; the further he moves away from it, in either direction,
the worse off he is. We search for desirable methods, or solutions, of performing the
division. If the amount to be allocated were equal to the sum of the preferred
consumptions, the problem would simply be solved by giving each agent his preferred
amount. This special case neatly separates the situations where the amount to be divided
is greater than the sum of the preferred consumptions from the situations where the
opposite inequality holds. What should be done in general?

This model has recently been analyzed by Sprumont (1991) and Thomson (1990,
1991a). It can be given several interpretations: rationing at disequilibrium prices in a
two—good economy; allocation of a task among a group of workers paid an hourly wage
and whose disutility of labor is a convex function of labor supplied; allocation of a
commodity when preferences become satiated at some point and free disposal is not
allowed.

As in these earlier studies, our approach is axiomatic. Here, we look for solutions
that behave well when the number of agents changes, in the following sense: suppose that
initially there is not enough of the commodity to give each agent his preferred
consumption; then, if new agents come in, there still will not be enough. Conversely,
suppose that initially there is too much of the commodity to give each agent his preferred
consumption; then, if some of the agents leave, there still will be too much. In any one
of these situations, we ask that all agents present before and after the change be affected
in the same direction. When combined with efficiency, this requirement says that if there
are more agents to share the commodity when initially less of it would be socially
undesirable — then, after the arrival of the new agents, less of it would still be socially
undesirable — all agents initially present are made worse off. If there are fewer agents to

share the commodity when initially more of it would be socially undesirable — then after



the arrival of the new agents, more of it would still be socially undesirable — all agents
initially present are made worse off. We name this property one-—sided
population—monotonicity.

Our primary distributional requirement is no—envy: an allocation is envy-free if no
agent would prefer someone else’s consumption to his own. This is an intuitively
appealing requirement but it has the drawback of typically being satisfied by too many
allocations. We ask whether the requirement of one—sided population-monotonicity is
compatible with no—envy and of course efficiency. The answer is yes, but our main result
is that essentially there is only one one—sided population—monotonic selection from the
envy—free and efficient solution satisfying a mild additional condition that is satisfied by
most solutions. It is the uniform rule, a solution that has been central to the earlier
analyses of the problem. This solution is also a selection from the solution that associates
with each economy its set of efficient allocations that pareto—dominate equal division, the
individually rational solution from equal division.

We also consider the following stronger property of fwo—sided
population—monotonicity: any change in the population affects all agents present before and
after the change in the same direction. We show that there are selections from the pareto
solution satisfying this property. However, there are none from the individually-rational
solution from equal division, and there are none from the no—envy solution.

A lesson to be drawn from this paper is that, although only a handful a general
principles (consistency; monotonicity with respect to how many options are available;
monotonicity with respect to the size of the population; strategy—proofness) underlie
virtually all of the developments that have recently taken place in the fast growing
literature devoted to the axiomatic study of allocation rules, special forms of these
principles, tailored to the specific features of whatever model is being considered, are

sometimes necessary for a successful analysis.



2. The model. There is an infinite population of "potential agents," indexed by the
positive integers, N. Each agent i € N is equipped with a continuous preference relation Ri
defined over R " This preference relation is single—peaked: there is x’{‘ €R n such that
for all x,, x{ € IR+, if x{ <x £ x’i‘, or if x’i" < % < x{, then xP.x{ (Pi denotes the
strict preference relation associated with R;, and I, the indifference relation). Let p(R) €
R n be the preferred consumption according to Ri' The preference relation Ri can be
described in terms of the function r;: R, - R +U{m} defined as follows: given x; < p(R;),
r(x;) 2 p(R,) and xLr.(x,) if this is possible, and r,(x;) = o otherwise; given x; > p(R;),
r,(x) < p(R;) and x,Lr.(x;) if this is possible, and rj(x;) = 0 otherwise. Let % be the
class of all such preference relations and :% be the subclass of preference relations Ri
whose associated I, is bounded. Let % be the class of finite subsets of N.

An economy is a pair e = ((Ri)iEQ’M) € %|Q|,[R+, or simply (Rq,M), where Q €
Pand R, € Afor all i € Q. A feasible allocation for e = (Rq,M) is a list x = (Xi)ieQ

€ IR_E_Q’ such that ngxi = M. Let X(e) be the set of feasible allocations of e. Let
P(RQ) = (p(Ri))iEQ'

A solution is a mapping ¢ which associates with every Q € #and every e =
(RQ,M) € %lQI X |R+, a non—empty subset of X(e). Each of the points in ¢(e) is
interpreted as one desirable way of allocating the commodity. We will discuss solution
functions as well as solution correspondences. An allocation x € @(e) is @—optimal for e.
When a solution ¢ is single-valued and {x} = ¢(e), we slightly abuse notation and write
x = ye).

The requirement of efficiency is the usual one. We will impose it throughout most
of our analysis,! that is, search for subsolutions of the following solution:

Pareto solution, P: x € P(e), where e = (RQ,M), if x € X(e) and there is no x’ € X(e)

with X! Rixi for alli € Q and XiPiXi for some i € Q.

iSome of our impossibility results, in section 4, are proved without this requirement.



It is easy to check that the efficient allocations of (RQ,M) are characterized by the
property that each agent consumes less than his preferred amount if ¥ p(Ri) > M, and
i€eQ -
more than his preferred amount if ¥ p(Ri) < M.
ieQ -

From the viewpoint of distribution, the pareto solution is of course very
unsatisfactory. We will want to complement it with some requirement with distributional
content. The concept that has played the most important role in the recent literature on
fair allocation is the concept of an envy—free allocation: at such an allocation, no agent
would prefer switching bundles with anyone else (see Thomson, 1991b, for a review of this
literature). An attractive feature of the no—envy concept is that it directly corresponds to
the sort of mental operations that the man on the street routinely performs in order to
evaluate the fairness of a situation. Also, it is an ordinal concept, that is, it depends only
on preferences and not on notions of utility. Unfortunately, there typically are many
envy—free and efficient allocations (in fact, a continuum) and the need to make more
precise recommendations arises.

