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1. Introduction

The owner of an enterprise wants to put it in the hands of a manager. The
profits of the enterprise will depend both on the actions of the manager as well as
the environment within which he operates. The owner cannot directly monitor the
agent’s action nor can he costlessly observe all relevant aspects of the environment.
This situation may also last a number of successive periods. The owner and the
manager will have to agree on how the manager is to be compensated, and the
owner wants to pick a compensation mechanism that will motivate the manager to
provide a good return on the owner’s investment, net of the payments to the
manager. This is the well-known "principal-agent" problem with moral hazard.
Some other principal-agent relationships in economic life are: client-lawyer,
customer—supplier, insurer—insured and regulator-public utility.!

The principal-agent relationship embodies a special form of moral hazard,
which one might call "one-sided", but moral hazard can also be "many-sided".
The paradigmatic model of many-sided moral hazard is the partnership, in which
there are many agents but no principal. The output of the partnership depends
jointly on the actions of the partners and on the stochastic environment; each
partner observes only the output (and his own action) but not the actions of the
other partners nor the environment. This engenders a free-rider problem. As in

the case of principal-agent relationships, a partnership, too, may last many periods.2

The insurer—insured relationship is the ome that gave rise to the term '"moral
hazard" and the first formal economic analysis of moral hazard was probably given
by Arrow (1963, 1965).

2More complex informational models can be formulated for both the principal-agent
as well as the partnership framework; models in which some agents obtain
(incomplete) information about the environment or the actions of others. We do
not directly discuss these generalizations although many of the results that follow
can be extended to these more complex settings (see also the further discussion in
Section 6). Note too that we do mnot treat here an important class of
principal-agent models, the "adverse selection" models. The distinction between
moral hazard and adverse selection models is that in the former framework, the



In Section 2 we present the principal-agent model formally.  Section 3
discusses some salient features of optimal principal-agent contracts when the
relationship lasts a single period. The first main point to make here is that in a
large class of cases an equilibrium in the one-period game is Pareto-inefficient.
This is the well-known problem involved in providing a risk—averse agent insurance
while simultaneously giving him the incentives to take, from the principal’s
perspective, appropriate actions. We also discuss, in this section, other properties
of static contracts such as monotonicity of the agent’s compensation in observed
profits.

In Section 4 we turn to repeated moral hazard models. Section 4.1 discusses
some known properties of intertemporal contracts; the main points here are that an
optimal contract will, typically, reward the agent on the basis of past performance
as well as current profits. Furthermore, although a long—term contract allows
better resolution of the incentives-insurance trade—off, in general, some of the
inefficiency of static contracts will persist even when the principal-agent
relationship is long-lived. However, if the principal and agent are very patient,
then almost all inefficiency can, in fact, be resolved by long-term contracts — and,
on occasion, simple long—term contracts. These results are discussed in Section 4.2.

Many-sided moral hazard is studied in Section 5. The static partnership
model is discussed in Section 5.1. The main focus here is on the possible
resolution of the free-rider problem when the partners are risk-neutral. We also
discuss some properties of optimal sharing rules, such as monotonicity, and the

effect of risk—aversion on partners’ incentives. Again, in general, static partnership

principal is assumed to know all relevant characteristics of the agent (i.e., to know
his "type") but not to know what action the agent chooses whereas in the latter
model the principal is assumed not to know some relevant characteristic of the
agent although he is able to observe the agent’s actions. (See Section 6 for a
further discussion).



contracts are unable to generate efficiency. This motivates a discussion of repeated
partnership models. Such a model is a special case of a repeated game with
imperfect monitoring; indeed results for repeated partnerships can be derived more
readily from studying this more general class of games. Hence in Section 5.2 we
present known results on the characterization of equilibria in repeated games with
imperfect monitoring.

It should be noted that the principal-agent framework is in the spirit of
mechanism design; the principal chooses a compensation scheme, i.e., chooses a
game form in order to motivate the manager to take appropriate actions and
thereby the principal maximizes his own equilibrium payoff. The static partnership
model is similarly motivated; the partners’ sharing rule is endogenous to the model.
In contrast, one can take the compensation scheme or sharing rule as exogenously
given, i.e., one can take the game form is given, and focus on the equilibria
generated by this game form. In the second approach, therefore, a moral hazard
or partnership model becomes a special case of a game with imperfect monitoring.
This is the approach used in Section 5.2.

Section 6 brings together additional bibliographical notes and discusses some

extensions of the models studied in this paper.

2.  The Principal-Agent Model
2.1 The Static Model

A static (or stage-game) principal-agent model is defined by the quintuple
(A,0,G,U,W). A is the set of actions that the agent can choose from. An action
choice by the agent determines a distribution, ¢(a), over output (or profit) G; G €
G. The agent’s action is unobservable to the principal whereas the output is
observable. The agent is paid by the principal on the basis of that which is

observable; hence, the compensation depends only on the output and is denoted



I(@) = I U will denote the utility function of the agent and its arguments are
the action undertaken and the realized compensation; U(a,l).  Finally, the
principal’s payoff depends on his net return G - I and is denoted W(G - I).
(Note that G and I are real-valued).

The maintained assumptions will be:
(A1) There are only a finite number of possible outputs; Gl’Giz""Gn'
(A2) The set of actions A is a compact subset of some Euclidean space.
(A3) The agent’s utility function U is strictly increasing in I and the principal’s
payoff function W is also strictly increasing.

A compensation scheme for the agent will be denoted Il"'In' Furthermore,
with some abuse of notation, we will write (pj(a) for the probability that the
realized output is Gj’ j = 1,.n, when the action taken is a.

The time—structure is that of a two-move game. The principal moves first
and announces the compensation function I. Then the agent chooses his action,
after learning I. The expected utilities for principal and agent are, respectively,

) wj(a)W(Gj—Ij) and ¥ (,oj(a)U(a,Ij). The principal-agent problem is to find a
J J
solution to the following optimization exercise:

~

Max .~ ¥ p.(a)W(G-L) (2.1)
Ty,-Ipa ) J 3
n
5.t % o ()UL) 2 % ga)U(al), VaeA  (2.2)
iV eyt j
) wj(&)U(;,Ij) > U (2.3)
j

The constraint (2.2) is referred to as the incentive—constraint; the agent will
only take those actions that are in his best interest. ~Constraint (2.3) is called the
individual-rationality constraint; the agent will accept an arrangement only if his

expected utility from such an arrangement is at least as large as his outside option



U. The objective function, maximizing the principal’s expected payoff, is, in part,
a matter of convention. One interpretation of (2.1) is that there are many agents
and only one principal, who consequently gets all the surplus, over and above the
outside options of principal and agent, generated by the relationship.3

If there is a U such that (a*I*) is a solution to the principal-agent problem,
then (a*I*) will be called a second-best solution. This terminology distinguishes
(a*I*) from a Pareto-optimal (or first—best) action-incentives pair that maximizes

(2.1) subject only to the individual-rationality comstraint (2.3).

2.2 The Dynamic Model

In a repeated principal-agent model, in each period t = 0,1,..T, the
stage-game is played and the output observed by both principal and agent; denote
the ouput realization and the compensation paid, G(t) and I(t) respectively. The
relationship lasts for T (< ) periods, where T may be endogenously determined.

