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Abstract

The purpose of the present paper is to explain Hansen's (1982)
GCeneralized Method of Moments (GMM) to applied researchers and to give
practical guidance as to how GMM estimation should be implemented. The
present paper discusses statistical properties of GMM estimators and test
statistics. It presents some of the recent developments in the GMM
procedure that have been used in applications. In explaining empirical
applications, the present paper emphasizes pitfalls that researchers have

encountered and how they have avoided them.
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1. Introduction

The purpose of the present paper is to explain Hansen’s (1982)
Generalized Method of Moments (GMM) to applied researchers and to give
practical guidance as to how GMM estimation should be implemented.1 The
present paper discusses statistical properties of GMM estimators and test
statistics. It presents some of the recent developments in the GMM
procedure that have been used in applications. These include sequential (or
two step) estimation, GMM with deterministic trends, applications for cross
sectional and panel data, some statistics that are often used for hypothesis
testing. In explaining empirical applications, the present paper emphasizes
pitfalls that researchers have encountered and how they have avoided them,2

The rest of the present paper is organized as follows. Section 2
presents the basic GMM framework. Section 3 illustrates how ordinary
least squares and liner and nonlinear instrumental variables estimation are
embedded in the GMM framework as special cases. Section 4 presents
some GMM related statistical procedures ’that extends the basic GMM in
Section 2. These include sequential (or two step) estimation, GMM with
deterministic trends, applications of GMM to cross sectional and panel data,
and the minimum distance estimation. Section 5 discusses important
assumptions for GMM that applied researchers should be aware of. In Section
6, I explain methods for covariance matrix estimation that is necessary to
calculate standard errors for GMM estimators and to use the optimal distance

matrix for GMM estimation. Section 7 ©presents Wald, Lagrange

1Hall (1991) provides a nontechnical introduction to GMM that explains
the basic intuition behind GMM. )

21n the companion paper, Ogaki (1992a), I explain how to use
Hansen/Heaton/Ogaki GAUSS GMM package to implement GMM estimation and form
test statistics.



multiplier and likelihood ratio type statistics for hypothesis testing and
recently developed specification tests. In Section 8, I explain empirical
applications. Section 9 discusses optimal choice of instrumental
variables and small sample properties of GMM estimators and test statistics.

Section 10 contains concluding remarks.

2. The Generalized Method of Moments
This section explains the basic GMM framework.
2.1. Moment Restrictions and GMM Estimators

Let {Xt:t=1,2,...} be a collection of random vectors Xt's, ﬂo be a
p-dimensional vector of the parameters to be estimated, and f(Xt,ﬁ) a
g-dimensional vector of functions. The present paper treats CMM in the
context of the time series analysis except for Subsection 4.3, where 1
discuss applications of GMM to cross sectional data and panel data. Assume
that X% is (strictly) stationary.3 1 refer to u£=f(Xt,ﬂo) as the

disturbance of GMM. Consider (unconditional) moment restrictions
(2.1) E(£(X,, B) = 0.

Suppose that a law of large numbers can be applied to f(Xt,ﬁ) for admissible
B, so that the sample mean of f(Xt,ﬂ) converges to its population mean:
(2.2) lin — Y £(X, B) = E(£(X,, A))

Too T t=1
with probability one (or in other words, almost surely). The basic idea of
CMM is to mimic the moment restrictions (2.1) with the sample mean by

minimizing a quadratic form

3 . s s . . . .
See Section 5 for a definition and a discussion of stationarity.



1 1 s
(2.3) J(B) = (— LEEX, PV = LEX, B)
T t=1 T t=1

by choosing B, where WT is a positive definite matrix, which satisfies
(2.4) lim W_ =W .
Tso © °
with probability one for a positive definite matrix Wo° We refer WT and W(J
as the distance matrix or the weighting matrix. Then the GMM estimator, ﬁT,
is the solution of the minimization problem (2.3). Under fairy general
regularity conditions, the GMM estimator ﬁT is a consistent estimator for
arbitrary distance ma.trices.4 I will discuss how to choose the distance

matrix to obtain an (asymptotically) efficient GMM estimator.

2.2. Distributions of GMM Estimators
Suppose that a central limit theorem applies to the disturbance of GMM,
ut=f(Xt,,Bo), so that (1/ﬁ)2:=1ut has an (asymptotic) normal distribution
with mean zero and‘ the covariance matrix‘ Q in large samples. If u is
serially uncorrelated, Q=E(u§), 1f u is serially correlated,
J
(2.5) ; 0 = lim ), E(uu, ).
Joo -§
Some authors ?:efer to O as the long run covariance matrix of u . Let
I‘=E(3f(Xt,ﬁ)/6ﬂ’) be the expectation of the q X p matrix of the derivatives
of f(Xt,,B) with respect to B and assume that T has a full column rank.
Under a set of regularity conditions, ﬁ(ﬁT-ﬂo) has a (asymptotic) normal

distribution with mean zero and the covariance matrix

4 . s . .
Some regularity conditions that are important for applied researchers
are discussed in Section 5.



’ —1 I4 ’ ’-1
(2.6) Cov(Wo) ={T WOI‘} {r WOQWOI‘}{I‘ Wol"} .

in large samples.

2.3. Optimal Choice of the Distance Matrix

When the number of moment conditions (q) is equal to the number of
parameters to be estimated (p), the system is just identified. In the case
of just identified system, the GMM estimator does not depend on the choice
of distance matrix. On the other hand? when ¢>p, there exist
overidentifying restrictions and we obtain different GMM estimators for
different distance matrices. In this case, one may wish to choose the
distance matrix, so that the resulting GMM estimator is asymptotically
efficient. Hansen (1982) shows that when the covariance matrix (6) is
minimized Wo = qus With this choice of the distance matrix, VT(ﬂT-ﬂO) has

an (asymptotic) normal distribution with mean zero and the covariance matrix
(2.7) cov@™) = (o't

in large samples.

. . -1 . .
Let QT be an consistent estimator of 1. Then W;%% is used to obtain

ﬁT. The resulting estimator is called the optimal or efficient GMM
estimator. It should be noted, however, it is optimal given f(Xt,ﬂ). In
the context ‘éf instrumental variable estimation, this means that
instrumental variables are given. I will discuss optimal choice of

instrumental variables in Section 9. Let FT be a consistent estimator for

I'. Then The standard errors of the optimal GMM estimator ﬂT is calculated

5 . e s s e s s : -
The covariance matrix is minimized in the sense that Cov(W0)=Cov(Q 5

is a positive semidefinite matrix for any positive definite matrix Wo'



as square roots of the diagonal elements of Tﬂ{F;Q:TT}_l, The appropriate
estimation method of O depends on the model and this problem is discussed in
Section 6. It is usually easier to estimate r by
I}=(1/T)Ziﬂ(3f(xt,ﬂT)/aﬂ’) than to estimate Q. In linear models or in some
simple nonlinear models, analytical derivatives are readily available. In

nonlinear models, numerical derivatives are often used.

2.4. A Chi-Square Test for the Overidentifying Restrictions

In the case where there there afe overidentifying restrictions (g>p), a
chi-square statistic can be used to test the overidentifying restrictions.
In the context of Euler equation approach explained in Section 8 of the
present paper, this test has been used to test Euler equations that imply
the moment conditions for GMM. Hansen (1982) shows that T times the
minimized value of the objective function, TJT(ﬂT), has an (asymptotic)
chi-square distribution with q-p degrees of freedom if Wb=ﬂ—1 in large

samples. This test is sometimes called Hansen’'s J test.

