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1. Introduction
This is a user’s guide for Hansen/Heaton/Ogaki GMM package written in
GAUSS. This package contains programs to implement Hansen’s (1982) GMM and

its extensions described in the companion paper, Ogaki (1993).

2. What the User Should Know about GAUSS
This section covers essential features of GAUSS you must know to run
the GMM programs. Read the GAUSS manual for more advanced features of
GAUSS. I assume that GAUSS has already been properly installed. A square
bracket indicates a key to be pressed. For example, press the Enter key for
the notation [Enter]. If two keys are indicated in a bracket as [Alt-F2],

press [Alt] and [F2] keys simultaneously.

2.A. Starting GAUSS
From the DOS prompt, type GAUSSI [Enter] to start GAUSS (for earlier
versions, you may have to type GAUSS or GAUSS386 instead of GAUSSI). You
will be in the COMMAND mode of GAUSS and see the GAUSS prompt, >>. In the

COMMAND mode, you can execute screen-resident programs.

2.B. Exiting GAUSS

To exit GAUSS, press [Esc]. Then type Y at the prompt.

2.C. Running a Program Stored in a File from the COMMAND Mode
From the GAUSS prompt, >>, type RUN FILENAME EXP [F4][F2]torunafile
named FILENAME.EXP for example.

2.D. Editing a File
From the GAUSS prompt, type EDIT FILENAME.EXP [F4][F2] to edit a file

named FILENAME.EXP for example. You will be in the EDIT mode of GAUSS. You
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can edit the file with a full screen editor.
You can move around the file using arrow keys and [Pg Dn] [Pg Up] keys
that are usually at the right of the keyboard. You can edit the file by

deleting letters using [Del] key and typing in letters.

2.E. Rules of Syntax

This section lists some of the general rules of syntax for GAUSS
programs.
2.E.1. Statements

A GAUSS program consists of a series of statements. A statement is a
complete expression or command. Statements in GAUSS ends with a semicolon.
2E2. Case

GAUSS does not distinguish between upper and lower case except inside
double quotes.
2.E.3. Comments

Comments can be placed inside /* and */, which can nest other comments

or inside @ and @, which cannot nest other comments.

2.F. Reading and Storing Data
LOAD X[n,m]=FILENAME.DAT;

reads in data stored in a ASCII file named FILENAME.DAT for example. This
data file should contain data separated by spaces in the form of n x m
matrix.

If X is a matrix of numbers in GAUSS,

SAVE XFILE=X;
stores X into a file named XFILE.FMT. Then you can read in the data again

by



LOAD X=XFILE;

2.G. Operators
2.G.1. Operators for Matrix Manipulations
Assignment operator:
Assignments are done with one equal sign.
Y=3;

assigns the value 3 to 1 x 1 matrix Y.

Indexing operator:
Brackets [] are used to index matrices.
Y=X[3,3];
assigns 3-3 element of X to Y. Commas are used to separate row indices from

column indices. A vector can take one argument.

Period:
Dots are used in brackets to signify "all rows" or "all columns".
Y=X[.,3];

assigns the third column of X to Y.

Colon:
A colon is used within brackets to create a continuous range of indices.

Y=X[1:5,.];

Transpose operator:

’ transposes matrices.

Vertical Concatenation:

| is used to concatenate two matrices vertically.



Z=XlY;

Horizontal Concatenation:
~ is used to concatenate two matrices horizontally.

Z=X~Y;

2.G.2. Numeric Operators
Usual Operators:
Usual operators in GAUSS work according to standard rules of matrix
algebra. For example, * is the operator for matrix multiplication, and
Y=X*Z,
performs matrix multiplication when X and Z are conformable in the sense of

matrix algebra.

Element by Element Operators:

In some applications, X is a m x n matrix, and Y is a m x 1 vector, and
it is convenient to multiply each row of Y with each of the n elements in
each row of X. The Element by Element Operators allow you to perform such
operations.  For example, .* is the element by element multiplication
operator, and

Z=X*Y.
performs the operation described above. Other element by element operators
are the following:
J/ Element by element division:
Y=X./Z;
A Element by element exponetiation:
Y=X"Z;
+  Addition:



Y=X+Z;

performs element by element addition.

- Subtraction:
Y=X-Y;

performs element by element subtraction.

2.H. GAUSS Commands

2.H.1. Printing

PRINT X Y;
will print matrices X and Y to the screen. Instead of matrices, you can
print words inside double quotes:

PRINT "This will be printed";
You can use ? instead of PRINT:

7XY;
2.H.2. Preparing an Output File

OUTPUT FILENAME.OUT RESET;
allows you to write the output of PRINT statements to a file named
FILENAME.OUT, for example. To print out or edit the output file, you have
to close the output file by

OUTPUT OFF;
command. Most of the programs in the GMM package contains this statement
toward the end of them. However, if your program does not reach its end
because of errors, you have to issue this command from the COMMAND mode to

close the file to check the output file.

3. Which Program Should be Used?

The GMM package contains many programs for different purposes, though
7



GMM.SET is a general nonlinear GMM program that can be used for most
applications of GMM.  This section provides brief descriptions of the
programs in the GMM package. The documentation about how to use programs

are either in * EXP files or in the programs themselves.

3.A. GMM.SET

GMM.SET is a general nonlinear GMM program that implements GMM
estimation explained in Section 2 of Ogaki (1993) with options of the
truncated kernel estimator or the QS kernel estimator (both nonprewhitened
and VAR prewhitened) for estimation of € explained in Ogaki (1993, Section
6). This program can be used for linear GMM models in Ogaki (1993,
Subsections 3.1 and 3.2), too. When this program is used for linear models,
it is much faster to set hflag=2 (see the description of MINQUAD.SET in the
next section for an explanation of this variable). It is even faster to use
one of LGMM?¥* * programs for linear models. Another advantage of using one
of the LGMM?* * programs is that some of them allow you to impose conditional
homoskedasticity on the estimator for Q while the GMM.SET program always
uses conditional heteroskedasticity consistent estimator (see Ogaki (1993,
Section 6)).

The GMM.SET program can be used to implement the Minimum Distance
Estimation explained in Ogaki (1993, Section 4.4)). For the linear version
of the minimum distance estimation, LMDE.SET can be used, too.