The public history at date t, that both principal and agent know, is h(t) =

(G(0),1(0),... G(t-1),1(t-1)), whereas the private history of the agent is h (t)
(a(0), G(0),1(0),...a(t-1),G(t-1),I(t-1)). A strategy for the principal is a sequence of
maps ap(t), where ap(t) assigns to each public history, h(t), a compensation
function I(t). A strategy for the agent is a sequence of maps o (t), where o (t)
assigns to each pair, a private history ha(t) and the principal’s compensation

function I(t), an action a(t). A strategy choice by the principal and agent

3An alternative specification would be to maximize the agent’s expected payoffs
instead; in this case, the constraint (2.3) would be replaced by a constraint that
guarantees the principal his outside option. Note furthermore the assumption,
implicit in (2.1)=(2.3), that in the event of indifference the agent chooses the action
which maximizes the principal’s returns. This assumption is needed to ensure that
the optimization problem has a solution. A common, albeit informal, justification
for this assumption is that, for every e > 0, there is a compensation scheme similar
to the one under consideration in which the agent has a strict preference and which
yields the principal a net profit within € of the solution to (2.1)2.3).



induces, in the usual way, a distribution over the set of histories (h(t),ha(t)); the
pair of strategy choices therefore generate expected payoffs for principal and agent
in period t; denote these W(t;op,aa) and U(t;ap,aa). Lifetime payoffs are

evaluated under discount factors 5p and 504’ for principal and agent respectively,

T T
{ ) frrrs. .
and equal (1—6p)t£0 5pW(t,ap,aa) and (1—6a)t£0 6aU(t,ap,aa). The dynamic
principal-agent problem is:4
T " ~
Max - - ; .
Uax . (1 §p)t£0 6p W(t,ap,aa) (2.4)
p’ ‘a
T ¢ . T "
8.5 (1—(5a)t§0 5aU(t;ap,aa) > (1—5a)t20 5aU(t;ap,aa), Vo, (2.5)
T i o
(1—6a)t20 5aU(t;ap,aa) > U (2.6)

The incentive—constraint is (2.5) whereas the individual-rationality constraint
is (2.6). Implicit in the formulation of the dynamic principal-agent problem is the
idea that principal and agent are bound to the arrangement for the contract length
T. Such a commitment is not necessary if we require that a) the continuations of
o, must satisfy (2.5) and (2.6) after all private histories h (t) and principal’s
compensation choice I(t), and b) that the continuations of 7, must solve the

optimization problem (2.4) after all public histories h(t).

3. Analyses of the Static Principal-Agent Model

It is customary to assume that an agent, such as the manager of a firm, is

4In the specification that follows, we add the principal’s (as well as the agent’s)
payoffs over the contract horizon 0,..T only. If T is less than the working lifetime
of principal and agent, then the correct specification would be to add payoffs over
the (longer) working lifetime in each case.  Implicit in (2.5)~(2.6) is the
normalization that the agent’s aggregate payoffs, after the current contract expires,
are zero. The principal’s payoffs have to include his profits from the employment
of subsequent agents. It is straightforward to extend (2.4) to do that and in
Section 3.2 we will, in fact, do so formally.



more risk-averse than the principal, such as the shareholder(s). From a first—best
perspective, this suggests an arrangement between principal and agent in which the
former bears much of the risk, and indeed, if the principal is risk-neutral, bears all
of the risk. However, since the agent’s actions are unobservable, the provision of
such insurance may remove incentives for the agent to take onerous, but profitable,
actions that the principal prefers. The central issue consequently, in the design of
optimal contracts under moral hazard, is how best to simultaneously resolve
(possible) conflicts between insurance and incentive considerations.

To best understand the nature of the conflict imagine, first, that the agent is
in fact risk-neutral. In this case first—best actions (and payoffs) can be attained
as second-best outcomes, and in a very simple way. An effective arrangement is
the following: the agent pays the principal a fixed fee, independent of the gross
return, but gets to keep the entire gross return for himself. (The fixed fee can be
interpreted as a "franchise fee.") This arrangement internalizes, for the agent, the
incentives problem and leads to a choice of first—best actions. Since the agent is
risk—neutral, bearing all of the risk imposes no additional burden on him.5

On the other hand, imagine that the agent is strictly risk—averse whereas the
principal is risk-neutral. Without informational asymmetry, the first—best
arrangement would require the principal to bear all of the risk (and pay the agent
a constant compensation). However, such a compensation scheme only induces the
agent to pick his most preferred action. If this is not a first—best action, then we
can conclude that the second-best payoff for the principal is necessarily less than

his first—best payoff. These ideas are formalized as:

Proposition 3.1: i) Suppose that U(a,.) exhibits risk—neutrality, for every acA

5The above argument is valid regardless of whether the principal is risk-neutral or
risk—averse.



(and the principal is either risk-averse or risk-neutral). Let (aplp) be any
first—best pair of action and incentive scheme. Then, there is a second-best
contract (a*,I*¥) such that the expected payoffs of both principal and agent are
identical under (ap,ly) and (a*,1*).

ii) Suppose that U(a,.) exhibits strict risk-aversion for every a€A, and
furthermore that the principal is risk-neutral. Suppose at every first-best action,
ap a) <pj(aF) > 0, j=1,.n, and b) for every I’ there is a’€A such that U(a’,I’)
> U(a.F,I’). Then, the principal’s expected payoffs in any solution to the

principal-agent problem is strictly less than his expected first—best payoff.

Proof: i) Let (aF,IF) be a first—best pair of action and incentive scheme and
let the average retained earnings for the principal be denoted G — I = EJJ cpj(aF)(Gj
- IjF)' Consider the incentive scheme I* in which the agent pays a fixed fee G -
T to the principal, regardless of output. Since the agent is risk-neutral, his utility
function is of the form, U(al) = H(a) + K(a)l. Simple substitution then
establishes the fact that Uapl*) = U(ap,lp).  Hence, the new compensation
scheme is individually rational for the agent. Moreover, since the principal is not

risk-loving, his payoff under this scheme is at least as large as his payoff in the

first-best solution; W(G — 1) > X <pj(auF)W(Gj - IjF)' The scheme is also
J

incentive compatible for the action ap For suppose, to the contrary, that there is

an action a’ such that H(a’) + K(a’)[thj(a’)Gj -G - 1] > H(ap) + K(ap)L
J

Then there is evidently a fixed fee G — T + ¢, for some € > 0, that if paid by
the agent to the principal, constitutes an individually rational compensation
scheme. Further, the principal now makes strictly more than his first—best payoff;
and that is a contradiction.

(ap.I*) is a pair that satisfies constraints (2.2) and (2.3) and yields the

principal at least as large a payoff as the first-best. Since, by definition, the



second—best payoff cannot be any more than the first—best payoff, in particular the

two payoffs are equal and equal to that under (aF,I*), W(G - 1).6

ii) Let (a*I*) be a solution to the principal-agent problem. If this is also a

solution to the first—best problem, then, given the hypothesis, wj(a*) > 0, j=1,..n,
*

and principal and agent attitudes to risk, it must be the case that Ij = 1., = I¥

for all j,j’. But then, by hypothesis, a* is not an incentive—compatible action.o?

Proposition 3.1ii) strongly suggests that whenever the agent is risk—averse,
there will be some efficiency loss in that the principal will provide incomplete
insurance, in order to maintain incentives. The results we now turn to provide
some characterization of the exact trade—off between incentives and insurance in a
second—best contract. The reader will see, however, that not too much can be
said, in general, about the optimal contract. Part of the reason will be the fact
that although, from an incentive standpoint, the principal would like to reward
evidence of "good behavior" by the agent, such evidence is linked to observable
outputs in a rather complex fashion.

Grossman and Hart (1983) introduced a device for analyzing principal-agent
problems that we now discuss.  Their approach is especially useful when the

agent’s preferences satisfy a separability property; U(a,I) = H(a) + V(I).# Suppose

6A corollary to the above arguments is clearly that if the principal is risk—-averse,
while the agent is risk-neutral, then the wunique first (and second) - best
arrangement is for the agent to completely insure the principal.

TWhether or not there is always a solution to the principal-agent problem is an issue
that has been discussed in the literature. Mirrlees (1974) gave an example in which
the first—best payoff can be approximated arbitrarily closely but cannot actually be
attained. Sufficient conditions for a solution to the principal-agent problem to exist
are given, for example, by Grossman and Hart (1983).

