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Information Aggregation and Strategic Trading in Speculative
Markets

Abstract

This paper examines the process by which private information is impounded
in security prices in a market where some traders are consistently better in-
formed about short-run asset values. We analyze equilibria where traders can
adopt general non-cooperative strategies, and characterize the ‘best’ attain-
able equilibrium. Trading strategies in this equilibrium are nonlinear functions
of information signals and exhibit history-dependence. In contrast to previous
papers, competition among informed traders need not lead to rapid revela-
tion of private information. Although the volatility of fundamental prices is
constant, transaction prices may exhibit time-varying volatility. Finally, in
contrast to linear models, the degree to which prices impound private infor-
mation depends on the signal itself.






1 Introduction

A fundamental question in financial economics concerns the process by which traders’ pri-
vate information is impounded in security prices. The literature on rational expectations
emphasizes the static aspect of the problem, namely how less informed agents infer the
nature of private information from public signals in a single transaction.! This paper is
a contribution to the recent literature which focuses on the dynamic process by which
traders with private information exploit their informational advantage.

An influential paper by Kyle (1985) develops an intertemporal model of a monopolist
insider who trades sequentially in a market against traders without private information.
Kyle’s major result is that the insider trades slowly, so that prices gradually reflect private
information. More recently, papers by Foster and Vishwanathan (1991) and Holden and
Subrahmanyam (1992) have generalized Kyle’s (1985) model to incorporate competition
among multiple insiders with long-lived private information.

The results of Foster and Vishwanathan (1991) and Holden and Subrahmanyam (1992)
provide a sharp contrast to Kyle (1985); in the unique linear equilibrium, competition
among even a few insiders leads to aggressive trading and causes private information
to be rapidly incorporated into the security’s price. As a group, the insiders would be
better off if they could restrict their trades to collectively trade the monopolist volume.
However, restricted trading is not incentive compatible because traders could increase
their own expected profits, at others’ expense, by trading larger volumes. In equilibrium,
the volume of informed trading is much larger than the volume traded by a single trader,
and the insiders’ private information is rapidly impounded into prices.

The above results have important implications for public policy; they suggest that
prices in securities markets closely approximate the idealized notion of strong-form ef-
ficiency when multiple insiders are present. Indeed, recent empirical evidence indicates

that episodes of insider trading are generally associated with multiple insiders. For ex-

!See, for example, Grossman (1976), Grossman and Stiglitz (1980), Hellwig (1980), Diamond and
Verrecchia (1981), and Admati (1985) for competitive static models and Kyle (1989) and Laffont and
Maskin (1990) for imperfectly competitive static models.



ample, Meulbroek (1991) examines data on illegal insider trading obtained from the SEC
and finds that an episode of insider trading typically involves multiple informed traders.
Similarly, a study of insider trading in Anheuser-Busch stock by Cornell and Sirri (1992)
found that these episodes involved multiple insiders.

The models of Foster and Vishwanathan (1991) and Holden and Subrahmanyam (1992)
are ideally suited to the analysis of sporadic episodes of corporate insider trading based on
private information concerning a specific future event. Many security markets, however,
are characterized by the continued presence of traders or dealers who repeatedly obtain
valuable short-lived private information regarding current asset values. For example,
large money-center banks play an important role in making markets in foreign exchange,
and by virtue of their predominance in trading and knowledge of customer orders, often
possess informational advantages over smaller traders.? Similarly, large primary dealers
play an important role in the secondary market for U.S. treasury bonds, and may also
possess an informational advantage over smaller traders. In such markets, it is likely
that trading behavior is influenced by past trades. The equilibrium strategies of traders
in such markets may be very different from those of insiders with event-specific, private
information.

This paper analyzes a market where imperfectly competitive traders who repeatedly
receive short-lived private information signals can adopt very general, non-cooperative,
trading strategies, including strategies that are nonlinear or that depend on past trades.?
In this model, the intuition of Foster and Vishwanathan (1991) and Holden and Sub-
rahmanyam (1992), namely that competition among informed traders leads to faster im-
pounding of private information, still holds if we restrict our attention to linear history-
independent strategies. However, in contrast to the previous literature, we demonstrate
that traders with private information can support a non-cooperative equilibrium which

is arbitrarily ‘close’ to the solution of Kyle (1985) for a wide range of plausible discount

?See, e.g., Lyons (1992) who provides a formal model of the foreign exchange market. Lyons notes
that for each of the major currencies, four or five brokers dominate trading.

3While our model is one of short-term information, our results generalize to the case of long-lived
information. '



rates. This equilibrium is a natural object of attention in the sense that traders’ strategies
yield expected profits which are strictly greater than in all other equilibria, including the
unique linear equilibrium. The presence of multiple informed traders need not lead to the
rapid dissipation of private information.

The intuition for our result is straightforward. The continued presence of other in-
formed traders creates incentives for each trader to restrict trading because ‘large’ orders
may result in all traders trading more aggressively in the future, thereby lowering expected
discounted profits. Each informed trader faces a trade-off between the desire for future
profits and the immediate gains from a large trade, much as in repeated-game models
of cartel behavior among firms. However, the trading game we consider is a dynamic
game, not a repeated game, because the value of private information (measured by the
discrepancy between the expectation of the asset’s value given public information and
the expectation given private information) is stochastic. Thus, restricted trading is not
feasible for all information signals. If there is a large difference between the expected
value of the security given public information and the actual value of the security, traders
will trade aggressively; if prior beliefs are relatively accurate, slower trading strategies are
sustainable. Paradoxically, more ‘valuable’ private information leads to more aggressive
trading and greater revelation of private information. By contrast, in the linear equi-
librium of Foster and Vishwanathan (1991) and Holden and Subrahmanyam (1992), the
fraction of private information revealed in price is a constant irrespective of the magnitude
of the information signal.

The nonlinear nature of the strategies considered here lead to complex price behav-
ior. We demonstrate conditions where price volatility is serially correlated even though
the volatility of fundamental prices is constant over time. This occurs even though price
changes are serially uncorrelated. Periods of high price volatility, associated with re-
stricted informed trading, alternate with periods of low price volatility, associated with
more aggressive and competitive informed trading. These stochastic changes in price

volatility are endogenous and are unrelated to the volatility of the underlying asset, which



is a constant in our model. These results provide a justification for the use of General-
ized Autoregressive Conditional Heteroskedasticity (GARCH) models for high frequency
transaction data. For example, a recent study by Baillie and Bollerslev (1990) finds strong
evidence of short-lived volatility patterns in foreign exchange markets using a GARCH
model. They note that this evidence is consistent with more aggressive trading by in-
formed traders at certain points in the day, as is the case here.*

We extend the model to consider the case where the informed traders trade more
than one security. This extension is of interest because a trader’s private information
may be of relevance for several, closely related, assets. For examplé, large bond dealers
typically trade bonds with different coupons, maturities, and risks, and foreign exchange
dealers usually trade in several currencies. We show that our results are strengthened when
traders trade in multiple assets. Intuitively, traders engage in a form of cross—subsidizaﬁion
across markets that enables them to sustain restricted trading in all markets.

The rest of the paper proceeds as follows: In Section 2 we establish the theoretical
framework and describe the Markov equilibrium. In Section 3 we consider the case where
informed traders can use general trading strategies. Section 5 contains a discussion of
these results and their implications for empirical analysis. In Section 4 we discuss the
effect of trading in multiple assets. Finally, Section 6 summarizes the paper. Proofs are

contained in the appendix.

