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GAMES OF FAIR DIVISION
Abstract

We consider the problem of fairly allocating an indivisible good to one of several
agents equally entitled to it when monetary compensations to the others are possible.
Our primary normative concept is no—envy. First, we show that there is no
non-manipulable selection from the no—envy solution. Then we study the direct
revelation games associated with subsolutions of the no—envy solution. The set of
equilibrium allocations of any one of them coincides with the set of envy—free

allocations for the true preferences.
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1. Imtroduction. It is now well understood that on many economic domains of
interest, any allocation rule satisfying minimal efficiency and distributional requirements
is subject to manipulation: configuration of preferences exist such that, assuming that
all but one agent announce their preferences truthfully, the last agent can gain by
misrepresenting his. A great variety of such results have been established.

However, the natural follow-up question is rarely asked: if a rule is manipulable,
how manipulable is it? Assuming now all agents to behave strategically, how far will
the rule take us from the allocations it would have selected under truthful behavior?
It is widely believed that manipulation will often cause efficiency to fail, even if the
rule was designed to select efficient allocations, as most rules of interest do, and that
in addition the distributional objective the rule embodies will not be attained. But few
studies of these issues have actually been undertaken. A notable exception is Hurwicz
(1978), who studies the manipulability of the Walrasian rule. Thomson (1984, 1987,
1988) analyzes the manipulability of classes of rules satisfying efficiency and individual
rationality, or equity, requirements. An important literature devoted to the
manipulability of planning procedures, most of which focusing on the equilibria of
"instantaneous" games played at each step of the procedure, should also be mentioned,
as well as several contributions to the manipulability of solutions to the matching
problem; references here are Roth (1984), Gale and Sotomayor (1985), and Zhou
(1991b). The object of the present paper is to pursue this line of research.

Specifically, we consider the problem of fairly allocating a single indivisible good to
one of several agents assumed to have equal rights on this good, monetary transfers
being available to compensate the agents that do not receive the good. Our central
normative concept is no-envy (Foley, 1967): an allocation is envy—free if no agent
prefers the bundle of anyone else to his own. Since the set of envy—free allocations is
often large, (just like the set of individually-rational allocations, in situations where an

initial allocation is given) a problem of selection arises. This problem was addressed



by Alkan, Demange and Gale (1991), Tadenuma and Thomson (1991a,b, 1993), and
Aragones Alabart (1990) who proposed a variety of selections, advocating some of them
on the basis of intuitive considerations of fairness, and deriving others from axiomatic
considerations. Instead of having to study the manipulability of each possible selection,
we will be able, however, to establish results that hold for all selections.

Indeed, after showing that no subsolution of the no—envy solution is immune to
manipulation, we ask how manipulable such allocation rules are likely to be. We prove
that all of them are equivalent under manipulation: given any two such solutions, the
sets of equilibrium allocations of their associated manipulation games are identical.
Moreover, this (common) set of equilibrium allocations is the set of envy—free
allocations for the true preferences!

One negative conclusion to be drawn from our analysis is that the search for
appealing selections from the no—envy solution is rendered totally moot by strategic
behavior.

But on the positive side, our results indicate the need to go beyond the
impossibility theorems that are common in the literature on strategy—proofness. These
theorems only state that the list of truthful announcements is not an equilibrium of the
direct revelation game associated with a given solution. When we ask, What are the
equilibria, then? we find that in some situations, they can be identified and that the
associated equilibrium allocations still bear an interesting relation to the allocations that
were intended. Some, in fact the main, properties of the solution may well be
preserved.

In order to establish these results, we have to develop equilibrium notions that are
appropriate for games with an outcome correspondence (as opposed to function). In
general, equilibrium can be defined in several ways for such games and one should

expect the results to depend on which equilibrium notion is used. However, in the



present situation, no ambiguity arises from having to work with an outcome

correspondence.