GMM.SETuses MINQUAD.SET fornonlinear search. GMM.EXPisanexample
file and the user can modify this example file for his or her own problem.
This example uses data in GMMQ.DAT. The example in GMM.EXP is a single
return model of Hansen and Singleton (1982). GMMHEF.EXP is another example

file for GMM.SET for a more complicated asset pricing model based on habit
8



formations estimated by Ferson and Constantinides (1991). This file is a
modification of the program used by Cooley and Ogaki (1993) for multiple

return.

3.B. GMMQ.SET

GMMQ.SET is the same as GMM.SET except that it allows the user to use
different estimation methods of Q. Specifically, the GMMQ.SET allows the
user to specify different orders of MA for different disturbances when the
truncated kernel estimator or the modified Durbin’s method is used. In
contrast, the user must use the same order of MA for all disturbances for
these estimators. On the other hand, the user can use the QS kemel
estimator with the GMM.SET but not with the GMMQ.SET. GMMQ.EXP is an

example file and

3.C. MINQUAD .SET
MINQUAD.SET defines a program that minimizes a nonlinear function of
quadratic form. This program is used by GMM.SET and GMMQ.SET and can be
used for other purposes when a quadratic form nonlinear function is
minimized.
Section 5.A describes an example of how to control MINQUAD nonlinear

search by hitting keys during the search with the GMMHF.EXP program.

3.D. GMM2S SET
This program defines a procedure for sequential (or two step) GMM

estimation explained in Ogaki (1993, Section 4.1).

4. How to Use Programs

The GMM.EXP file printed as Appendix A below is an example file and
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contains documentation for GMM.SET. It is probably the easiest to modify
the file for your particular applications. After modifying GMM.SET, you can
change the name of the file by hitting Alt-O (Alt and O keys together).

When GMM.EXP is run, an output file GMMQ.OUT is created. This output
file is printed in Appendix B. In some applications, GMM estimation takes
many iterations of nonlinear search and you may wish to print out only part
of the output file. You can do this by marking the part of the output ﬁle
by hitting Alt-L and then Alt-P.

Other programs work in similar ways and instructions for a program is

either in an example file with a name *.EXP or in the program file.

5. Hints

5.A. A Priori Information about Parameter Values:
An Example from a Habit Formation Model

In sdme applications, the econometrician has a priori information about
parameters.  An extreme case is that some parameter values are not
admissible. Another example is that certain parameter values are not very
plausible. In the GMM program, it is possible (and sometimes necessary) to
incorporate such information.

The GMM estimation is based on moment restrictions of the form (in the

following, Ogaki’s (1993) notation is used).

(1) E(RX, By) = 0.
Let ¢(B) be a real valued function. Then one can define a new function

f*(Xt, B)zf(Xt, B)d(B), and we still have moment restrictions

b3
) E(f (X, B,) = 0.

One can apply GMM to moment restrictions (2) instead of (1).
10



In many applications, unconditional moment restrictions (1) come from
conditional moment restrictions as explained in Ogaki (1993, Section 3.3).
In such applications, even random variables can be used to normalize the GMM
disturbance function. Let g(xt,B) be a k-dimensional vector of functions
and et=g(xt,[30). Suppose that the econometrician has conditional moment
restrictions, E[etllt]=0. If Y, is a vector of random variables in Il and
if ¢>(yt,B) is a (measurable) real valued function, then one can define a new
function g*(x‘,B)=g(xt,B)¢(yt,B). Because (b(yt,B) is in It, g*(xl,BO) still
satisfies conditional moment conditions E[g*(xl,B)IIl]zo. Thus the GMM
estimation can be applied to g*(xl,B).

These ideas are now illustrated for Ferson and Constantinides’s (1991)
asset pricing model with habit formation described in Ogaki (1993, Section
8.1.3). In their model, the Euler equation implies E(etllt)=0, where
et={8(Sf1+8a1S;?2)RM-(S;a+6alel))/{S;a[1+8al]}.1 In the GMM package,
the GMMHF.EXP file (Appendix C), which is a minor modification of a program
used by Cooley and Ogaki (1993), is included to give an example of
programing.

When you run GMMHF.EXP, the initial GMM estimsyion with the identity
distance matrix does not converge easily. When Step Size becomes very
small, it is recommended to hit the mumber key "1" on the key board to try
the DFP update instead of the outer product method (see MINQUAD.SET file for
explanations). In the example output file preinted in Appendix D, the
number key "1" was hit after the nonlinear search iteration number 28.
After this, the program converged at the iteration number of 60. It is also
possible to hit "C" to force a termination of the nonlinear search when the

1Here, the disturbance is normalized by (S;a[l+8al]} to avoid clear

violations of the stationarity and identification assumptions.
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convergence criteria are too strict for a particular application.  Because
the outer product mehtod is usually better, it is recommended to go back to
it for another iteration. In the example output file, the number key "2"
was hit after 6 nonlinear search iterations in the second GMM iteration.

One problem that researchers have encountered in these applications is
that Ct-falCt_1 may be negative when a is close to minus one. The values of
a, which makes C‘+a1Ct_1 negative are not admissible. In order to
incorporate this a priori information, one can program the hu procedure in
GMML.EXP, so that very large numbers are returned as the values of hu when a,
falls to the nonadmissible region. It is necessary to modify the numerical
derivative procedure GRAD2.PRC in order to prevent these fictitious large
numbers are used to calculate numerical derivatives. An example is in
GRADQG.PRC, which is used by GMMHF.EXP.

When a is positive and is greater than one, we can obtain a well
behaved utility function. However, one may argue that it is not plausible
for a to be greater than one: why is the previous period’s consumption more
important than this period’s consumption for this period’s utility level?
One way to incorporate this type of a priori information is to use a
Bayesian method. Another way is to penalize such implausible parameter
values in defining the GMM disturbance. Let f(Xt,B) be the original GMM
disturbance function, where B=(8,a1,0t). Then define

1 if a151
(3) oB) =

(a1-1)2+1 if @ sl
and f*(Xt, B)=f(X‘, B)o(B). Now f*(X:’ B) can be used as the new GMM
disturbance. Here the function ¢ is designed so that it is differentiable

at a1=1 and it does not affect the function f when a151. The latter feature
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is important because of small sample considerations. Even though any other
differentiable function can be used as the normalization function ¢ without
disturbing the consistency of the GMM estimator, the small sample properties
of GMM estimator will be affected by normalizations. It is thus desirable
not to disturb the GMM function for the parameter region where we do not
have any a priori information.