No—envy solution, F (Foley, 1967): x € F(e), where e = (RQ,M), if x € X(e) and there is
no pair {i,j} ¢ Q such that XjPiXi'

In "classical" problems of fair division, when preferences are monotone, it is often
suggested that equal division be taken as a point of departure; in fact, many writers find
it natural to assume that agents are "entitled" to equal division. This idea can be
extended to the non—classical problems discussed here where preferences are not monotone,
and situations where there might be too much of the commodity, by then giving agents
equal "responsibilities". In either case, the requirement that all agents end up at least as
well off as at equal division follows quite naturally. Just like the no—envy test, there
typically are many efficient allocations, (again, a continuum) passing this test and the

question of selection also has to be addressed.



Individually rational solution from equal division, Ly xel d(e), where e = (RQ,M), if x
€ X(e) and xR,(M/|Q]) for all i € Q.

The following two solutions do make very precise recommendations, since in fact they
always select a single point. For the first one, consumptions are chosen proportional to
the preferred consumptions. (In the rare case where all preferred consumptions are zero —
perferences are then identical — it makes sense to choose equal division). This is a very
natural application of the general idea of proportionality, which is a central tenet of the
theory of economic justice. Instead of evaluating sacrifices proportionately, however, one
can simply take the distance between his actual consumption and his preferred
consumption as a measure of how well an agent is treated, and then select allocations at
which these measures are equal across agents (some adjustment is needed to guarantee that
no agent receives a negative consumption).

Proportional solution, Pro: x € Pro(e), where e = (RQ,M), if x € X(e) and there is X €
R, such that for all i € Q, x; = Ap(Ri); otherwise, Pro(e) = (M/]Q],...,M/|Q]).

+
Equal-distance solution, Dis: x € Dis(e), where e = (RQ,M), if x € X(e) and (i) when

Y p(R;) > M, there is d > 0 such that x, = max{0,p(R;)-d} for all i, and (ii) when
ieQ -

Y p(R)) £ M, there is d > 0 such that x, = p(R,)+d for all i.
ieQ - -

Another single-valued solution, which has played the most important role in previous
analyses of the problem (Sprumont, 1991; Thomson, 1990, 1991a) is the uniform rule:

Uniform rule, U: x € U(e), where e = (RQ,M), if x € X(e) and (i) when ¥ p(R)) > M,
i€Q -
x. = min{p(R.),A} where A solves % min{p(R;),A\} = M, and (ii) when ¥ p(R;) < M, x
i i i€Q i eq V= i
= max{p(R;),A\} where A solves ¥ max{p(R;),A\} = M.
i€eQ

The uniform allocation is both envy—free and individually rational from equal

division. Omn the other hand, the proportional and equal-distance solutions do not



necessarily select allocations with these properties, although they do treat idemtical agents

identically (see Thomson, 1991a for a discussion of these facts).

3. One—sided population-monotonicity. We now formulate a property of single-valued
solutions pertaining to changes in the number of agents. In order better to understand
this condition, it is useful to take as point of reference the classical domain of private
good economies. Consider such an economy, in which some bundle of goods has to be
divided among some group of agents with equal rights on the goods. Perform this division
by applying some solution. Then, imagine new agents to arrive with claims as valid as
those of the agents initially present, resources being kept fixed. We submit that it is
natural to require that when the solution is applied to the new, enlarged, problem, all
agents initially present be negatively affected.2

An abstract version of this requirement was considered in the context of bargaining
by Thomson (1983). The requirement was also studied in classical economies by
Chichilnisky and Thomson (1987) and Chun and Thomson (1988), on domains of economies
with indivisible goods by Alkan (1989) and Tadenuma and Thomson (1990), and on
domains of economies with both private and public goods by Moulin (1990a,c). A related
condition was examined for coalition form games by Sprumont (1990) and Moulin (1990b).
In the present context, the requirement can legitimately be imposed if in the initial
economy, there is not enough of the commodity to give each agent his preferred
consumption. On the other hand, if there is so much of the commodity that each agent
initially consumes more than his preferred amount, the arrival of additional agents may
help and it becomes natural to require that if one of the agents initially present gains,

then they all do. If initially, no agent consumes much more than his preferred amount

2In this and the following paragraphs we initially assume that the rule is already
required to pick efficient allocations, as is natural, but issues of monotonicity can be
meaningfully discussed independently of issues of efficiency, and below we have chosen a
formulation of the axioms that allows for this separation.



and/or if too many additional agents arrive, then again at least one of the agents initially
present will have to lose and the requirement will be that all lose. In general, therefore,

the relevant requirement here is that all agents be affected in the same direction, as Chun
(1986) first proposed in the context of quasi-linear social choice. This requirement will be
formally introduced in section 4.

It turns out that in our context, it is quite strong, as will be evidenced by a
number of negative results that we will offer (Section 4). The reason for these
impossibilities is closely related to the reason for the negative results that we established
in an earlier study of the way solutions respond to changes in the amount to be divided
(Thomson, 1991a). There, we asked whether it was reasonable to require that agents
always be affected in the same direction by such changes. The answer was negative if the
distributional requirements of either no—envy, or individual rationality from equal division,
were imposed too. These results led us to propose a weaker monotonicity condition in the
formulation of which the distinction was made between two kinds of changes: (i) changes
that switch the situation from the classical one in which preferences are monotone and an
additional unit of the commodity is always socially desirable, to the situation that is
special to this model, when there is already "too much of the commodity" and an
additional unit is socially undesirable, or conversely, (i) less disruptive changes that do
not cause such a switch. Here, we will similarly be led to distinguishing between changes
in the numbers of agents that cause switches, and changes that do not cause switches.