2. The Model There are two goods. One is indivisible (job, house, contract) and
can be attributed to only one agent. The other is infinitely divisible and can be used
for compensations. We refer to it as "money". There is a set N = {1,...,n} of agents.
For each i € N; the consumption space of agent i is the set of pairs (6;,m,) € {0,1}R:
(0,m,) is the bundle containing only m, units of money and (1,m;) is the bundle made
up of the object together with m, units of money. Note that no restriction in sign is
imposed on the consumption of money. For each i € N, agent i’s preference ordering
R, (with associated indifference and strict preference relations denoted by I, and P,
respectively) is assumed to be continuous and strictly monotonic in money and to
satisfy the following "compensation assumption": for all 6i, 6{ € {0,1}, 6i # 5{ and for
all m, € R, there is m{ such that (§,m.)L(6;,m{). Let & be the class of all such
preference orderings. Let M be the amount of money available. We assume M to be

known and fixed. Therefore, an economy is completely specified by a list R € %~ A
Jeasible allocation is a list z = (), .y = (6,m,);c € [{0,1},R]" such that 1% (6,m;) =

(LM): & = 1if agent i is the "winner" and & = 0 if agent i is a "loser".! Let Z
be the set of feasible allocations. A solution is a correspondence ¢: & — 7 that
associates with each R € %" a non—empty subset of Z. Each of the points in @(R) is
interpreted as one desirable way of allocating the resources.

Let P be the Pareto solution P(R) = {z € Z|3 z’ € Z with [V i € N, z{R.z,

and [3i € N s.t. Z{Pizi]},

This model has been considered by Luce and Raiffa (1957), Kolm (1972), Crawford and
Heller (1979), van Damme (1987), Moulin (1989), and Tadenuma and Thomson (1993).
A related model is obtained by assuming that there are arbitrary numbers of indivisible
goods and agents. That model was analyzed by Svensson (1983, 1988), Maskin (1987),
Alkan, Demange and Gale (1991), Tadenuma and Thomson (1991a,b), and Aragones
Alabart (1990).



The fairness notion that we consider is well-known (Foley, 1967): z € Z is

envy—free for R € Z*if for all i, j € N, zR.z.. Let F(R) be the set of envy—free

J.
allocations of R.

Under the assumptions on preferences made above, there always exist envy—free
allocations. (This follows from Alkan, Demange and Gale, 1991; a direct proof is given
in Tadenuma and Thomson, 1993). Also, it is easy to see that any envy-free
allocation is efficient. (This follows from Svensson, 1983). The following useful facts
concerning the structure of the set of envy—free allocations are discussed in Tadenuma
and Thomson (1993): this set can essentially (i.e. up to permutations of bundles
leaving all agents indifferent) be parameterized by how much money the winner
receives. There is indeed an interval [w,w] of amounts of money received by the
winner at allocations in F(R). The allocation attributing (1,w) to him and
(0,(M-w)/(n-1)) to each of the losers is the worst for him and the best for the losers
in that set, whereas the opposite holds for the allocation attributing (1,w) to him and
(0,(M—-w)/(n-1)) to each of the losers. The former is obtained when the winner is
indifferent between what he receives and what each of the losers receives. At the
latter, (at least) one of the losers is indifferent between what he receives and what the
winner receives. Given z € F(R), we sometimes designate by m_ the amount of
money received by the winner at z, and by m, the amount of money received by each
of the losers; we also write z_ = (1,m_) and z, = (0,m,).

It follows from the above paragraph that for most economies, there is a continuum
of (non Pareto-indifferent) envy-free allocations, and the pfoblem of selection arises. A
variety of approaches to this problem can be taken. As mentioned earlier, several
authors have defined selections from the no—envy solution and motivated them on the
basis of elementary considerations of fairness. In Tadenuma and Thomson (1993), we
followed an axiomatic approach and looked for selections satisfying alternative sets of

conditions. These conditions led to characterizations of a certain single-valued solution



that will be discussed again in section 5. Here, however, we do not commit ourselves
to a particular solution. Instead, we establish results that hold for arbitrary selections

of the no-envy solution.

