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Abstract

Engle’s ARCH model is extended to permit parametric specifica-
tions for conditional dependence beyond the mean and variance. The
suggestion is to model the conditional density with a small number
of “parameters”, and then model these parameters as functions of the
conditioning information, in the same manner as the conditional vari-
ance is modeled in standard ARCH models. Models of this form will
be important for predictive density estimation, and option pricing.
This method is applied to two data sets. The first application is to
the monthly excess holding yield on U.S. Treasury securities, where
the conditional density used is a student’s t distribution. The shape
parameter (the “degrees of freedom”) is found to be highly sensitive
to the conditioning information, implying that the conditional den-
sity varies between an extremely fat-tailed density and the standard
normal. The second application is to the U.S. dollar/Swiss Franc ex-
change rate, using a new “skewed student t” conditional distribution.
Again, the shape parameters are found to be significantly sensitive to
the conditioning information.

*My thanks go to Adrian Pagan for numerous discussions which stimulated my interest
in this area, and to the National Science Foundation for financial support.
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1 Introduction

A typical econometric problem is to obtain an approximation to the distri-

bution of a variable y;, conditional on another (vector-valued) variable z;.

This includes the dynamic context where z; contains lagged values of y;.
Most applications include estimates of the conditional mean:

pe = E(ye | 21)- | (1)

The conditional mean may be thought of as the leading term in the con-
ditional distribution. Many econometric applications are concerned with
nothing further than the mean. The remaining error

€ =Yt — [t
in these contexts is implicitly modeled as independent of z;.
Many applications include as well estimates of the conditional variance

02 =o%z)=E ((yt —w)? | xt) (2)
which may be thought of as the second term in the conditional distribution.
The conditional variance can be used to define the normalized error

€ Yt — It (3)

Zy = — =

gt Ot

.

The normalized error z; is a random variable whose conditional distribution
is derived from the conditional distribution of y: by the transformations (1)
and (2). In most regression models, however, the conditional distribution of
z; is simply assumed to be independent of the conditioning variable z;. This
is typical, for example, in the « ARCH?” literature which has sprung from the
pioneering work of Engle [2). While a useful simplifying assumption, there
is absolutely no reason to expect the conditional distribution of the derived
variable z; to be independent of the conditioning information. Another way
of saying this is that there is no reason to assume, in general, that the only
features of the conditional distribution which depend upon the conditioning
information are the mean and variance. Indeed, it seems quite reasonable
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that other features of the distribution (such as skewness and kurtosis) will
depend on the conditioning information. Gallant, Hsieh and Taucten [7] have
made a clever argument of this form. They show that if the innovations e; are
generated by the mixture model e; = I} / 2¢, where ¢, is iid and independent
of I,, then the variance of e, conditional on the past history of e; alone, will
not (in general) equal I;, and thus the normalized error z; will generally have
a non-constant conditional distribution.

The reason why most applications have ignored higher-order features of
the conditional distribution may be because only the conditional mean and
variance generate significant excitement. But this lack of excitement does
not imply that higher-order features should be completely ignored. First,
efficient estimation of the equations for the conditional mean and variance
require a complete description of the conditional distribution. Second, the
aim of conditional models is often prediction, and the accuracy of predictive
distributions is critically dependent upon knowledge of the correct condi-
tional distribution for the normalized error. This point has been recently
made in Baillie and Bollerslev [1]. Third, empirical models of asset pricing
are incomplete unless the full conditional model is specified. Full specifica-
tion may be especially important in the context of options pricing, where the
price is determined by not just the conditional mean and variance, but more
complicated functions of the conditional distribution.

While it might be agreed that it is desirable to allow the conditional den-
sity of z; to depend on zy, it is probably not clear at all how to achieve this
goal. One approach, offered by Gallant, Hsieh and Tauchen [7], is to model
the joint density of y; and z; using a series expansion about the Gaussian
density. This is an innovative approach, and has the potential to reveal a
lot of information concerning the underlying distribution without having to
impose a great deal of a prior: information or structure. Their approach
has several drawbacks, however, First, their parameterization is not parsi-
monious, and therefore requires very large data sets in order to achieve a
reasonable degree of precision. Second, the methods are computationally ex-
pensive, and may lay outside the reach of many routine applications. Third,
the techniques may be sensitive to choices of the number of expansion terms.
Theorists haven’t yet completely solved many questions concerning imple-
mentation and the selection of the order of the expansion. As a result, these
techniques will probably remain primarily in the hands of specialists.

This paper suggests an alternative parametric approach to modeling the
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conditional density of the normalized error. The approach may be regarded
as a direct extension of Engle’s idea to model the conditional variance as a -
function of lagged errors. My suggestion is to select a distribution which de-
pends upon a low-dimensional parameter vector, and then let this “parameter
vector” vary as a function of the conditional variables. In the applications
presented in this paper, the student’s t density and a generalization which
allows for skewness are used.

This method is applied to two financial data set. The first is the excess
holding yield on U.S. Treasury securities. The second is the Dollar/Franc
exchange rate. In both applications strong evidence is found for variation in
the conditional distribution beyond the mean and variance.