The issue is whether the direction of the inequality between the sum of the preferred
consumptions and the amount to be divided is reversed by the changes in the number of
agents or the amount to be divided. We will only consider changes in the number of
agents that do not reverse the inequality and require that all agents that are present
before and after the change be affected in the same direction. This requirement can be

met, and it is compatible with both no—envy and individual rationality from equal division.



Moreover, it can also provide the basis for a characterization of the uniform rule. This
characterization is the main result of this section (Theorem 1).

We now give a formal statement of the property:

One—sided population-monotonicity. For all Q, Q’ € P with Q’ ¢ Q, for all (RQ,M) €

2l Qg o i 5 p(R) 2 Morif 3 p(R)) < M, then ¢(Rq, M)R;p(Rq,M) for all i €
i€Q i€Q

Q’, or (‘Di(RQ’M)Ri(pi(RQ"M) for all i € Q".

Note that this formulation makes no presumption of efficiency since we only require
that the agents that are present before and after the change in the population be affected
"in the same direction". When efficiency is imposed as well, the direction of the change
is unambiguous: if 'EQ p(Ri) > M, the arrival of Q\Q~ is bad news for the group Q’

i€Q
and the requirement is that all of its members lose; if EQp(Ri) < M, it is the departure
i
of Q\Q’ that is bad news for the group Q’ and again the requirement is that all of its
members lose.

An alternative formulation of the axiom that would make the most sense for, but
would not be limited to, solutions already required to be efficient would be that if
EQ p(Ri) > M, all agents i € Q’ are made worse off by the arrival of the group Q\Q’,
icQ-
and if 'EQP(Ri) < M, all agents in Q’ are made better off by the arrival of the group

1
Q\Q’.3
In the following lemma, we record the fact that all of the single-valued solutions

defined earlier satisfy the property. (We omit the proofs of all the lemmas stating

positive results.)

3Note that the corresponding property that has been used in the analysis of classical
economies (all agents initially present are made worse off by the arrival of newcomers,
resources being kept fixed) is most appropriate for, (again, it is not limited toz,
efficient solutions. In order to emphasize the conceptual distinction between efficiency
and monotonicity, we have chosen in this paper the more general formulation.



Lemma 1. The proportional and equal-distance solutions as well as the uniform rule
satisfy one—sided population—monotonicity.

Another condition will be useful too: informally, the desirability of an allocation is

preserved under replication. We formulate it for solution correspondences. If an allocation
is p-optimal for some economy, then the replicated allocation is ¢-optimal for the
replicated economy. Note that this allows allocations in the replicated economy to be
@-optimal without being replicated allocations; the individually rational solution from equal
division illustrates this possibility. On the other hand, in our model, if a subsolution of
the pareto solution satisfies "equal treatment of equals"4 and this property, then all
p—optimal allocations of a replicated economy are obtained by replicating a (-optimal
allocation of the model economy. Here, an illustration is the envy—free and efficient
solution.
Replication—ezpansion: For all Q, Q' € & for all k € N, for all (RQ,M) € .%'QI « R w for
all RQ, € %lQ’ ‘, for all x € go(RQ,M), for all x’ € [Rk|Ql, if Q’ can be partitioned into
|Q| groups of k agents, (Qi)ieQ’ such that for all i € Q and for all j € Qi, Rj = R, and
xXi = X, then x’ € (p(RQ,,kM).

This condition is very mild, as evidenced by the next lemma.

Lemma 2. The Pareto solution, the no—envy solution, and the individually rational
solution from equal division, the proportional and equal—distance solutions, and the uniform
rule all satisfy replication—ezpansion.

In our model replication—ezpansion, together with single-valuedness, a property that
will be imposed here, imply replication—invariance: the p-optimal allocation of a replicated
economy is the replica of the p-optimal allocation of the model economy.

We are now ready for the main theorem. Since replication—invariance is needed only

for half of the cases the theorem covers, we state the theorem in two parts.

4A formalization of the idea of "equal treatment of equals" appears in section 4.
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Theorem 1. On the domain of economies (RQ,M) € %'QI,JR+, Q € £ with X p(Ri) >
i€eQ -
M, the uniform rule is the only one—sided population—monotonic selection from the

envy—free and efficient solution. On the domain of economies (RQ,M) € :%'QI x R "

Q € £ with X p(Ri) < M, the uniform rule is the only one—sided population—monotonic
ieQ

and replication—invariant selection from the envy—free and efficient solution.

An informal argument might be helpful before going into the details of the proof.
We argue by contradiction. Consider first an economy in which there is not enough of
the commodity and suppose that it is not allocated according to the uniform rule. This
implies the existence of two agents, indexed 1 and 2 for simplicity, such that x; < rl(xl)
< xXq. The presence of the "gap" [xl,rl(xl)], in which the consumption of agent 2 should
not be, — otherwise agent 1 would envy him — constitutes the basis for the proof. Let
g = rl(xl)—xl. New agents, whose preferred consumption is g/2, are now introduced in
succession. The proof is by induction on the number of new agents. By efficiency, no
such agent should ever consume more than g/2. By one—sided population—monotonicity,
upon the arrival of a new agent, every agent initially present should be made worse off,
i.e. its consumption should decrease, so that in fact the consumption of none of them can
decrease by more than g/2. In particular agent 2’s consumption cannot decrease enough
for it to "jump over the gap". Since agent 1’s consumption decreases too, the gap can
only increase. The preferences of the new agents are also chosen so that g/4 is indifferent
to M. Since agent 2°’s consumption remains greater than rl(xl) > g/2, for the new
agents not to envy agent 2, each of them should consume at least g/4. These
configurations of consumptions are preserved as more and more agents are introduced.
This implies that the new agents together receive an amount that is unbounded above, in
contradiction with feasibility.