8Grossman and Hart admit a somewhat more general specification; U(a,]) = H(a) +
K(a)V(I) where K(a) > 0. That specification is equivalent to the requirement that
the “agent’s preferences over income lotteries be independent of his action. See
Grossman and Hart (1983) for further details.
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also that the principal is risk-neutral and the agent is risk-averse.® Now consider
any action a € A and let C(a) denote the minimum expected cost at which the

principal can induce the agent to take this action, i.e.

C(a) = Min ?goj(a)V_l(Vj) (3.1)
VeV
s.t. H(a) + E_(pj(a)vj > H(a") + z(pj(a/)vj Va’ (3.2)
J J
H(a) + )?goj(a)vj > U (3.3)
J

where v = V(Ij). (3.2) and (3.3) are simply the (rewritten) incentive and
individual rationality constraints and the point to note is that the incentive
constraints are linear in the variables ViV Furthermore, if V is concave, then
the objective function is convex and hence we have a convex programming
problem.10  The full principal-agent problem then is to find an action that

maximizes the net benefits to the principal, );tpj(a) Gj - C(a).
J
Although the (full) principal-agent problem is typically not convex, analysis

of the cost—minimization problem alone can yield some useful necessary conditions
for an optimal contract. For example, suppose that the set of actions is, in fact,

finite. Then the Kuhn-Tucker conditions yield:!!

9Since Proposition 3.1 has shown that a risk-neutral agent can be straightforwardly
induced to take first-best actioms, for the rest of this section we will focus on the
hypothesis that the agent is, in fact, risk—averse.

10The earlier literature on principal-agent models replaced the set of incentive
constraints (2.8) by the single constraint that, when the compensation scheme Il"'In

is used, the agent satisfies his first-order conditions at the action a. That this
procedure is, in general, invalid was first pointed out by Mirrlees (1975). One
advantage of the Grossman and Hart approach Iis, of course, that it avoids this
"first—order approach'".

11The expression that follows makes sense, of course, only when <pj(a) > 0 and V is
differentiable.
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4 ja)

[V’(Ij)] = A +a§#a pwa’ ) (1 - —7——3— (3.4)
where ), pu(a’), are (non-negative) Lagrange multipliers associated with,
respectively, the individual rationality and incentive constraints (one for each a’#a).
The interpretation of (3.4) is as follows: the agent is paid a base wage, A, which is
adjusted if the j-th output is observed. In particular, if the incentive constraint
for action a’ is binding, p(a’) > 0, then the adjustment is positive if and only if
the j-th output is more likely under the desired action a, than under a’.

One further question of interest is whether there are conditions under which
the optimal contract is momotonically increasing in that it rewards higher outputs
with larger compensations; if we adopt the convention that outputs are ordered so
that G < GJ 110 the question is, (when) is Ij < Ij +1? This question makes sense
when "hlgher" inputs do, in fact, make higher outputs more likely. So suppose
that A ¢ R (for example, the agent’s actions are effort levels) and, to begin with,
that a’ > a implies that the distribution function corresponding to a’ first—order
stochastically dominates that corresponding to a.

Now although the first—order stochastic monotonicity condition does imply
that higher outputs are more likely when the agent works harder, we cannot
necessarily infer, from seeing a higher output, that greater effort was in fact

expended. The agent’s reward is conditioned on precisely this inference and since

the inference may be non—monotone so might the compensation.!2 Milgrom (1983)

12For example, suppose that there are two actions, a; > ag and three outputs, Gj’
j=1,..3, G < G . Suppose also that the probability of G1 is positive under
both actlons but the probabilty of G is zero when action ay is employed (but
positive under a2). It is obvious that 1f action ay is to be implemented, then the
compensation, if G2 is observed, must be the lowest possible. Here the posterior
probabilty of ay, given the higher output G2, is smaller than the corresponding
probabilty when the lowest output G1 is observed.
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introduced into the principal-agent literature the following stronger condition under

which higher output does, in fact, signal greater effort by the agent:

Monotone Likelihood Ratio Condition (MLRC): If a’ > a, then the likelihood
Y3 (a’)

ratio is increasing in j.
TPT aT‘ 5 g J

J

Under MLRC, the optimal compensation scheme will indeed be monotonically
increasing provided the principal does in fact want the agent to exert the greatest
effort. 'This can be easily seen from (3.4); the right-hand side is increasing in the
output level. Since V"1 is convex, this implies that Vj’ and hence Ij’ is increasing
in j. If, however, the principal does nmot want the agent to exert the greatest
effort, rewarding higher output provides the wrong incentives and hence, even with
MLRC, the optimal compensation need not be monotone.l3  Mirrlees (1975)
introduced the following condition that, together with MLRC, implies monotonicity:

(let F(a) denote the distribution function corresponding to a)

Concavity of the Distribution Function (CDF): For all a, a’ and 0 € (0,1),
F(fa + (1-0)a’) first-order stochastically dominates 0F(a) + (1-0)F(a’).

It can be shown by standard arguments that, under CDF, the agent’s
expected payoffs are a concave function of his actions (for a fixed monotone
compensation scheme). In turn this implies that whenever an action :; yields the
agent higher payoffs than any a < ;, then, in fact, it yields higher payoffs than

all other actions (including a > a). Formally, these ideas lead to:

Proposition 3.2 (Grossman and Hart (1983)): Assume that V is strictly concave
and differentiable and that MLRC and CDF hold. Then a second-best incentive

scheme (I;,...I ) satisfies I, < Iy < ...

3Note that if p(a’)>0, for some a>a, then (3.4) shows that on account of this
incentive constraint the right-hand side decreases with j.
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Proposition 3.2 shows that the sufficient conditions on the distribution
functions for, what may be considered, an elementary property of the incentive
scheme, monotonicity, are fairly stringent. Not surprisingly, more detailed
properties, such as convexity, are even more difficult to establish. The arguments
leading to the proposition have, we hope, given the reader an appreciation of why
this should be the case, namely the subtleties involved in inverting observed
outcomes into informational inferences.

One other conclusion emerges from the principal-agent literature: optimal
contracts will be, in general, quite delicately conditioned on the parameters of the
problem. This can be appreciated even from an inspection of the first—order
condition (3.4). This is also a corollary of the work of Holmstrom (1979) and
Shavell (1979). These authors asked the question: if the principal has available
informational signals other than output, (when) will the optimal compensation
scheme be conditioned on such signals? They showed that whenever output is not
a sufficient statistic for these additional signals, i.e. whenever these signals do yield
additional information about the agent’s action, they should be contracted upon.
Since a principal, typically, has many sources of information in addition to output,
such as evidence from monitoring the agent or the performance of agents who
manage related activities, these results suggest that such information should be
used; in turn, this points towards quite complex optimal incentive schemes.

However, in reality contracts tend to be much simpler than those suggested
by the above results. To explain this simplicity is clearly the biggest challenge for
the theory in this area. Various authors have suggested that the simplicity of

observable schemes can be attributed to some combination of: a) the costs of

4Grossman and Hart (1983) do establish certain other results on monotonicity and
convexity of the optimal compensation scheme. They also show that the results can
be tightened quite sharply when the agent has available to him only two actions.
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writing and verifying complex schemes, b) the fact that the principal needs to
design a scheme that will work well in a variety of circumstances and under the
care of many different agents and c) the long-term nature of many observable
incentive schemes. Of these explanations it is only c) that has been explored at
any length. Those results will be presented in the next section within our

discussion of dynamic principal-agent models.