2 The Trading Model

2.1 The Structure of Trading

A risky security is traded in a series of sequential auctions taking place at dates ¢ =
1,2,...,. After trading in auction ¢ is complete, the security pays a dividend, denoted by
d¢. A group of traders, referred to as informed traders, observe the dividend to be realized
at the end of the trading period before trading takes place. The dividend d, is observed

by all other traders just after trading in auction ¢ is complete. There are N > 1 informed

*This is also consistent with the trade concentration hypothesis of Admati and Pfleiderer (1988).



traders, indexed by i« = 1,..., N. Let ¢; represent the order quantity of informed trader s
in auction ¢ with the convention that ¢ > 0 denotes a trader purchase and ¢ < 0 a trader
sale. Informed traders are assumed to be risk-neutral.

In addition to informed traders, the market also contains other agents, referred to as
uninformed traders, who have no private information. There are two types of uninformed
traders in our model. The first group, whom we refer to as liquidity or noise traders,
trade for exogenous, liquidity-motivated reasons. Let z, denote the aggregate noise trade
in auction ¢, where z > 0 (z < 0) denotes net purchase (sale) as before. We assume that
z; is serially uncorrelated and is symmetrically distributed with zero mean and variance
o2. The second group of uninformed traders is a competitive fringe of speculative traders
or market makers. These traders act as providers of liquidity, by absorbing the net order
flow of informed and noise traders at competitive prices.

Let v; be the expected present value of dividends given information about the im-
pending dividend payment d;,. We assume for simplicity that E[d,|d:] = d,, i.e., that
dividends follow a random walk with zero drift. Then, it follows that v, = d;/(1 — 3),
where 3 is the common discount factor of all traders. Under our assumption for the div-
idend process, the change in fundamental values, denoted by 7, = v, — v,_1, is a random
variable with mean 0 and variance denoted by oZ. It is worth noting for the future that
7: has an interpretation as a measure of the imprecision in public information in period
¢, because the best public estimate of v, prior to trading is v;—;. Thus, if 5, is large in
absolute value, prior public beliefs are inaccurate in period ¢.

The trading protocol follows Kyle (1985). Denote by p; the security’s price in auction ¢.
As discussed above, this price is determined in an auction market by competitive market
makers who absorb the net order flow at that time. The price in market ¢ is determined by
the net order flow in that market, 3°; ¢;; + z,, as well as the market makers’ expectation of
the present value of dividends, given their information prior to trading, v,_;. We assume
that the price function has a linear structure: p; = vi_; + A [ ¢it + 2], A > 0. Note that

the best estimate of v; given public information at time ¢ is v,_, because n; has mean zero.



A net buy (sell) imbalance indicates, to competitive market makers (or equivalently, to a
fringe of speculators or liquidity providers) that the security is underpriced (overpriced)
relative to prior beliefs, i.e., that n; > 0 (5, < 0), leading them to raise (lower) the price
from their expected valuation of the security.

The price set by rational competitive market makers or speculators takes the form
Pt = vi_y + Ene| 3 ¢it + 74). We restrict market makers to a linear price adjustment rule
for analytical simplicity. However, as we show in detail below, a linear price adjustment
rule provides the correct conditional expectation of value in a Kyle-market if market
makers believe there is a single informed trader. We show that such a rule is “almost-
optimal” in our model in the sense that E[v,] = v;—y + A[L; ¢ie + ©.] + €. where € is
arbitrarily small for reasonable choices of discount rates.

After trading in the #*! auction is complete, the dividend, d;, is paid, informed traders
observe the value of d;;, market makers update their price quotation schedule, and the
trading process in period ¢ + 1 begins afresh. In period ¢, trader ¢, whose share inventory
is I has expected cash flows of dy([;t + ¢it) — F[p:git]. Inventory adjusts according to the
‘transition rule I; ;41 = I;; + gir. There are no short sale restrictions or capital constraints,

so I;; can be negative.

2.2 Trading Strategies and Inventory

A strategy for an informed trader is a decision rule to select the order quantity g;; as a
function of the past trades, past dividends, inventory levels, and the current expected
value of the security, v;. The trader is risk neutral and chooses a trading strategy to
maximize the discounted sum of trading profits, given the current state. The triplet
(¢, vy, It) constitutes the state variable in our problem; the state variable summarizes the
relevant information required to describe the future evolution of the system. Omitting
the subscript 7, the discounted expected payoffs, for any strategy, can be written as
di(It + q:) — Elpeqe] + BE[V (041, Vi1, Le41; ¢¢)], where the last term is the expected payoff

from future trades. Note that the expected payoff from future trades may depend on the



current trade, i.e., the trading strategy may be history-dependent.

A vector of strategies forms a Nash equilibrium in the first auction if each player’s
strategy maximizes expected discounted profits conditional upon the strategies of all other
players being correctly conjectured. The vector of strategies is subgame perfect if the
continuation strategies, given any history of trades and dividends, 1s a Nash equilibrium
at every auction. A subgame perfect equilibrium is a Markov Perfect Equilibrium if the
decision rules are Markov, i.e, if ¢, depends only on the current state (7, v, I;), and not
on past trades.

Conditioning on three possible state variables would greatly complicate the analysis.
Intuition suggests that the actual levels of asset value v, and current inventory I, affect
the value of a particular strategy, but not the equilibrium choices made by the trader. It
is the change in asset value implied by the dividend innovation, rather than the actual
level of the dividend, that is relevant in selecting the order quantity. Similarly, with
unlimited short-sales, share inventory should have no affect on the optimal choice of
order quantity. The following lemma formalizes this intuition. More precisely, Lemma 1
establishes that the set of trading strategies that constitute subgame perfect equilibria in
time ¢ do not depend on the trader’s inventory level or the current value of the asset; the
only relevant state variable is the value innovation n,. Of course, the expected discounted

wealth corresponding to the equilibrium strategies depends additively on the value of

share inventory.

Lemma 1 If a particular trading strategy vector constitutes an equilibrium for the state

(nt,ve, It) in period t, then it is an equilibrium strategy vector for the state (n:, v}, I}).

Lemma 1 allows us to ignore the current level of inventory and the asset value in our

subsequent analyses.

2.3 Markov Perfect Equilibria

We begin our analysis of trading by describing the familiar linear equilibrium with Markov

trading strategies that has been the focus of the recent literature. In this equilibrium,



trader ¢ trades a fixed proportion of the innovation in the asset’s fundamental value, 7;.

Proposition 1 In auction t, there exists a Markov equilibrium where the optimal trading

strategies of informed traders are linear functions of the price deviation:

]
ai(ne) = <me (1)
where:
N
On = m (2)

The equilibrium characterized by Proposition 1 can be shown to be the unique linear
Markov equilibrium. The linear equilibrium forms an important benchmark for our later
analyses, and hereafter we will refer to it as the Markov Perfect Equilibrium (MPE). The
price function p; = vi_1 + Ay (Eﬁ_l Git + :L't) underlying this equilibrium can be shown to
be consistent with rational expectations by market makers. If Ay = Ni:]\% (g—;’—), and the
distributions of z and n are normal, the price is the expected value of the asset. Note
that Oy is the combined trading intensity with /N traders, and is an increasing function
of N. |

A well-known property of the MPE is that the fraction of private information aggre-
gated in prices is a constant which depends only on the number of traders, N.* This
result holds independently of the choice of A. The fraction of private information revealed
in prices increases rapidly with the number of traders. In the Kyle (1985) model, where
N =1, the fraction of private information reflected in prices through trading is 50%; by
contrast, when N = 4, this fraction rises to 80%.

In the MPE, expected profits are maximized when there is only one informed trader.