Next, consider an economy in which there is too much of the commodity and

suppose that it is not allocated according to the uniform rule. This implies the existence
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of two agents, indexed 1 and 2 for simplicity, such that x; £ rz(x2) < X, Here it is
the presence of the gap [r,(x,),x,] that will constitute the basis of the proof. Let g =
x2—r2(x2). First the economy is replicated k times (the choice of k is explained later on).
By replication—invariance, we know what to do with the replicated economy. Then all the
agents of type j # 1 are deleted, one at a time, the last deleted agent being an agent of
type 2. By one—sided population—monotonicity, whenever any such agent leaves, all
remaining agents should be made worse off, which here means that each should receive a
greater amount. By no-envy, all (remaining) agents of a given type should consume the
same amount, that is, should receive the same increment. We will note later that no
agent ever consumes more than some amount X, so that if k is chosen large emough, we
can ensure that even if the agents of type 1 were to receive the whole amount that is
freed, their common consumption would not increase sufficiently to jump over the gap,
that is, it would remain below ry(x,). (To achieve this, k should satisfy x/k < g.)

What guarantees that no agent ever consumes more than some maximal amount x is the
assumption that ri(O) < o for all i. It implies that if an agent’s consumption were to
increase too much, at some point he would become envious of the agents of type 1, whose
consumption is bounded above by I,(x,). As the economy shrinks, the (common)
consumption of the remaining agent(s) of type 2 increases, but this can only increase the
gap. At the end of the process of elimination, when only all the agents of type 1 and
one agent of type 2 are left, the common consumption of the agents of type 1 is still at
most r2(x2) < M-g.  Upon the departure of the last agent of type 2, it has to become
M. But this is impossible, since again, by the choice of k, it cannot increase by more
than g.

Proof of Theorem 1. Let ¢ C FP be given. Suppose, by contradiction, that for some Q
¢ Pand e = (Ro,M) € AU R, x = o(Ro M) # T(RGM)

Case 1. Ep(Rt.) > M. Since p C P, x # U(RQ,M) means that there are i, j € Q with x,
€Q -
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< p(Ri) and x; < X; To simplify the notation, suppose that i = 1 and j = 2. Since ¢
C F, agent 2 does not envy agent 1 at x, so that x; < p(Rl) < rl(xl) < Xy Let g =
r;(x;)-x;. Let Ry € & be a preference relation such that p(R;) = g/2 and ro(8/4) = M.
We construct a sequence of economies by adding to the initial economy agents with

preference relation RO: for each k € N, let Q be the set consisting of the first k such

agents indexed by ij,...i, Qk =QU Qk, and ef = (R k,M). Also, let e = e
Q
Note that ¥ ,p(R.) > ¥ p(R;) > M, so that since ¢ C P, if XK = go(ek), then x¥
2okl 2 PRy 2 j
jeQ JeQ
< p(Rj) for all j € Qk, in particular, xli{ < p(RO) = g/2.
= =

k

We will show by induction that for all k, x5 > r(x;). Note first that this is true

for k = 0. At stage k > 1, upon the arrival of agent ik, it follows from one—sided

population—monotonicity that all agents in Qk—l lose. Since ¢ C P, this means that for
: k-1 _k k-1 . k-1 ky _ k _
alli € Q" 7, x; < x; *, and since X (x; —=x.) = x; < p(R,) = g/2, we have that
i =" iEQk-—l i i i = 0
k-1 _k
-X

k-1 k o £ /2. For agent 1 not to envy

for all i € Qk—l, X, . < g/2, in particular Xo)

i i
k k k . k-1
< Xy or Xo > 1y(xy) > ry(x). Since x5 © > r;(xq)

k k
2 2

agent 2 at xk, we need either xlz(
by the induction hypothesis, xg_l-—x

< g/2, and g = 1 (x{)-x;, we have x5 > r(xq), as

claimed.
Now, given the specification of RO, for each j € Qk not to envy agent 2 at xk, we

need le? > g/4, so that Z-kxlg > kg/4. For k large enough, kg/4 > M, in contradiction
= i€Q Z

with feasibility.

Case 2. % p(Ri) < M. Since ¢ C P, x # U(RQ,M) means that there are i, j € Q with
€Q

x; < X and p(Rj) < X To simplify the notation, suppose that i = 1 and j = 2. Since

¢ C F, agent 2 does not envy agent 1 at z, so that x; < Iy(xy) < P(Ry) < x5 Let g

_ _ _ * *
Xy To(Xy). Now, for each j # 1, let X; = rj(xl), X = max X and k > x/g. Let e be

J#1
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* * *
obtained by k*—times replication of e and x = <p(ek ). By replication—invariance, & s

*
obtained by k —times replication of x.

*
Starting from ek , we successively delete all the agents of type j # 1, the last

* *
deleted agent being an agent of type 2. Let 0 = K. A stage k = 1,...k (|Q]-1) of

this process, let ik be the agent that is deleted. Let Qk be the remaining group of

* * *
agents, 5 = (R ok M), and = p(eX). Note that % PR) <k 3 pR) < kM,
Q jeQ jeQ

so that since ¢ C P, p(Rj) < x? for all j € Qk. Since ¢ C FP, for all k and for all

agents i, j of type 1, xll.( = xl‘]?, and for all agents i, j of type 2, xli( = xl.]?. Let xll( and xlz(

k

denote these common consumptions. We will show by induction on k that x; < rz(xlz() <

p(Rz) < x12(. This is obviously true for k = 0. Given k > 1, let us suppose that these

inequalities hold for k-1.