4.  Analyses of the Dynamic Principal-Agent Model

In this section we turn to a discussion of repeated moral hazard. There are
at least two reasons to examine the nature of long-term arrangements between
principal and agent. The first is that many principal-agent relationships, such as
that between a firm and its manager or that between insurer and insured or that
between client and lawyer/doctor are, in fact, long-term. Indeed, observed
contracts often exploit the potential of a long—term relationship; in many cases the
contractual relationship continues only if the two parties have fulfilled prespecified
obligations and met predesignated standards. It is clearly a matter of interest then
to investigate how such observed long-term contractual arrangements resolve the
trade—off between insurance and incentives that bedevils static contracts.

A second reason to analyze repeated moral hazard is that there are
theoretical reasons to believe that repetition does, in fact, introduce a rich set of
incentives that are absent in the static model. Repetition introduces the possibility
of offering the agent intertemporal insurance, which is desirable given his aversion
to risk, without (completely) destroying his incentives to act faithfully on the
principal’s behalf. The exact mechanisms through which insurance and incentives
can be simultaneously addressed will become clear as we discuss the available
results. In Section 4.1 we discuss characterizations of the second—best contract at

fixed discount factors. Subsequently, in Section 4.2 we discuss the asymptotic case
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where the discount factors of principal and agent tend to one.

4.1 Second-Best Contracts

Lambert (1983) and Rogerson (1985a) have established necessary conditions
for a second-best contract. We report here the result of Rogerson; the result is a
condition that bears a family resemblance to the well-known Ramsey—FEuler
condition from optimal growth theory. It says that the principal will smooth the
agent’s utilities across time-periods in such a fashion as to equate his own
marginal utility in the current period to his expected marginal utility in the next.
We also present the proof of this result since it illustrates the richer incentives
engendered by repeating the principal-agent relationship.15

Recall the notation for repeated moral hazard models from Section 2.2. A
public (respectively, private) history of observable outputs and compensations
(respectively, outputs, compensations and actions) up to but not including period t
is denoted h(t) (respectively, ha(t)). Denote the output that is realized in period
Gj' Let the period t compensation paid by the principal, after the public history
h(t) and then the observation of Gj be denoted Ij‘ After observing the private
history ha(t) and the output/compensation realized in period ¢, Gj/Ij’ j=1,...n, the
agent takes an action in period t+1; denote this action aj. Denote the output
that is realized in period t+1 (as a consequence of the agent’s action aj) Gk’
k=1,..n. Finally denote the compensation paid to the agent in period t+1 when

this output is observed Ijk’ j=1,..n, k=1,...n.

Proposition 4.1 (Rogerson (1985a)): Suppose  that  the  principal  is
risk-neutral and the agent’s utility function is separable in action and income. Let

0,0 ) be a second-best contract. After every history (h(t),h (t)), the actions
p « «

15This proof of the result is due to James Mirrlees.
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taken by the agent and the compensation paid by the principal must be such that

)
vt = 7 B gVt e 6

Proof: Pick any history pair (h(t),ha(t)) in the play of (ap,aa). As before let v
*
= V(Ij). Construct a new incentive scheme %, that differs from I, only after

* *
(h(t),ha(t)) and then too in the following special way: Vi T V5 Vik = Vik for all

* * y
k and j#j, but vj = vj -5, vjk = Vi + —(—5—; where y lies in any small interval

around zero. In words, in the contract a;, after the history (h(t),Gj), the
principal offers a utility "smoothing" of y between periods t and t+1.

It is straightforward to check, given the additive separability of the agent’s
preferences that the new scheme continues t0 have a best response of T the
agent’s utility is unchanged (and therefore, the scheme is individually rational).
Since (ap,aa) is a solution to the principal-agent problem, % is, in fact, the least
costly scheme for the principal that implements o, (a la Grossman and Hart
(1983)). In particular, y=0 must solve the principal’s cost minimization exercise
along this history. The first—order condition for that to be the case is easily

verified to be (4.1).16 O

Since the principal can be equivalently imagined to be providing the agent
monetary compensation, Ij’ or the utility associated with such compensation Vj’
V_l(v) can be thought to be the principal’s "utility function™. Equation (4.1), and

the proof of the proposition, then says that the principal will maintain

16£n the above argument it was necessary for the construction of the incentive scheme
o that the principal be able to offer a compensation strictly lower than min(IJ.,Ijk),

j=1,.m, k=1,.n. This, in turn, Is possible to do whenever there is unbounded
liabilty which we have allowed. If we restrict the compensations to be at least as
large as some lower bound I, then the argument would require the additional

dition that min (I.I.) > L
condition that min ( i _]k) I
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intertemporal incentives and provide insurance so as to equate his (expected)
marginal utilities across periods.

An immediate corollary of (4.1) is that second-best compensation schemes will
be, in general, history—dependent; the compensation paid in the current period will
depend not just on the observed current output, but also on past observations of
output. To see this note that if Ijk’ the compensation in period t+1, were
independent of period t output, Ijk = Ijk for j#j, then the right—hand side of (4.1)
is itself independent of j and hence so must the left-hand side be independent of j.
If V is strictly concave this can be true only if Ij = Ij for j#j. But we know that
a fixed compensation provides an agent with perverse incentives, from the
principal’s viewpoint.1”  History—dependence in the second-best contract is also
quite intuitive; by conditioning future payoffs on current output, and varying these
payoffs appropriately in the observed output, the principal adds a dimension of
incentives that are absent in static contracts (which only allow for variations across
current payments).

An unfortunate implication of history—dependence is that the optimal contract
will be very complex, conditioning as it ought to on various elements of past
outputs. Such complexities, as we argued above, fly in the face of reality. An
important question then is whether there are environments in which optimal
contracts are, in fact, simple in demonstrable ways. Holmstrom and Milgrom
(1987) have shown that if the preferences of both principal and agent are
multiplicatively separable across time, and if each period’s utility is representable
by a CARA function, then the optimal contract is particularly simple; the agent

performs the same task throughout and his compensation is only based on current

17The result, that second-best contracts will be history—dependent, was also obtained
by Lambert (1983).
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output.’® Since such simplification is to be greatly desired, an avenue to pursue
would be to examine the robustness of their result within a larger class of

"reasonable preferences."

4.2 Simple Contracts

The second—best contracts studied in the previous sub-section had two
shortcomings: not all of the inefficiency due to moral hazard is resolved even with
long-term contracts and furthermore, the best resolution of inefficiency required
delicate conditioning on observable variables. In this sub-section we report some
results that remedy these shortcomings. The price that has to be paid is that the
results require both principal and agent to be very patient.

The general intuition that explains why efficiency gains are possible in a
repeated moral hazard setting is similar to that which underlies the possibility of
efficiency gains in any repeated game with imperfect monitoring. Since this is the
subject of Section 5.2, we restrict ourselves, for now, to a brief remark. The
lifetime payoffs of the agent (see (2.4)) can be decomposed into an immediate
compensation and a "promised" future reward. The agent’s incentives are affected
by variations in each of these components and when the agent is very patient,
variations in future payoffs are (relatively) the more important determinant of the
agent’s incentives. A long—term perspective allows principal and agent to focus on
these dynamic incentives.

A more specific intuition arises from the fact that the repetition of the

relationship gives the principal an opportunity to observe the results of the agent’s

18Fudenberg, Holmstrom and Milgrom (1990) have shown the result to also hold with
additively ~separable preferences and CARA utility, under some additional
restrictions.  In this context also see Fellingham, Newman and Suh (1986) who
derive first—order conditions like (4.1) for alternative specifications of separability in

preferences. They then show that utility functions obeying CARA and/or
risk—neutrality satisfy these first—order conditions.
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actions over a number of periods and obtain a more precise inference about the
likelihood that the agent used an appropriate action. The repetition also allows
the principal opportunity to "punish" the agent for perceived departures from the
appropriate action. Finally, the fact that the agent’s actions in any one period
can be made to depend on the outcomes in a number of previous periods provides
the principal with an indirect means to insure the agent against random
fluctuations in the output that are not due to fluctuations in the agent’s actions.