2 ARCD Model
2.1 Probability Model

The observed sample is (yi,z¢ : t = 1,...,n) which is assumed to be a real-
ization of some jointly stationary process. We do not need to restrict the
variables z, to lie in a finite-dimensional space, so we can allow, for example,
the variable z; to include all of the (observed) past values of y;.

We will restrict attention to distribution functions which have densities
which can be written in the form

F(y ] alze0) = diypm <ylz) 4)

where 6 is a finite-dimensional parameter vector and

a; = az,9)

is a low-dimensional “time varying parameter” which fully describes the in-
fluence of z; upon the conditional distribution. When the dimension of z;
is constant and finite, there is of course no loss in generality in writing the
density function in this form, but when z; is infinite dimensional or has a
dimension which depends on ¢, then this class represents a meaningful re-
striction of the class of potential models. For reasons which will become
apparent, we will denote this class of models by the name “autoregressive
conditional density models” (ARCD).

For the applied model builder the conditional density function f(y|ew)
should be chosen so that it can capture the possible variations in the con-
ditional distribution, subject to the limitations of the data set. In applied
time series, little attention has been given to the shape of conditional densi-
ties. The density function which is almost universally used is the Gaussian
(normal), where o, is merely two-dimensional (representing the mean and
variance). In a smaller number of applications, the density is either the
student’s t distribution or the generalized exponential (each with three pa-
rameters). On occasion, non-parametric density functions are used (for an



interesting recent application, see [4]), which in practice means that the pa-
rameter o; is high dimensional. It is interesting to observe that there are
few intermediate cases in regular use. It is hard to believe that density func-
tions with only two or three parameters can be sufficiently flexible to capture
the wealth of likely distributional behaviors. On the other hand, the typical
nonparametric methods go to the other extreme, employing far more “pa-
rameters” than can be adequately modeled using time-series methods in even
large sample sizes. Flexible parametric density functions are sorely lacking
in applied econometrics. I will return to this issue in the fourth section of
the paper, where I introduce a generalization of the student’s t distribution
which permits skewed densities.

2.2 Normalized Parameterizations

It is particularly convenient for the reporting of applied research to rewrite
the density function in terms of location and scale parameters. I will restrict
attention in this exposition to cases where the location parameter is the
conditional mean, and the scale parameter is the conditional variance, but
the generalizations to cases where the mean or variance does not exist is
straightforward and merely involves changes in notation. The idea is to
parameterize the function f(y|a) so that we have the partition

Q= (#t,UtZ,Ut)

where

pe = p(0,z:) = E(y: | x1) (5)

is the conditional mean,

0% = 0(0,2:) = E((yr — pe)* | z2)- (6)

is the conditional variance, and

ne = 1(0, 1)

contain the remaining parameters of the conditional distribution, which we
will sometimes refer to as “shape” parameters.



The conditional mean and variance allow us to define the normalized
variable

5 _ Y~ ,‘t(gﬁxt)
f(e) - 0(0’$t) . (7)

We will denote the conditional density function for z; by

o(zln) = SoP(s < zln) Q

say. Then densities (4 ) and (8) are of course related as

F(yelier 02, 70) = -j—tg(zttm).

Most ARCH-type applications use probability models of the form (5)-(8),
but with 7; assumed to be time invariant. The ARCD modeling strategy
simply builds on this foundation by allowing the shape parameters of the
density function to be time varying as well.

This formalization is convenient since there is a large literature which
concerns the specification of the mean equation (5) and the variance equa-
tion (6). Parametric models include ARCH, GARCH, E-GARCH, N-ARCH,
A-ARCH, plus ARCH-M versions of each (see Hentshcel [9] for a recent sum-
mary). Non-parametric models for the mean and variance equations have
also been suggested, as in Pagan and Hong [17] and Gourerioux and Monfort

[6].

2.3 Specification of Laws of Motion for Shape Param-
eters

It is necessary to specify laws of motion for the “parameters” a;. Many

strategies are possible, but the one suggested here is to follow the lead of

Engle [2]. Engle’s ARCH model and its generalizations have all made o? a
function of the lagged errors

€ = Y — Ht-

Since this approach has been empirically successful for the conditional vari-
ance, then it seems reasonable to believe that this strategy could also work
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well for other time-varying parameters in 7,. That is, the proposed modeling
strategy will be to specify laws of motion of the form

Nt = n(€-1, €1-2, ..., €1).

As in the ARCH literature, we have to pay attention to boundary con-
straints. The conditional variance, for example, is constrained to be positive.
Thus specifications of the form o2 = a + be;—; are avoided since they can-
not guarantee positivity of the estimated variance sequence. One common
solution (in this context) is to use specifications of the form o? = a + be?_,.
Another solution is to use an appropriate transformation of the variance,
such as lno? = a + be;—1 + ce?_,. Both methods have been used in the ARCH
literature.