By one-—sided population—monotonicity, and since ¢ C P, for all j € Qk, leg—l < xlj(.

The inequalities xll{_l < p(R2) (from the induction hypothesis) and x| £ xll{_l, and the

1

requirement that at . agent iy does not envy agent 1, imply that if xlf— < p(Ri )
- k

k-1

(this certainly will be the case if iy is an agent of type 2) then x; £ (xl_l) <
k 7 'k -

k-1

. k-1 k-1 . k-1
rik(xl), and if p(Rik) < x; = then Xik <x £ P(Ry) < 19(x;). In either case x;

'k
< x. Therefore, and using the inequalities derived above from one-sided

A

opulation-monotonicity, Xox 1 < i—/k* < Since 1 (xk) <T (xk_l) < p(Ry) < x
pop TS T & 2\X9) = Tal¥y Py 2

xg, for the agent(s) of type 2 not to envy the agents of type 1 at xk, we need xll( <

rz(xg) or xll( > xlz(. The inequalities xlf—xll(-l < g and xll(—l < rz(xg—l) (from the

induction hypothesis) imply that the second case is not possible, so that xll( < rz(xg).
The process of elimination continues for k*(lQl—l) steps until all agents of type j # 1
have been taken care of.

At the last step, apart from the k* agents of type 1, there remains only one agent

of type 2. Upon his removal, the common consumption of the agents of type 1 becomes
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* * . * . I
M. For any k < k (|Q|-1), x11(+g < M. Since xll( (1Ql 1)—x11( (JQ[-1)-1 < g, we
obtain a contradiction.

Q.E.D.

Replication—invariance is used in the second part of the theorem, and the proof for
that case only requires having access to new agents with preferences identical to those of
the agents initially present. Such a proof can therefore be described as a "fixed-type"
proof. On the other hand, the proof for the first part involves no replication axiom but it
relies on the availability of new agents whose preferences may be different from the
preferences of the agents initially present. A fixed-type proof based on
replication—invariance is however possible for the first part too.5 (We gave the argument
for the case 'EQP(Ri) < M to show explicitly how it can be ensured that the

i
consumptions of all agents remain bounded above. The case 2 p(Ri) > M is a little
i
simpler since consumptions, which decrease, are bounded below by zero.) Whether a proof
relying only on the availability of agents with arbitrary preferences instead of
replication—invariance can be devised for the second part is an open question.

A second open question pertains to selections from the individually rational from
equal division and efficient solution: Is the uniform rule the only selection satisfying
one—sided population-monotonicity and replication—invariance? The following facts, whose
proofs are similar to those of the steps of Theorem 1, provide the beginning of an answer:
if the amount to be divided is smaller than the sum of the preferred consumptions, any
such solution gives his preferred consumption to each agent whose preferred consumption is
smaller than equal division, as the uniform rule does. If the amount to be divided is

greater than the sum of the preferred consumptions, the solution gives his preferred

5The argument would differ in that, after replicating the initial economy k* times,
where k* satisfies x2/k* < g, we would keep adding agents of type 2.
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consumption to each agent whose preferred consumption is greater than equal division;
again, this is as the uniform rule does. These results imply that in 2—person economies,

the solution coincides with the uniform rule.6

4. Two—sided population—monotonicity. We now turn to the stronger monotonicity
condition discussed in the introduction: any change in the number of agents affects all
agents that are present before and after the change in the same direction. Here, no
restriction is imposed to prevent the change from being too disruptive.

Two—sided population—monotonicity: For all Q, Q’ € L with Q’ ¢ Q, for all (Rq,M) €
29w,
i € Q’. Strict two—sided population—monotonicity holds if in addition, in each of the

either ¢.(R~,M)R.0.(R~,,M) for all i € Q’, or ¢.(RH,,M)R.0.(RAH,M) for all
1VQ 171IVTQ ivQ 171V Q

previous cases, whenever one of the preferences is strict, then they all are.

Most of the results of this section are negative. We start with an examination of
three solutions examined earlier.
Lemma 3. The uniform rule, the proportional solution, and the equal-distance solution do
not satisfy two—sided population—monotonicity.
Proof Let Q = {1,2,3} and Q* = {1,2}. (i) Let p(RQ) = (1,3,2), and M = 5. Then,
U(RQ,,M) = (2,3) and U(RQ,M) = (1,2,2). Agent 1 gains from agent 3’s arrival,

whereas agent 2 loses. This proves the result for U. (ii) Let p(RQ) = (1,2,9), {(.5)
1.5, r2(1) =5, and M = 6. Then, Pro(RQ,,M) = (2,4) and Pro(Rq,M) = (.5,1,4.5).
Agent 1 gains from agent 3’s arrival, whereas agent 2 loses. This proves the result for
Pro. (iii) Let p(RQ) = (1,2,3.5), 1;(.5) = 1.5, 15(1.5) = 4, and M = 5. Then,

Dis(RQ”M) = (2,3) and Dis(RQ,M) = (.5,1.5,3). Agent 1 gains from agent 3’s arrival,

6Prior experience with this model suggests that the answer may very well be negative:
indeed, if the uniform rule is the only selection from the envy—free and efficient
solution to satisfy the property of one—sided resource—monotonicity informally described
in the paragraphs preceding our introduction of one—sided population—monotonicity, it is
not the only selection from the individually rational from equal division and efficient
solution to satisfy ome—sided resource-monotonicity (Thomson, 1991a).
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whereas agent 2 loses. This proves the result for Dis.