3. Special Cases
This section shows how linear regréssions and nonlinear instrumental
variable estimation are embedded in the GMM framework explained in the last
section.
3.1. Ordinary Least Squares

Consider a linear model,

(3.1) y, = xt'ﬁo + e,

where Y, and e are scalar random variables, X is a p-dimensional random

6See Newey (1985) for an analysis of the asymptotic power properties of
this chi-squre test.



vector. OLS estimation can be embedded in the GMM framework by letting Xt=
(yt, X, ), f(Xt,ﬂ)=xt(yt—xt B), u=xe., and p=q. Thus the moment

conditions (2.1) become the orthogonality conditions:
(3.2) E(xtet) = 0.

Since this is the case of a just jdentified system, the distance matrix
Wo does mnot matter. The OLS estimator minimizes Z:=1f(Xt,ﬁ)2, Though this
minimization problem is different from the minimization problem (2.3) that
the GMM estimator solves, it turns out that the GMM estimator coincides with
the OLS estimator in this case. To see this, note that (2.3) can be

minimized by settin so that (1/T) T f(X ,B)=0 in the case of a just
y & Pp =1 t J

. e . . . T _ T ,

jdentified system. This implies that (1/T)Zt=lxty‘t—(1/T) {Xletxt }ﬁT,
T , . . . _(3T o 2oLl o

Thus as 1long as {Zletxt } is invertible, ﬂT {zt_ﬁlxtxt } {zt___lxtyt} .

Hence the GMM estimator ,BT coincides with the OLS estimator.

3.2. Linear Instrumental Variables Regressions
Let z, be a (-dimensional random vector of instrumental variables.
Then instrumental variable regressions are embedded in the GMM framework by
letting Xt_'=(yt,xt 'Z, ), f(Xt,,B)=zt‘(yt-xt B), and u=ze. Thus the moment

conditions become the orthogonality conditions
(3.3) E(ztet) = 0.

In the case of a just identified system (g=p), the instrumental variable
. . . e e 2 . . .
regression estimator that minimizes Z:_lf(xt,ﬂ) coincides with the GMM

estimator.

3.3. Nonlinear Instrumental Variables Estimation

GMM is often used in the context of nonlinear instrumental variable



estimation (NLIV). Section 8 explains some examples of applications from

Euler Equation Approach. Let g(xt,ﬂ) be a k-dimensionai vector of functions
and et=g(xt,ﬂo), Suppose that there exist conditional moment restrictions,
E[etllt]=0, where E[=|It] signifies the mathematical expectation conditioned
on the information set It. Here it is assumed that It.CIt+1 for any t. Let
z, be a qxk matrix of random variables that are in the information set It“

Then by the law of iterative expectations, we obtain unconditional moment

restrictions:

(3.4) Elz g(x,,B,)]=0.
Thus we let X{=(xt’,zt’)' and f(Xt,ﬂ)=ztg(xt,ﬂ) in this case.

4, Extensions
This section explains econometric methods that are closely releated

with the basic GMM framework in Section 2.

4.1. Sequential Estimation
This subsection discusses sequential estimation (or two step

estimation). Consider a system

1
£ (X 69

(4.1) £(X,,8) =
) 1 .2
£ (X869

1, 2 i . . .
where B=(8",87)", g is a p -dimensional vector of parameters, and f is a
1 1

- . . . . . . 1
q -dimensional vector of functions. Though it is possible to estimate B
1

7In some applications, z, is a function of f8. This does not cause any
problem as long as the resulting f(Xt,ﬂ) can be written as a function of B

and a stationary random vector Xt.



and ﬁz simultaneously, it may be computationally convenient to estimate ,Bl
from fl(Xt,ﬂl) in the first step estimation and then estimate ﬂz from
fz(Xt,ﬂl,ﬁz) ‘in the second step estimation (see, e.g., Barro (1977) and
Atkeson and Ogaki (1991) for examples of applications). In general, the
asymptotic distribution of the first step estimator affects the asymptotic
distribution of the second step estimator (see Newey (1984) and Pagan (1984,
1986)). A GMM computer package with a sequential estimation can be used to
calculate the standard errors that take into account of these effects from
the first step estimation. If there are overidentifying restrictions in the
system, an econometrician may wish to choose the distance matrix in the
second step in an efficient way. This problem of the choice of the distance
matrix in the second step is analyzed by Hansen, Heaton, and Ogaki (1992).

. . 1 . .
Suppose that the first step estimator ﬂr minimizes

(4.2) J (B = {——Zf X, BV, (——Zf(x A,
T e=1 ‘ T t=1

and that the second step estimator minimizes

(4.3) I8 = {——Ef(x BB, {——Xf<x BB,
T t=1 T t=1

where W_T is a positive definite matrix that converges to W'o with
1 . 1
probability one. Let I‘i. be the q xp, matrix E(Bfi/aﬂj’) for i=1,2 and
3 103
j=1,2.

Given an arbitrary Wlo, the optimal choice of the second step distance

e s * -1
matrix is WZO——-(Q ) °, where

-1
(4.4) Q = [-T (PllwloI‘ll) I‘11 10" 1] Q T, (F11W10r11) L
I



With this choice of W_, (1/ﬁ)Z:=l(ﬂI-ﬂo) has an asymptotic mnormal

distribution with mean zero and the covariance matrix
4.5 ' r @'t
(4.5) (r__@>7r, N7,

and Ter(ﬁz) has an (asymptotic) chi-square distribution with q,°P, degrees
of freedom as T>». It should be noted that if 1‘21=0, then the effect of the

W

first step estimation can be ignored  because Q = 022 =

E(E,(X_,B)E,(X,.8)")-
4.2. GMM with Deterministic Trends
This subsection discusses how GMM can be applied to time series with
deterministic trends (see Eichenbaum and Hansen (1990) and Ogaki (1988,
1989) for examples of applications). Suppose that Xt is trend statiomary

rather than stationary. In particular let

. 1 L
(4.6) X = d(t,B) + X,

where d(t,ﬁl) is a function of deterministic trends such as time polynomials
* w® ¥*
and Xt is detrended Xt. Assume that Xt is stationary with E(Xt)=0 and that

there are q, moment conditions
(4.7) E(E (X, B, D)) =0
) 278’ Yot To ’

et p=(8, ), £ (X ,pH=X -d(£,f)  and (X, B)=[£,(X, .8,
fz(X:,ﬂl,ﬂz)’]'. Then GMM can be applied to f(Xt,ﬂ) to estimate ﬂl and ﬂz

simultaneously as shown in Hansen, Heaton, and Ogaki (1992).

4.3. Cross-Sectional Data and Panel Data
GMM has been applied to cross-sectional data and panel data. For
example, Hotz, Kydland, and Sedlacek (1988), Altug and Miller (1990), Runkle

(1991) have applied GMM to panel data and discuss econometric issues in



detail. The reader who is interested in econometric issues that are not
treated in this subsection is referred to these papers. In this section, 1
explain a simple method to allow for a general form of serial correlation in
each cohort in panel data (see e.g., Atkeson and Ogaki (1991) and Ogaki and
Atkeson (1991) for examples of applications.)