This constraint problem will certainly arise in the general ARCD context.
Shape parameters arising from typical density functions often need to lie in
restricted regions of the real line. Without the guidance of a priori theory,
there is no uniformly correct approach, but a practical method which will
“work” is to use a logistic transformation. Suppose that 7, is real valued and
is related to a variable \; as

(U-1)
1 +exp(=A;)
Even if ), is allowed to vary over the entire real line, n; will be constrained

to lie in the region [L,U]. L and U should be chosen to reflect the region of
interest for 7;. Combined with a law of motion for 7, such as

n=L+

A =a+bey+cel

we obtain a relationship 7, = n(e;—1) which is flexible yet constrained to the
region [L, U].

2.4 Estimation and Inference

We can write the conditional log-likelihood function as

n

In L(O | T1,T2, ...,.’L‘n) = 211(6) (9)

t=1
where



/() =In g{(2:(0)|n:(8)) — In (9, ).
The maximum likelihood estimate (MLE) of the model is the value 6 which
maximizes the conditional log-likelihood (9). The optimum may be found
using an appropriate optimization technique.
Under the assumption of correct specification, the likelihood scores

%um=%mammmw—%mdwm

are martingale differences and have variance

V=V, V)= Bo0) 2 10) = ~Egppto)

where 6, denotes the true parameter value. If El,(f) < oo and EZL(0) < o0
uniformly in 6 then the MLE will be consistent. If as well V < oo and
the likelihood is sufficiently well behaved in the neighborhood of 6, then the
MLE will be asymptotically normal as well. While these are not unreasonable
expectations, it is my expectation that a rigorous proof will be quite difficult
to accomplish in this general setting. Lumsdaine (12] established consistency
and asymptotic normality for the Gaussian GARCH(1,1) pseudo-MLE under
the assumption that z is iid with 32 finite moments. Lee and Hansen [11]
achieved a similar result under the weaker condition that z; has a bounded
conditional fourth moment. Lee [10] extended these results to incorporate the
Gaussian GARCH-M model. All of these papers have confined attention to
the case in which the conditional density used for estimation is the standard
normal. Extension of this theory to cover the general context considered
here would be desirable, but beyond the scope of the present study. We will
simply assume that such theorems hold, and proceed conventionally.

Since any particular probability model is unlikely to be the “correct”
model, but should more accurately be viewed as an approximation to the
underlying probability structure, it is reasonable to report “robust” standard
errors, as suggested by White [19], in addition to the more conventional
standard errors. These give asymptotically valid confidence intervals for the
“pseudo-true” parameter values which minimize the information distance
between the true probability measure and the modeler’s likelihood. The
robust standard errors are the square roots of the diagonal elements of the
matrix



where

and

2.5 Parameter Constancy

A parameter constancy test has been introduced by Lee and Hansen [11]
which is particularly easy to implement. The test statistic is a member of
the family of tests introduced by Nyblom [16] and modified by Hansen [8].
The statistic is an approximate LM test of the null that the parameters 0 are
constant against the alternative that the parameters 6 follow a martingale
process. The statistic is based on the cummulative moments

> D
Sy = —1;(9)
‘ =1 69
and takes the form
1S oo
L = - Z Stv St-
n t=1

Under the same regularity conditions which guarantee asymptotic normality
of the pseudo-MLE, the statistic L has an asymptotic distribution which
depends only on the number of parameters in 0. This distribution is tabulated
in [16] and [8]. The statistic L tests the null that the entire vector 8 is stable
against the alternative that the entire vector may be unstable. A statistic
which tests the stability of an individual parameter is given by

Ly =

e

Z Slft/f/kk
t=1



where S is the kth element of S; and Vix is the kth diagonal element of V.
The asyraptotic 1% critical value for the individual statistics is 0.75, and the
asymptotic 5% critical value is 0.47.

2.6 Non-Parametric Density Comparisons

A interesting yet informal diagnostic can be obtained by comparing the den-
sity function for the errors implied by the model with that calculated using
a non-parametric kernel technique. Discrepancies can suggest useful mod-
ifications to the model specification. Such a procedure is outlined in this
subsection.

The parametric assumption is that the density function for z; = z,(0) is
given by g(zn:) where n: = n(6o, z,). Although 6o is unknown, the function
is estimated by g(z|7.) where 7; = n(0,z;). When (6o, 1) doesn’t depend
on y, this gives a fixed density function which we can plot. In the general
case in which 7, varies with zv, this is not possible, since 2; has a density
whose shape varies across different values of z;. Insight is gained, however,
by noting that although the conditional density of z; is a function of z, the
unconditional density of z; is a simple function which can be plotted. It is
given by

g(z) = Eng(zIn)

where E, takes expectations over 7. g(z) is a miztures distribution, where
the mixing is over the shape parameters 7.

The fact that g(z) can be represented as an expectation suggests that it
is naturally estimated by the empirical expectation

3(2) = Euglel) = = 3 o(<1i)

where Eﬂ is the probability measure which puts a mass of 1/n at each value
of 4, (that is, the empirical distribution of the estimates values of 7;). Since
the #; are calculable from 6 and g(z|n) is a known function, §(z) is easily
calculable. This gives the estimate of the density of z; which is implied by
the model.

The density g(z) may be a good approximation to the actual uncondi-
tional density of the standardized errors 21, but it need not be. The model will
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restrict the class of permissible density shapes. For example, a conditional
student’s t distribution will restrict g(z) to be unimodal and symmetric, but
these basic features need not be valid descriptions of the underlying errors.