One might argue that the curvature parameter o, which will be close to
the Relative Risk Aversion parameter as explained by Ferson and
Constantinides under some circumstances, is not likely to be greater than
ten (see Mehra and Prescott (1985)). This restriction can be incorporated

by a normalization similar to (3) as in the GMMHF.EXP program.

5.B. Minimum Distance Estimation
In order to implement minimum distance estimation (MDE) described in
Ogaki (1993, Section 4.4), set tend=1, wOflag=2, and kgm=0 (note that kgm is
only used to make a small sample degree of freedom adjustment for the
estimation of €, which is not necessary for MDE). Assuming that you have an

estimate of Q in a GAUSS matrix file named omegamde.fmt, include a line
load wO=omegamde;

before the GMM procedure is called in the program. If GMM.EXP is modified,
the third line from the bottom needs to be modified: the fifth argument in

gmm(-), rows(bgm) needs to be changed into kgm.

5.C. Test Statistics
Wald test statistic can be constructed from BGM.FMT (containing GMM
estimate) and VAR.FMT (containing the estimated covariance matrix for the

GMM estimator). For nonlinear restrictions, Wald tests are not recommended
13



(see Ogaki 1993, Section 7).

In order to calculate likelihood ratio type test statistic (see Ogaki
1993, Section 7), you first perform restricted estimation by programing the
hu procedure that defines the GMM disturbance with the restrictions imposed.
If there are p parameters and s restrictions in the econometric model, you
will have p-s parameters in your bgm after imposing the restrictions. In
the GMM.EXP file, Hansen’s J statistic, TJT is returned as a global variable
chi. Save this variable. Second, you perform unrestricted estimation by
modifying the hu procedure used in the first step to estimate all p
parameters. In this restricted estimation, make sure that you set wOflag=2
and include a statement "load wO;" anywhere before the gmm procedure defined
by GMM.SET is called. For initial values of bgm, it is a very good idea to
use the parameter values implied by the restricted estimates.
Alternatively, you can perform the restricted estimations first and then the

unrestricted estimation.
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APPENDIX A GMM.EXP FILE

@ GMM.EXP @

Prepared by Lars P. Hansen, John C. Heaton, and Masao Ogaki
Financial support from the National Science Foundation
Grant numbers: SES-8512371 and SES-9213930

Last Revision: 04/07/93

/*

This program has been used and seems to be free of errors. However,

we (Lars P. Hansen, John C. Heaton, and Masao Ogaki) do not assume
responsibility for any remaining errors. In no event shall we be liable to
for any damages whatsoever arising out of the use of or inability to use

this program.

This program is for the generalized method of moments (GMM) procedure.
See "Generalized Instrumental Variable Estimation of Nonlinear Rational
Expectations Models," by L.P. Hansen and K.J. Singleton (Econometrica
1982, Vol.50, 1269-1286). This example file is for Hansen and Singleton
model, but uses different data than theirs.

@@ To run this example file, type
RUN MINQUAD.SET [F4][F2]
RUN GMM.SET [F4][F2]
RUN GMM.EXP [F4][F2]

The programs MINQUAD.SET and GMM.SET define necessary procedures.
To use these programs for the user’s problem, the user can
modify this example file for the user’s problem.

Usually the user does not have to modify MINQUAD.SET and GMM.SET
because all the paramters for these two programs are controlled
by this example file.

@@ The user should go through Step 1-4 and modify this exahple file for
the user’s own problem.

Model: E[h(t,b0)]=0: nmr moments restrictions, h(t,b0) is nmr by 1

Algorithm:
This program calculates and iterates the following:
ititial WO given.

1. g(b)=C*[h(1,b)+,...,+h(T,b)]
b=argmin{g(t,b) 'WO*g(t,b))

2. Rzw(j)=(1/T)[h(1,b)h(1l,b)’'+,..,+h(T,b)h(T-j,b)"']
j=0,1,..,mas
W1=Rzw(0)+{Rzw(1)+Rzw(1) ')+, ..,+{Rzw(mas+1l)+Rzw(mas+1) '}
WO=inv(W1l)
(W1 can be calculated by other methods depending on the value of
calwflag. See below for more explanations.)

3. go back to 1.

Here C is a scaling multiplier, and taken to be ’const’ or 'const2’
depending on whether or not W0 is I.

OUTPUT:



chi: chi-square test
statistic for the overidentifying restrictioins
The following wvalues in GAUSS matrix files:

a. Current parameter values in MINQUAD.SET search: crparv.fmt
b. Current inverse hessian matrix in MINQUAD.SET search: crhess.fmt
c. GMM estimates which uses WO=I: bgmi.fmt
d. GMM estimates of the last GMM iteration: bgm.fmt
e. WO calculated from the last GMM iteration results: w0.fmt
f. Covariance matrix for bgm: varb.fmt
*/
@ User Definition Area
@ FFFFFAFHEAFAHA AR AT A A A A FAF KA H A F R KA A H AR AR A FF I FHFF R TR I xE @
@ ----------- Step 1: Prepare Output File ---------vcvommnmoconnnnon @

@ FrEFFAFEAAKTAFFEF AL R E KA A A EF AR F ooy @
output file=gmmq.out reset; @ Specify the name of the output file. @

n on
FhEkkrhrrkhhrrrrTrddkxddrdxd GMM Regults *kFhddddidtdibrhiblibibdddihrhitrx”,

@ Prepare the following message which will be printed
at the top of the output file @

‘?H
GMMQ.OUT";
? "Hansen and Singleton Model (Single return, VWR) (Econometrica '82)";
datestr(0);
timestr(0);
? "Parameter Names 'beta,gamma’";

@ See GMMQ.EXP for an expamle with multiple returns.(@

@ ek o o 3 5 3 5 5t 5 v sk 5ok T gk 5k 3 3 o s g s v s S S S 9 o S S S S S o b sk sk sk b b e o e e b e e e e e e ke o @

@------------ Step 2: Define Global Variables -----------c-c-mmmennnn- @
@ Fh AR AR R A A AR A E A AHH A AN H Aok ok @

R CCEECTEEEEEPPRTPT RS @

@ Section A. User must specify variables in this section. @
@--vmmmemme e @
tend=334; @ # of observations=T; scalar @
bgm=1}1; @ bgm=b(1)|..|b(kgm); kgm by 1 vector

Initial values of the coefficients @

nmr=3; @ scalar: the number of moment restrictions(@
mas=0; @ The order of MA of the disturbance @
@---vmm s @

@ Section B. User can leave the variables in this section as they are,
and go to STEP 3.