Consider a panel data set in which there exist H cohorts (for example,
a cohort consists of the individuals in a village). Suppose that cohort h
include I\Ih individuals and that the data set contain T periods of
observations. Let N=Z§=1Nh be the total number of individuals. It is
assumed that N is large compared with T, so that we drive N to infinity with
T fixed in considering asymptotic distributions. Assume that individuals
i=1,...,N1 are in cohort 1 and i=N1+1,....,N1+N2 are in cohort 2, etc. It
is assumed that limN_)oo Nh/N=6h. Let X be a random vector of economic

variables for an individual i at period t and ft(xit,ﬂ) be a qt-dimensional

3 T 7 £ ’
vector of functions. Here Ztqut—q. Let Xi—(xi1 RS - ) and
f(Xi,ﬂ)=(f1(xil)’ N ,fT(x.T)’)". It is assumed that Xi is identically and

N 1

independently distributed over the individuals. Assume that there exist ¢

orthogonality conditions:
(4.8) | E(EE,A) =0,

where EN is the unconditional expectation operator over individuals. A
subscript N is attached to emphasize that the expectation is taken over
individuals.

It is assumed that a law of large number applies to f, so that

N
h

(4.9) lim — ), f(Xi, B) = 6hEN(f(Xi, B8))
Noo N i=N 1+1

10



N
for each h=1,...,H.  Let gN(xi,ﬁ)=(2;1f(xi,ﬁ)',.“,Xf . EXLBY).

i=
H-1

Then the GMM estimator ﬁN minimizes a quadratic form
1 , 1
(4.10) I (B) = (g (X, OV (g &, O,
1
N N
where WN is a positive definite matrix, which satisfies
(4.11) lim WN = WO.
N0
with probability one for a positive definite matrix Wo"

Suppose that a central 1imit theorem applies to the disturbance of GMM,

N

u—f(X, ﬁo) . so that (1N )Z;Nh-lﬂui has a  (asymptotic)  normal
distribution with mean zero and the covariance matrix Qh for large N. Here
Qh=6hEN(uiui’) for any individual i in cohort h. Let Q be a matrix that has
Qh in the h-th diagonal blocks for h=1,...,H and zeros elsewhere. With
these modifications, the GMM framework explained in Section 2 can be applied
to this problem with all limits taken as N—aco instead of T>». For example,

Wo=ﬂ_1 leads to an efficient GMM estimator and NJ(ﬁN) has an asymptotic

chi-square distribution with this choice of the distance matrix.

4.4. The Minimum Distance Estimation
The Mininiu’m Distance Estimation (MDE) provides a convenient way to
obtain an efficient estimator that imposes nonlinear restrictions (see, e.g,
Chiang (1956), Ferguson (1958), and Chamberlain (1982, 1984)) and a test
statistic for the restrictions. The MDE is closely related to GMM and a GMM
program can be used to implement the MDE (see, e.g., Ogaki (1992a)).
Suppose that 0T is an unrestricted estimator for a pt+s vector of parameters

00, and that V’f(&T-BO) converges in distribution to a normal random vector

11



with the covariance matrix 1. Consider nonlinear restrictions such that

(4.12) $(B) = 0,

where ﬂo is a p-dimensional vector of parameters. The MDE estimator, ﬂy

minimizes a quadratic form

(4.13) T.(B) = ($(B)-0,)7 W ($(B)-0,),

for a positive definite matrix W% that converges to a positive definite
matrix Wo with probablity one. As with the GMM estimation, W;#fl isrthe
optimal choice of the distance matrix and TJT(ﬂT) has an asymptotic
chi-square distribution with s degrees of freedom. The null hypothesis that
(4.12) holds is rejected when this statistic is lager than critical values

obtained from chi-square distributions.

5. Important Assumptions
In this section, I discuss two assuﬁptions under which large sample
properties of GMM estimators are derived. - These two assumptions are
important in the sense that applied researchers have encountered cases where

these assumptions are obviously violated unless special cares are taken.

5.1. Stationarity
In Hansen (1982), Xt is assumed to be (strictly) stationary.8 A time

series {Xi:-w<t<w} is stationary if the joint distribution of {Xt, .ae,XﬁT

are identical to those of (X  ,...,X } for any 7 and s. Among other
t+s tis+T

things, this implies that unconditional moments E(Xt) and E(XJXHT’) cannot

8 . . . .
In the context of cross sectional data discussed in Subsection 4.3,
this means identical distributions for X .

1

12



depend on t for any 7 when these moments exist. Thus this assumption rules
out deterministic trends, autoregressive unit roots, and unconditional
heteroskedasticity.9 On the other hand, conditional moments E(Xm¢|1t) and
E(Xt+TXt.+T+s’ |It) can depend on It. Thus the stationarity assumption does
not rule out the possibility that Xt has conditional heteroskedasticity. It
should be noted that it is not enough for u£=f(X£,ﬂo) to be stationary. It
is required that Xt is stationary, so that f(Xt,ﬁ) is stationary for
admissible B that is not necessarily equal to ﬁo (see Subsection 8.1.4 for
an example in which :E(Xt,ﬂo) is stationary but f(Xt,ﬂ) is not for other
values of B).

Since many macroeconomic variables exhibits nonstationarity, this
assumption can be easily violated in applications unless a researcher is
careful. As explained in Subsection 4.2, nonstationarity in the form of the
trend stationarity can be treated with ease. In order to teat another
popular form of nonstationarity, unit-root nonstationarity, researchers have

used transformations such as first differences or growth rates of variables

(see Section 8 for examples).

5.2. Identification

Another important assumption of Hansen (1982) is related to

9Gallan_t (1986) and Gallant and White (1988) show that the strict
stationarity assumption can be relaxed for GMM. They allow for
unconditional heteroskedasticity that the stationarity assumption rules out.
This does not mean that Xt can exhibit nonstationarity by having

deterministic trends, autoregressive unit roots, or an integrated GARCH
representation. Some of their regularity conditions are violated by these
popular forms of nonstationarity and Xt needs to be detrended if it is- trend

staionary. For this reason, I emphasize the strict stationarity assumption
in the context of time series applications rather than the fact this
assumption can be relaxed.

13



identification. Let
(5.1) I = (ELEX,, A1V (EIEX, AT

Then the identification assumption is that ﬂo is a unique minimizer of
Js(ﬁ).lo Since JBZO, ﬂo is obviously a minimizer. This assumption requires
Jb(ﬁ) to be strictly positive for any other B. A case where this assumption
is obviously violated is that f(Xt,ﬂ)EO for some B which does not have any

economic meanings (see Section 8 for examples).

6. Covariance Matrix Estimation

An estimates of Q is necessary to calculate asymptotic standard errors
of the GMM estimator from (2.6) and to utilize the optimal distance matrix
0. This section discusses estimation methods for Q. 1In the following, 1
assume that a consistent estimator ﬂT for ﬂo is available to form an
estimate of u by f(Xt,ﬁI). In most applications, the first stage GMM
estimator is obtained by set;ing W£=I, and then OT is estimated from the
first stage GMM estimate ﬂT. The second stage GMM estimator is formed by
setting W;%iln This procedure can be iterated by using the second stage
GMM estimate to form the distance matrix for the third stage GMM estimator,

and so on. Kocherlakota's (1990) and Ferson and Foerster's (1991) Monte

Carlo simulations suggest that the GMM estimator and test statistics have

better small sample properties when this procedure 1is iterated. It is
preferable to iterate this procedure until a convergence is obtained. In
some nonlinear models, this may be costly in terms of time. In such cases,

1OHansen, Heaton, and Ogaki (1992) show that a sequence of the sets of
the minimizers for (2.3) converges to the set of the minimizers with
probability one when all regularity conditions except for this identification
assumption hold.