Competition lowers profits because informed agents reveal a larger fraction of their private

information by trading more aggressively. Traders could collectively earn higher profits

®The measure of information aggregation is the variance of the asset’s value conditional upon order
flow divided by the unconditional variance of the asset’s value.



by restricting their trades, but no single trader will find it optimal to trade less because
the benefits are largely external.
We now consider alternative equilibria based on non-Markov strategies that may sup-

port more complex trading behavior.
3 Dynamic Strategies

In the Markov equilibrium strategies examined in the previous section, informed traders
systematically ignore any information other than the current innovation 7, in determining
the size of their transactions. This assumption is reasonable if the model is interpreted
as describing a one-time episode of insider trading, but may not be so reasonable for a
market where a group of dealers or traders repeatedly trade with one another. In such
a situation, it is natural to examine strategies (non-cooperative, of course) where traders
restrict their trades to keep profits high. This behavior could be supported by the threat
to trade more aggressively upon a perceived departure from the proposed strategy. We
refer to such strategies as non-Markov strategies.

For the moment, we assume that any deviations from the equiliBrium strategy in
auction t are observable at the time of trade in auction ¢ + 1. In other words, we assume
full disclosure ez post of trading information.® For some market structures, e.g., the
primary market for U.S. treasury bonds, this assumption is reasonable. For some markets,

however, er post trade information is hard to obtain. We treat this more difficult case in

Section 3.3.

3.1 The Optimal Non-Cooperative Equilibrium

As described above, it is quite natural to expand the class of admissible equilibria to
allow history-dependent, possibly nonlinear, trading strategies. An immediate problem,
of course, is that there may be many such equilibria and we are faced with the task of

selecting an economically reasonable one. In this paper, we focus attention on that sub-

SIf current trades were observable, our conclusions would be strengthened.



game perfect equilibrium whose trading strategies produce the highest expected profits to
the privately informed traders among all possible equilibria. We refer to the perfect equi-
librium corresponding to these optimal trading strategies as the Optimal Non-Cooperative
Equilibrium (ONCE)."

In general, it is very difficult to characterize the optimal non-cooperative trading
strategies in all but the simplest games because they can theoretically be very compli-
cated functions of past trades and states.® Fortunately, we are able to obtain a complete
description of the optimal equilibrium for this model. The optimal strategies are intuitive
and take a relatively simple form. If the absolute value of the innovation 7 is below a
critical level, say 7,, informed traders collectively trade the monopoly volume. If the ab-
solute innovation is above the critical amount, informed traders trade a quantity strictly
between the monopoly volume and the volume under the Markov equilibrium. Moreover,
the larger is |5], the closer is the ONCE trading volume to the Markov trading volume.
Any departure from this strategy by any trader results in all traders switching to the
equilibrium strategies associated with the lowest expected discounted profits. It is this
threat of switching to the “worst” possible equilibrium that supports restricted trading

close to the monopoly level of Kyle (1985) if the value innovation is sufficiently small.

Formally:

Proposition 2 The ONCE trading strategy is fully described by a constant n; < oo and

a strictly increasing function 6* (on R, ) such that

(n0) { Q]\]f"]t el < m
Gi\m) = .
O—UNﬂuﬂt el > m

where 0; < 0*(-) < Oy.

"This equilibrium is sometimes referred to as the “second-best” equilibrium; the first-best or Pareto
optimal allocation may not be attainable as an equilibrium if agents act non-cooperatively. The optimal
non-cooperative equilibrium is a natural object of attention for two reasons: (1) Some evolutionary models
show that agents learn to achieve the best incentive-compatible outcomes, (2) Institutions may emerge
to exploit arbitrage opportunities if the equilibrium is not optimal.

3There are very few papers containing an explicit characterization of the ONCE. See, however, Rotem-
berg and Saloner (1986) and Abreu (1988).
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Upon deviation from this trading rule, traders switch to the equilibrium strategies as-

sociated with the lowest ezpected discounted profits.®

The optimal strategy is both nonlinear and history-dependent, but the underlying
economics 1s intuitive. An important paper by Abreu (1988) demonstrates that any
equilibrium strategy in a multi-period game can be described in two parts: (1) a normal
trading rule which informed traders follow provided no trader has deviated in the past,
and (2) a fallback rule which is followed if some trader has not traded according to the
normal trading rule in the past. A Markov equiiibrium is characterized by the property
that the normal and fallback trading rules are identical, i.e., it ignores trading history.
On the other hand, an equilibrium trading strategy which does condition on past trades
distinguishes between these rules. The optimal strategy turns out to have exactly this
form.

The “normal” trading strategy is depicted in figure 1. The intuition for Proposition
2 is straightforward. An informed trader will deviate from a proposed trading rule of
% n only if the immediate increase in expected profits, denoted by D(8,7), exceeds the
future expected loss from the change in other traders’ strategies. The key point is that
although the expected future loss is independent of the current innovation n, the increase
in current expected profits, D(#,7), is not. Indeed, D(6,n) is in fact increasing in 6 as
well as [n]. As a result, if the innovation is sufficiently large, the benefits from deviating
from the monopoly intensity 6; outweigh the costs in terms of lower future profits. Thus,
unlike a repeated game, the monopoly volume cannot be supported independent of the
state variable 1, as demonstrated by the proposition.

The worst equilibrium trading strategy can also be derived analytically. It has prop-
erties which are the exact opposite of the ONCE strategy. For small value innovations,
trading is so aggressive that expected profits are negative, whereas for larger innovations,
trading resembles the MPE. The trades for small value innovations are sustainable because

there are fewer profitable deviations when [n;| is small. Overall, this strategy yields the

°If the future is completely discounted, i.e., 8 = 0, then the only possible equilibrium is the Markov
equilibrium. Hence, for “small” 3, n; is zero.
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lowest expected discounted profits, and are strictly less than the MPE payoffs. Formally,
the trading strategy is: trade fn, when |n;| < 12, (Where the optimal deviation against 6
yields zero profit) and trade §(n,)n, when |n;| > 1, (where the function 4(.) is decreasing
inmn and § > é(nt) > On). Moreover, when |n;| > 7, the punishment phase lasts exactly
one period, whereas for small |f|, it continues with an expected continuation value in
between the payoffs to the best and worst equilibria. Since the derivation and intuition
are similar to that of the ONCE, we do not develop these arguments in detail here.
Similar trade-offs also arise in Rotemberg and Saloner (1986), who examine price wars
in oligopolies with Bertrand competition and constant marginal costs. They examine a

game consisting of a series of static models rather than a dynamic game as we do here.

3.2 An Example

To better understand the nature of Proposition 2, we analyze a trading strategy that
approximates the optimal strategy: if || < 77 then each informed trader trades 6,/N, so
that collectively the traders trade at the single-trader level. If, however, |n;| > 7, then
traders switch to the linear MPE strategy, and each trader trades d5/N. Further, upon
any deviation from this strategy in the previous auction, all traders switch to the Markov
strategy forever. We refer to such a trading strategy as a trigger trading strategy.'® This
strategy is a special limiting case of the ONCE strategy.

We first establish the existence of equilibrium with trigger strategies, and then use our

results to further explore the nature of the ONCE strategies. .

Proposition 3 Every trigger trading strategy is an equilibrium trading strategy provided
the discount factor 8 is bounded below by B(7j), where B(7j) < 1 is a constant. If equi-
librium exists, then the switch point 7] is strictly less than the switch point n; under the
ONCE strategy. Further, erpected profits with trigger strategies are strictly larger than
the expected profits in the Markov Perfect Equilibrium.

1%There is an extensive literature on the nature of trigger strategies in repeated games, but the known
results on trigger strategies have limited applicability here because ours is not a repeated game.

12



Proposition 3 demonstrates the existence of a trigger strategy equilibrium provided traders
are sufficiently patient. This equilibrium closely resembles, but does not necessarily co-
incide with, the optimal equilibrium and yields higher expected profits than the MPE.
The expected profits to the traders increase with the switch point 7 because the traders
collectively obtain monopoly profits in more states of the world. However, it is easy to
show that as the switch point 7 increases, the lower bound on the discount factor 3 rises,
so that restricted trading is not possible in all states of the world.