3. The manipulability of solution correspondences. Let ¢: A'—7 be a solution. If ¢
is manipulable, we would like to ascertain the extent of its manipulability. We
propose to do this by identifying the set of equilibrium allocations of a "manipulation
game" associated with ¢ in a natural way. In this game, strategies are preference
announcements and the outcome corresponding to a given list of announcements is
obtained by applying ¢ itself. Such games are often called "direct revelation games".
Our objective is to identify strategy combinations satisfying the usual best response
property and to describe the resulting outcomes in terms of the true preferences.
However, a difficulty immediately comes up: ¢ may not be single—valued. In fact,
most solutions in economics are not single-valued. How should the notion of a "best
response” be defined then?2 There are of course some cases where ¢ is, if not
single-valued, at least "essentially" single—valued: if two allocations are @-optimal for
some economy i.e. z, z° € p(R) for some R € A", then they are Pareto-indifferent:
z;Lz! for all i € N. However, Pareto-indifference of the elements of ¢(R) holds for the
list of announced preferences R, but not in general for the list of true preferences. So,
even then, the problem of multi-valuedness has to be confronted. Thomson (1984,
1987, 1988) studies the manipulability of solutions in classical exchange economies and
proposes several extensions of the notion of a Nash equilibrium to deal with this
problem. It turns out that in some interesting situations, only one equilibrium notion

survives a natural test described in the next paragraph.3 This will be the case here as

2Note that for simplicity, we still use the term "game" in spite of the multivaluedness
of .

3Such a situation is described in Thomson, 1988.



well. Therefore we will define only that notion and provide a justification for its use
in a lemma (Lemma 3).

Let (R,z) € #\Z with z € ¢(R) be given. Given R € 4, i € N, and R € &,
the notation (R{,R ) designates the list R after the replacement of its ith component
R, by R{. Say that (R,z) is a Nash equilibrium of the game ( %", p) played in RY ¢
A% if for all i € N, for all R{ € & with R # R, and for all 2/ € p(R{,R_), 2.R}z:.
A possible difficulty with this definition is that it may be too restrictive. It
disqualifies any pair (R,z) such that for some z € ¢(R{,R ), ziP(i)zi’ although there
might be many other allocations z" € go(R; ’R—i) such that ziP(i)z'i'. Then, one should
perhaps not expect agent i to think that R{ is a better response than Ri against R—i‘

Of course, this will depend on how these comparisons of sets are made. However, we

need not be concerned about this possibility here: indeed, if a strategy R{ € R is

0
-7

i % then in fact some

available to agent i € N so that for some z’ € ¢(R{,R ), 2P
other strategy R{ € % is also available to him such that for all z" € ¢(R},R_),
z'i'P(i)zi (this is the content of Lemma 3). So R, could certainly not be considered to

be a best response, and our equilibrium notion is indeed justified.

4. The main results. Say that a solution ¢ on %" is manipulable if for some economy
RY € A", and for all allocations z € <p(RO), some agent i € N has available a strategy
R, € % such that he would strictly prefer all allocations z’ € tp(Ri,Rgi) to z according
to his true preferences R(i). This is the definition used by Hurwicz (1972).

The first main result of this paper (Theorem 1) is an impossibility of a form with
which many readers will be familiar: on our domain, there is no non—manipulable
subsolution of the no—envy solution. A special case of this result for the two-agent
case was established by Alkan, Demange and Gale (1991). For economic environments,
the first theorem of that kind was established by Hurwicz (1972): in 2-person classical

exchange economies, there is no non-manipulable subsolution of the individually rational



and efficient solution. Of particular relevance here is the following result: in 2-person
classical exchange economies there is no non—manipulable subsolution of the envy—free
and efficient solution (Thomson, 1987). A recent result, also for 2—person classical
exchange economies, is due to Zhou (1991a). It implies both Hurwicz’s and
Thomson’s impossibilities. The most general result of this kind is due to Barbera and
Jackson (1991).