Q.E.D.

In fact, Lemma 3 is a consequence of a more general result which involves two
requirements. The first one is that the solution depend only on preferred consumptions.
This is a requirement of simplicity which happens to be satisfied by several of the
solutions that we have examined. Moreover, it plays an essential role in ensuring
strategyproofness, as noted by Sprumont (1991). The second requirement is that identical
agents receive indifferent (according to their common preference relation) amounts. We
formulate it for single—valued solutions. It is satisfied by all of the solutions discussed
earlier.

Symmetry. For all e = (RQ,M) € %|Q|,JR+ with [Q| > 2, for all i, j € Q, if R, = Rj’
then (pi(e)Iicpj(e).

A version of the requirement for multi—valued solutions is that for each economy in
which two agents have identical preferences, the allocation obtained from any one of the
recommendations made by the solution by exchanging the coordinates pertaining to these
two agents is also one of the recommendations. Therefore, the sef of recommendations
exhibits a symmetry reflecting the symmetry that exists in the preferences. This more
general requirement is satisfied by all of the multi-valued solutions introduced above.
Turning again our attention to single—valued solutions, note that in conjunction with
efficiency, symmetry says that the consumptions of two identical agents are not only
indifferent but in fact identical. In the proof of the following result, which makes no use
of efficiency, identical agents receive indifferent, but sometimes distinct, consumptions.

Lemma 4. There is no two—sided population—monotonic and symmetric solution that

depends only on preferred consumptions.?

T am grateful to T. Yamato for suggesting that the requirement ¢ C P imposed in an
earlier version of this paper might be unnecessary.
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Proof. The proof is by way of an example. Let ¢ be a symmetric solution that depends
only on preferred consumptions. Let Q = {1,2,3}, Q' = {1,2}, R, =R, = Rq with
p(R,) = 5, r;(41) = 7.9, r; being linear in the interval [0,5], and M = 12. Let e =
(RQ,M) and e/ = (RQ,,M). Let x = ple). If x; £5 for all i € Q, then by symmeiry
x = (44,4). If X, > 5 for exactly one i € Q, say x5 > 5, we obtain by symmetry x; =
Xy, 80 that xg = 12 - 2x, and again by symmetry x111(12—2x1). Since x4 > 5, we need
x; £ 3.5 but then by the choice of ry, (12—2x1)P1x1. Finally, suppose that x, < 5 for
exactly one i € Q, say x; < 5. Then, by symmetry xq = Xg, and x111(12—x1)/2. Since
for x5 = x4 > 5, we need x; < 1, by the choice of r), we obtain [(12—x,)/2]Px;.
Therefore the only possibility is x = (4,4,4).

Let y = ¢(e’). By symmetry y = (6,6), y = (4.1,7.9), or y = (7.9,4.1).

If y = (6,6) or y = (41,7.9), let R; = Rz = R; and R be such that p(Rj) =

1 3

p(R2) and r2(4) = 5.5. Since ¢ depends only on preferred consumptions, w(RQ,M) =
gp(RQ,M) = x and go(RQ,,M) = (p(RQ,,M) = y. After the change in preferences, as Q’
enlarges to Q, agent 1 loses and agent 2 gains, in contradiction with two—sided
population—monotonicity. If y = (7.9,4.1), we repeat the argument by changing agent 1’s

prefrences in the way we just changed agent 2’s preferences.

Q.E.D.

Do there exist two—sided population—monotonic, or perhaps strictly two—sided
population—monotonic, selections from the individually rational from equal division and
efficient solution? As far as the stronger property is concerned, the answer could not be
an unqualified yes since if an agent’s preferred consumption is zero, then he gets 0 at any

efficient allocation in any economy (RQ,M) such that ¥ p(Ri) > M of which he is a
i€Q -

member. The inequality is preserved by the addition of new agents. But even the weaker

property cannot be met, as follows from the next theorem.
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Theorem 2. There is no selection from the individually rational from equal division
solution satisfying two—sided population—monotonicity.8
Proof Let ¢ C I.q be given. Let Q = {1,2,3}, Q" = {1,2}, p(RQ) = (2,3,2), and M
= 6. Let e = (RQ,M) and x € I 4(e). Since p(R)) = p(Ry) = M/[|Q| = 2, x; = x5 =
2, and therefore x5 = 2. Let e’ = (RQ,,M) and y € I 4(e’). Since p(Ry) = M/|Q’| =
3, Yo = 3, and therefore vy = 3.

So ¢(e) = (2,2,2) and p(e’) = (3,3). Upon the arrival of agent 3, agent 1 gains
and agent 2 loses, in contradiction with two—sided population—monotonicity.

Q.E.D.

A direct implication of Theorem 2 is that the solution that associates with each
economy its equal division allocation is not two—sided population—monotonic. But in fact,
this solution is not even one—sided population—monotonic. To see this, let Q = {1,2,3},
Q' = {1,2}, p(RQ) = (2,3,0) and M = 6. Then, the solution picks (2,2,2) for (Rq,M)

and (3,3) for (RQ,,M). We have ¥ p(R,) = ¥ p(R;) < M so that the hypothesis of
ieQ- i€eQ -

one—sided population—monotonicity is met. However, upon the arrival of agent 3, agent 1
gains and agent 2 loses. The fact that the equal division solution does not satisfy our
weaker monotonicity property should be contrasted with what we know of classical
domains. There, this solution satisfies the form of population—-monotonicity that is natural
for that domain (all agents initially present are made weakly worse off by the arrival of
additional agents) but not efficiency, and it is a simple example illustrating the tradeoffs
between monotonicity and efficiency.