An estimator of the unconditional density which is not dependent on the
model structure is given by a nonparametric kernel estimator applied to the
standardized residuals z;. The Rosenblatt-Parzen estimator, for example, is
given by

. 1 &, (2i—2

(2) = nhgﬁ ( T )
where A is the bandwidth which controls the amount of local smoothing, and
K(-) is a kernel function.

The adequacy of the parametric model can be informally assessed by
plotting the parametric estimate §(z) with the nonparametric estimate g(z).
Discrepancies can help lead to reformulated models with better fit. Unfor-
tunately, formal comparisons are quite difficult. In general, the asymptotic
distribution of the empirical probability measures involved depend on the fact
that there are estimated parameters. Thus while analogs to the Kolmogorov-
Smirnov class of statistics can be calculated, there is no easily accessible large
sample theory to provide guidance concerning critical values.
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3 A Conditional Student Model for the Term
Structure

3.1 Basic Structure

This section describes a study concerning the short-run term structure of
interest rates. The data, monthly observations on returns to U.S. Treasury
securities for the period December 1946 to February 1987, come from Ap-
pendix II, Table A-1 of McCulloch [13]. His returns series were calculated
from the prices of whole securities, and were adjusted for changes in tax leg-
islation. Figure 1 plots the one-month yield rate R; and the instantaneous
yield rate ry.
From his tables, the excess holding yield, y; was calculated as

(1+ R.)?
1+ 71

and the interest differential, 7;, was calculated as

Yt = - (1 + Tt)a

it = Rt — Tt.

These two series are displayed in Figure 2.

In our earlier notation, z; = (yt-l,yt_g,...;it,it_l,...), since we are in-
terested in obtained the distribution of the excess holding yield, conditional
on the current interest differential and lagged values of these two series. As
discussed in [5] and [17], the interest differential plays an important role in
empirical models of the excess holding yield, even though the expectations
hypothesis implies otherwise.

3.2 Specification of the Conditional Mean

The main thrust of this exercise is not on the conditional mean or variance,
but is to demonstrate that allowing for higher-order dependence yields signif-
icant gains. Yet the specification of the mean and variance equations cannot
be taken lightly, for it is clear that errors in their specification may result in
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spurious higher-order findings. At the same time, it is important (from both
computational and precision viewpoints) not to heavily over-parameterize
the model. The approach adapted in this application is to model the equa-
tions sequentially, using the vehicle of the Gaussian likelihood to select the
equations for the mean and variance. This will enable us to feasibly estimate
and compare a large number of models.

The use of a misspecified Gaussian likelihood has been justified by the
asymptotic theory of Lee and Hansen [11] (for the GARCH(1,1) model) and
Lee [10] (for the GARCH-M model). These papers showed that so long as
the mean and variance equations properly describe the conditional mean
and variance, the Gaussian pseudo-likelihood parameter estimates will be
consistent and asymptotically normally distributed. Their work, unlike the
earlier theoretical literature, did not require the standardized error z; to be
an independent sequence, thus allowing for a general ARCD model to be
generating the data.

Table 1 reports the Gaussian maximum likelihood estimates of a fairly
general specification of the conditional mean, with a fairly simple specifica-
tion of the conditional variance. In all of the tables, the maximum likelihood
estimates, the conventional standard errors, and the White robust standard
errors are reported. The Nyblom L statistics for each parameter are re-
ported. In the variance equation, the variance is reported as a linear function
of 02, and e?_; — of_;. This was done so that the coefficient on the former
can be interpreted as a measure of persistence in the variance, as it is unity
in the “IGARCH” model.

In Table 1, a large number of the individual coefficients appear insignif-
icantly different from zero. A more parsimonious model was selected by
successfully eliminating the variable with the smallest t-statistic, until the
model reported in Table 2 was obtained. The only exceptions to the smallest
t-statistic rule were that the intercept was always maintained, and the con-
ditional standard deviation was retained until the final step. The latter was
done since the possibility of a significant “«GARCH-M” effect has long been
believed to be important for the excess holding yield on Treasury securities.
The model of Table 2 has eight fewer parameters than the model of Table
1, with an increase in the log-likelihood of only 3.04, which is far from a
statistically significant difference.

It is interesting to compare these results with an alternative, simpler
specification reported in Table 3. The major difference is that only the
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Variables Estimate | St. Error | Robust SE | Nyblom L;
Mean Equation

intercept 0.02 0.03 0.03 0.05
o 0.09 0.11 0.11 0.07
it 1.17 0.15 0.17 0.17
i2 -0.78 0.23 0.23 0.04
i1-1 0.25 0.14 0.16 0.03
12, 0.14 0.19 0.18 0.03
T4—9 0.24 0.14 0.16 0.10
2, -0.12 0.15 0.12 0.36
i1_3 0.12 0.14 0.16 0.05
2 4 0.26 0.11 0.12 0.03
Vi1 0.03 0.09 0.10 0.12
yZ, 0.10 0.05 0.04 0.08
14Y1-1 0.25 0.16 0.17 0.04
14-1Y1-1 -0.35 0.18 0.16 0.04
14—2Y1-1 0.02 0.17 0.12 0.07
14-3Yt—1 -0.19 0.17 0.15 0.05
Variance Equation

intercept -0.00001 | 0.0008 0.0010 0.09
e, — o, 0.21 0.06 0.10 0.12
i2 0.07 0.03 0.03 0.26
o4 1.01 0.02 0.04 0.04
Log L 323.7