The second main result of this paper (Theorem 2) is that all selections from the
no—envy solution are equivalent from the viewpoint of manipulation. For each
economy, the set of equilibrium allocations of the manipulation game associated with
any such selection played in that economy coincides with its set of true envy-free

allocations.

Lemma 1 and Lemma 2 below describe simple but very useful implications of
no-envy. For each R, € A, let m_(R;), m/R,) € R be such that
(1,m_(R;))L(0,m/(R;)) and m_(R;)+(n-1)m/(R;) = M.# Since each R, is continuous
and strictly monotone with respect to the consumption of the divisible good and
satisfies the compensation assumption, m_(R;) and m (R,) exist and are unique.
Lemma 1. For all R € &, for all i € N, and for all z € F(R), either z, = (0,m,) for
m, > m/R,) or z; = (Lm,) for m; > m_(R,).

Proof Let Re &, z € F(R) and i € N be given. Recall that for the losers not to
envy each other, they should receive the same amount of money. Suppose now that z;

= (0,m;) for m; < m,(R,). Then, the winner receives m = M—(n-1)m, > m_(R;) so
that (1’mw)Pi(l’mw(Ri))Ii(O’mZ(Ri))Pi(o’mi) and agent i envies him.

4For readers familiar with Kolm’s (1972) method of identifying the set of envy—free
allocations in 2-person classical exchange economies, the set {Fl m_(R;)), (0 ;m/(R.))} is

the counterpart of agent i’s "envy boundary".



Suppose next that z, = (Lm,) for m; < m_(R;). Then, any loser j € N\{i}
receives an amount m; > m/R;) so that (O’mj)Pi(O’ml(Ri))Ii(l’mw(Ri))Pi(l’mi)’ and
agent i envies him.

Q.E.D.
Lemma 2. Let R € & and z € F(R). Let i € N be the winner at z. Then

(i) m (R, = mllx\} m (R) and m_(R,) < m; < I;l;lll m (Rj) and

(ii) ma)ic mg(Rj < m, < m[R,)
Proof: Suppose that m_(R;) > min mw(Rj). Then there is k € N, k # i, such that
jeN

m (R,) < m_(R,) and z; = (0,m;). By Lemma 1, m, > m_(R;) and m, > m/(R,)
> m/R,). But then z is not feasible. Thus, m_(R;) = I;lé 11\1T mw(Rj).

Let h € N, h # i be an agent such that mw(Rh) = m;xll mW(Rj). if m, >

m_(R;), then m; < m/R;), contradicting Lemma 1.

)
By Lemma 1, mZ(Rj) < m,foral je N, j# i Hence, 1;1:): ml(R <m, Hm,
> m/R,), then m; < m_(R,), which contradicts Lemma 1.

Q.E.D.

Theorem 1. There is no non—-manipulable subsolution of the no-envy solution.

Proof Let ¢ C F be given and let RV € & be such that there is a non—degenerate
interval of amounts of money received by the winner at points of F(RO) (that is, w <
w). We show that at any z € (p(RO), there is at least one agent who can gain by
cheating, assuming all others tell the truth. Let i € N be the winner at z.

0 - 0 —
Case 1. For all j € N, 34, zPJ ; Let m = 1;1;111 mw(Rj)’ Note that m > m_.

Let R, € & be such that m_(R,) = (mw+ﬁw)/2. By Lemma 2, for all z’ ¢

F(Ri,REi), z{ = (L,m{) for m{ > m_(R,) > m_, and Z{P(i)zi’ Therefore agent i can

benefit from cheating.