If individual rationality from equal division is replaced by no—envy, another

impossibility obtains:

8A related impossibility is given in the appendix.
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Theorem 3. There is no selection from the no—envy solution satisfying two—sided
population—monotonicity.
Proof Let ¢ C F be given. Let Q = {1,2,34}, Q" = {1,2}, p(Rl) = 0, p(Rz) = 2,
15(0) = 3, 1, being linear on the interval [0,2, Ry = Ry = Ry, and M = 4. Tet e =
(RQ,M) and x € F(e). First, we note that x, # 2. Otherwise, for neither agent 3 nor 4
to envy agent 2, we need Xg = Xy = 2, in contradiction with feasibility. Next, we
observe that x; < 2. Indeed, if x, > 2, then for some i € {2,3,4}, x; < X4 and agent 1
envies agent i at x. Let e/ = (RQ,,M) and y € F(e’). For agent 1 not to envy agent 2
at y, we need y1 £ 2 and for agent 2 not to envy agent 1 at y, we need Yo £ 2.
Therefore, y = (2,2).

So py(e) < 2, pye) # 2 and p(e’) = (2,2). Upon the arrival of agents 3 and 4,
agent 1 gains and agent 2 loses, in contradiction with two—sided population—monotonicity.

Q.E.D.

Faced with these impossibilities?, we will limit ourselves to selections from the pareto
solution and ask whether such selections satisfying two—sided population-monotonicity exist.
The answer is yes. The solution defined next will provide the point of departure for this
positive answer. It involves evaluating an allocation x € X(e) on the basis of the
differences c;(x;)=|r;(x;)-x;|. This is appealing because the number c;(x), which is the
size of agent i’s upper contour set at X, can be interpreted as a measure of his "sacrifice
at x". Selecting efficient allocations at which sacrifices are equal across agents is of course
tempting but such allocations do not always exist, because of boundary problems.1 As

second best, we recommend the allocation at which sacrifices are as "equal as possible".

9The fact that the uniform rule does not satisfy two-—sided population—monotonicity is a
consequence of Theorem 2 as well as of Theorem 3, since this rule is a selection from
I ed 3 well as a selection from F. We also gave a direct and elementary proof in

Lemma 3.
10We encountered a similar problem in our definition of the equal-distance solution.
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Also, in order to avoid the difficulties that occur with economies for which these sacrifices
are infinite for some agents at some allocations, we limit ourselves at first to the domain

of economies for which for all i, r,(x;) < o for all x; € R (This is almost the domain

4
restriction of Theorem 1.)
Equal-sacrifice solution, Sac: x = Sac(e), where e = (RQ,M), if x € X(e) and (i) when

> p(Ri) > M, there exists ¢ > 0 such that ri(xi)—-xi < o for all i, strict inequality
ieQ - - -

holding only if x, = 0, and (ii) when ngp(Ri) < M, there exists o > 0 such that
x-1(x;) = o for all i.

It is easy to check that this solution is single—valued, produces efficient allocations,
and satisfies symmetry and replication—invariance. We also have:

Lemma 5: On the domain of economies for which it selects interior allocations, the
equal-sacrifice solution is a selection from the pareto solution satisfying two-—sided
population—monotonicity.

The relevance of the interiority restriction in Lemma 5 is illustrated by the following
example: Q = {1,2,3}, Q’ = {1,2}, p(RQ) = (1,8,8), rl(O) = 2, r2(7) = 9.5, R, = Rg,
and M = 12. Let e = (Rq,M) and e’ = (RQ,M). Then Sac(e) = (0,6,6) = x (then
1y(xg)=%; < 2.5 and 15(x5)=%, = Io(xg)—x5 > 2.5) and Sac(e’) = (2.5,9.5) = y (here
¥1711(¥1) = ¥9Ty(y9) = 2.5). Upon the arrival of agent 3, agent 1 gains and agent 2
loses.

To be able to work on a wider domain, we now define a variant of the

equal-sacrifice solution. For each R, with p(R,) > 0, let t :[0,r;(0)[ — R be a continuous
i
increasing function such that tp (0) = 0 and tr(x) — was x — r,(0). Now, given any
i i

e = (RQ,M) such that ¥ p(R;) > M, let x = ¢(e) be such that x € P(e), x; = 0 if
i€eQ o
p(R;) = 0 and tp (r;(x)=x;) = tg (rj(xj)—xj)) forall i, j€ Q. As M — ¥ r(0), the
i j ieQ
resulting x is such that x — (Ii(o))ieQ‘ Then, set cp(RQ,iEQri(O)) = (Ii(o))iEQ' Finally,
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given any e = (RH,M) such that ¥ r.,(0) < M, simply choose ¢(e) = x € X(e) so that
Q ieQ !

x1,(0) = xj—rj(o) for all i, j € Q. To obtain a symmetric solution, specify the t, so that

tRi = tRj whenever R, = Rj' Any solution so defined satisfies two—sided population
monotonicity.

The fact that the equal-sacrifice solution is not a selection from the individually
rational solution from equal division is a consequence of Lemma 5 and Theorem 2, since in
the example used to prove that theorem, the equal-sacrifice allocation happens to be
interior. A direct proof is given by the following simple example: let Q = {1,2} and e
= (Rq,M) be such that 1;(2) = 4, 1(4) = 6, and M = 6. Then Sac(e) = (2,4). Since
M/2 = 3 and 3P;2, Sac(e) ¢ I 4(e). Here is a proof that equal-sacrifice solution is not a
selection from the no—envy solution: let Q = {1,2}, and e = (RQ,M) be such that r(2)
= 4, 15(8) = 5, and M = 5. Then Sac(e) = (2,3). Since 3P,2, Sac(e) ¢ F(e).