Nyblom L 4.12

Table 1: Excess Holding Yield: Unrestricted Gaussian Model
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Variables Estimate | St. Error | Robust SE | Nyblom L
Mean Equation

intercept 0.04 0.23 0.25 0.04
iy 1.24 0.12 0.13 0.13
72 -0.51 0.14 0.13 0.10
i1-1 0.35 0.12 0.12 0.08
T2 0.19 0.09 0.10 0.11
2 4 0.30 0.09 0.09 0.03
v, 0.12 0.09 0.03 0.12
11-1Yi—1 -0.29 0.03 0.10 0.07
Variance Equation

intercept -0.0001 0.0007 0.0009 0.10
e, —ol, 0.22 0.06 0.10 0.14
12 0.07 0.03 0.03 0.30
ok, 1.01 0.03 0.04 0.04
Log L 326.7

Nyblom L 2.46

Table 2: Excess Holding Yield: Restricted Gaussian Model
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Variables Estimate | St. Error | Robust SE | Nyblom L
Mean Equation

intercept 0.02 0.04 0.06 0.10
oy 0.32 0.11 0.16 0.06
1y 0.99 0.13 0.17 0.70
Yi-1 0.10 0.06 0.07 0.42
Variance Equation

intercept 0.0004 0.0013 0.0017 0.20
€2, —o? 0.21 0.04 0.07 0.09
i? 0.16 0.07 0.10 0.34
o, 0.97 0.03 0.05 0.08
Log L 342.9

Nyblom L 3.57

Table 3: Excess Holding Yield: Naive Gaussian Model

current value of the interest differential is included in the conditional mean
equation. In this specification, the conditional standard deviation appears
to be statistically significant in the mean equation, as is commonly found
in this literature. Note that the likelihood ratio statistic for this restricted
model is 38.4, which is statistically significant at the 1% level. This restricted
model also fails the Nyblom-Hansen parameter stability test. The L statistic
of 3.6 exceeds the 1% null critical value of 2.6. The individual stability tests
suggest that the coefficient on i; is not stable. Note that these problems
do not arise for the general models of Tables 1 and 2, where extra lags of
the interest differential are included. An important lesson here is that the
stability tests are useful diagnostics. If the model of Table 3 were estimated
first, the large stability test statistics would alert a careful researcher that
further study of the dynamic specification is needed.

Another interesting contrast between the models of Table 3 and Tables
1 and 2 is the difference between the conventional standard errors and the
robust standard errors. In Tables 1 and 2 the two estimates are nearly the
same, but in Table 3 the estimates are quite different. This is also informal
evidence against the specification (this informal comparison could be made
rigorous using a White information matrix test).

For the rest of the analysis, we will use the specification for the conditional
mean and variance as given in Table 2. The specification of the conditional
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variance was also examined. Additional lags of the €?_; and i} were also
included, but were not statistically significant and so the model was not
augmented. It appears that the model reflected in Table 2 provides a good
specification for the conditional mean and variance. We now turn to modeling
other features of the conditional distribution.

3.3 Student T Likelihood

The fit of the Gaussian model can be informally assessed by comparing a
nonparametric estimate of the density of the standardized residuals z; with
the standard normal density. These are displayed in figure 3. The kernel
estimate reveals a more peaked and fat-tailed density than the standard
normal. As a first approximation, it appears that a student’s t distribution
might make a better fit.

A student’s t density function normalized to have unit variance is given

by

F(g_—%l) 52 —(n+1)/2 L0
el = e —ore (”(T—z_)) o<z <o (10)

where 2 < 7 < 00. As  — 0o, this density approaches the standard normal;
in fact, the match is quite good for n above 30. The “degrees of freedom” 7 is
constrained to exceed two, as we have normalized z to have a finite variance.
As n — 2, the density becomes increasing peaked, and is ill-behaved in the
neighborhood of 2.

We start with a conventional student’s t model with a constant degrees
of freedom parameter. The MLE for this model are given in Table 4. The
parameter estimates and standard errors for the conditional mean and vari-
ance are not dramatically different than those from the Gaussian MLE. The
degrees of freedom parameter is estimated to be 5.7, which implies a fairly
fat tail. The fit of the model is a dramatic improvement over the Gaussian,
with the log-likelihood changing by 11.1.