We now turn to a class of simple incentive schemes called bankruptcy
schemes. These were introduced and analyzed by Radner (1986b); subsequently
Dutta and Radner (1992) established some further properties of these schemes.

For the sake of concreteness, in describing a bankruptcy scheme, we will refer
to the principal (respectively, the agent) as the owner (respectively, the manager).
Suppose the owner pays the manager a fixed compensation per period, say w, as
long as the manager’s performance is "satisfactory" in a way that we define
shortly; thereafter, the manager is fired and the owner hires a new manager.
Satisfactory performance is defined as maintaining a positive "cash reserve", where
the cash reserve is determined recursively as follows:

Y0 =y
Y=Y+ G -1, t>0 (4.2)

The numbers y, r and w are parameters of the owner’s strategy and are
assumed to be positive.

The interpretation of a bankruptcy scheme is the following: the manager is
given an initial cash reserve equal to y. In each period the manager must pay the
owner a fixed "return", equal to 1. Any excess of the actual return over r is
added to the cash reserve, and any deficit is subtracted from it. The manager is

declared "bankrupt" the first period, if any, in which the cash reserve becomes zero
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or negative, and the manager is immediately fired. Note that the cash reserve can
also be thought of as an accounting fiction, or "score"; the results do not change
materially under this interpretation.

It is clear that bankruptcy schemes have some of the stylized features of
observable contracts that employ the threat of dismissal as an incentive device and
use a simple statistic of past performance to determine when an agent is dismissed.
Many managerial compensation packages have a similar structure; evaluations may
be based on an industry-average of profits. Insurance contracts in which full
indemnity coverage is provided only if the number of past claims is no larger than
a prespecified number is a second example.

The principal’s strategy is very simple; it involves a choice of the triple
(y,w,r). The principal is assumed to be able to commit to a bankruptcy scheme.
A strategy of the agent, say T specifies the action to be chosen after every
history ha(t) — and the agent makes each period’s choice from a compact set A.
Suppose that both principal and agent are infinitely-lived and suppose also that
their discount factors are the same, i.e. 5p = 5a = 6. Let T(aa) denote the
time—period at which the agent goes bankrupt; note that T(aa) is a random
variable whose distribution is determined by the agent’s strategy o as well as the
level of the initial cash reserve y and the required average rate of return r.
Furthermore, T(aa) may take the value infinity.

The manager’s payoffs from a bankruptcy contract are denoted U(aa;y,w,r):

T(o,)

%

U(aa;y,w,r) = (1-6) % 6tU(a(t),w).19 In order to derive the owner’s payoffs we
t=0

shall suppose that each successive manager uses the same strategy. This

assumption is justified if successive managers are identical in their characteristics;

9Implicit in this specification is a normalization which sets the agent’s post contract
utility level at zero.
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the assumption then follows from the principle of optimality.2® Denote the owner’s
payoffs W(y,w,r;aa). Then
Tlog) (o)
W(ywro,) = (1-0E ¥ ¢ [t—w—(1-6)y]+ES [(1=6)y+W(y,w,x;0 )] (43)
t=0
Collecting terms in (4.3) we get
(1—=6)y
1—E6T(7g)

W(ywro,) =1- W - (4.4)

The form of the principal’s payoffs, (4.4), is very intuitive. Regardless of which
generation of agent is currently employed, the principal always gets per period
returns of r — w. Every time an agent goes bankrupt, however, the principal

incurs the cost of setting up a new agent with an initial cash reserve of y. These
(1—6)y
1—E§ T(o a )

expenses, evaluated according to the discount factor §, equal ; note

: Y : .
that as 6 - 1, this cost converges to E—T—Z—U;T, i.e. the cash cost divided by the

frequency with which, on average, this expenditure is incurred. 2t

The dynamic principal-agent problem, (2.2)—(2.4) can then be restated as:

~

Max W(y,w,r0,) (4.5)

(y,w,1)
.. U(oyy,wr) 2 Ulo iy, wr) Vo, (4.6)
U(oywr) 2 O (4.7)

Suppose that the first—best solution to the static model is the pair (aF,WF),
where the agent takes the action ap and receives the (constant) compensation wp.

Let the principal’s gross expected payoff be denoted rp; 1 = ) (,oj(aF)Gj. Since
J

20The results presented here can be extended, with some effort, to the case where
successive managers have different characteristics.

2[n our treatment of the cash cost we have made the implicit assumption that the
principal can borrow at the same rate as that at which he discounts the future.
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the dynamic model is simply a repetition of the static model, this is also the
dynamic first-best solution.

We now show that there is a bankruptcy contract in which the payoffs of
both principal and agent are arbitrarily close to their first—best payoffs, provided
the discount factor is close to 1. In this contract, w = wp, 1 = rF—e/2, for a

small ¢>0, and the initial cash reserve is chosen to be "large".

Proposition 4.2 (Radner (1986b)): For every e¢ > 0, there is 6(¢) < 1 such that
for all § > é(¢), there is a bankruptcy contract (y(6),WF,rF—-e/2) with the property
that whenever the agent chooses his strategy optimally, the expected payoffs for
both principal and agent are within ¢ of the first-best payoffs. It follows that the
corresponding second-best contract has this property as well (even if it is not a

bankruptcy contract).2?

Proof: Faced with a bankruptcy contract of the form (y(&),WF,rF—e/.‘Z), one strategy
that the agent can employ is to always pick the first-best action ap. Therefore,

~

U(o,v(8),w1) > Ulagwp)(1-B6TE)) (4.8)

where T(F) is the time at which the agent goes bankrupt when his strategy is to
use the fixed action action ap. As 61, (l—EéT(F)) converges to Prob.(T(F) = a).
Since the expected output, when the agent employs the action ap, is I and the
amount that the agent is required to pay out is omly rF-—e/2, the random walk
that the agent controls is a process with positive drift. Consequently, Prob.(T(F)
= ©) > 0, and indeed can be made as close to 1 as desired by taking the initial

cash reserve, y(6), sufficiently large (see, e.g. Spitzer (1976, pp. 217-218)). From

22Using a continuous time formulation for the principal-agent model, Dutta and
Radner (1992) are able to, in fact, give an upper bound on the extent of efficiency
loss from the optimal bankruptcy contract, i.e. they are able to give a rate of
convergence to efficiency as § + 1.
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(4.8) it is then clear that the agent’s payoffs are close to the first—best payoffs
whenever § is large.

The principal’s payoff will now be shown to be close to his first-best payoffs
as well. From the derivation of the principal’s payoffs, (4.4), it is evident that a

sufficient condition for this to be the case is that the (appropriately discounted)
(1=6)y

1-E¢ T(o a
factors (or that the representative agent’s tenure, ET(aa), be close to infinity).

expected cash outlay per period, , be close to zero at high discount
y ) &

We demonstrate that whenever the agent plays a best response such is, in fact, a

consequence.  Write U0 for max U(a,wF). Since the agent’s post—bankruptcy
a

utility level has been normalized to 0, the natural assumption is U0>0. Note that

~

Uo(l——E&T(‘;(‘S))) > U(o(6);y,w,1) (4.9)

where T(o(6)) is the time of bankruptcy under the optimal strategy o(6). Hence,

~

v0-rsT @) 5 ylag,wy)a-Be ()

from which it follows that

(1-55T(0(D)y 5 c1-psT(F)) (4.10)
where ¢ = U(aF,wF)/UO. Substituting (4.10) into the principal’s payoffs, (4.4), we
get the desired conclusion; the principal’s payoffs are close to his first—best payoffs,