Only advanced users should modify this section.@

gradname=&GRAD2; @ Specify the name of proc that calculates
the gradient dgT(b)/db. @

const=1/sqrt(tend); @ Scaling Multiplier when WO=eye(L) @
const2=1/sqrt(tend); @ Scaing Multiplier when WO is not eye(L) @



@ These scaling multipliers should be set so that
the value of function (vof) in nonlinear search of
MINQUAD.SET is near 1. 1If vof is too close to 0,
the search will not work properly.

const2=1/sqrt(tend) will generally be good. @
wOflag=0; @ scalar;
If wOflag=0, WO=I is used as the initial weighing matrix WO,

If wOflag=1, initial bgm is used to calculate initial WO.
If wOflag=2, WO in the memory is used as initial WO.

If wOflag=3, WO and bgm in the memory are used to give
the first GMM result. @

maxitegm=5; @ Sets maximum # of iteration over weighting matrix, W0. Set
wOflag=0 and maxitegm=2 to execute usual 2-Stage GMM. @

zero=1E-2; @ Iteration over WO continues until the maximum
difference of the current and the previous W0 in
absolute value becomes less than ‘zero', or
the # of iteration exceeds maxitegm. @

calwflag=0; @ This variable is used to choose the method to calculate
the distance matrics, WO.

1f calwflag=0, Durbin’s method will be used when WO
is singular.

If calwflag=1, the QS kernel estimator (nonprewhitened
or prewhitened) will be used when WO is singular.

If calwflag=3, Durbin’s methqd will be used.

If calwflag=4, the QS kernel estimator (nonprewhitened
or prewhitened) will be used.

@

ordard=mas+3; @ Order of AR representation for
Durbin’s method @

@The following four variables control the QS kernel estimator.@

st=0; @ A scalar to control the bandwidth parameter for the QS kernel.
if st=0, then an automatic bandwidth estimator is used.
if st/=0, then st is used as the bandwidth parameter.(@

wav=ones(nmr,1); @mr by 1 vector:; weights given to the
a-th element of z(t)w(t) for the automatic bandwidth estimator
(used only if st=0). @

maxd=0; @ scalar:
if maxd=0, then nonprewhitened HAC with the QS kernel is used.
if maxd>0, then the elements of DeltalS with the absolute
value greater than maxd is replaced by maxd. See Andrews
and Monahan's (1990) footnote 4. @

bst=10e+5; @ scalar:
When automatic bandwidth parameter is calculated to be bigger than



bst, bst is used. @

@ See MINQUAD.SET for the following globals @
hflag=2;
dfpflag=1;
sstol=le-25;
@ See MAXMUM.DOC on MODULEY of GAUSS for the following globals @
gradtol=le-5;
btol=le-5;
typf=1;
typb=1;

@ Sk vk ke vk vk ok v d ok e ok ok e e ke ke sk ke ok o ok e ok ke ok o Sk ke vk sk ke sk s ok ke e o ok ke ke ke gk sk ok ok sk b sk sk b ke b sk sk ke ke ok ok @

@ ~-m-ommmm e Step 3: READING IN DATA ==------msmmcmcmmaoooeenens Q@
@ B B R R e D D b o R e g L R e P T 2 T ] @

load x[335,3)}=gmmq.dat;

c=x[1l:tend+1,1]; @ c(t)/c(t-1) @
re=x[1l:tend+1,2]; @ vwr @
rf=x[1l:tend+1,3}; @ T-Bill rate (@
clear x;

@ ok o o5k 3 v ok 5 b ok ot bk ol sk sk ok b o v St S o ok b 5 b b de o s b st ok dbe sk ol s b b ke b st b S b ok o b s sk s sk ke e s o sk e sk o ke ke ok @

Step 4: Define the proc hu(b) that returns tend by L matrix
[[z(Lw(1)]’ |

| | I
[[z(tend)w(tend) ]|

where [z(t)w(t)]'=[wl(t)zl(t)',...,wvnw(t)znw(t)"']

----------------------------------------------------------------------- */

@ 7 3 o 3 3 o o o o o b b 5k 5 5 s S S S o s b o s sk s ah s s bk b b S R S S e e e e b e e e e e ek @

@ The proc must have the name "hu", and should take only one argument. (@
@ Note that the proc "hu" will be called many times in GMM procedure.
If some calculations can be done outside the proc, that will speed up

the program. For example, here vectors of instrumental variables are
constructed outside the proc. @

@ Constructing instrumental variables @
zp=ones(tend,l)~c[l:tend,.]~re[l:tend,.];
@ Now define the proc "hu" @

proc hu(b);
local ps,wl,w2,zwl,zw2;

ps=b[1].*(c[2:tend+l,.]"(-b[2]));
wl=ps.*re[2:tend+1l,.]-1;
zwl=zp.*wl;

retp(zwl);
endp;
@=========== The User does not have to change the code below.
@-----rmmmee e Print results of estimation------c--cn-crcvonanann- @

proc (0)=prntrslt(x,s);



--------------- Minimization Results --------cmocmeoaannn.