To assess the fit of the model, we display in Figure 4 the non-parametric
and parametric estimates of the density normalized residuals. Here the para-
metric estimate is simply a student’s t density with 5.7 degrees of freedom.
The fit appears to be much better than for the Gaussian pseudo-likelihood.
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Variables Estimate | St. Error | Robust SE Nyblom L;
Mean Equation

intercept 0.04 0.02 0.02 0.05
it 1.17 0.13 0.16 0.32
32 -0.45 0.15 0.16 0.03
T4-1 0.35 0.10 0.10 0.05
i1-2 0.19 0.09 0.10 0.24
2 4 0.28 0.09 0.11 0.02
v, 0.11 0.04 0.03 0.05
it—lyt—l -0.29 0.12 0.11 0.04
Variance Equation

intercept -0.00008 | 0.00090 0.0010 0.13
e?_, — o} 0.20 0.07 0.10 0.10
i2 0.11 0.05 0.07 0.31 -
ok, 0.99 0.03 0.04 0.06
Degrees of Freedom | 5.7 1.56 1.60 .16
Log L 315.6

Nyblom L 3.16

Table 4: Excess Holding Yield: Student’s t Model
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It is hard to know if the remaining differences are due to random error or
not.

3.4 Conditional Student Likelihood

As discussed in the introduction, there is no reason to believe that the only
time-varying features of the conditional distribution are the mean and vari-
ance. We now allow for the shape of the conditional density to be time-
varying through the degrees of freedom parameter, using a specification of
the form presented in section 2.3.

A logistic function was used to bound the time-varying conditional de-
grees of freedom parameter to lie between a lower and an upper bound, which
were chosen to be 2.1 and 30, respectively. The upper bound was selected
simply because the student’s t distribution is virtually indistinguishable from
the standard normal for any value of n above 30. The lower bound is per-
haps more critical. The normalized student’s t density is not defined for
n = 2, so needs to be bounded away from 2. Some visual experimentation
suggested that setting L = 2.1 wasn’t too extreme a choice, and the numer-
ical operations didn’t appear to find this choice offensive. The function was
completed by making the logistically transformed 7; a quadratic function of
the information set. The complete specification is

279  1+exp(—A)

M= Ao+ Mg + dgel i+ Aati + Mgt + Aserqis (11)

This function is quite flexible and will allow for a wide range of relationships.

To optimize the global likelihood, 1 found that it was easiest to first use the
normalized residuals from the previously estimated model, and fit equation
(11) alone. This provided a good set of starting values for the complete
likelihood.

The estimates are reported in Table 5. Most of the coefficient estimates
of the mean and variance equations are quite similar to those of Table 4, and
most of the standard errors are smaller. The change in the log-likelihood
(from the student t model) is 6.4, yielding a likelihood ratio statistic of 12.8
which has a p-value of 2.5% using a chi-square distribution with five degrees
of freedom. While we cannot be certain of the validity of the asymptotic
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Variables Estimate | St. Error | Robust SE | Nyblom L
Mean Equation

intercept 0.02 0.02 0.02 0.05
1t 1.14 0.11 0.14 0.30
i2 -0.34 0.08 0.07 0.03
11-1 0.42 0.10 0.09 0.07
i4—2 0.16 0.09 0.10 0.27
124 0.28 0.09 0.11 0.02
y2 4 0.12 0.03 0.02 0.06
14-1Yt-1 -0.35 0.10 0.10 0.03
Variance Equation

intercept 0.00003 0.00112 0.001142 0.14
e? 0.23 0.08 0.12 0.13
i? 0.09 0.05 0.05 0.25
ol 1.03 0.04 0.05 0.05
Degrees of Freedom

intercept -2.44 0.55 0.60 0.08
€1-1 -0.23 0.66 0.48 0.23
e, -0.05 0.37 0.23 0.07
iy 3.33 1.97 1.94 0.14
i2 3.27 2.59 2.64 0.04
et-1%t -4.14 2.44 2.39 0.03
Log L 309.2

Nyblom L 3.81

Table 5: Excess Holding Yield: Conditional Student’s t Model
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approximation, it seems reasonable to believe that this provides evidence
against the assumption that the conditional distribution of the normalized
errors is independent of the conditioning information. This particular model
(the conditional student t) may not be the “truth”, but it does appear to give
a statistically significant increase in fit, and therefore a better description of
the time series process for excess holding yields.

To assess the fit of the model we can examine the densities of the resid-
uals and their normalized counterparts. The non-parametric estimates were
obtain by kernel estimation as before. To obtain parametric estimates, we
now have to average over the realized values of Ay = (¢, 6) as discussed in
section 2.6. The estimates are displayed in Figure 5. They appear neither
better nor worse than those obtained from the student t pseudo-likelihood
estimates.

Parameter estimates from tables often do not give a good feel between
conditioning variables and the objects of interest, and this is certainly true
concerning the estimated relationship for the degrees of freedom, so 1 have
displayed the non-linear relationship in a 3-D graph in Figure 6. The vertical
axis gives the estimated degrees of freedom, and the other axes the interest
differential and lagged residual. It is easy to see a strong quadratic effect in
the interest differential (so the degrees of freedom is small for ¢; near zero,
and a more mild quadratic effect in e;-1.