14



it is recommended that the third stage GMM to be used because the gains from

further iterations may be small.

6.1. Serially Uncorrelated Disturbance
This subsection treats the case where E(uiuj)=0 for 1i#j. In the
contest of time series data, this means that there is no serial correlation.
In the context of the cross sectional and panel data model in Subsection
4.3, this means that the disturbance is uncorrelated across households, even
though it can be serially correlated.
In this case, Q can be estimated by (1/T)Zi=lf(Xt,BT)f(Xt,ﬁT)’ . In the

models considered in Section 3, this is White’'s (1980) heteroskedasticity

consistent estimator. For example, consider the NLIV model explained in
Section 3. In this model, ut=ztg (Xt . ﬂo) and

T P T P .
/Dy, FX L BIEE LB (/DY _ 28X, BeX ) 2z .  Note that u  is

serially uncorrelated if et=g(Xt,ﬂ0) is in the information set It+1 because
’ = ’ = ’ = 1>

E(utut+j) E(E(utut+j|1t+1)) E(utE>(ut+j)|It+1)) 0 for j=1. In some cases,

conditional homoskedasticity is assumed and an econometrician may wish to

impose this on his estimate for Q. In this case

(1/T)Z:=1zt{(1/T)Zi=1g(Xt,ﬂT)g(Xt,BT)’ )zt’ is used to estimate Q.

6.2. Serially Correlated Disturbance
This subsection treats the case where the disturbance is serially
correlated in the context of time series analysis.
6.2.1. Unknown Order of Serial Correlation
In many applications, the order of serial correlation is unknown. Let

&I>('r)=E(utut_T) and

15



T
I f(X,BOEX, B for j20
(6.1) 'QT(T) _ t:j+1
1 , .
<L fE& L BOEELAD for j<O0.

t=j+1

Many estimators for Q in the literature have the form
(6.2) a - —— Til k(—T—) e (1)
S M N

where k(-) is a real-valued kernel, and ST is a band-width parameter. The
factor T/(T-p) is a small sample degrees of freedom adjustment. See Andrews
(1991) for examples of kernels. Hansen (1982) and White's (1984, p.152)
estimator corresponds with the truncated kernel; Newey and West's (1987a)
estimator, with the Bartlett kernel; and Gallant's (1987, p.533), with the
Parzen kernel. The estimators corresponding with these kernels place zero
weights for QT(T)ZST, so that ST-l is called the lag truncation number.
Andrews (1991) advocates an estimator which uses the Quadratic Spectral (QS)
kernel, which does not place zero weights for any ®(r) for |r|5T-l.11

One important problem is how to choose the bandwidth parameter ST.
Andrews (1991) provides formulas for optimal choice of the bandwidth
parameter for a‘variety of kernels. Unfortunately, these formulas include
unknown parameters., Andrews proposes automatic bandwidth estimators in
which these unkﬁown parameters are estimated from the data. His method
involves two steps. The first step is to parameterize the law of motion of
the disturbance u and to estimate the parameterized law of motion. The

second step is to estimate the parameters for the optimal bandwidth

11Hansen (1990b) relaxes an assumption made by these authors to show
consistency of the kernel estimators are relaxed in Hansen (1990b).
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the estimated law of motion. In his Monte Carlo simulations, Andrew uses a
AR(1l) parameterization for each term of the disturbance. This seems to work
well in the models he considers.

Another problem is to choose the kernel. One serious problem with the
truncated kernel is that the corresponding estimator is not guaranteed to be
positive semidefinite. Andrews (1991) discusses that the QS kerﬁel is an
optimal kernel in the sense that it minimizes asymptotic MSE among the
estimators of the form (6.3) that are guaranteed to be positive
semidefinite. His Monte Carlo simulations show that the QS kernel and the
Parzen kernel work better than Bartlett kernel in most.of the models he
consider. He also finds that even the estimators based on the QS kernel and
the Parzen kernel are not satisfactory in the sense that the standard errors
calculated from these estimators are not accurate in small samples when the
amount of autocorrelation is large.

Because the estimators of the form (6.3) do mot seem satisfactory,
Andrews and Monahan (1990) propose an estimator based on a VAR prewhitening.
The intuition behiﬁd this is that the estimators of the form (6.2) only
takes care of MA components of u and cannot handle the AR components well
in small samples. The first step in the VAR prewhitening method is to run a

VAR of the form
(6.3) u = Aiu + Au + ... +Au + v .

Note that the model (6.3) need not be a true model in any sense. Then the
estimated VAR is used to form an estimate v, and an estimator of the form
(6.2) is applied to the estimated v, to estimate the long-run variance of
V. Q°. The estimator based on the QS kernel with the automatic bandwidth

parameter can be used to v, for example. Then the sample counterpart of the
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formula
(6.4) Q= [1- Z Ab]

is used to form an estimate of Q. Andrews and Monahan uses the VAR of order
one in their Monte Carlo simulations. Their results suggest ‘that the
prewhitened kernel estimator performs better than the nonprewhitened kernel
estimators for the purpose of calculating standard errors of estimators.12
In sum, Monte Carlo evidence suggests that the VAR prewhitened QS5 or
Parzen kernel estimator with Andrews’s (1991) automatic bandwidth parameter
is to be recommended. Though the QS kernel estimator may be preferred to
the Parzen kernel estiamator because of its asymptotic optimality, it takes
more time to calculate the QS kernel estimators than the Parzen kernel
estimators. This difference may be important when estimation is repeated

many times.

6.2.2. Known Order of Serial Correlation
In some applications, the order of serial correlation is known. Assume
that the order of serial correlation is known to be s. For example,
consider the NLIV model explained in Section 3. Suppose that e is in the
information set I In multi-period forecasting models, s is greater

s+l

than one (see Hansen and Hodrick (1980, 1983) and Section 8 of the present

paper for examples). Then E(utut+j) = E(E(utut+j|1tm+l)) =
E(uEM )]|I )) = 0 for j=s+l. Thus the order of serial correlation of
t t+3 t+s+l

u is s and u has an MA(s) structure in this case.

12Park and Ogaki's (1991b) Monte Carlo simulations suggest that the VAR
prewhitening improves estimators of 0 in the context of cointegrating
regressions.
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In this case, there exit restrictions that ®(r)=0 for |r|>s, which I
shall call the zero restrictions on autocovariances. It is likely that
imposing these zero restrictioms on the estimator of O leads to a more

. s ] 13 ] s . . .
efficient estimator. Since Q=ZT &(7) in this case, a natural estimator
=-5

P

1s

s
(6.5) a - T—"fﬁfzs 2 (1),
which corresponds with the truncated kernel estimator. Hansen and Hodrick
(1980) study a multi-period forecasting model that leads to s=1. They use
(6.5) with conditional homoskedasticity imposed as discussed at the end of
Subsection 6.1 in the present paper. Their method of calculating the
standard errors for linear regressions is known as Hansen-Hodrick
correction.