Proposition 3 also implies that the critical value innovation at which trading intensities
increase above the monopolist level is at least as large in the optimal equilibrium, i.e.,
m = 7. This means that under the ONCE strategies, the Kyle (1985) equilibrium at
least as often as under the trigger strategy. This result provides a way to assess how often
trading behavior is as described by the single-period Kyle equilibrium for various discount
rates.

Consider the following numerical example based on the strategy above where each
trader trades 6, /N for pricing errors || < #j and 6y /N otherwise. Suppose that a, = 0.1,
N =7, and the critical bound for 7 is ten standard deviations from the mean, i.e.,
N = 100,. Suppose that 5 is distributed normally with mean zero. Hence, the probability
of an error sufficiently large to trigger a switch from the monopolist trading intensity is
essentially zero. In this unlikely event, trader’s adopt the MPE trading strategy. It is
straightforward to show numerically that the Kyle (1985) trading strategy is sustainable
if traders have discount rates under 0.4427%. This discount rate is very reasonable if
the trading horizon is a day or less; if the time between auctions is interpreted as a day,
the corresponding annualized rate is over 400%. The upper bound increases rapidly as
7 declines. For example, when 7 = 30, (which implies that approximately 99.74% of
the time trading resembles the Kyle single-trader equilibrium) the corresponding upper
bound on the discount rate applicable to the time between auctions is 4.78%.

This argument shows that for plausible discount rates, irrespective of the values of

market depth (i.e., A) and the level of noise trading, (as measured by o?), the single

13



trader equilibrium can be sustained for virtually all n values. Our numerical estimates
are also relativély insensitive to the choice of NV and o,,. As the number of traders falls, the
critical upper bound on the discount rate increases, showing that less patience is required
to maintain the slow trading equilibrium. When N = 4, the critical discount rate is
0.6838%, corresponding to a discount factor of 0.9932. The strategy is more natural than
the linear strategy in the sense that expected profits are strictly greater than under the
linear MPE strategy. These profits arise from the fact that less information is aggregated
in prices by less aggressive trading. In the example, the fraction of private information
revealed in prices is 50%, as opposed to 88% under the linear MPE.

Finally, the example provides a rationale for our assumption that the market maker’s
price quotation function is linear as in the Kyle equilibrium. In the Kyle model, the
conditional expectation of the asset’s value is a linear function of order flow for an ap-
propriately chosen value of A. Hence, market makers price linearly if they believe that
multiple informed traders act as a monopolist insider. At low discount rates, this conjec-

ture is essentially correct.

3.3 Equilibrium Without Trade Disclosure

7

We now relax our assumption that there is complete ez post trade disclosure. To focus
attention on the effect of trading information, we consider a case where there is no trade
reporting, even after execution. As trading is ez post anonymous, informed traders are
unable to detect departures from the proposed (normal) trading strategy with certainty.
For technical reasons, we assume, however, that there is an exogenous chance, possibly
extremely remote, that the trade will be revealed to other traders. Formally, with prob-
ability € > 0 traders obtain trading information about the previous round of trade. We
do not consider the case of € = 0, i.e., the case in which informed traders are completely
unable to detect deviation. An equivalent assumption (one for which the intuition is
identical) is that trade sizes are a discrete rather than continuous variable (with ¢ = 0).

If traders have been unable to detect deviation, they have to rely on observed prices to

14



form a “guess” about the likelihood of a departure from the proposed (normal) strategy.
Motivated by the characterization of the ONCE and the trigger strategy, we consider the
following trading strategies: if no deviation was detected and prices in the last auction
were “normal,” trade & 7 if |n| < 7 and trade % 7 if |p| > 7. On the other hand, if the
price movement at the last auction was “abnormal,” trade %{}L n and trade according to
this rule (regardless of n) for the next T auctions. Finally, if a deviation was detected,
trade % in all subsequent auctions. A price in the last auction is defined to be “normal”
if |pe-1 — E(pi_1|trigger)| < p. So, such a strategy is completely specified by the three
parameters (7, p,7T"). The following proposition demonstrates conditions under which a

trigger strategy equilibrium of this type exists:

Proposition 4 Forany >0, p > 0, T < oo, there is §* < 1, such that there ezists an

equilibrium with trigger strategies (7, p, T*) for all B > 5*.

The proposition shows that the basic intuition of the model carries through to the more
complicated case where trades are not reported, even ez post. Proposition 4 states that
there exist trigger strategy equilibria provided the discount factors are bounded below by
some critical number. These strategies can support an equilibrium closer to the highest
profit monopolist solution of Kyle (1985). Thus, in contrast to the Holden-Subrahmanyam
model, competition among informed traders need not lead to almost complete revelation
of private information. The diﬁerence.in results arises only because of the nature of the

admissible trading strategies.
4 Multiple Securities

Large traders generally trade more than one security. For example, bond dealers trade
a variety of bonds differentiated by their coupon rates, maturities, issuer, and risk. The
same factors (e.g., size or research capabilities) that give a trader an information advantage
in one security may confer information advantages in related assets. In this section we

investigate the optimal pattern of insider trading when informed traders meet in more

than one security’s market.
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Consider two securities, whose respective valuations, vi¢ and vs;, evolve according
to a random walk; v;y = vj;—1 + 7, where (n1¢,72:) are distributed with a correlation
coefficient p. A group of N informed traders has information on 7;; prior to trading in
the t-th auction. As before, v; becomes common knowledge after the t-th trading round
and pjs = vji—1 + A {}:,- qft + :Z'i], where q{t and :Ei are the insider and liquidity trades in
the j-th market. Note that for simplicity we take the depth parameter A to be the same
in both markets.

The principal result of this section demonstrates that informed traders “pool” their
trades by trading at an identical intensity in both markets. This implies that the combined
expected discounted profits from both markets is higher if traders’ strategies consider them
jointly than if they are viewed as independent. Intuitively, suppose traders consider the
two markets separately and, without loss of generality, |71| > |72|. Proposition 2 implies
that informed traders trade more aggressively in the first market (i.e., 8; > 6,), sacrificing
potential profits. This is unavoidable because a deviation from the monopoly trading
level is profitable in the first market but not in the second. Note that expected future
losses from deviating from the restricted (monopoly) trading level, A, are identical in
both markets.

Now suppose traders consider both markets in their decision making. This introduces
a ‘“cross-subsidy” possibility given that the potential future losses are those arising in
the two markets combined. Intuitively, traders can revert to treating the two markets
independently in the future, so that the combined future losses are at least 2A. If traders
trade more aggressively in the unprofitable market (increase 8;), the profits to deviating
in this market fall. Hence, this trade can be sustained by the threat of losing, say, A — e,
where € > 0. Correspondingly, the traders can trade less aggressively in the profitable
market (decrease ;) because the threatened loss is now A +¢. Note that marginal profits
are higher in market 1, and hence decreased trading in that market is (potentially) more
profitable than the losses incurred from increased trading in market 2.

Proposition 5 makes precise our intuition and shows that the cross-subsidization con-
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tinues until §; = 6,. This argument is formalized in the following result:

Proposition 5 In the ONCE, informed traders trade the monopoly volumes in both mar-
kets provided 13 + n? is less than some critical level, say 77. Above this level, the volume
traded is in between the monopoly and Markov volumes. Furthermore, the trading inten-
sty 1s always the same in the two markets and this is true for all ny,n,. Finally, this

common trade intensity, say 6*, depends only on n? + n3 and increases in n? + n3.

Corollary 1 Suppose the correlation coefficent p < 1. Then, for all n1,n2, V(n1,1m2) >
Vilm) + Vi(n2), where Vi(n;) is the ONCE profits in market i, when the markets are
separate, and V is the ONCE profit with the markets viewed jointly.