Ip — Wy provided his discount factor is close to 1. The proposition is proved.?3 0O

In a (constant wage) bankruptcy scheme the principal can extend increasing
levels of insurance to the agent, as &1, by specifying larger and larger levels of

the initial cash reserve y(6§). The reason that this gives a patient agent the

23We have not shown that an optimal bankruptcy contract, i.e. a solution to
(4.5)—(4.7), exists. A standard argument can be developed to do so (for details, see
Dutta and Radner (1992)).
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incentive to take actions close to the first—best is suggested by some results in
permanent income theory. Yaari (1976) has shown that, for some specifications of
bankruptcy, a patient risk-averse agent whose income fluctuates, but who has
opportunity to save, would find it optimal to consume his expected income every
period; i.e. would want and be able to smooth consumption completely. A
bankruptcy scheme can be interpreted as forced consumption smoothing with the
principal acting as a bank; an almost patient agent would like to (almost) follow
such a strategy anyway.2425

The first study of simple contracts to sustain asymptotic efficiency, and
indeed the first analyses of repeated moral hazard, were Radner (1981) and
Rubinstein (1979). Radner (1981) showed that for sufficiently long but finite
principal-agent games, with no discounting, one can sustain approximate efficiency
by means of approximate equilibria. Rubinstein showed in an example how to
sustain exact efficiency in an infinitely repeated situation with no discounting. For
the case of discounting, Radner (1985) showed that approximate efficiency can be
sustained, even without precommitment by the principal, by wuse of review
strategies. Review strategies are a richer version of bankruptcy schemes. In these
schemes the principal holds the agent to a similar performance standard,
maintaining an acceptable average rate of return, but a) reviews the agent
periodically (instead of every period) and b) in the event of the agent failing to

meet the standard, "punishes" him for a length of time (instead of severing the

24There are some delicate issues that we gloss over; the Yaari model is a pure
consumption model (whereas our agent works as well) and bankruptcy as defined in
the finite—horizon Yaari model has no immediate analog in the infinite-horizon
framework adopted here.

25That allowing the agent to save opens up self-insurance possibilities in a repeated
moral hazard model, has been argued recently by a number of authors such as Allen
1985), Malcomson and Spinnewyn (1988) and Fudenberg, Holmstrom and Milgrom
1990). In particular, the last paper shows that, even if the agent runs a franchise,
and is exposed to all short-term risk, he can guarantee himself an average utility
level close to the first—best.
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relationship forever). After the punishment phase, the arrangement reverts to the
normal review phase. The insurance-incentive trade—off in these schemes is similar
to those under bankruptcy schemes.

Radner (1986b) introduced the concept of bankruptcy strategies for the
principal, which were described above, and showed that they yield efficient payoffs
in the limit as the principal’s and agent’s discount factors go to 1. Dutta and
Radner (1992), in a continuous time formulation, provide a characterization of the
optimal contract, within the class of bankruptcy contracts, and establish a lower
bound on the rate at which principal-agent values must go to efficiency as &-1.

Up to this point we have assumed that the principal can precommit himself
to a particular strategy.26  Although precommitments can be found in some
principal-agent relationships (e.g. customer—supplier, client-broker), it may not be a
satisfactory description of many other such relationships. This issue is particularly
problematic in repeated moral hazard contracts since at some point the principal
has an incentive to renege on his commitment (if his continuation strategy does
not solve (4.5)—(4.7) at that history).2” For example, in a bankruptcy contract the
principal has an incentive to remege after the agent, by virtue of either hard work
or luck, has built up a large cash reserve (and consequently will "coast"
temporarily).

A Dbankruptcy (or review) strategy can be modified to ensure that the
principal has no incentives to renege, i.e. that an equilibrium is perfect. One way

to do so would be to modify the second feature of review strategies which was

26The agent need not however commit to his strategy.  Although the incentive
constraint, (4.6) may suggest that the agent is committed to his period 0 strategy
choice, standard dynamic optimality arguments show that in fact all continuations of
his strategy are themselves optimal.

27Note that a (limited) precommitment by the principal is also present in static moral
hazard contracts; the principal has to abide by his announcement of the incentive
scheme after the output consequences of the agent’s action are revealed.
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described above; an agent is never dismissed but principal and agent temporarily
initiate a punishment phase whenever either the agent does mnot perform
satisfactorily or the principal reneges on his scheme.28 We shall not present those
results here since in Section 5.2 we discuss the general issue of (perfect) folk

theorems in games with imperfect monitoring.

5.  Games of Imperfect Monitoring

In the principal-agent model of Sections 2—4 there is only one agent whose
actions directly affect gross return; the moral hazard is due, therefore, to the
unobservability of this agent’s actions. In this section we analyze moral hazard
issues that arise when there are multiple agents who affect gross returns and whose
individual actions are hidden from each other.

The paradigmatic model of many-sided moral hazard is the partnership
model, in which there is no principal but there are several agents — or partners —
who jointly own the productive asset. Any given formula for sharing the return —
or output — determines a game; the partners are typically presumed to choose their
actions in a self-interested way. The equilibria of the static partmership model are
discussed in Section 5.1.

It is not very difficult to see from the above discussion that many-sided
moral hazard is an example of the more general class of games with imperfect
monitoring; indeed, for some of the results that follow it is more instructive to
take this general perspective. So Section 5.2 will, in fact, introduce the general
framework for such games, present results from repeated games with imperfect

monitoring and discuss their implication for the repeated partnership model.

28The standard which the agent is held to, in such a strategy, has to be chosen
somewhat carefully. For details on the construction, see Radner (1985).
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5.1 Partnership Model

A static (or stage—game) partnership model is defined by a quintuple
(Ai,tp,G,Si,Ui; i=1,..m); i is the index for a partner, there are m such partners and
each partner picks actions — e.g. inputs — from a set Ai' Let an action profile be
denoted a; a = (a,l,...am). The partners’ action profile determines a distribution ¢
over the set of possible outputs G. The m—tuple S = (Sl"‘sm) is the
sharing-rule; partner i’s share of the total output is Si(G)' A sharing-rule must
satisfy the balanced budget requirement:
¥ 5,(G) = G, for all G (5.1)
i

The appropriate versions of the assumptions (A1)—(A3) will continue to hold.
In other words, we will assume that the range of G is finite, with <pj(a) denoting
the probability that the realized output is Gj, j=1,..n. Furthermore, each Ai is
compact; indeed in the literature, the partners’ action sets Ai have been assumed
either to be finite or a (compact) continuum. For the results of this subsection,
we will assume the latter; in particular, Ai will be an interval of the real line.29
Given a sharing rule S and the actions of all the partmers, partner i's expected
utility is EUi(Si(G),ai). Note that this expected utility depends on the actions
chosen by the others only through the effect of such actions on the distribution of
the output. Finally, in addition to assuming that Ui is strictly increasing in the
i—th partner’s share, we will also assume that 2 and U(5,(G),.) are differentiable
functions.

An m-tuple of inputs is a Nash equilibrium of the partnership game if mno

partner can increase his own payoff by unilaterally changing his input. An

29A11 of the results discussed in this sub—section continue to hold when Ai is a set

with a finite number of elements.
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efficient m—tuple of inputs is one for which no other feasible input tuple yields
each partner at least as much expected utility and yields one partner strictly more.

Note that since each partner only observes the total output, their individual
compensations can, at most, depend on this realized output. This is precisely what
creates a potential free-rider problem; each partner’s input generates a positive
externality for the other partners and, especially since inputs are unobservable, each
partner may therefore have an incentive to provide too little of his input. Two
questions can then be posed: i) the normative ome: is there a sharing rule under
which the free—rider problem can be resolved in that the equilibria of the
corresponding game are efficient? (This is the subject of Section 5.1). ii) The
positive question: how much of inefficiency is caused by the free-rider problem if
the sharing rule is fixed ex—ante? (This is the subject of Section 5.2).