Figure 7 displays the estimated degrees of freedom parameter over the
sample period. Note that most of the estimates are close to 5, with some
visits down to the lower boundary of 2.1 (implying a very fat tailed distri-
bution) and some up towards, and even hitting, the upper boundary of 30
(implying a near-Gaussian distribution). Unfortunately, the “degrees of free-
dom” parameterization disguises some information, since the shape of the
density is much more sensitive to changes in n when 7 is small than when
it is large. The plot of Figure 7 emphasizes the large movements between
10 and 30, which are probably less significant than the movements between
9 and 3. To alleviate this deficiency, we plot in Figure 8 the inverse of the
degrees of freedom, 1 /n:- In this picture, the lower boundary, 0, represents a
Gaussian density, and the upper boundary, 1/2, represents the limit of the
fattailed densities. Another method to assess the behavior of the estimated
process for the degrees of freedom parameter is to estimate its unconditional
density. This is shown in Figure 9. This shows clearly that n; 1s typically
close to the modal value, 3.
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Variables Estimate | St. Error | Robust SE | Nyblom L
Variance Equation

intercept 0.033 0.0025 0.030 0.34

e?_, — o} 0.15 0.04 0.05 0.23

o}, 1.01 0.02 0.02 0.40
Degrees of Freedom | 8.2 2.8 2.5 1.79

Log L 1142.6

Nyblom L 2.3

Table 6: Exchange Rate: Student T Model

4 A Skewed Student’s T Model for the Ex-
change Rate

One commonly analyzed series in the ARCH literature is the monthly dol-
lar/Swiss Franc exchange rate. Engle and Bollerslev [3] studied this series,
and suggested a GARCH(1,1) specification with a student’s t density. Max-
imum likelihood estimates for this specification are given in Table 6. Figure
10 displays the nonparametric and parametric estimates of the density of
the standardized residuals. While this model survives a number of standard
specification tests (such as tests for omitted variables) the degrees of freedom
parameter decisively fails the Nyblom constancy test. The test statistic 1.79
is over twice the 1% critical value. This indicates that the model specification
is not adequate.

As a first pass, we try a conditional student’s t model, making the lo-
gistically transformed student’s t parameter (bounded between 2.1 and 30)
a linear function of e;—; and e2_;. These results are given in Table 7. The
p-value for the increase in the likelihood is 10%, which cannot be taken as
strong evidence for the augmented model, and the Nyblom stability test
statistic still rejects the specification.

The student’s t family is a fairly restrictive parametric family, only al-
lowing for variation in the location, scale, and tail thickness of the density.
To allow for a richer set of behaviors, we may need a more flexible family of
probability densities. What would be desirable, 1 believe, is to use a density
function which allows for skewness, but specializes to a shape similar to the
student’s t. In order to keep in the ARCH tradition, it is also important
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Variables Estimate | St. Error | Robust SE | Nyblom Ly
Variance Equation

intercept 0.031 0.025 0.031 0.29
e?_, — o} 0.17 0.05 0.06 0.20
ol 1.01 0.02 0.02 0.35
Degrees of Freedom ,

intercept -1.07 0.73 0.79 1.59
€1-1 -0.38 0.24 0.19 0.22
e, -0.08 0.07 0.06 0.33
Log L 1140.36

Nyblom L 2.44

Table 7: Exchange Rate: Conditional Student T Model

to have density functions which can be easily parameterized so that the in-
novations are mean zero and unit variance. Otherwise, it will be difficult
to identify which fluctuations are in the mean and variance, and which are
fluctuations in the shape of the conditional density.
For the following study, | have use the following density function, which
is a simple generalization of the student’s t density, and allows for skewness.
~(n+1)/2
be (1 -+ -77—1_—2 (%’—;‘L—;\“—)Z et , z< —alb,
flz]nA)= A —(r41)/2
bc(l—}-;i—z-(%zﬁ’)) , z2>—alb,

where 2 < < 00, and —1 <A <1 The constants a, b,and ¢ are given by

a =4 ("*2>, (13)

b2 =1+ e\ —d’, (14)

(12)

and

£ ()

- 2 i 15
Jr-or () 19

In the appendix, we show that this is a proper density function with a mean
of zero and a unit variance.
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Variables Estimate | St. Error | Robust SE | Nyblom L
Variance Equation

intercept 0.032 0.0024 0.029 0.40

el ,—o? 0.15 0.04 0.05 0.25

ot 4 1.00 0.02 0.02 0.43
Degrees of Freedom | 8.1 2.7 2.5 1.60

Skew Parameter -0.09 0.05 0.05 1.42

Log L 1141.2

Nyblom L 3.1

Table 8: Exchange Rate: Skewed Student T Model

Inspection of the density function reveals that the density is continuous,
and has a single mode at —a/b, which is of opposite sign with the parameter
X. Thus if A > 0, the mode of the density is to the left of zero and the variable
is skewed to the right, and vice-versa when A < 0. Figure 11 displays plots
of the density for a few parameterizations. '

Two estimated models are reported using the skewed student’s t density
function. The model estimated in Table 8 does not make the two shape
parameters (7 and ) time-varying, and the model estimated in Table 9
allows both to be functions of e;—;. As before, 7 is bounded between 2.1
and 30. ), is bounded between -.9 and .9, using the logistic function. Both
logistically transformed variables are specified as quadratic functions of e;_.