Case 2. There ts j € N such that zjlgzi. Since F(RO) is non degenerate, ziP(i)zj and

0
w Let Rj € & be such that mw(Rj) = (m+m_(R/))/2 (and ml(Rj) =

0 ’ 0 ’ — ’ ’
(m4m,R;))/2). By Lemma 2, for all z* € F(Rj,R_j), 25 = (O,mj) for m? > mZ(Rj)

0
m_(R;) < m

> m, and z :iP?zj. Therefore agent j can benefit from cheating.

Q.E.D.

The next lemma provides the justification for the equilibrium notion that we will
use in the analysis of the manipulation games.
Lemma 3. Let R € &',z € F(R) and i € N be given. If there are R{ € & and 3
€ F(R{,R ) such that z;P)z, then there is R} € & such that for all 2" € F(R!,R ),
z'i'P(i)zi.
Proof We distinguish two main cases.
Case 1. Agent i i3 a loser at z
Subcase la. Agent i is the winner at z’: z{ = (l,mi) for some m:. Let agent j be

i
’ M 0 ’ 0 . 0
Therefore m{ < m_. Since (l’mw)Ri(l’mi)Pi(O’mi)’ it follows that m/R.) > m..

the winner at z. Then mw(Rj) < m_. By Lemma 2, we have m{ < mw(Rj)‘

Let RY = R{. Then by Lemma 1, for all z" € F(RJ,R ), either 2! = (0,m!) for m!

> ml(R(i)) > my, or z{ = (Lm{) for m{ > mW(R?). In either case z'i'P(i)zi.

Subcase 1b. Agent i is a loser at 2’. z{ = (0,m{) for m{ > m,. Let agent j be the

] ’ ’ " ny .
winner at z/. Then mW(Rj) < mj < my. Let RY € & be such that m_(RY) =

(m:]-+mw)/2 > mw(Rj). It follows from Lemma 2 that for all z" € F(R},R ), z} =

(0,m{) for m¥ > m(R}) > m, and z'i'P‘iJzi.

Case 2: Agent i is the winner at z”. The analysis of this case being parallel to that
of Case 1 is relegated to the appendix.
Q.E.D.



10

Let E(p(RO) = {(B2) € #Z | z € pR) and V,, VR{ € A with R; # R, V 2 ¢
o(R{,R_,), ziR(i)zi} be the set of Nash equilibria of the game ( %,y) played in RO, and
E:;(RO) = {z € Z|3R e & such that (Rz) ¢ E (p(RO)} be the corresponding set of
Nash equilibrium allocations.

Lemma 2 silows that an agent who has the lowest m_(R;) is the winner at an
envy-free allocation. If there are more than one such agent, then we call the winner
the tie—break winner. In this case, if agent i is the tie-break winner, the amount of
money he receives must be equal to m_(R.) by Lemma 2.

The next property of solutions is that any agent can be the tie-break winner for
some preference profile at any level of money.

Non—discrimination. For all i € N, for all m; € R, there exist R ¢ A, jEN, j#i

and z € p(R) such that my = m_(R,) = mw(Rj) = Ilr(léll\} m_(R,), and z, = (1,m)%.

We are now ready for our second main result, stating the equivalence under
manipulation of all subsolutions of the no—envy solution satisfying non discrimination.
Theorem 2. Let ¢: A — 7 be a subsolution of the no—envy solution satisfying
non—discrimination. Then the set of Nash equilibrium allocations of the direct
revelation game associated with ¢ played in each economy in #* coincides with the set
of envy—free allocations of that economy. |
Proof: Let RO ¢ 4" and z € F(RO). Let i € N be the winner at z. By
non—discrimination, there exist R € &, and j € N, j # i such that m, = mw(Ri) =

mw(Rj) = lecléll\lI m_(R,) and z € ¢(R).