We begin the discussion of partnership models with the case of risk—neutral
partners. Recall that with one-sided moral hazard, there are efficient
incentive—compatible arrangements between principal and agent when the latter is
risk-neutral even in the static game. The first question of interest is whether this
result can be generalized, i.e., are there sharing rules for risk-neutral partners such
that the Nash equilibria of the resulting partnership game are efficient?

Let U(S,(G).a) = 8.(G) - Q(a;). As is well-known, risk neutrality in this
case implies that utility is transferable. Hence, the efficiency problem can be
written as:

Max ¥ ngpj(a) - ¥ Q(ay) (5.2)
a i

Suppose that a is an interior solution to the efficiency problem (5.2). The

question we are studying can be precisely stated as: is there a sharing rule S that

satisfies the budget-balancing condition (5.1) and has the property that:
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a; € argmax EJJ Si(Gj)goj(ai,a_i) - Q;(ay), Vi (5.3)
An early paper by Holmstrom (1982) suggested an inevitable conflict between
budget balance and efficiency; (5.3) can be satisfied only if (5.1) is sacrificed by

allowing a surplus in some states of the world (¥ Si(Gj) < Gj’ for some j). If it
i

is indeed the case that a residual claimant — or principal — is always required to
ensure efficiency in a partnership model, then we could correctly conclude that
there is an advantage to an organization with separation between owner and
management. As it turns out, the environments in which efficiency and budget
balance are incompatible are limited although they contain the (important)
symmetric case where each partner’s effect on output is identical.

Suppose the distribution of output is affected by the partners’ inputs only
through some aggregate variable; i.e. there are (differentiable) functions g:A-R and

ijIRH[O,l], such that for all j
@j(a) = {J.(O(a)) (5.4)30

Proposition 5.1: Suppose the aggregate effect condition (5.4) holds and suppose
further that 60/ ba; £ 0, for all a, i. Then there does not exist any sharing rules
that both balances the budget and under which an efficient input profile a is a

Nash equilibrium of the partnership game.

Proof: Suppose to the contrary that there is such a sharing rule S. The

first—order conditions for efficiency yield (from (5.2)):

30The condition (5.4) can be shown to be equivalent to the following condition on the
derivatives of the likelihood functions: for any pair of partners (i,i% and any pair of

outputs (j,j) and for all action tuples a, (pji(a)/ wﬁ(a) = gaji(a)/ <pji(a), where wji(a) =
6<pj/ ba.
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B Ge() = QE)E) i 69)
J J 1
where the notation is: ¢’ = 6§j/60(a), Q’ = 6Q;/éa; and 0, = 86/ ba;. Since a is a
j i

Nash equilibrium under sharing rule S, the first-order condition for best response
yields (from (5.3)):

: 5,(6)-€/ (0= = Q/(a)/06) ¥ (50

Note that the right—hand sides of (5.5) and (5.6) are identical. Summing the

left-hand side of (5.5) over the index i yields m.k ij’_ (0(3;)). A similar
J J

summation over the left-hand side of (5.6) yields, after invoking the budget

balance condition (5.1), ¥ ng’_(ﬂ(a)). Since m > 1, the two sums do not agree
J J
and we have a contradiction. o

Remark: When the output is deterministic, i.e. G = 6(a), the aggregate condition
is automatically satisfied.3*  Indeed, this was precisely the case studied by
Holmstrom (1982).  Similarly, if there are only two outcomes the condition is
automatically satisfied as well; this can be seen, for example, from the equivalent
representation for this condition (see footnote 3), that the derivatives of the
likelihood ratios are equal across partners. Finally, if the agents are symmetric in
their effect on output, the aggregate condition is immediate as well.32

Williams and Radner (1989) were the first to point out that in order to
resolve the organization problem, even with risk-neutral partners, it is necessary

that there be some asymmetry in the effect that each partmer’s input has on the

30In this case, ¢ cannot, evidently, be a differentiable function. The appropriate
modification of the proof of Proposition 5.1 is, however, immediate.

32The aggregate condition on output distribution is also at the heart of the Radner,
Myerson and Maskin (1986) example of a repeated game with discounting in which
efficiency cannot be sustained as an equlibrium outcome. This was pointed out by
Matsushima (1989).
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distribution of the aggregate output. The intuition is quite straightforward: if, at
the margin, the effect of partner i’s input is more important in the determination
of output j than the determination of output k (and the converse is true for
partner i’s input vis—a—vis outputs k and j), then the share assigned to i for
output j has relatively greater impact on his decisions than the share assigned for
output k; a parallel argument works for partner 1 and outputs k and j.
Consequently, shares can be assigned in order to give the partners’ appropriate
incentives. Indeed, Williams and Radner (1989) show that generically, in the space
of distributions, there are sharing rules that do resolve the free-rider problem and
balance the budget.

Since the aggregate condition (5.2) is no longer being assumed, the first—order

condition (5.6), for the efficient input profile a to be a Nash equilibrium, can be

written as:

~

L S,(C).py(a) = Q;(z;i) vi (5.7)

i TR

If we wish to design the sharing rule S so that z; satisfies the first—order
conditions for an equilibrium, then the mn unknowns, [Si(Gj)]’ must satisfy the
(m+n) equations implied by equations (5.7) and the budget balance condition (5.1).
The basic lemma of Williams and Radner (1989), reported below, is that,
generically in the data of the model, such a solution can be found if n > 2, and
that in particular this can be done if é is an efficient vector of inputs. Of course,
to complete the argument it remains to show that there are reasonable conditions

under which a solution to the "first-order" problem is actually an equilibrium.

Theorem 5.2 (Williams and Radner (1989)): i) When n > 2, there exists a
solution to the first—order conditions, (5.7), and the budget balance conditions,

(5.1), for each pair of distribution and utility functions ((pj,Qi, j=1,..m, i=1,..n) in
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some open dense subset (in the Whitney C1 topology) of the set of feasible
problems.

iil) Suppose that m=2 and n=3. Assume further that (pj is first—order
stochastically increasing in its arguments, for j=1,..3. Then there exists a
one-parameter solution to the problem of finding a sharing rule whose Nash
equilibrium is efficient if the following two additional hypotheses are satisfied at
the efficient input profile :;:

2) 91 (8)0y(a) — 0y (@)pyy(a) > 0

b) (,021(.,;2)/(,011(.,;.2) is an increasing function whereas <p22(:;1,.)/<,021(;,1,.) is a
decreasing function.

Other conditions for solutions to this problem in static partnership models
have been presented by Legros and Matsushima (1991), Legros (1989) and
Matsushima (1989b).  All of these conditions resonate with the idea that
"symmetry is detrimental to efficiency” in partnership models.33

A question of some interest is what properties will efficiency—inducing sharing
rules possess. In particular, as in the case of principal-agent models, we can ask:
will the sharing rules be monotonically increasing in output, i.e. will a higher
output increase the share of all partners? Of course, such a question makes sense
only when higher inputs do, in fact, make higher outputs more likely - ie., (pj(.)
is first—order stochastically increasing — since a higher output may then be taken
as a signal of higher inputs and appropriately rewarded. It is easy to show,
however, that such monotonicity is incompatible with efficiency. The intuition is

straightforward: if all partners benefit from a higher output then the social benefit

33Interestingly, the results from the static model, with risk-neutral partners, will turn
out to be very helpful in the subsequent analysis of the repeated partnership model
with general (possibly risk—averse) utility functions. This is because intertemporal
expected utility will be seen to have a decomposition very similar to that between
the monetary transfer and the input—contingent expected utility in the static
risk-neutral case; this point will be clearer after our discussion in Section 5.2.
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to any one partmer increasing his input is greater than that partner’s private
benefit. However, in an equilibrium that is efficient, the private and social

benefits have to be equal. This idea is formalized as:

Proposition 5.3: Suppose that wj(al,..am) is strictly first-order stochastically
increasing in its arguments. Let S be a sharing rule for which the first-best
profile of inputs a is a Nash equilibrium. Then there is some partner, say i,

whose share, Si’ does not always increase with output.