A possible problem with the estimator (6.1) is that QT is not
guaranteed to be positive semidefinite if s>1. 1In applications, researchers
often encounter cases where QT is 1invertible but is not positive
semidefinite. If this happens, WT=Q;1 should not be used to form the
optimal GMM estimator (see, e.g., Newey and West (1987a)). There exist at
least two ways to handle this problem. One way is to use Eichenbaum,
Hansen, and Singleton’s (1988) modified Durbin’s method. The first step of

this method is to estimate the VAR (6.3) for a large n by solving the Yule

Walker equations. The second step is to estimate an MA(s) representation

13 . . . . .

In some applications, the order of serial correlation may be different
for different terms of u . The econometrician may wish to impose these
restrictions.
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(6.6) u =Bv + ...+ Bv + e,

t 1 t-1 s t-s t
by running Vestimated u on estimated lagged V£'S. Then the sample
counterpart of
(6.7) Q= (I+Bl+ +BS)E(etet')(I+B1+ +Bs)'
is used to form an estimate of O that imposes the zero restrictions. One

problem with this method is that this is not reliable when the number of
elements in u(t) is large compared with the sample size because two many
parameters in (6.3) need to be estimated. The number elements in u(t) need
to be kept as small as possible when this method is to be used.
Another method is to use one of the kernel estimators of the form (6.2)

(or VAR prewhitened kernel estimators if s is large) that are guaranteed to
be positive semidefinite. When this method is used, the zero restrictions
should not be imposed even though &(r) is known to be zero for |[r|>s. In
order to illustrate‘this in an simple exaﬁple, consider the case where s=1

and Newey-West’s (1987) Bartlett kernel estimator is used. Then

2
(6.6) Q, = T%T};_T'?TI % (1),
where £=ST-1 ig.the lag truncation number. If £=1 is used to impose the
zero restrictions, then QT converges to ®(0)+(1/2)®(1)+(1/2)®(-1), which is
not equal to 2. Thus £ needs to be increased as T is increased to obtain a
consistent estimator. On the other hand, if &1 is used and the =zero

restrictions are imposed by setting @T(f) in (6.6) to zero for |r|>l, then

the resulting estimator is no longer guaranteed to be positive semidefinite.
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7. Hypothesis Testing and Specification Tests

In this section, I discﬁss specification tests and Wald, Lagrange
Multiplier (IM), and likelihood ratio type statistics for hypothesis
testing. Gallant (1987), Newey and West (1987b), and Gallant and White
(1988) have considered these three test statistics, and the Eichenbaum,
Hansen and Singleton (1988) considered the third test for hypothesis testing
for GMM (or more general estimation method that includes GMM as a special
case).

Consider s nonlinear restrictions

(7.1)  H_: R(B)=r

where R is a sx1 vector of functions. The null hypothesis H0 is tested
against the alterative that R(ﬂo)¢r. Let A=0R/3B” and A:r be an consistent
estimator for A. It is assumed that A is of rank s. If the restrictions
are linear, then R(ﬂo)=Aﬂ0 and A is known. Let ﬂ: be an unrestricted GMM
estimator and ﬁ; be a GMM estimator that-is restricted by (9.1). It is
assumed that W6=Q_1 is used for both estimators.

The Wald test statistic is
u , s L -1,,4-1 uy
(7.2) T(R(BD 1) (AT 0 T A1 (R(B)-T),

where QT, FT,Aand AT are estimated from ﬂ:, The Lagrange multiplier test

statistic is

1
(7.3) LMT = -5
. T
PRI RS DS | L1 Ll r
[AT(FT QT I}) AI] (ATAT) ATFT QT tEf(Xt’ﬁT)’

[l

r,, ~1 , P §
f(xt’ﬂT) QT FTAT (ATAT )

where ﬂT, FT, and AT are estimated from ﬁ;. Note that in linear

models LMT is equal to (9.2), where QT, FT, and AT are estimated from ﬁ:
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rather than ﬁ:. The likelihood ratio type test statistic is

(7.4) c, = T(,(BY - J (BD),

which is T times the difference between minimized value the objective
function when the parameters are restricted and the minimized value of the
objective function when the parameters are unrestricted. It is important
that the same estimator for O is used for both unrestricted and restricted
estimation for the CT test statistic. Under a set of regularity conditions,
all three test statistics have asymptotic chi-square distributions with s
degrees of freedom. The null hypothesis is rejected when these statistics
are larger than critical values obtained from chi-square distributions.

Existing Monte Carlo evidence suggests that the small sample
distributions of the Lagrange multiplier test and the likelihood ratio type
test are better approximated by their asymptotic distributions than those of
the Wald test (see Gallant (1987)). Another disadvantage of the Wald test
is that the test result for nonlinear restrictions depends on the
parameterization in general .(see, e.g., Gregory and Veall (1985) and
Phillips and Park (1988)).

Though the chi-square test for the overidentifying restrictions
discussed in Section 2 has been frequently used as a specification test in
applications °f, GMM, other specification tests applicable to GMM are
available. These include tests developed by Singleton (1985), Andrews and
Fair (1988), Hoffman and Pagan (1988), Andrews (1990), Ghysels and Hall
(1990a, 1990b, 1990c), Hansen (1990a), Dufour, Ghysels, and Hall (1991).

Some of these tests are discussed by Hall (1991).

8. Empirical Applications

The GMM estimation has been frequently applied to rational expectations
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models. This section discusses examples of these applications. The purpose
is not to provide a survey of the literature but to illustrate applications.
I will discuss problems that researchers have encountered in applying GMM
and how they have solved them. In this section, I use the notations for the

NLIV model in Section 3 in explaining the econometric formulations.

8.1. Euler Equation Approach to Models of Consumption
8.1.1. Hansen and Singleton's (1982) Model
Hansen and Singleton (1982) show how to apply GMM toa Consumption-Based
Capital Asset Pricing Model (C-CAPM). Consider an economy in which a

representative agent maximizes

(8.1) T &EU()IT)
t=1

subject to a budget constraint. Hansen and Singleton (1982) uses an

isoelastic intraperiod utility function

1-<

(8.2) u(e) = 2= (c¥

-1,

where Ct is real consumption at t and o>0 is the reciprocal of the
intertemporal elasticity of substitution (a is also the relative risk
aversion coefficient for consumption in this model). The standard Euler

equation for the optimization problem is

E[SC;flRt+1|It]
(8.3) = -1,
c
t

where Rt+1 is the (gross) real return of any asset. The observed Ct they

use is obviously nonstationary, though it is not clear what form of
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nonstationarity that it takes. Hansen and Singleton uses Ck+ﬂct in their
econometric formulation, which is assumed to be stationary.14 Then let
p=(5,2), X=(C_ /G, R D7, and g(Xt,ﬂ)=6(CHI/Ct)_aRtﬂ-l in the
notations for the NLIV model in Section 2 of the present paper.15 Stationary
variables in It, such as the lagged values of Xt, are used for instrumental
variables z, . In this case, u is in It+1, and hence u is serially
uncorrelated. Hansen and Singleton (1984) find that the chi-square test for
the overidentifying restrictions reject their model especially when nominal
risk free bond returns and stock returns are used simultaneously. Their
finding is consistent with Mehra and Prescott’s (1985) equity premium
puzzle. When the model is rejected, the chi-square test statistic does not

provide much guidance as to what causes the rejection. Hansen and

Jagannathan (1991) develop a diagnosis that could provide such guidance.