Step size: " s "
Value of the objective function: " vof "

Minimiser is" x' "

@ kR kR A kR @
@ THE PROGRAM STARTS @

chi=gmm(gradname, tend,nmr,mas,rows (bgm),zero,maxitegm,st,wav,maxd,bst)
output off;



APPENDIX B

GMM.EXP OUTPUT

Fkrhh ke kR Rkt GMM Results dddstdskibbdsbidiedddddbib it hdiiit ik

GMMQ. OUT

Hansen and Singleton Model (Single return, VWR) (Econometrica '82)

4/15/93
9:48:25

Parameter Names 'beta,gamma’

Initial values of the coefficients=

mas= 0.0000000
Initial WO=I

Scaling Constant used for first iteration=

initial function value is
Iteration number
Step Size 1.0000000
Value of objective function
Current parameter values:
Current relative gradients:

Outer product used for Hessian:

Iteration number
Step Size 1.0000000
Value of objective function
Current parameter values:
Current relative gradients:

Outer product used for Hessian:

Iteration number
Step Size 1.0000000
Value of objective function
Current parameter values:
Current relative gradients:

Outer product used for Hessian:

Step size: 0.031250000

Value of the objective function:

Minimiser is 1.0093483

For next GMM iteration

All the zero restirictions are successfully imposed on WO

Minimization Results

1.0000000 1.0000000
0.054717566
0.0043337597

1.0000000 --------cemn-o--

2.0669745e-05
1.0095215 5.3628787
11.225721 0.029825644

DFP=1, Outer Prodct=2

2.0000000 ~---------mo---

1.7380173e-07

1.0093484 5.3516703
0.76170597 0.0019775884
DFP=1, Outer Prodct=2
3.0000000 ---------------

1.7380172e-07

1.0093483 5.3516375
1.7633947e-05 4.5783138e-08
DFP=1, Outer Prodct=2

1.7380172e-07
5.3516375

max(|difference])= 27873294,
initial function value is 8.0807047
------------- Iteration number 1.0000000 ---------m-----
Step Size 1.0000000
Value of objective function 0.34342802
Current parameter values: 0.99401969 -0.36071855
Current relative gradients: 107.42284 1.0667538
Outer product used for Hessian: DFP=1, Outer Prodct=2
------------- Iteration number 2.0000000 ------c---mmm--
Step Size 1.0000000
Value of objective function 0.33576389
Current parameter values: 0.99376077 -0.38387275
Current relative gradients: 38.210142 0.096282015
Outer product used for Hessian: DFP=1, Outer Prodct=2
------------- Iteration number 3.0000000 ---------------
Step Size 1.0000000
Value of objective function 0.33576389
Current parameter values: 0.99376073 -0.38389084



Current relative gradients: 0.0017423840 8.8393871e-06
Outer product used for Hessian: DFP=1, Outer Prodct=2

--------------- Minimization Results ----------------------

Step size: 0.50000000
Value of the objective function: 0.33576389
Minimiser is 0.99376073 -0.38389085
GMM ITERATION 2.0000000
b= 0.99376073 -0.38389085
s.e.= 0.0059686757 2.0745479
chi square= 0.33576389 ( 0.56228465 )
d.f.= 1.0000000
difference in prob. value from last GMM iteration= 99.437715
(1/sqrt(T))g(b)=  -0.0094112041 -0.0093943874 -0.0081874349
s.e.= 0.016241577 0.016212555 0.014129632
scaling const used is 0.054717566

------- For next GMM iteration
All the zero restirictions are successfully imposed on WO -------

max(|difference| )= 3718351.4
initial function value is 0.35607207
------------- Iteration number 1.0000000 ---------------
Step Size 1.0000000
Value of objective function 0.35552069
Current parameter values: 0.99370634 -0.41818200
Current relative gradients: 7.1697351 0.027446903
Outer product used for Hessian: DFP=1, Outer Prodct=2
------------- Iteration number 2.0000000 ----------m----
Step Size 1.0000000
Value of objective function 0.35552069
Current parameter values: 0.99370628 -0.41819993
Current relative gradients: 0.0021704309 9.8736663e-07

Outer product used for Hessian: DFP=1, Outer Prodct=2

--------------- Minimization Results -----w-ummommmonanonnnn

Step size: 1.0000000
Value of the objective function: 0.35552069
Minimiser is 0.99370628 -0.41819994
GMM ITERATION 3.0000000
b= 0.99370628 -0.41819994
s.e.= 0.0055478643 1.9663534
chi square= 0.35552069 ( 0.55100451 )
d.f.= 1.0000000
difference in prob. value from last GMM iteration= 0.011280136
(1/sqrt(T))g(b)=  -0.0087304499 -0.0087148367 -0.0074986111
s.e.= 0.014642127 0.014615942 0.012576170
scaling const used is 0.054717566

------- For next GMM iteration
All the zero restirictions are successfully imposed on WO -------
max(|difference|)= 61299.012

initial function value is 0.35491763

------------- Iteration number 1.0000000 ---------------
Step Size 1.0000000

Value of objective function 0.35491736

Current parameter values: 0.99370727 -0.41825751



Current relative gradients: 0.23662556 0.00062813948
Outer product used for Hessian: DFP=1, Outer Prodct=2

--------------- Minimization Results ----------------------

Step size: 1.0000000
Value of the objective function: 0.35491736
Minimiser is 0.99370727 -0.41825754
GMM ITERATION 4.0000000
b= 0.99370727 -0.41825754
s.e.= 0.0055533656 1.9682546
chi square= 0.35491736 ( 0.55134264 )
d.f.= 1.0000000
difference in prob. value from last GMM iteration=  0.00033812976
(1/sqrt(T))g(b)= -0.0087094179 -0.0086937540 -0.0074774679
s.e.= 0.014619264 0.014592971 0.012551364
scaling const used is 0.054717566

------- For next GMM iteration
All the zero restirictions are successfully imposed on WO -------

max(|difference|)= 208.43319
initial function value is 0.35491568
------------- Iteration number 1.0000000 ---------"-"----
Step Size 1.0000000
Value of objective function 0.35491568
Current parameter values: 0.99370727 -0.41825803
Current relative gradients: 0.00084259878 2.3096390e-06

Outer product used for Hessian: DFP=1, Outer Prodct=2

--------------- Minimization Results -----------c-c=-------

Step size: 1.0000000
Value of the objective function: 0.35491568
Minimiser is 0.99370727 -0.41825802
GMM ITERATION 5.0000000

b= 0.99370727 -0.41825802

s.e.= 0.0055533842 1.9682613

chi square= 0.35491568 ( 0.55134359 )

d.f.= 1.0000000

difference in prob. value from last GMM iteration~= 9.4322780e-07
(1/sqrt(T))g(b)= -0.0087093427 -0.0086936786 -0.0074773922

s.e.= 0.014619172 0.014592879 0.012551267

scaling const used is 0.054717566



APPENDIX C GMMHF . EXP FILE

@ GMMMHF .EXP @ @ Another example file for GMM.SET to illustrate a more
complicated application. See GMM.EXP for a simpler example.@

@ This is a minor modification of a program used by
Cooley and Ogaki (1993), "A Time Series Analysis of Real Wages, Consumption,
and Asset Returns: A Cointegration-Euler Equation Approach," Rocheseter
Center for Economic Research Working Paper No. 285R, University of Rochester,
for a asset pricing model with habit formation. See "GMM: A User's Guide"
Section 5.A. @
@ To run this example file, type

RUN MINQUAD.SET [F4][F2]

RUN GMM.SET [F4][F2)

RUN GMMHF.EXP [F4][F2)

When you run this program with the default hflag value of 2 (see
MINQUAD.SET for explanations of hflag), the initial
idendity weighing matrix estimation will not converge. After about 30
iterations, hit 1 on your key board. Then the MINQUAD program will change
the hflag value to 1 to use the DFP update method, and you will get a
convergence. After that, hit 2 on your key board to set hflag to 2 again
and use the outer products method, which is preferable for most cases.