(1) Let R € & Ifm (Rf) <m = mW(Rj), then by Lemma 2, for all z’ €
7 4 7 e 4 ’ — 0 ’
p(R{,R) € F(R{,R), z{ = (1,m{) for some m{ < mW(Rj) = m,. Thus zR/z{. If

5This property is weaker than complete indifference defined in the next section. Combined
with no-envy, it is also weaker than the following property:

Neutrality: If z €p(R) and z/ is obtained from z by a permutation of the bundles that
leaves all the agents just as well as before(we call it an "indifferent permutation"), then z’
€ p(R). Neutrality is defined and used in Tadenuma and Thomson (1991a).
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m_(R{) > m,, then again by Lemma 2, for all - € ¢(R{,R) C F(R{,R ,), either z
= z; or z{ = (0,m{) for some m{ < ml(Rj) = m, In the latter case, since z €
F(RO), ziR?(O,ml)R(i)(O,m{). Therefore, agent i cannot gain by switching from R, to
R:.

(i) Let k € N, k # i, and R € & If m_(R{) < m;, then for all z" ¢ AR{R_) €
F(R{,R_;), either z{ = 7 or z; = (1,my) for some m;{ < m_(R,) = m,. In the latter
case, since z € F(R?), 5 RzR)z;. 1 m_(R{) > m,, then for all 2’ € p(R{,R ;) C
F(R{,R_;), z{ = (0,m}) for some m{ < m,R,) = m, Thus szl(:zl’(. Therefore,
agent k cannot gain by switching from R, to R{.

Conversely, let R ¢ & and (R,z) € E(P(RO). Suppose that z ¢ F(RO). Since z
€ ¢(R) C F(R), the losers at z receive the same bundles and therefore cannot envy
each other according to their true preferences. Suppose now that some agent i € N
R(i)—envies some agent j € N. Note that (1,mW(R(i)))I?(O,mZ(R?))P?zi. By Lemma 1, if
z’ € <p(R(i),R__i) C F(R?,R_i), either z{ = (0,m{) for some m{ > ml(R(i)) or z{ =
(Lm{) for some m{ > mw(R(i)). Therefore, by switching from R; to R(i), agent i can
guarantee an allocation that he strictly prefers to z; according to R(i), which contradicts
(Ryz) € E (p(RO).

Q.E.D.

Note that since F(RO) £ 0 for al RV ¢ A , the first part of the proof also
establishes the existence of a Nash equilibrium of the direct revelation game associated
with ¢.

In fact, we will show next that no group of agents can profitably deviate. A pair

(R,z) € ®Z with z € p(R) is a strong Nash equilibrium of the game (2", ¢) played in

R’ e " if there is 1o S C N, S # 0, such that for some Rg = (R{), g with Ry #
RS, for some z’ € go(Ré,R_S) and for alli € S, ziP(i)Zi'

Theorem 3. Same as Theorem 2 with strong Nash equilibrium replacing Nash

equilibrium.
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Proof. We claim that the pair (R,z) considered in the first part of the proof of
Theorem 2 is also a strong Nash equilibrium of the direct revelation game associated
with .6 To see this, suppose that there is S C N with |S| > 2 such that for some
R§ = (Rf);cg with Rg # Rg, for some z* € p(RgR g) and for all j € S, zJP(J)J Let
k € N be the winner at z’. Since |S| > 2, at least one agent in S, say agent h,
must be a loser at z. Because z € F(RO) and zl'ngzh, we have my = mj > m,
Then, by feasibility, m{ = m/ < m_. Since z € F(R'), z,Pz;. Thus k ¢ S. By
Lemma 1, m{ > m_(R;) > m_(R,) = m_, a contradiction.
Q.E.D.
Thus the set of strong Nash equilibrium allocations of the game also coincides with

the set of envy—free allocations. For a general study of such "double implementation"

in Nash and strong Nash equilibrium, we refer the reader to Suh (1993).

5. Implementing the no—envy solution. In this section, we establish a useful
implication of Theorem 2 for the implementation of the no—envy solution.