8.1.2. Time Aggregation
The use of consumption data for the C-CAPM 1is subject to a time
aggregation problem because cénsumers can make decisions at intervals much
finer than the observed frequency of the data and because the observed data
consist of average consumption over a period of time.
It is not possible for GMM to take into account of the effect of the
time aggregatioﬁAin nonlinear models in general. For example, Heaton (1991)

uses the method of simulated moments (MSM) for his nonlinear asset pricing

14

In the following, assumptions about trend properties of consumption
are maid. These assumptions need to be satisfied by equilibrium
consumption. The simplest example of economies that satisfy these

assumptions is an endowment economy without production in which endowments
of consumption satisfy them.

15When multiple asset returns are used, gO&,ﬂ) becomes a vector of

functions.
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model with time-nonseparable preferences in taking the time aggregation into
account. Bossaerts (1989), Duffie and Singleton (1989), MacFadden (1989),
Pakes and Pollard (1989), Lee and Ingram (1991), and Pearson (1991) have
studied asymptotic properties of MSM. It is easier to take into account of
the effect of time aggregation in linear models. In linear models, the time
aggregation means that the disturbance has an MA(l) structure and the
jnstrumental variables need to be lagged one period more compared with the
econometric model that does not take into account of the time aggregation
(see, e.g, Grossman, Melino, and Shiller (1987), Hall (1988), and Hansen and
Singleton (1988) for applications to C-CAPM and Heaton (1990) and
Christiano, Eichenbaum, and Marshall (1991) for applications to Hall's

(1978) type models of permanent income hypothesis.

8.1.3. Habit Formation and Durability
Many researchers have considered effects of time-nonseparability in
preferences on asset pricing. Let us replace (8.2) by

1-

2,

(8.4) u(e) = 2= (s

where St is service flow from consumption purchases. Purchases of

consumption and, service flows are related by

(8.5) S =aC +acC + ac(C + .
t 0t 1 t-1 2 t-2

This type of specification for time-nonseparability has been used by Mankiw
(1982), Hayashi (1985), Dunn and Singleton (1986), Eichenbaum, Hansen, and
Singleton (1988), Ogaki (1988, 1989), Eichenbaum and Hansen (1990), Heaton

(1990, 1991), Cooley and Ogaki (1991), Ferson and Constantinides (1991),
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Ferson and Harvey (1991), and Ogaki and Park (1992) among others.,16

Depending on values of aT's, the model (8.4) leads to a model with habit
formation and/or durability. Constantinides (1990) argues that habit
formation could help solving the equity premium puzzle and shows how the
intertemporal elasticity of substitution and the relative risk aversion
coefficient depend on aT's and o in a habit formation model.

In this subsection, I will discuss applications by Ferson and
Constantinides (1991), Cooley and Ogaki (1991), and Ogaki and Park (1992) to
illustrate econometric formulations.17 In their models, it is assumed that
aT=0 for r=2. Let us normalize a, to be one, so that ﬂ=(6,a,a1)., The asset

pricing equation takes the form

E[S{S;fl+6als;‘jz)Rt+l l It]
(8.6) - 1.

E[S % 6a 5% |1 ]
t 1 t+1 t

Then let e:=6(8:1+6a18;32)Rt+1-(S;a+6als;(:1). Though Euler equation (8.5)
implies that E(e:|It)=O, this cannot be used as the disturbance for GMM
because both of the \two regularity assumptions discussed in Section 5 of the
present paper are violated. These violations are caused by nonstationarity
of Ct and three sets of trivial solutions, a=0 and 1+6a1=0; §=0 and o=«; and
§=0 and a = with a positive a. 1In order to solve these problems, Ferson
and Constantinides (1991) defines et=e2/S;a, which avoids the trivial
solutions. Since (1+al)C;a is in It, E(etllt)=0., The disturbance is a

function of S /S (7=1,2) and R, . When C /C and R are assumed to be
ter’ Tt t+1 t+1’ Tt t

16Some of these authors allow for a possibility of a deterministic

technological progress in the transformation technology (8.4).

7Eichenbaum, Hansen, and Singleton (1988) and Eichenbaum and Hansen
(1990) consider similar models with nonseparability across goods in
preferences.
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stationary, SHT/St and the disturbance can be written as a function of
stationary variables.

One ﬁroblem that researchers have encountered in these applications is
that Ctﬂ+a10t becomes a negative number when a is close to minus one. A
GMM computer program stalls when it tries such non-admissible values of a
that makes Ctu+aict negative for any t. This may happen in a nonlinear
search for ﬁT or in calculating numerical derivatives for example. Atkeson
and Ogaki (1991) have encountered similar problems in estimating fixed
subsistence levels from panel data. One way to avoid this problem is to
program the function f(Xt,ﬁ), so that the program returns very large numbers
as the wvalues of f(Xt,ﬂ)r when non-admissible wvalues are used. It 1is
necessary to avoid calculating derivatives using these large values of

f(Xi,ﬁ) if numerical derivatives are used. This can be done by modifying a

program to calculate numerical derivatives.

8.1.4. Multiple-Good Models
Mankiw, Rotemberg, and éummers (1985), Dunn and Singleton (1986),
Eichenbaum, Hansen, and Singleton (1988), Eichenbaum and Hansen (1990),
among others have estimated versiomns of multiple-good C-CAPM. I illustrate
basic economic formulations in these multiple-good models in the context of
a simple model with a nondurable good and a durable good.
Let us replace (8.2) by Houthakker's (1960) addilog utility function

that Miron (1986) and Ogaki (1988,1989) have estimated among others:

180gaki (1992a) explains these modifications for Hansen/Heaton/Ogaki GMM

package.
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1-a 1-n

(8.7) UCe) = == (G, 1) + -1% ® 1),

where Ct is nondurable consumption and Kt is household capital stock from
purchases of durable consumption good Dt.19 The stock of durables is assumed

to depreciate at a constant rate l-a, where 0sa<l:
(8.8) K =ak + D .
t t t

Alternatively, Kt can be considered as service flow in (8.5) with aT=aT°
When a»n, preferences are not quasi homothetic. In applications, the data
for Kt is constructed from data for initial stock K0 and data for Dt for
t=1,...,T. Let Pt be the intratemporal relative price of durable
consumption and nondurable consumption. Then the intraperiod first order

condition that equates the relative price with the marginal rate

of substitution is

-n
oR(Y,_6"a'K  IT)
(8.9) P = :
t -a
C
t
Assume that D /D is stationary. Then K /D 1is stationary for any 7
t+1’ Tt 7/ Tt

© T
because K“J/Dt—zpma DHT/Dt. From (8.8),

w'i‘T Kt.+1‘-’7
——— = 4E[} § a ( ) 1L.].

(8.10) .

19Since the addilog utility function is not quasi-homothetic in general,
the distribution of initial wealth affects the utility function of the
representative consumer. The existence of a representative consumer under
complete markets is discussed by Ogaki (1990) for general concave utility
functions and by Atkeson and Ogaki (1991) for extended addilog wutility
functions.
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Assume that the variables in It are stationary.20 Then (8.10) implies that
the PtC:z/D:7 is stationary because the right hand side of (8.10) 1is
stationary. =~ Taking natural logs, we conclude that ln(Pt)-aln(Ct)+nln(Dt) is
stationary. This restriction is called the stationarity restriction.