@

#include "gradqg.prec";

@ User Definition Area
(@ sk ak sk ook kst sk S ok o sk s ok s ok sk ko ook ot o ok ot ook ok @
@ ------nno--- Step 1: Prepare Output File ---veeeoocoo. e @

(@ stk s Sk sk stk sk o sk b sk b skt oot s sk sk ok ok st o sk ook ot o s oot o @
output file=gmmq.out reset; @ Specify the name of the output file. @

datestr(0); @ print date using a procedure in TIME.ARC @
timestr(0); @ print time using a procedure in TIME.ARC @

?"GMMHF . OUT
Another example for GMM.SET
NDS, VWR and T-Bill,
Parameter Names are 'delta al alpha";
(@ o ok ok o At Sk ok sk ok St sk ok ot s sk ot ok s kst oot sk ot ook ok ook sk ok ok o @

@---------n-- Step 2: Define Global Variables -----ccemceccacocoaooo... @
(@ ks ARk ok ok sk sk ok st st ot ok sk ok sk kot ok s ok ook ok o ok sk oo ok kot @

nob=176; @nob=176 47:1-90:4@

izlag=1;

taubeg=1+izlag;

tauend=nob-2;

? "izlag,taubeg, tauend=" izlag~taubeg~tauend;

tend=tauend-taubeg+l;

bgm=0.99|0|1; @ bgm=b(1)]|..|b(kgm); Initial values of the coefficients @
kgm=rows (bgm) ; @ # of parameters @

ndbt=2; @ # of disturbance terms in w(t) @

nmr=ndbt*(1+2*izlag) ;



@ Section B. User can leave the variables in this section as they are,
and go to STEP 3.

Only advanced users should modify this section.@

gradname=&GRADQG; @ Specify the name of proc that calculates
the gradient dgT(b)/db. @

const=1/sqrt(tend); @ Scaling Multiplier when WO=eye(L) @
const2=1/sqrt(tend); @ Scaing Multiplier when WO is not eye(L) @
@ These scaling multipliers should be set so that
the value of function (vof) in nonlinear search of
MINQUAD.SET is near 1. 1If vof is too close to 0,
the search will not work properly.

const2=1/sqrt(tend) will generally be good. @
w0flag=0; @ scalar;
If wOflag=0, WO=I is used as the initial weighing matrix WO.
If wOflag=1, initial bgm is used to calculate initial WO.

If wOflag=2, WO in the memory is used as initial WO.

If wO0flag=3, WO and bgm in the memory are used to give
the first GMM result. @

maxitegm=5; @ Sets maximum # of iteration over weighting matrix, WO. Set
wOflag=0 and maxitegm=2 to execute usual 2-Stage GMM. @

zero=1E-2; @ Iteration over WO continues until the maximum
difference of the current and the previous WO in
absolute value becomes less than 'zero', or
the # of iteration exceeds maxitegm. @

calwflag=0; @ This variable is used to choose the method to calculate
the distance matrics, WO.

If calwflag=0, Durbin’s method will be used when WO
is singular.

If calwflag=1, the QS kernel estimator (nonprewhitened
or prewhitened) will be used when WO is singular.

If calwflag=3, Durbin’'s method will be used.

If calwflag=4, the QS kernel estimator (nonprewhitened
or prewhitened) will be used.

@

ordard=mas+3; @ Order of AR representation for
Durbin’s method @

@The following four variables control the QS kernel estimator.@

st=0; @ A scalar to control the bandwidth parameter for the QS kernel.



if st=0, then an automatic bandwidth estimator is used.
if st/=0, then st is used as the bandwidth parameter.@

wav=ones(nmr,l); @mmr by 1 vector; weights given to the
a-th element of z(t)w(t) for the automatic bandwidth estimator
(used only if st=0). @

maxd=0; @ scalar:
if maxd=0, then nonprewhitened HAC with the QS kernel is used.
if maxd>0, then the elements of DeltalS with the absolute
value greater than maxd is replaced by maxd. See Andrews
and Monahan's (1990) footnote 4. @

bst=10e+5; @ scalar:
When automatic bandwidth parameter is calculated to be bigger than
bst, bst is used. @

@ See MINQUAD.SET for the following globals @
hflag=2;
dfpflag=1,;
sstol=le-25;
@ See MAXMUM.DOC on MODULEY9 of GAUSS for the following globals @
gradtol=le-5;
btol=le-5;
typf=1;
typb=1;

@ AR o b e S s S s S S S sk s e kb st e b e ke ko @

@ --------m-- Step 3: READING IN DATA ----comocammmi i i meecaaon @

(@ A S S s s sk s ok ok s ks s s ol st o ok Sk sk ok sk sk e sk ok s sk sk ok bk ok @

load nw[178,1]=qwages92.dat;

load ¢1nf176,2]=gqnrnd91.dat;

load cls[176,2]=qnrs91.dat;

load mpopl[541,2]=mpop92.dat;

load mret([780,6]=mret.dat;

load nrfr[781,11]=rskfr9l.dat;

nrfr=exp(nrfr{251:781,8} .*nrfr[251:781.,10)/36500);
@exp(r*NDM/365), gross return@

nrfr=reshape(nrfr,177,3);

nrfr=nrfr[.,3];

vwrv=mret{253:780,2]; @vwrv ex post monthly retrun, 253 is 1947 Jan.@

vwrv=1l+vwrv; @gross retrun@

vwrv=reshape(vwrv,176,3);