The following property of solutions has been central in the study of
implementation. A solution ¢ is monotonic if whenever an allocation is ¢-optimal for
some economy,’ it remains p-optimal for the economy obtained by changing preferences
in such a way that the allocation does not fall in anybody’s estimation. Let Zi be the
set of consumptions that are the ith component of some feasible allocation (here Zi =
{0,1},R). Given z € Z, R’ € A is obtained from R € &* by a monotonic
transformation ot z if for all i, {z{ € Z| zR{z{} D {z{ € Z;| zR.z!}.

Monotonicity (Maskin, 1977): For all R, R’ € &', for all z € p(R), if R’ is obtained

from R by a monotonic transformation at z, then z € p(R’).

6We would like to thank a referee for pointing this out to us. Tatamitami (1992)
independently made the same observation.

TWe say that "z is p-optimal for R" if z € ¢(R).
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It is easy to see that the no—envy solution is monotonic (and that under our
assumptions so is the Pareto solution). We show next that there is essentially no
proper subsolution of the no—envy solution that is. We write "essentially" because this
result also involves the following very natural and mild condition of complete
indifference (it is met by all the solutions that have been discussed in the literature):
if an allocation is such that all agents are indifferent between all of its components,
then it is p—optimal.®
Complete indifference: For all R € &, for all z € Z, if for all i, j €N, ZiIiz
€ ¢(R).

Lemma 4. If a solution satisfies monotonicity and complete indifference, then it

i then z

contains the no-envy solution.

Proof Let ¢: S — Z be a correspondence satisfying monotonicity and complete
indifference. Let R € & and z € F(R) be given. Let R’ € & be such that for all
i, j € N, ziI{z.. By complete indifference, z € p(R’). Also, R is obtained from R’ by

a monotonic transformation at z. By monotonicity, z € ¢(R).

Q.E.D.

Let ¢: & — 7 be a solution. Say that ¢ is implementable (in Nash equilibrium)
if there exists a game form (S,h), where S = Syx-S, and h: § — Z such that for
each economy R € %', the set of Nash equilibrium allocations of (S,h) played in R
coincides with ¢(R). Maskin (1977) showed that if ¢ is implementable, then ¢ is
monotonic. He also showed that monotonicity, together with a certain condition of no
veto power (if an alternative is at the top of the preferences of all but possibly one
agents, then it is p-optimal), are sufficient conditions for ¢ to be implementable. His

proof is constructive. He provided an algorithm that produces for each implementable

8Note that such an allocation, being envy-free, is efficient.
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solution, a game that does implement it. In the present context, no veto power is
vacuously satisfied, since there is no alternative satisfying the hypothesis of the
condition. Also, as already pointed out, the no—envy solution is monotonic. Therefore,
it is implementable. However, Lemma 4 implies that essentially no proper subsolution
of the no—envy solution is implementable.

In order to implement the no—envy solution, we could of course use the game that
results by operating Maskin’s algorithm. Unfortunately, in this game, strategies are
complicated since they include a complete description of the economy. Several authors
(Saijo, 1988, McKelvey, 1989)% have succeeded in reducing the complexity of Maskin’s
strategy spaces but the strategy spaces they use remain complex. We show next how
the no—envy solution can in our context be implemented by a game in which each
agent announces a single number. This notion of implementation is of course based on
the variant of the concept of Nash equilibrium used in the previous analysis.

This simple implementation is obtained as a corollary of Theorem 2, by noting
that it applies to a particular selection from the no-envy solution whose computation
requires the knowledge of only one number for each agent. This solution was obtained
by Tadenuma and Thomson (1993) in an axiomatic study of the problem of selection.
It can be characterized on the basis of certain consistency and population—monotonicity
conditions.1’® It is defined by systematically picking the envy-free allocation at which
the amount of money of the winning bundle is smaller than at any other envy-free
allocation.

Definition. Given R € &, ¢*(R) = {z € F(R)| m < me foral z” € F(R)}.

9Saijo (1988) has agents announce the preferences of two agents, an allocation, and an
integer. In McKelvey (1989)’s simplest game, each agent announces a lower contour
set, an allocation, and an integer.