The intuition for our result is similar to that of Bernheim and Whinston (1990), who
examine strategic interaction between firms in multiple product markets. However, our
results differ for theirs in that they did not characterize the ONCE strategy (i.e., they
established Corollary 1 but no analog of Proposition 3).

5 Empirical Implications

In this section, we examine asset price dynamics under the optimal strategies and their
implications for empirical analyses of security returns. We focus primarily on the condi-
tional expectation, variance, and autocorrelations of observed returns, and the relation
between these moments and trading volume, but also discuss the informativeness of prices.

We first examine whether prices are unconditionally unbiased predictors of the as-
set’s value. Let u; = v; — p; denote the pricing error in period ¢. At time ¢t — 1, both
p: and v, are random variables, and the pricing error is also random. However, after
trading in period ¢, an econometrician who observes transaction prices, dividends, and
quotations can infer the realized pricing error. For this reason, u; is a natural object
of attention. It is straightforward to show that the expected pricing error is zero, i.e.,
that F,_;[u¢] = 0, irrespective of the previous trading history. To see this, note that

Et—l[vt - pt] = Et..l{vt - Vte1 — /\(G(nt)nt + .TCt)] = 0, because Et—l{nt(l - /\G(nt))] =0
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as 0(-) is a symmetric function for all £.!! When trading information is available fol-
lowing market clearing, the equilibrium in this case is arbitrarily close to the one-period
Kyle (1985) single-trader equilibrium for reasonable discount rates. Thus, the equilibrium
shares the same properties. In particular, if A is appropriately chosen, the price is the
conditional expectation of the asset’s value in virtually all states.

It is also interesting to examine the statistical properties of changes in transaction
prices because price quotations may be unobservable to an econometrician. Unlike the
pricing error, however, transaction-to-transaction returns need not have a conditional
expectation of zero because of the public observes the latest dividend after trading. To
see this, let R, = p, — p;_; represent the price change or total return in period ¢, and
denote by ®, the public information set immediately after trading at time ¢.!? Further,
let Qr = X_; ¢it represent the aggregate volume of informed trading. Then, E[R41|p:] =
Elne + MQi41 — Q1) + Mzegr — 24)|®4] = n — MQ: + z¢) = u,. Thus, the expected price
change in period t 4 1 is the realized pricing error in period ¢, i.e., u;. If this error were
unobservable, the expected return would be zero, but because dividends are paid after
trading, the pricing error, and hence the expected return is (almost surely) non-zero.

The results above also imply that price changes also exhibit serial correlation. To see
this, note that Cov[R,s, Ri41|®:] = E[(Riy2— E[Rer2])(Rev1 — E[Rea]|®d] = EA(Qegr +
Zeg1)(Ter1 + MQraz = Qerr) + M@eg2 — 2041) | ®4] = AE[Qeq17:41(1 — A0(mu41))] — A202. The
expectation E[Q:+17:41(1 — A0(n:41))] > 0, because Q41 and 7,41 always have the same
sign. Thus; the serial correlation in returns may be positive or negative depending on the
magnitude of the noise trading, measured by 2.

This result appears puzzling since successive changes in fundamental value are inde-
pendent (i.e., Cov[viry —viyq, Vg1 — 0| 4] = Eney1m:] = 0). However, there is an intuitive
explanation for our findings. Consider the case where the volatility in noise trading is

high, and suppose that the order flow originating from noise traders in period ¢ + 1 is

!!'Note that the functional form of § itself changes stochastically, but this does not alter our argument.

12Formally, the information set is the o-algebra generated by the history of trading and dividends,
including v; and p;.
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positive. A net buy imbalance would tend to induce a positive change in price. Fur-
ther, conditional on a positive realization of a noise trade, the expected pricing error,
Ut41, in period ¢ + 1 is negative. Formally, Elui|z: > 0] = Elvy — vimy — AMQ¢ + )] =
Eln(1 = A(n))|zy > 0] 4+ AE[z4}x¢ > 0] = AE[z|zs > 0] > 0, where we have used the fact
that the informed traders’ strategies are independent of the realization of the noise trade.
However, our previous results show that the expected price change from period ¢t + 1 to
t + 2 is the realized pricing error in period ¢ + 1, which is, on average negative. As the
volatility of noise trading increases further, successive price changes exhibit increasingly
negative serial correlation. Thus, noise trades induce pricing errors that are subsequently
reversed; these reversals give rise to negative serial correlation if the magnitude of noise
trading is large.

Next, consider the volatility of prices. It is useful to establish a reference point,
which we take as the volatility of fundamental prices. In our model, this benchmark is
represented by o2, i.e., the variance of v; — v;_;, which is a constant. We now examine the
volatility of transaction prices, beginning with the case where trades are observed ez post.
In this case, the conditional variance of returns is given by o[Ru41|®:] = A (E[QF, ] +02).
As E[Q?,,] = E[(6(n441)nt+1)?] is independent of past trades and innovations, because no
trader will depart from the proposed ONCE trading rule if deviations are observed. Hence,
the volatility of returns is a constant independent of previous volumes or price movements.
The variance of prices is an increasing function of the variance in fundamental prices, the
trading intensities of informed traders, and the volatility of noise trades.

A related question concerns the informativeness of prices, i.e., what fraction of private
information is impounded in prices. The pricing error, u;, in any period may be large
simply because of a large value innovation. A more direct measure of informativeness
is provided by the ratio of the pricing error to the innovation in fundamental values,
Y = us/ne = (1 — A0(n;)). This measure lies strictly between 0 and 1; if ¢, = 0, prices
reflect all private information, and if ¥; = 1, no private information is impounded in price.

In the single-period Kyle model, ; = 0.5, i.e., half the private information is reflected in
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prices.

In our model, however, this is not the case. Paradoxically, more ‘valuable’ private
information leads to more aggressive trading and greater revelation of private informa-
tion. To see this, suppose that if |n,| is large, informed trading volume, measured by
0(n:)Ins| is also large, since 6(-) is an increasing function of |7|, and consequently realized
trading volume is also high. Recall that the pricing error is u, = 7:(1 — A\(7;)). Large
shocks naturally give rise to higher pricing errors and larger volumes, but in this case,
the fraction of the innovation impounded in price, measured by ¥, = , is smaller. In
other words, although higher volumes are associated with larger price movements (as has
been extensively documented in the empirical literature), the informativeness of prices is
greater when volume is high. By contrast, in the linear MPE, the trading intensity 6 is a
constant, so that price informativeness is also constant.

When traders cannot observe previous volumes ez post, their strategies are history-
dependent, and it need not be the case that price volatility is constant. Indeed, we
show below that the volatility of the pricing error is stochastic and serially correlated.
When trades are unobservable traders restrict their trading intensities (i.e., by trading
0(n) < Oy) until a perceived departure from the predicted price change, upon which
traders increase their trading intensities. The possibility of switches in trading intensities
suggests that the variance of the pricing error is not a constant, but depends systematically
on previous prices and volumes. Under the restricted trading regime, both volume and
price variability are low. However, upon a switch to a higher trading intensity regime,
triggered by an abnormal price movement, we observe larger trading volumes and greater
price variability for the following T periods, as shown above. Because informed traders
cannot observe deviations, they condition on observed price changes. In order to obtain a

" we need to characterize the

representation of the factors triggering these “regime shifts,’
conditions under which restricted trading breaks down.
If the market is in equilibrium, deviations occur only by accident, i.e., if large im-

balances give the appearance of abnormal trading by one of the informed traders. The
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switch in trading intensities is, in equilibrium, triggered when the abnormal price move-
ment caused by a large noise trade exceeds a critical level. Formally, the probability of a
switch from the restricted trading regime in period t is k = Prob [|p; — E[p;] trigger |] =
Prob [A|z,| > p] = Prob[|z;] > A'p]. A regime shift is thus characterized by abnor-
mally large volume, since it is triggered by a high |z,|. Our previous results show that
this abnormal volume is associated with higher volatility and larger pricing errors. If
the price movement in period ¢ is large, the expected price movement in the next period
is also large. Thus, the expected absolute pricing error (or volatility) in period ¢ + 1 is
positively related to the realized volatility in period ¢, even though the successive pricing
errors are serially uncorrelated. Similarly, aggregate trading volume tend to be serially
correlated, with periods of high volume following sharp price movements, as documented
in the empirical literature.