vwr=vwrv/[.,1] . *vwrv[.,2].*vwrv].,3]; @gross quarterly return@

mpopl=mpopl,/1000000;
clv=cln+cls; @ NDS@

@ 2. Transform the data if necessary @

@ real per capita consumption @
mpopl=mpopl[.,2]; @mpopl[.,2]; 16+@
popul=reshape (mpopl[1l:nob*3] nob,3);
popul=meanc(popul’); (@ave. over each quarter@

cl=clv[l:nob,2]./popul[l:nob];
pl=clv[l:nob,1]./clv[1l:nob,2];

clstr=cl[2:nob,.]./cl[l:nob-1,.];
c2str=cl{3:nob,.]./cl[l:nob-2,.];
cmlstr=cl[l:nob-1,.]./cl[2:nob,.];



vwr=vwr[2:nob,.].*pl[l:nob-1,.]./pl{2:nob,.];
rfr=nrfr(2:nob,.].*pl{l:nob-1,.]./pl{2:nob, .];

clear popul;

@Conventional Instruments@
zpv=ones(tend,l)~clstr[taubeg-1:tauend-1,.]~vwr|[taubeg-1:tauend-1,.];
i=1;
do until i>(izlag-1);

zpv=zpv~clstr| (taubeg-1-1i):(tauend-1-1i),.]~

vwr[ (taubeg-1-i):(tauend-1-1i),.];

i=i+1;

endo;

zpr=ones(tend,l)~clstr{taubeg-1:tauend-1,.]~rfr|{taubeg-1:tauend-1,.];
i=1;
do until i>(izlag-1);
zpr=zpr~-clstr| (taubeg-1-i):(tauend-1-i),.1~
rfr[(taubeg-1-1i): (tauend-1-i),.];
i=1+41;
endo;

rfr=rfr[taubeg: tauend,.];
vwr=vwr [ taubeg:tauend, . ];

maxcr=maxc(-cl[taubeg:tauend+2}./cl{taubeg-1l:tauend+l]);
lpm=(le+20)*ones(tend,nmr);

proc hu(b); @ scale by 14b[1]*b[2] for identification@
local wv,wr,slstr,sZ2str,hr,bca;
bca=b[3];
if b[2])<=maxcr;
hr=1pm;
goto lhue;
endif;
slstr=((cl[taubeg+l:tauend+l]+b[2]*cl|[taubeg:tauend])./(cl[taubeg:tauend]+
b[2]*cl[taubeg-1:tauend-1]))"(-bca);
s2str=((cl{taubeg+2:tauend+2]+b[2]*cl[taubeg+l:tauend+l])./(
cl[taubeg:tauend]+b[2]*cl[taubeg-1:tauend-1]))"(-bca);
wv=(b[1l]*(slstr+b[1l]*b[2]*s2str) .*vwr-1-b[1]*b[2]*slstr)/(1+b[1]*b[2]);
wr=(b[1l]*(slstr+b[1l]*b[2]*s2str) . *rfr-1-b[1l]*b[2]*slstr)/(1+b[1]*b[2]);
hr=((zpv.*wv)~(zpr.*wr));
if b[2]>1;
hr=hr*((b[2]-1)"2+1);
endif;
if b[3]>10;
hr=hr*((b[3]-10)"2+1);
endif;
lhue:
retp(hr);
endp;
@==========— The User does not have to change the code below.

@--------mmeeee e Print results of estimation-----------ccenoc---- @
proc (0)=prntrslt(x,s);

--------------- Minimization Results ----ccoceomacmeoan-
Step size: " s "
Value of the objective function: " vof "



@ ************************************************************************ @
@ THE PROGRAM STARTS @

chi=gmm(gradname,tend,nmr,mas,rows(bgm),zero,maxitegm,st,wav,maxd,bst);

output off:



APPENDIX D

4/15/93
10:43:58
GMMHF . QUT
Another example for GMM.SET

GMMHF . EXP OUTPUT

NDS, VWR and T-Bill,

Parameter Names are 'delta al alpha

izlag, taubeg, tauend= 1.0000000 2.0000000 174.00000

Initial values of the coefficients= 0.99000000 0.0000000
1.0000000

mas= 1.0000000

Initial WO=I

Scaling Constant used for first iteration= 0.076028592

initial function value is 0.090980311

------------- Iteration number 1.0000000 ---------vennn-

Step Size 0.0078125000

Value of objective function 0.089432048

Current parameter values: 0.99267138 0.95315187 1.6545734

Current relative gradients: 4.5712001 0.00013778674 0.017144551

Outer product used for Hessian: DFP=1, Outer Prodct=2

------------- Iteration number 30.000000 -------e-amnmnn-

Step Size 5.9604645e-08
Value of objective function
Current parameter values:
Current relative gradients:

Outer product used for Hessian:

------------- Iteration number
Step Size 1.1920929%e-07
Value of objective function
Current parameter values:
Current relative gradients:

0.071751996

1.0247420 1.0028508
5.4346460 0.0017315558
DFP=1, Outer Prodct=2
31.000000 ---c-eemmnonn-

0.071751992
1.0247419
5.4346452

1.0031844
0.0019591130

DFP update used for inverse hessian: DFP=1, Outer Product=2

------------- Iteration number
Step Size 1.0000000
Value of objective function
Current parameter values:
Current relative gradients:

60.000000

0.070449701
1.0280224
2.0644055e-05

1.0032910
1.0345819e-08

DFP update used for inverse hessian: DFP=1, Outer Product=2

---------------- Minimization Results ---------cccommmmnennn

Step size: 0.00024414063

Value of the objective function:

Minimiser is 1.0280224

------- For next GMM iteration

All the zero restirictions are successfully imposed on WO

max(|difference])= 12454519,
initial function value is 26.469544
------------- Iteration number 1.0000000 --ccnvencnncon-
Step Size 0.00097656250
Value of objective function 26.456596
Current parameter values: 1.0302650 1.0032955
Current relative gradients: 22.986583 0.045668719

0.070449701
1.0032910

DFP update used for inverse hessian: DFP=1, Outer Product=2

------------- Iteration number
Step Size 1.0000000
Value of objective function

7.0000000

21.203747

10.004849

9.3120601
0.014564150

9.3120548
0.014564275

10.004849

.5463404e-08

10.004749
1.0230552



Current parameter values: 1.0086573 1.0245790 7.1094594

Current relative gradients: 161.14324 0.24397764 1.1150644
DFP update used for inverse hessian: DFP=1, Outer Product=2