10 Consistency says that the departure of some of the agents with their allotted bundles
does not affect the desirability of the distribution of the remaining resources among the
remaining agents. Population—monotonicity says that the arrival of additional agents
with equally valid claims on the existing resources as those of the agents originally
present affect all of these agents in the same direction: they all lose or they all gain.
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Alternatively, z € ¢*(R) if z; = (Lm_(R,)) for i € N such that m_(R;) <
mW(Rj) for all j € N and z; = (O’ml(Ri)) for all j € N, j # i. In order to define ¢*,
only one number is required of each agent i € N, namely mW(Ri).11 Given all the
desirable properties satisfied by ¢*, it is, of course, a great disappointment that it
should be manipulable. However, it permits the following very simple implementation
of the no—envy solution.

Corollary to Theorem 2. The no—envy solution is implemented by the direct revelation
game associated with ¢*. In that game, each agent is required to announce a single

number. 12

6. Concluding comments. We have shown that under manipulation, all selections from
the no—envy solution behave identically. The negative aspect of this conclusion is that
the problem of selection has no solution immune to manipulation. The positive aspect
is that the allocations obtained at equilibrium do satisfy the no—envy condition for the
true preferences. As a result, our basic distributional objective of no—envy is attained
and since here no-envy implies efficiency, manipulation does not lead to violations of
efficiency, contrarily to what might have been expected.

These conclusions should reinforce our initial statements. Most of the literature on

the problem of manipulation has consisted of general results of the kind: there is no

11The allocations selected by <p are "egalitarian—equivalent" allocations in the sense of Pazner
and Schmeidler (1978)

12The solution tp is. smgle—-valued only up to mdlfferent permutatlons The following selection
is a single—valued solution satisfying non—dlscnmﬁﬁ"tlon when n > 3. Given R ¢ A, let S(R)

**
={i e N | m_(R,) = Ilr(un m_(R,)} I S(R) {i} for some i € N, let ¢ (R) be the
eN

* *%
unique allocation in ¢ (R)* at which agent i is the winner. If S(R) = {1,n}, let ¢ (R) *E)ke
the unique allocation in ¢ (R}Z at which agent 1 is the winner. In all other cases, let ¢ (R)

be the unique allocation in ¢ (R) at which the agent with the largest index in S(R) is the
winner.
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solution such that in its induced direct revelation game, it is always in the interest of
each agent to tell the truth if all other agents already do. The next question, What
happens if all agents manipulate? is rarely addressed. The answer to fhis question is
sometimes much less disappointing. This is certainly the case in the model examined

here.
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APPENDIX

2. Completion of the proof of Lemma 2.
Case 2. Agent i is the winner at 2

Subcase 2a: Agent i is a loser at z’, i.e. z{ = (0,m{) for some m{. Let agent j be

the winner at z’. By Lemma 2, m{ < mt’(Rj)' Since agent j is a loser at z, m, >
’ 1 0 ’ 0 0
m[(Rj). Therefore, m{ < m, Since (O’ml)Ri(O’mi)Pi(l’mi)’ then m_(R;) > m,. Let

R = R) and 2" € F(R!,R_). By lemma 1, if 2! = (1,m}), then m} > m_(R]) and

. 0 . 0
if 2§ = (0,m}), then m{ > m/R;). In either case, 2P z,.

Subcase 2b: Agent i is the winner at 2z, ie. z{ = (l,mi) for m{ > m,. By Lemma

’ . 3 L] " ) — ,
2, m{ < mw(Rj) for all j € N, j# i. Let R} € & be such that m_(R{) = (m;+m{)/2.
Then, m, < mW(R'i') <m{ < mw(Rj) for all j € N, j# i. If follows from Lemma 2
that for all 2" € F(R},R ), z} = (Lm}) for m{ > m_(R}) > m,, and z{ P?zi.
Q.E.D.
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