The estimates in Table 8 for the variance equation and the degrees of
freedom are essentially the same as before. The skewness parameter is neg-
ative, implying a density which is skewed to the left. The parametric and
nonparametric estimates of the density function for z; are very similar to
those of figure 10, so our omitted.

To assess statistical significance, it is interesting to compare the four likeli-
hoods of Tables 6-9. Simply allowing for 7; to be time-varying (Table 7) or the
density to be skewed (Table 8) only produces a marginally significant change
in the likelihood. But allowing for both effects simultaneously (Table 9) pro-
duces a LR test statistic (against the student’s t model of Table 6) of 13.5
which has a p-value of 2% using a chi-square distribution with five degrees of
freedom. This again provides strong evidence that parametrically-specified
time-varying conditional densities are statistically important as descriptions
of the time series properties of financial data.
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Variables Estimate | St. Error | Robust SE | Nyblom L;
Variance Equation

intercept 0.037 0.029 0.037 0.33
e?_, —o? 0.20 0.06 0.10 0.18
o, 1.03 0.03 0.04 0.41
Degrees of Freedom

Intercept -1.10 0.73 0.91 1.06
€11 -0.54 0.21 0.20 0.23
e?_, -0.08 0.05 0.05 0.34
Skew Parameter

Intercept -0.06 0.14 0.14 0.95
€1-1 -0.13 0.09 0.09 0.21
ez, -0.10 0.05 0.07 0.07
Log L 1135.9

Nyblom L 3.22

Table 9: Exchange Rate: Conditionally Skewed Student T Model

Figure 12 displays the time series %1, and figure 13 displays i !, From
the latter it is clear that n is primarily hovering around 10, with occasional
excursions into the more fat-tailed region. Figure 14 displays an estimate
of the density for 7;. Figure 15 displays the estimates A:. The sequence is
typically near zero, with the density becoming conditionally skewed after
large squared innovations. Figure 16 displays a nonparametric estimate of
the density of the process A;.

Unfortunately, the Nyblom stability test statistics for both the condi-
tional degrees of freedom and skewness equations indicate misspecification.
Attempts to rectify this problem by adding extra lags of ;1 to the equations
had no effect (the parameter estimates were very small and insignificant). It
is also possible that these test statistics are revealing a nonstationary feature
of the conditional distribution, which cannot be easily incorporated in an
ARCH-type framework. This calls for further research.
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5 Conclusion

This paper has generalized Engle’s ARCH model to let shape parameters
beyond the variance depend upon conditioning information. This is achieved
simply by using a low-dimensional parametric family for the conditional den-
sity, and letting each parameter be a parametric function of the data. Two
particular examples of this approach, using a conditional student t distribu-
tion and a new conditional skewed student t distribution, are developed and
used to model the one-month excess holding yield on U.S. Treasury securities,
and montly dollar/Franc exchange rate, respectively. The shape parameters
of the conditional densities are found to be statistcally significant at the 5%
level.
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A Appendix

In this appendix we show that density (12) is a proper density with a mean
of zero and unit variance. It will be convenient, however, to first analyze a
random variable Z with density

2\ —(n+1)/2
bc(1+-,31—5(1—5) .y <0,
gy In,A) = 2\ —(n+1)/2 (16)
bc<1+¢5(fh)> , y >0,

where the constants b and c are given in (14) and (15). Let f(z | n) denote
the student’s t density normalized to have a unit variance, as in (10), which
equals g(z | 7,0). By the transformation z = y/(1 = )) we see

/Ooog(y |, Mdy = (1 - f\)/_Ooof(w | n)dz = l%—A-

and by the transformation z = y/(1 + A) we find

* o 14\
/ g(yln,k)dy=(1+,\)/ fz | n)de = ——.
Thus .
i 1-X 142
dy=—>4+—"=
/_oog(yln,k) y=—5-+—5—=1

and g(- | ,A) is a proper density.
Using the same set of transformations we find

/_Owyg(yln,x)dy - (1—A)2/_°wc(1+ n””;) dz = —c(1 = \)? (Z:?)

and

/oooyg(y‘"”\)di‘/=(1+/\)2/0wc(l+ m22) do = c(1+2Y (’7_“_%)

U/ n—1
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Thus

EY:/_iyg(yln,,\)dym(Z_f) [(1+A)2—(1—A)2] =4/\c<z:§) =a

(a is defined in equation (13)).
We also find that

[ vty n Ny = (1= [ iz nda= : —zA)B

where the final inequality uses the fact that the density f(z | 7) is symmetric
and has a variance of unity. Similarly,

(1+/\)3.

o0 2 _
/Oyg(y\n,/\)dy— 5

Thus

_ 3 3
EY’2=(1 2)‘) +(1';)‘) =1+3)\2=1)2+0,2

by definitions (13) and (14).
Now consider the random variable given by the transformation

Y —a
-

Its density is given by (12), which shows that this is a proper density. We
can easily see that

Z =

=EY—-a=a—a=0V

EZ . 7

and

EY?—2aEY +ad* _ a? + b? — 2a% + @? _1

b2 - b2 -0
which establishes that the density (12) has a mean of zero and unit variance,
as desired.

EZ* =
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