In order to avoid the domain restriction r;(0) < w for all i, let £R, — R, be a
continuous function with £ > 0 and j‘a’f(u)du < o. Then, given e = (RQ,M), let Sacf(e)

be the allocation x € P(e) at which the "f-weighted" sacrifices j}rg(xi)f(u)du are equal
i

across agents (or again, as equal as possible). On the domains of economies for which
they select interior allocations, the resulting solutions are two—sided population—monotonic.
The same modification as above can be used to avoid the interiority restriction.

All the members of the following family, which are well defined under the same
domain restriction as the equal-sacrifice solution, (the restriction that each I, be bounded,)
also satisfy two—sided population—monotonicity under the same interiority condition.
Definition. Let f, g2 R — R be two continuous and strictly increasing functions such that
f(0) = g(0) = 0 and f(R) = g(R) = R. Given any x; € R, let a;(x;) = p(R;)—x; and
bi(x,) = r,(x)-p(R;). Then, given e = (RQ,M), let x € P(e) be such that
f(a;(x;)) +8(bs;(x)) = f(aj(xj))+g(bj(xj)) for all i, j € Q if this is possible. Otherwise, pick
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x € P(e) so that these expressions are as equal as possible as in the definition of the
equal-sacrifice solution.

If f = g, the resulting solutions treat units of the good above preferred consumptions
and units of the good below preferred consumptions symmetrically. The equal-sacrifice
solution is obtained by taking f and g to be the identity functions.

These examples show that quite a few selections from the pareto solution satisfy

two—sided population—monotonicity.

5. Conclusion. We considered the problem of fair division of a commodity in economies
with single—peaked preferences, and formulated two properties of solutions pertaining to
possible changes in the number of agents that are tailored for this domain. We used the
weaker property to provide a characterization of the uniform rule. The uniform rule does
not satisfy the stronger property but no selection from the individually rational solution
from equal division or from the no—envy solution does. However, selections from the
pareto solution satisfying this property do exist.

The uniform rule has been shown to be essentially the only strategy—proof rule
(Sprumont, 1991), the only selection from the envy—free and efficient solution to be
consistent (Thomson, 1990), or to satisfy a certain property of one-sided
resource-monotonicity (Thomson, 1991). The present paper confirms its importance.

Our results are summarized in the following matrix. A "yes" in cell (a,b) means
that the solution in row a satisfies the condition in column b. A "no" means the

opposite.



Pareto-
domination of
equal division No-envy

Uniform rule yes yes
Proportional no no
solution
Equal-distance  no no
solution
Equal-sacrifice  no no
solution
pCI P yes may or
ed (by Def) may not
@ C FP may or yes
may not (by Def)
*

Replication
invariance

yes
(Lem 2)

yes
(Lem 2)

yes
(Lem 2)

yes
may or
may not

may or
may not

A domain restriction is needed for this positive result.

One—sided
population—
monotonicity

yes
(Lem 1)

yes
(Lem 1)

yes
(Lem 1)

yes
p=U1s
an example

only if
¢ = U (Th 1)**
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Two—sided
population—
monotonicity

no (Lem 3)
(Th 2, Th'3)

no
(Lem 3)

1no
(Lem 3)

yes*
(Lem 5)

ﬂO***
(Th 2)

no***
(Th 3)

Under the same restriction,

other two—sided population—monotonic selections from the pareto solution can be

constructed.

**  This characterization holds on the domain of economies for which each I, is finite.

and under the assumption that ¢ also satisfies replication—invariance.
***  This non-existence result holds even if no efficiency requirement is imposed.

Table 1
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Appendix

In this appendix, we briefly discuss a concept intermediate in spirit between no-envy
and individual rationality from equal division. It simply says that every agent prefers his
consumption fo what the others receive on average. This concept is discussed in Thomson,
(1979, 1982), Baumol, (1986), and Kolpin (1991), and we refer the reader to these sources
for motivation and applications to other domains.
Average no—envy solution, A: x € A(e), where e = (RQ,M), if x € X(e) and
XiRi(-E-Xj/“Ql—l))’ for all i € Q.

J#H

The following facts are easily established: Ie q € A; there is no containment relation
between A and F (unless of course n = 2, in which case A = F). The proportional,
equal-distance, and equal-sacrifice solutions are not selections from A.

Here we show that there is no two—sided population—monotonic selection from the
average envy—free solution. Because of the inclusion Iq € A, this impossibility implies

Theorem 2.

Theorem 4. There is no selection from the average no—envy solution satisfying two—sided

population—monotonicity.

Proof. The example used to prove this result is almost the same as the example used to
prove Theorem 3. Let ¢ C A be given. Let Q = {1,2,3,4,5}, Q* = {1,2}, p(Rl) = 0,

| p(R2) = 2, r2(0) = 3, 1o being linear on the interval [0,2], Ry = .. =R;, and M = 4.

Let e = (RQ,M) and x € A(e). First, we note that x, # 2. Otherwise, x;+x5+x,+x,

= 2. Let then X; = min{xy,x,,x:}. Clearly X; < 2/3. Then x; < (Zi)jxe)/tl < p(Rj) and

agent j would prefer the average consumption of the other agents at x. Next, we observe

that x; < 2. Indeed, if x; > 2, then p(R;) < (X xj)/4 < x; and agent 1 would prefer
B -

the average consumption of the other agents at x. Let e’ = (RQ,,M) and y € A(e’).
Since |Q’| = 2 and in that case F = A, we obtain as in the proof of Theorem 3 that y
= (2,2). The proof concludes as in that Theorem. Q.E.D.
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