This result provides an economic justification for the use of Generalized Autoregessive
Conditional Heteroskedasticity (GARCH) models for high frequency transaction data.
Such models are often preferred over standard regression techniques in modelling asset
prices and foreign exchange where there time-varying volatility. Our model also provides
some new hypotheses for such empirically motivated investigations. In our model, a switch
in.trading intensities is associated with abnormally large price movements and volume,

suggesting that the process is better modeled conditioning jointly on both volume and

prices.

6 Conclusions

We examine the process by which traders’ private information is impounded in security
prices, modeling trading as a dynamic game between strategic agents with private in-
formation. Papers by Foster and Vishwanathan (1991) and Holden and Subrahmanyam
(1992) suggest that, unlike Kyle (1985), prices in securities markets should approximate
the idealized notion of strong-form efficiency when there is competition among informed

traders. This conclusion is particularly important from the viewpoint of public policy
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since recent empirical evidence indicates that most episodes of insider trading are as-
sociated with multiple informed traders, but is based on the assumption that traders’
strategies are not conditional functions of past prices and trades.

In a market where some traders consistently receive private information signals, how-
ever, it seems reasonable to consider trading strategies that do not ignore potentially
valuable information about past prices and trades. Further, there is no reason, per se to
restrict attention to linear equilibria. We examine general non-cooperative trading strate-
gies, including strategies that are nonlinear or that depend on past trades. In contrast to
the previous literature, we demonstrate that traders with private information can support
a non-cooperative equilibrium which is arbitrarily ‘close’ to the solution of Kyle (1985)
for very reasonable discount rates. This equilibrium is natural in the sense that traders’
strategies yield expected profits which are strictly greater than in all other equilibria, in-
cluding the unique linear equilibrium. This suggests that the presence of multiple traders
is not a guarantee of highly efficient markets.

The strategies in the optimal equilibrium are surprisingly intuitive. For ‘small’ value
innovations (i.e., where the deviation between public and private information is small),
the informed traders total trading quantity is the quantity traded by the Kyle (1985)
monopolist insider. For larger innovations, restricted trading is not sustainable, and trad-
ing intensity increases. If the innovation is very large, the equilibrium quantities closely
resemble the Nash equilibrium quantities of Foster and Vishwanathan (1991) and Holden
and Subrahmanyam (1992). Paradoxically, more ‘valuable’ private information leads to
more aggressive trading and greater revelation of private information. By contrast, in
the linear equilibrium, the fraction of private information revealed in price is a constant
irrespective of the magnitude of the information signal.

The nonlinear nature of the strategies considered here lead to complex price behav-
ior. We demonstrate conditions where price volatility is serially correlated even though
the volatility of fundamental prices is constant over time. This occurs even though price

changes are serially uncorrelated. Periods of high price volatility and high volume follow
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periods of low price volatility and lower volume. The shift to a high volume and high
volatility regime is generally triggered by an abnormal price movement. These stochastic
changes in price volatility are endogenous and are unrelated to the volatility of the un- .
derlying asset, which is a constant in our model. These results provide a justification for
the use of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models

for high frequency transaction data.
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Appendix

Proof of Lemma 1:

We first provide a formal description of a result that allows us to focus on equilibrium

strategies that are only a function of the value innovations {7:}. Let B(7n,v:, ;) be the set of
equilibrium payoffs.

Then, the equilibrium payoff correspondence B(m,vt,I:) can be decomposed as follows:
B(ne,ve, It) = W(ne) + {vedi} (A.1)

where the correspondence W(n:) is the set of equilibrium payoffs that depend on 7, alone,
characterized as:

W(n) = {u € RN : there exists w/(-) € W(-),j = 1,2,6(-), such that

<1 - /\9(77t)) ﬂ(]%glmz + 5/w3(77t+1)dF(77t+1)

N -1 g’ d .
<1 - /\( ~ )9(77t) - Aﬁﬂt) 'A777t2 + ﬁ/w?(m+1)dF(m+1),Vz,9’.}

To verify this claim, first note that an adaptation of the seif-generation argument of Abreu,
Pearce, and Stachetti (1990) for repeated games to our model shows that the equilibrium payoff
set satisfies the following Bellman-like equation:*

B(ve,me, It) = {u e RV . Eh/j(-) € B(-), i=12,¢i, t=1,...N s.t. (A.2)
u = —Elpg]+ (1 -8l + @) + BEV (verr, me1, I + @)
> —Elpgl] + (1 - B)v(Le + qf) + BEVi (vegr,mes1, Lt + 41 qu,i} .

We now show, by employing the Bellman equation (A.2), that the equilibrium payoff set
B(v¢,me, It) actually has the separable structure claimed above. We do this by the following
(standard) recursive argument: we assume a continuation value set with the separable structure
and prove that this structure is maintained in an iteration. So, suppose that B(v:,n,1[t) =
Wo(n:) + {v¢l:} and define the Bellman operator:

T [Wo(ne) + {veli}]

I

Uq

v

{u e RN 1w () e Wo(+),J = 1,2, 8 sit. (A.3)

Uq

0 7
E ["(vt—-l + An: + /\ﬂrt)'ﬁ n+(1-0) <It + N 77t> v (A4)

+5/wi1(')dF+ﬂvt+1 (It+ %Ut)]

N -1 ¢’
N 977t+/\7\/-‘77t+/\$t)

!

N’?t

v

E [— (Ut—l + A (A.5)

+(1-0) (It + %m> vt +ﬁ/w2(-)dp

0’ .
+ Bvi (It + I Wt)] , Vi, 9/}

*Note that our game is, formally speaking, a Markovian or dynamic game; Dutta and Sundaram

(1992) show that the arguments of Abreu, Pearce, and Stachetti (1990) continue to hold for this more
general class of games.
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where the i-th trader’s trade ¢; has been rewritten as %m. Note that (A.5) simply says

that this trade is incentive-compatible if there is no alternative trade %’nt which yields the
trader higher lifetime profits when the continuation values for the two trades are, respectively,

E[f w}(-)dF + vy (It + —]%—nt)] and E[f w?(-)dF + vy <It + %nt)]. Recall that by our as-
sumption, E(v;41|v;) = v and E(z;) = 0. Hence the incentive constraint says: § is incentive-
compatible if

8 7] 0
—(ve-1 + /\oﬂt)]—\; n+ (1= 05) (It + v ﬂt) v + BEw} + B (It + i 77t> v 2 (A.6)

N -1 6’ 6 , 6’ 9 6’
— | V-1 + A v 0"7t+/\‘]\777t ]—\,'ﬂt+(1—ﬂ) It+]—v:77t v+ BEw; + 8 (1 + i \Ut~
Upon collecting terms, substituting v; — v;—; = 7; and rearranging, the incentive constraint turns
out to be

0 N -1 &N ¢
1-20)—n? «1>(—— —_— —/\—>~—2 Ew? . A7
Note that the incentive constraint is independent of v; and I;. Furthermore, the Bellman

equation (A.3) has now become:

T[Wo(m) + {'UtIt}} {u e RN : ij(-y) € Wo(-), 7=1,2,andf s.t. (A.8)

N-1 o'\ ¢ .
(1 —/\_N—G_ATV—) 7\7"‘2 + vl + BEw? | VO’,z} .
Clearly, T[Wo(n:) 4 {vel:}] = Wa(ne) + {vels} for some correspondence Wi(+). Furthermore
Wi(+) is non-empty valued since, at every 7, there is a Nash equilibrium 8y which, for w! = w?,
satisfies the incentive constraint (A.7).