------------- Iteration number 8.0000000 -------ee------

Step Size 1.0000000

Value of objective function 20.189136

Current parameter values: 1.0028921 1.0245696 5.9687827
Current relative gradients: 159.20589 0.21201631 0.99962075
Outer product used for Hessian: DFP=1, Outer Prodct=2

------------- Iteration number 9.0000000 --m-----e------

Step Size 0.031250000

Value of objective function 18.419779

Current parameter values: 1.0027720 0.29787395 5.9259664
Current relative gradients: 202.68132 0.23829092 1.0986074
Outer product used for Hessian: DFP=1, Outer Prodct=2

------------- Iteration number 15.000000 ---------------

Step Size 1.0000000

Value of objective function 6.6430220

Current parameter values: 1.0070075 -0.093629141 3.8547589
Current relative gradients: 8.5847885e-06 4,9228143e-05 7.3148572e-07

Outer product used for Hessian: DFP=1, Outer Prodct=2

--------------- Minimization Results --------cemccnmn-noo--
Step size: 1.0000000

Value of the objective function: 6.6430220

Minimiser is 1.0070075 -0.093629127 3.8547589

GMM ITERATION 2.0000000
b= 1.0070075 -0.093629127 3.8547589
s.e.= 0.0099678404 0.15214721 2.3389047
chi square= 6.6430220 ( 0.084189543 )
d.f.= 3.0000000
difference in prob. value from last GMM iteration-= 99.915810
(1/sqrt(T))g(b)= 0.15359365 0.15380531 0.16005698
-0.076226805 -0.076684594 -0.076148060
s.e.= 0.069957386 0.069878801 0.072419149
0.034360428 0.034594806 0.034315846
scaling const used is 0.076028592
------- For next GMM iteration
All the zero restirictions are successfully imposed on WO -------

max(|difference|)= 55715343,
initial function value 1is 19.268267
------------- Iteration number 1.0000000 ---------c-nn---
Step Size 1.0000000
Value of objective function 9.1171447
Current parameter values: 1.0156587 -0.21836827 5.1801459
Current relative gradients: 899.82199 21.076705 2.6768330
Outer product used for Hessian: DFP=1, Outer Prodct=2
------------- Iteration number 5.0000000 ---------------
Step Size 1.0000000
Value of objective function 7.1443271
Current parameter values: 1.0155299 -0.17128018 5.1644763
Current relative gradients: 0.00031960792 0.00019761956 1.1660495e-05

Outer product used for Hessian: DFP=1, Outer Prodct=2

--------------- Minimization Results --------=-------------
Step size: 0.25000000
Value of the objective function: 7.1443271



Minimiser is 1.0155299 -0.17128018 5.1644762

GMM ITERATION 3.0000000
b= 1.0155299 -0.17128018 5.1644762
s.e.= 0.0065164995 0.057433479 1.7169752
chi square= 7.1443271 ( 0.067437113 )
d.f.= 3.0000000
difference in prob. value from last GMM iteration= 0.016752430
(1/sqrt(T))g(b)= 0.19998023 0.20057936 0.20518189
-0.029286731 -0.029350813 -0.029289354
s.e.= 0.081711267 0.081825990 0.084504590
0.016054372 0.016167746 0.016116591
scaling const used is 0.076028592
OMEGA is not positive definite when
calculated with zero restrictions.
------ For next GMM iteration Durbin’s Method used for WO -------

Order of AR used= 4.0000000
Order of MA used= 1.0000000

max (|difference|)= 46683901.
initial function value is 6.8646894
------------- Iteration number 1.0000000 ---------------
Step Size 1.0000000
Value of objective function 6.4038977
Current parameter values: 1.0103916 -0.19037374 3.9982885
Current relative gradients: 94.003057 2.2208629 0.13164446
Outer product used for Hessian: DFP=1, Outer Prodct=2

GMM ITERATION 4.0000000

b= 1.0103165 -0.19479256 3.9810898

s.e.= 0.0083642287 0.11324665 2.0986082

chi square= 6.4018232 ( 0.093615814 )

d.f.= 3.0000000

difference in prob. value from last GMM iteration= 0.026178701
(1/sqrt(T))g(b)= 0.19270069 0.19332983 0.19949788

-0.038004028 -0.038048013 -0.037941580
s.e.= 0.082426710 0.082538468 0.085191484
0.020085773 0.020184989 0.020109717
scaling const used is 0.076028592

OMEGA is not positive definite when
calculated with zero restrictions.
------ For next GMM iteration Durbin’s Method used for WO -------

Order of AR used= 4.,0000000
Order of MA used= 1.0000000
max( |difference|)= 3550828.6
initial function value is 6.4307647
------------- Iteration number 1.0000000 -------r---em--
Step Size 1.0000000
Value of objective function 6.4053565
Current parameter values: 1.0110239 -0.18831134 4.0851279
Current relative gradients: 47.457550 0.057880021 0.16338760
Outer product used for Hessian: DFP=1, Outer Prodct=2
------------- Iteration number 3.0000000 -------eee-o---
Step Size 1.0000000
Value of objective function 6.4053553
Current parameter values: 1.0110256 -0.18837702 4.0855692
Current relative gradients: 5.2255106e-05 4.7735722e-05 3.2083291e-06

Outer product used for Hessian: DFP=1, Outer Prodct=2



--------------- Minimization Results -------w---"-c-cm-oo-vn-

Step size: 1.0000000
Value of the objective function: 6.4053553
Minimiser is 1.0110256 -0.18837702 4.0855694
GMM ITERATION 5.0000000
b= 1.0110256 -0.18837702 4.0855694
s.e.= 0.0080947569 0.095868927 2.0544765
chi square= 6.4053553 ( 0.093470727 )
d.f.= 3.0000000
difference in prob. value from last GMM iteration=  0.00014508730
(1/sqrte(T))g(b)= 0.19652630 0.19715297 0.20326612
-0.034090395 -0.034136036 -0.034022080
s.e.= 0.083760512 0.083893233 0.086772461
0.016996128 0.017062567 0.016981345

scaling const used is 0.076028592