From (8.9), define

0 - N

-1
(8.11) e = PtCt - (1-éaF) 0Kt ,

where F is the forward operator. The first order condition (8.9) implies
that E(e:|1t)=0, One problem is that ez involves K£+r for r from O to
infinity, so that ez cannot be used as the disturbance for GMM. To solve

, and

this problem, define et=(1-6aF)e:. Note that e involves only Ct, Ct+1

Kt and that E[etllt]=0. Hence e forms the basis of GMM. The only
remaining problem is to attain stationarity. One might think it is enough
to divide e: by K;n, so that the resulting e, is stationary as implied by
the stationarity restriction. It should be noted that it is not enough for
e£=g(Xt,ﬂo) to be ‘stationary' but it is necessary for g(Xt,ﬂ) to be
stationary for ﬂ#ﬁo. Hence if « and 75 are wunknown and Ct or Dt is
difference stationary, GMM cannot be applied to the first order condition
(8.9).21 Ogaki (1988, 1989) assume that Ct and Dt are trend stationary and
apply the method explained in Section 4 to utilize the detrended version of

e . In these applications, the restrictions on the trend coefficients and

the curvature parameters o and n implied by the stationarity restriction are

2OIf It include nonstationary variables, assume that the right hand side

of (8.9) is the same as the expectation conditioned on the stationary
variables in It.

1. . . . . .
Cointegrating regressions can be used for this case as explained
below.
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imposed on the GMM estimators. Imposing the stationarity restrictions helps
obtaining more reasonable point estimates for « and n in these applications.

Eichenbaum, Hansen, and Singleton (1988) and Eichenbaum and Hansen
(1990) use the Cobb-Douglas utility function, so that o« and n are known to
be one. They allow preferences to be nonseparable across goods and
time-nonseparable, but the stationarity restriction is shown to hold. 1In
this case, the stationarity restriction implies that ]E’t‘Ctal/Kt‘"1 is
stationary. This transromation does not invelve any unknown parameters to

be estimated. Hence this transformation is used to apply GMM to their

intraperiod first order conditioms.

8.1.5. The Cointegration-Euler Equation Approach

When at least one of Ct and Dt is difference stationary, the
stationarity restriction implies cointegration that Engle and Granger (1987)
defines. Ogaki (1988) and Ogaki and Park (1992) propose to estimate the
curvature parameters a and 75 of the addilog utility function, wusing a
cointegrating regression.22 | Cooley and Ogaki (1991) combine this
cointegration approach with Euler Equation approach based on GMM in a
two-step procedure. In the first step, curvature parameters are estimated
from a cointegrating regression. In the second step, we use this estimated
value of @ in the asset pricing equation (8.3) and estimate only 6.23 This

two step procedure does not alter the asymptotic distributions of GMM

220gaki and Park (1992) use Park’s (1990) canonical cointegrating
regressions and Park and Ogaki’'s (1991) seemingly unrelated canonical
regressions (also see Ogaki (1992b,1992¢)). :

23In applications of Cooley and Ogaki (1991) and Ogaki and Park (1992),
time-nonseparability in preferences are allowed for Ct and the asset pricing

equation (8.6) is used to estimate ¢ and a .
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estimators and test statistics because the cointegrating regression
estimator for a is super consistent and converges at a faster rate than
T2,

Cooley and Ogaki (1991) proposes a specification test a la Hausman
(1978) based on the likelihood ratio type statistic (discussed in Section 7
of the present paper) that tests the cross equation restriction for the
cointegrating regression and the GMM disturbance on a. This test has powers
against the factors that make the two estimates different, such as

nonseparability in preferences across goods, measurement errors, and

liquidity constraints.

8.1.6. Monetary Models
Monetary models have been estimated by applying GMM to Euler equations
and/or intratemporal first order conditions. Singleton i(l985), Ogaki
(1988), Finn, Hoffman, and Schlagenhauf (1990), and Bohn (1991) estimate
cash-in-advance models, and Poterba and Rotemberg (1987), Eckstein and
Leiderman (1989), and Finn, ﬁoffman, and Schlagenhauf (1990), Imrohoroglu
(1991) estimate money-in-the-utility-function (MIUF) models. It turns out
that in cash-in-advance models, basically the same asset pricing equation as
(8.3) holds as long as the cash-in-advance constraints are binding and Ct is
a cash good (‘iﬁ the terminology of Lucas and Stokey (1987)). However,
nominal prices of consumption, nominal consumption, nominal asset returns
are aligned over time in a different way in monetary models than they are in
Hansen and Singleton’s (1982) model. Information available to agents at
time t is also considered in a different way. As a result, instrumental
variables are lagged one period more compared with Hansen-Singleton’s model

and u has an MA(1l) structure in nonlinear models (the time aggregation has
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the same effects in linear models as discussed above). There is some
tendency for chi-square test statistics for the overidentifying restrictions
to be more favorable for the timing conventions suggested by cash-in-advance
models (see Finn, Hoffman, and Schlagenhauf (1990) and Ogaki (1988)). Ogaki
(1988) focuses on monetary distortions in relative prices for a cash good
and a credit good and do not find monetary distortions in the U.S. data he

examines.

8.1.7. Seasonality

Miron (1987) augment Hansen and Singleton’s (1982) model by including
seasonal taste shifters and argues that the empirical rejection of C-CAPM by
Hansen and Singleton (1982) and others might be attributable to the use of»
seasonally adjusted data. Although this is theoretically possible, English,
Miron, and Wilecox (1989) find that seasonally unadjusted quarterly data
reject asset pricing equations at least as strongly as seasonally adjusted
data. Ogaki (1988) also finds similar gmpirical results for seasonally
unadjusted and adjusted data in the system that involves both asset pricing
equations and intraperiod first order conditions. These studies have used
seasonally unadjusted quarterly data. Ferson and Harvey (1991) construct
seasonally unadjusted monthly data and estimate a C-CAPM with time
nonseparable 'pfeferences. They find that seasonal habit persistence is
empirically relevant. Braun and Evans (1991) estimate a model of
seasonal fluctuations that includes a Christmas taste shift in the

econometric system including an Euler equation for consumption.

8.1.8. State-Nonseparable Preferences
Epstein and Zin (1991) estimate a model with state-nonseparable

preference specification in which the life time utility level Vt at period t
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is defined recursively by

1-a 1-a (1-p)/(1-a)

(8.12) 'Vt = {Ct + :S(E[Vt+1 |It]} ;

where a>0 and p>0. The asset pricing equation for this model is

* e n (] ‘
(8.13) E[s (Rt+1) (Ct.+1/Ct.) Rt,+1] -1

(1-a)/(1-p)
?

for any asset return R , where 8*=5 n=(p-a)/(1-p),

t+1
f=-p(1l-a)/(L-p), and RZ& is the (gross) return of the optimal portfolio
(R:_u is the return from period t to t+l of a security that pays Ct every
period forever). Epstein and Zin use the value-weighted return of shares
traded on the New York Stock Exchange as Rzu' Thus Roll’s (1977) critique
of CAPM is relevant here as Epstein and Zin discusses.

Even though (8.13) holds for Rfﬂ=R;1, the identification assumption
discussed in Section 5 is violated for this choice of Rt+1 because there
exists a trivial solution,(s*,n,0)=(1, 1, 0), for g(Xt,ﬂ)=0. When multiple
returns that include R;_1 are used simultaneously, then the whole system can
satisfy the identification assumption but the GMM estimators for this
partially wunidentified system are likely to have bad small sample
properties. A similar problem arises when Rt+1 does npt include RZﬂ but
include multiple equity returns whose linear combination is close to Riﬂ.