But now the argument can be iterated to yield a sequence Wyp1(m:) + {ve 1} =T [Wn(m) +

U

v

{vtlt}]. The limit of this sequence of correspondences is the equilibrium payoff set.! The claim
is proved.

The lemma follows immediately, because the incentive constraint (A.7) is independent of v;
and I;. Hence, the sustainable trades in period ¢ are independent of v, I; as well. The argument
now repeats for all ¢. i

Proof of Proposition 1

Suppose that each trader trades ¢; = %nt. From the incentive constraint (A.7), and the
fact that in a Markov equilibrium w! = w?, it follows that 6’ is incentive-compatible if and
only if (1 - /\0)—]%— > maxgp(1 — Aﬂw]—v_-ll - )\%— %’. Note that deviation profits are maximized for
0 = X1 - MYy 1n equilibrium, 8 = 8, and this yields Oy = - |

Proof of Proposition 2:
Following Abreu (1988), any equilibrium trading strategy in a dynamic game can be de-
scribed in two parts: (1) a normal trading rule which informed traders follow provided no trader

TThat such a limit exists and is the equilibrium payoff set, is shown in Dutta and Sundaram (1992).
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has deviated in the past, and (2) a fallback rule which is followed if some trader has not traded
according to the normal trading rule in the past. Without loss of generality, the fallback rule
can always be taken to be the worst equilibrium trading rule in the game.! Further, from this
point on, we invoke Lemma 1 and ignore inventory levels in our analysis.

Let V(n) denote the (infinite-horizon) payoffs to an informed trader in the best (symmetric)
equilibrium if the value innovation is 7; likewise let ¥ (n) denote the (infinite-horizon) payoffs to
the worst (symmetric) equilibrium, i.e., V(n) = max W(n) and V() = min W (7). Proposition
3 demonstrates that best and worst equilibria are distinct for large discount factors. Suppose
that A= [ [—V-(n) - K(n)] dF(n), where F is the distribution of 7.

The proposition is proved by way of the following lemmas:

Lemma 2 The optimal equilibrium payoffs satisfy

— 7 —
V(o) = max {(1 - 20) 5} +9 [ VOar() (A9)

where @(n) is the set of incentive-compatible trades at 1, and is defined by

w(n) = {0 : [(1 - /\9)% - :}X (1 - A -]X-]—v,_——16> } n? > -—A} . (A.10)

Proof of Lemma 2: Consider any equilibrium of the trading game which is e-optimal, i.e.,
equilibrium payoffs are at least V(n) — e. Suppose that in this equilibrium each trader trades,

say, %n in the current auction. We first show that § is an incentive-compatible trade in the
sense of (A.10).

Denote the anticipated lifetime equilibrium profits w(n'), if the next-period’s price-dispersion
is 7. Further, in the event of picking a trade % # ]%-, denote the anticipated lifetime (equilib-
rium) profits w(n'|f). By the definition of incentive-compatibility in equation (A.7),

(1- ,\(5)%7;2 + ﬂ/w(n’)dF(n’) > (1 - iv—]\:—l-é —-A %) %nﬁ (A.11)
+8 [ w(rlf)dF ().

Since w(n') and w(7’|f) are themselves equilibrium payoffs, it follows, again by definition,
that V(7') > w(n') and w(7/|8) > V.('). Hence,

[(1 - Aé)-]% - (1 P A i) i] n? 6/[w(n’|9) - w(n’)}dF(n’)

> 8 [ Ko - Ve)]aror)
> -A. (A.12)

|

N N/ N

'See, e.g., Abreu (1988). Note also that we restrict attention to symmetric equilibria.
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Equation (A.12) holds for all trading quantities -]%— # %. It can be shown that the trade %

which maximizes trader ¢’s immediate profits is % =& (1 - A ————N](,'l 9). Substituting this value
of £ into equation (A.12) yields:
=81 N —1;\2
—“ A= - —[1-)2——4 2> -A. A.13
{(1 M)+ 4/\<1 7 ”n_ (A.13)

We have shown that § is incentive-compatible in the sense of equation (A.10), i.e., that § € o(n).
Further, since this equilibrium is e-optimal, it follows that:

Vin)—e < (1- /\é)%n2 +ﬁ/w(n’) dF(n')
S (1= 2)gt 48 [ Vi) dF ()
o0 i
< max (1= N0 L} + 8 [ Vin)dF (). (A.14)

The last inequality follows because § € ¢(n). Since (A.14) holds for all € > 0, we have
actually proved that:

Vin) < max {(1-20) L} + 8 [ Vi) dF (). (A.15)
8€w(n) N
We now demonstrate that the opposite inequality holds as well. Consider any § € o(n)

and form the following strategy: trade —19\7 n in the current auction and from the next auction
onwards, trade according to an e-optimal equilibrium strategy, i.e., if next auction’s innovation
is 7', trade according to a strategy which is e-optimal from 7n’. If any player currently trades

% # %, trade with the worst non-cooperative equilibrium strategy in the continuation. It is

easy to see that the suggested trading strategy forms an equilibrium if and only if § € »(n). By
definition therefore,

V()2 (1~ M)g v +5 [ V() aP(r) - e, V€ oln). (A.16)

Since equation (A.16) holds for all ¢ > 0, we have proved that:

V(n) 2 max (1~ )7+ 8 [ Vi) dF(r) (A17)
6€w(n) N
Combining (A.15) and (A.17), the lemma is proved. |

We continue now with the proof of Proposition 2. To facilitate exposition, define k(8) =
2
(1- /\0)% - (1 - A N—A}l()) . Note that by definition of a Nash equilibrium, k(6y) = 0.
Further, from the form of the function k(8), it is straightforward to see that it is a quadratic
function (which is symmetric around 6x) with k(6) < 0, for all 6 # 8.
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From the definition it follows that, for all 1, the set of incentive-compatible trades, (n), is an
interval centered around 8y, i.e., ¢(n) = [6*(n),0.(n)], where k(@*(n)) n = k<9*(n))n2 =-A

and 0*(n) < On < 0.(n). Note also that as 1 increases, the set of incentive-compatible trades
shrinks, as shown in Figure 2.

The objective function in the right-hand side of (A.9) is seen to be a quadratic function in
6. By definition, this function reaches a maximum at 6, and it declines on either side of 6.
This last fact, coupled with the properties of ¢, tells us:

(a) if 81 € @(n), the constrained optimum is at #,. On the other hand, if 6; &€ ¢(n), the
constrained optimum is at §*(n).

(b) there is an interval [—mn;, m] for which k()% > —A and hence the constrained optimum
is 6,. Whenever || > m, the ONCE trade is Q:LN”l n. The proposition is proved. i

Proof of Proposition 3

Using proposition 1, we note that under the MPE strategy, QJ{IY-, the trader’s profit when the
value innovation is 7 is:
1

. 2
™EWNT R

A trader’s profit in the current auction, when trading the monopoly volume under the value
innovation 7 is:

(A.18)

™ (A.19)

- 2
T
Let V,(n) denote the value function corresponding to playing the trigger strategy, and Vi (n)
the Markov profits. It is clear that

/Vs(n')dF(nl) - /VN(ﬂl)dF(n/) = lfﬂ [

1 1
4NN (N +1)2)

3

where:
(= / n*dF(n). (A.20)
ni<a
Now consider a trader who chooses to deviate from the proposed strategy when all others play
as above. Clearly, the optimal deviation if other traders use intensity 8 is just 6, since this is
the Nash solution. However, if other traders play 6;/N, trader ¢ can profit in the short-run by
trading at a higher intensity. The optimal deviation strategy for trader 7 is easily computed as:

i N+1

1. A21
=" (a.21)
and the corresponding single-period profit is:
diy — a A.22
() ( 2N ) 2 (4.22)

for |n| < 7. Evidently, the trigger strategy is sustainable as equilibrium only if

1 [/N+1\?1 1 8 1 1 _
ﬁ[( N ) §_F]nzs1—,8[4N/\_(N+1)2/\]€’ <7
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Clearly this holds for high discount factors.