It should be noted that Epstein and Zin avoid these problems by carefully

choosing returns to be included as Ru1 in their system.

8.2. Other Empirical Applications
Hansen and Sargent (1982) develop a method to apply GMM to Hansen and
Sargent's (1980, 1981a) linear rational expectations models, imposing

nonlinear restrictions implied by Wiener-Kolmogorov prediction formulas
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(see, e.g., Hansen and Sargent (1981b) on a VAR representation. West (1989)
extends Hansen and Sargent’'s (1982) formulas to deterministic terme,
Maximum likelihood estimation has been used more frequently for Hansen and
Sargent’'s type linear rational expectations models than GMM (see, e.g,
Sargent (1979, 1981la, 1981b), Eichenbaum (1984), and Finn (1989), Giovannini
and Rotemberg (1989)), though Hansen and Sargent’s (1982) metﬁod can be
applied to these models. West (1987, 1988a) and Eichenbaum (1990) epply GMM
to linear Euler equations in Hansen and Sargent’'s type model. West (1987,
1988a) uses West's (1988b) results when difference stationary variables are
involved.24

Singleton (1988) discusses the use of GMM in estimating real business
cycle models. Christiano and Eichenbaum (1990) develop a method to estimate
real business models, using GMM and apply their method to U.S. data. Braun

(1990), Burnside, Eichenbaum, and Rebelo (1990), Braun and Evans (1991) have

estimated real business cycle models, among others.

9. Further Issues
9.1 Optimal Choice of Instrumental Variables
In the NLIV model discussed in Section 3 of the present paper, there
are infinitely many possible instrumental variables because any variable in
It can be used as an instrument. Hansen (1985) characterizes a greatest
lower bound for the asymptotic covariance matrices of the alternative GMM
estimators, an efficiency bound, and optimal instruments that attain the

bound. Since it can be time consuming to obtain optimal instruments, an

24It should be noted that West (1989b) treats the special case of one
difference stationary regressor with nonzero drift, which is relevant for
his applications cited here. His results do not extend to multiple
regressors (see, e.g, Park and Phillips (1988)).
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econometrician may wish to compute an estimate of the efficiency bound to
assess efficiency losses from using ad hoc instruments. Hansen (1985)
provides a method for calculating this bound and optimal instruments for
models with conditionally homoskedastic disturbance terms with an invertible
MA representation. Hansen, Heaton, and Ogaki (1988) extend this method. to
models with conditionally heteroskedastic disturbances and models with an MA
representation that 1is mnot invertible.25 Hansen and Singleton (1988)
calculate these bounds and optimal instruments for a continuous time

financial economic model.

9.2. GMM and Semi-Parametric Estimation

In many empirical applications, the density of the random variables is
unknown. Chamberlain (1987), Newey (1988), and Hansen (1989) among others
have studied the relationship between GMM estimators and efficient
semi-parametric estimators in this environment. Technically, Hansen (1989)
shows that the GMM efficiency bound coincides with the semi-parametric
efficiency bound for finite ‘parameter maximum likelihood estimators for
dependent processes. Chamberlain (1987) shows similar results for
independently and identically distributed processes.

In order té give an intuitive explanation for the relationship between
GMM and semi-pafametric estimation, let us consider a simple model that is a

special case of the models that Newey (1988) studies:26

5Heaton and Ogaki (1991) provide an algorithm to calculate efficiency
bounds for a continuous time financial economic model based on Hansen,
Heaton, and Ogaki'’'s (1988) method.

26The materials that follows in this subsection was suggested by Adrian
Pagan.
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(9.1) y, =% B, + e,

t

where the disturbance e is a scalar i.i.d. random variable with unknown
symmetric density ¢(et), and X is p-dimensional vector of random variables
that are independently distributed of e . Since e, and x are independent,

the MLE of 8, ﬂT, would maximize the log likelihood
(9.2) L = log ¢(y,-x,’B),

and would solve

(9.3) Y d.(8) =0

if ¢ were known, where d=610g¢(y{d%ﬂ)/aﬂ is the score of B. An efficient
semi-parametric estimator 1is formed by estimating the score by a
non-parametric method and emulating the MLE.

On the other hand, GMM estimators can be formed from moment
restrictions that are implied by the assumption that e, is distributed
symmetrically distributed conditional upoﬁ. X E(xtet)=0, E(xtez)=0, etc.
Noting that the score is of the form xtﬁ(et) for a function £(-), the GMM
estimator with these moment restrictions approximates E(et) with a
polynomial in e, . Because the density of e, is assumed to be symmetric,
E(et) is an odd function of e and thus odd functions are used to
approximate §(et)° Intuitively, with a sufficiently high order polynomial,
the unknown score is approximated well enough that the GMM estimator will be

as efficient as the efficient semi-parametric estimator.

9.3. Small Sample Properties
Unfortunately, there have not been much work done on small sample

properties of GMM estimators. Tauchen (1986) shows that GMM estimators and
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test statistics have reasonable small sample properties for data produced by
simulations for a C-CAPM. Ferson and Foerster (1991) find similar results
for a model of expected returns of assets as long as GMM is iterated for
estimation of 0. Kocherlakota (1990) uses preference parameter values of
5=1.139 and e=13.7 (in the notations used for (8.1) and (8.2) in the present
paper) in ﬁis simulations for a C-CAPM that is similar to Tauchen’s model.
These parameter values are theoretically valid in a model sense that an
equilibrium exists but are much larger than the estimates of these
preference parameters by Hansen and Singleton (1982) and others.
Kocherlakota shows that GMM estimators for these parameters are biased
downward and the chi-square test for the overidentifying restrictions tend
to reject the null too frequently compared with its asymptotic size. Mao
(1990) reports that the chi-square test overrejects for more conventionalA
values of these preference parameters in his Monte Carlo simulations.

Tauchen (1985) investigates small sample properties of Hansen's (1985)
optimal instrumental variables. GMM estimators. He finds optimal estimators
do not perform weli in small samples compared with GMM estimators with ad
hoc instruments. Tauchen (1985) and Kocherlakota (1985) recommend small
number of instruments rather when ad hoc instruments are used.

Nelson and Startz (1990) perform Monte Carlo simulations to investigate
properties of At-ratios and the chi-square test for the overidentifying
restrictions in the context of linear instrumental variables regressions.
Their work is concerned with small sample properties of these statistics
when the instruments are poor (in the sense that it is weakly correlated
with explanatory variables). They find that the chi-square test tends to
reject the null too frequently compared with its asymptotic distribution and

that t-ratios tend to be too large when the instrument is poor. Their
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results for t-ratios may be counterintuitive because one may expect the
consequence of having a poor instrument is a large standard error and a low
t-ratio. Their results may be expected to carry over to NLIV estimation.
Some of the findings by Kocherlakota (1990) and Mao (1990) that are
apparently conflincting with those of Tauchen (1986) may be related to this
problem of poor instruments (see Canova, Finn, and Pagan (1991) for a

related discussion).

10. Concluding Remarks

In this paper, I have explained statistical properties of GMM
estimators and test statistics and important regularity conditions
underlying the GMM based inference that applied researchers should be aware
of. I have discussed estimation methods for @ have in detail, recently
developed statistics for hypothesis testing and specification tests, and
empirical applications. It seems that there is much more room for research
on optimal choice of instrumental variables and small sample properties of

GMM estimators and test statistics.
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