Recall that A = | [V(n)-—y_(n)} dF(n) is the difference between the best and worst attainable
equilibria. By definition then, A > E[Vs(n)] — E(Vn(7)], where Vs(n) and Vy(n) are the value
functions corresponding to the trigger strategy and the MPE strategy, respectively. Clearly, if
the threat of moving to the MPE strategy is sufficient to support a trigger strategy with critical
bound 7, the threat of giving up A in present value terms can support a higher bound 7;.

The second part follows immediately because the expected profits under the trigger strat-
egy in any state are either the single-trader MPE profits or the (lower) MPE profits, and the
probability that |n| < 7 is positive. i

Proof of Proposition 4: .

Suppose that || < # and trader ¢ trades an amount & 7, where 8 # 6,. In that case one of
three things happens: i) with probability € this deviation is detected (and traders adopt the MPE
strategy forever), ii) the deviation goes undetected but ;pt(é) — E(p:|6y )l > p (and traders follow

the MPE strategies for T periods) or iii) the deviation goes undetected and ’pt(G) - E(Ptlel)i <p
(and then, depending on 7, 8; or Oy is played). Clearly, option iii) is preferable, to the deviant
trader, to option ii).

We first show that Prob (lpt - E(Pt|91)| < p) is maximized when § = 6,. Notice that
since py = Vi1 + AMQ¢ + ), pt — E(pe|d) = Azy, if the quantity traded is %}-n. Hence,
Prob (!pt - E(p¢|01)| < p) = Prob (|/\z| < p) = G (§) — G(—%) where G is the distribution of
noise trades.

However, if trader 7 trades 7‘?,—, then Prob (lpt(é) - E(ptwl)’ < p) =G (§ - %(0 - 61)17> -

G <——§ - 7{,—(5 -6, )n) < G (£) =G (—%). Thelast inequality follows from the symmetry around
zero of the distribution G.

A corollary of the above argument then is that, in the event of non-detection, the highest
future payoffs are achieved by trading 727 = %}. If on the other hand, deviation is in fact detected,
then the future payoffs are the expected payoffs of playing Markov forever. This is clearly strictly
less than the future payoffs to switching back and forth between 6; and 85 (which is available
if today’s trade is %’,- 7). In other words, not deviating has a strictly higher lifetime payoff, say
E[Vs], rather than E[Vy], from the next auction onwards. Hence, not deviating implies an
increased future payoff that is at least (E[Vs] — E[Vn])e.

Deviating in the current auction yields an incremental payoff of —k(6;)n%. So, deviation is
unprofitable if

KT > 7BV - E[Va)e. (A.23)

It is clear that if (A.23) holds with n = 7, then is holds for all {n| < 7. Furthermore, since
% — 00, as @ — 1, clearly (A.23) holds for some §* < 1. |

Proof of Proposition 5

Let V (respectively V) denote the combined profits in the best symmetric (respectively, worst
symmetric) equilibrium of the multiple security model. Let A = 3 [, [V(n{, %) = V(m, 773)] dF,
where F' denotes the joint distribution on (7{,75). Note, incidentally, that since the two mar-
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kets can always be treated separately, V > V; + V; (respectively, V. < V; + V,) where V;
(respectively, V ;) is the profits in the j-th market in the best (respectively, worst) equilibrium.
By arguments completely analogous to those used in proving Lemma 2, we can show

Lemma 3 The optimal equilibrium payoffs satisfy

V(m,m) =  max {(1 - Ml)%nf +(1- /\02)%77%} + ﬁ/W)dF(-)

91 192 EW(")I 1"2)

where o(m,n2) is the set of incentive compatible trades at (n1,7) and is defined by

R _ 2
() = {(01,02) > [(1 RpYAL I (1 Y %oj)

ni > —A} .

Writing, as before, ~k(6;) = (1 - A5 N Lg; ) - (1= 76;) QNL and 7(6;) = (1 - ;) Q]\%’ we
can rewrite the problem more compactly as

max 7 (61)n7 + 7(02)m3 (A.24)
1,V2
subject to

— k(61)n} — k(82)75 < A (A.25)

The following claim is straightforward:

Claim Without loss of generality, we can restrict attention to 6; € [61,0n], i.e., to 0; that lie
between the monopoly and Markov intensities.

Proof: Consider § < 6;. Then, there is § = 6; + (8, — ) with the property that () =
7r(9) Furthermore, given that —k(-) is a strictly decreasing function on the appropriate range,
k(8) > k(6 ) So, if 6 was incentive compatible (together with, say 62), then so is § — ¢ (together
with 6;), for “small” e. Given the fact that =(-) is strictly decreasing it then follows that
m(0 — €) + 7(82) > 7(§) + m(2). This yields the desired contradiction,

On the other hand suppose that § > On. Then there is 6 =0n-— (9 fn) with the property

that k(f) = k(d). Furthermore, 7(8) > ©(f). Again we have a contradiction and hence the claim
is proved. |

Note for future use that on [#y,8y], 7 is strictly decreasing and concave whereas —k is
strictly decreasing and convex. Let (01, f(6, )) denote the combination of trading intensities

which satisfy the incentive constraint exactly; k(6;)n? + k( f(6r )) n = —A. Straightforward

calculus reveals that 2 k(0y)
k
"6,) = — (ﬂ> ! A.26
) (&) n2/ K'(62) (4.26)

and from the properties of k(-) it follows that on the relevant region, f is a decreasing, convex
function.

32



An isoprofit curve g(6,) is defined by 7(6;)n? + w(g(()l )) n% = ¢, where c is some profit level.

Then,
2 7l./(91)
"6,) = — (ﬂ> T (A.27)
g( 1) 2 7,‘_/(02)
Hence, g is a decreasing concave function.
From (A.26) and (A.27) it is easy to check that ¢’ > f' & i—,—%—i% > %%%%. The properties of
k and 7 then imply that this last inequality holds if and only if §; < §,. By the same arguments,
g < f' & 6; > 6. Collecting all this we see that profits are maximized by making 6; and 6,
as close to each other as is feasible given the incentive constraint. Since 6, = #, = n is always
incentive-compatible, there are equal trading intensities which solve the incentive constraint
exactly. So, the common ONCE trading rule #* is characterized by

61 if —k(61)(nf +7m3) < A

0%(m,m) = .
tm.m) {k"1 (;lf%;g) if ~k(61)(nf +n3) > A

The proposition is proved. |

Proof of Corollary 3

Suppose that p < 1. By the proposition above, informed traders do strictly better than with
separate markets whenever 7, # 7;. Hence, as long as 7; = 7 is not a probability one event,
[VdF > [V dF\+ [V dF,. By Lemmas 2 and 3, this implies that Vim,m) > Vilm)+Va(ne),
for all (n1,72). The corollary is proved. |
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Figure 1: The Optimal Non-Cooperative Trading Strategy.

The figure shows the monopoly trading intensity, 6;, the MPE
intensity, fy, and the ONCE intensity, 8*(n), as a function of
the state, 7.
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Figure 2: The Incentive Compatible Correspondence.