Proof: Suppose, to the contrary, that the sharing rules, Si’ are increasing for

all partners. The social marginal benefit to increasing partner i’s input is:

(a)] - Q(a;) (5.8)

~ A

Since a; is a best response, X S4( Gj).tpji(a)] = Q’(a;). Substituting this into
j i

(5.8) yields ¥ % Si(Gj).cpji(a); the assumption on first—order stochastic dominance
ifi j

~

implies that X Si(Gj).cpji(a) > 0, for all i#i. Hence, social utility would be
J
increased by expanding partner i’s input. p34

Remark: One immediate corollary of the proposition is that the proportional
sharing rule, Si(Gj) = Gj/m, does not solve the organization problem by inducing
efficient provision of inputs.

If partners’ utility functions exhibit risk-aversion there will not be, in
general, a sharing rule that sustains the efficient outcome as an equilibrium. This
is because efficiency arrangements in this case requires efficient risk—sharing as well

as efficient provision of inputs. To see this note that an efficient solution to the

34It is obvious, from the proof, that the proposition is true as long as (pj is

first-order stochastically increasing in the input level of at least one partner.
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partnership problem is given by any solution to the following: Max % A (%
a,sS. i j
i

Ui(Si(Gj),ai).goj(a)], where A, > 0, i=1,.m. (There may also be efficient expected
utility vectors corresponding to some choices of (Al,..)\m) with some coordinates )‘i
equal to zero.) A solution to the above maximization problem will typically
involve mnot just the action profile, as with risk-neutrality, but also the sharing
rules. Moreover, the rules that share risk efficiently may not be
incentive—compatible. ~ An alternative way of seeing this is to note that if the
sharing rules are specified in the efficient solution then there is mo further degree
of freedom left to specify these rules such that they also satisfy the Nash
equilibrium first—order conditions (5.7).

There are several questions that remain open in the static partnership model.
The first involves the characterization of solutions to the second—best problem;
what are the properties of the most efficient Nash equilibrium in a partnership
game (when the efficient solution is unattainable)? In particular, it may be
fruitful to employ the Grossman and Hart (1983) cost-minimization approach to
the partnership problem to investigate properties such as monotonicity and
convexity for the second-best solution.35

A related question to ask is whether input profiles (and sharing rules)
(arbitrarily) close to the efficient vector can, in fact, be implemented an
incentive—compatible fashion, even if exact efficiency is unattainable. Recent
developments in implementation theory have introduced weaker (and yet
compelling) notions that involve implementability of profiles close to that desired;

see Abreu and Matsushima (1992). This approach may even be able to dispense

35Mookherjee (1984) has studied the related problem in which there is a principal, in
addition to the partners. He characterizes the second-best outcome from the
principal’s perspective.
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with the requirement that partners be asymmetric.36

We now turn to the general class of games with imperfect monitoring.

5.2 Repeated Games with Imperfect Monitoring
A static (or stage) game with imperfect monitoring is defined by a triple
(Ai,tpj,Ui;i=1,..m, j=1,..n); i is the index for a player and each player picks actions

a from a finite set Ai‘ This choice is not observed by any player other than i.

An action profile a (al,.,am) induces a probability distribution on a public
outcome Gj’ j=1,...n; the probability that the outcome is Gj when the action
profile a is chosen is denoted cpj(a). Each player’s realized payoff depends on the
public outcome and his own action but not on the actions of the other players; the
payoff is denoted Ui(G’,ai). We will allow players to pick mixed actions as well;
denote a generic mixed action by o For each profile of mixed actions a =
(al,..am), the conditional probability of public outcomes and the player’s expected
payoffs are computed in the obvious fashion. Abusing notation, we write <pj(oz) to
be the probability of the outcome Gj under the mixed action profile a. It will be
useful to denote player i’s expected payoffs as Fi(a).

It is clear that a partnership model, with a fixed sharing rule, is an example
of a game of imperfect monitoring. So also is the principal-agent model of
Sections 2—4. Imagine that player 2 is the principal and his action is the choice
of a compensation scheme for the agent. Since the agent actually moves after the
principal — whereas in the above game, moves are simultaneous — a; now must be

interpreted as a contingent effort rule that specifies the agent’s effort for every

compensation rule that the principal could choose. The public outcome is then the

36Legros (1989) shows that even in the deterministic partnership model (with
risk-neutrality), e—efficiency can be attained if partners are allowed to randomize in
their choice of inputs.
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realized output level plus the principal’s compensation scheme.37

In a repeated game with imperfect monitoring, in each period t = 0,1,.., the
stage game is played and the associated public outcome revealed. The public
history at date t is h(t) = (G(0),G(1),...G(t-1)) whereas the private history of
player i is h.(t) = (ai(O),G(O),ai(l),G(l)...ai(t—l),G(t——l)). A strategy for player i
is a sequence of maps o(t), where o(t) assigns to each pair of public and private
histories (h(t),h;(t)) a mixed action a;(t). A strategy profile induces, in the usual

way, a distribution over the set of histories (h(t),hi(t)) and hence an expected

payoff for player i in the t-th period; denote this Fi(t). Lifetime payoffs are

m
evaluated under a (common) discount factor § (<1)and equal (1-6) ¥ 6tI‘i(t).
t=0

Player i seeks to maximize his lifetime payoffs. ~We restrict attention to a
subclass of Nash equilibria that have been called perfect public equilibria in the
literature; a strategy profile (01,..0m) is a perfect public equilibrium if, a) for all
time-periods t and all players i, the continuation of o, after history (h(t), hi(t))
only depends on the public history h(t) and b) the profile of continuation strategies
constitute a Nash equilibrium after every history.38 Suppose that the stage game
has a Nash equilibrium; an infinite repetition of this stage-game equilibrium is an
example of a perfect public equilibrium. Let V denote the set of payoff vectors

corresponding to all perfect public equilibria in the repeated game.

37Fudenberg, Levine and Maskin (1989), who suggest the above interpretation of the
principal-agent model, show that several other models can also be encompassed in
the current framework. In particular, the oligopoly models of Porter (1983) and
Green and Porter (1984) are easily accomodated.

38Note that a player is not restricted to choosing a strategy in which he can only
condition on the public history. If every other player but i chooses such a strategy,
elementary dynamic programming arguments can be used to show that player i
cannot, in his best response problem, do any better by choosing a strategy that
conditions on his private history as well. A second point to note is that were we
to restrict attention to pure strategies only, then without any loss of generality we
could in fact restrict players to choosing strategies which only condition on public
histories (for this and related arguments see Abreu, Pearce and Stachetti (1990)).
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5.2.1 A Characterization of the Set of Equilibrium Payoffs

In this subsection we will provide an informal discussion of the Abreu, Pearce
and Stachetti (1986, 1990) recursive characterization of the equilibrium payoff set
V. The heart of their analysis is to demonstrate that the set of equilibrium
payoffs in repeated games has a Bellman-equation like representation similar to the
one exhibited by the value function in dynamic programming.

Suppose, to begin with, that we have a perfect public equilibrium profile o*.
Such an equilibrium can be decomposed into a) an action profile in period zero,
say o*(0), and b) an expected continuation payoff (or "promised future payoff")
profile, vj(l), j=1,..n, that is contingent on the public outcome Gj realized in
period zero. Since o* is an equilibrium it follows that: i) o*(0) must satisfy the
incentive constraint that no player can unilaterally improve his payoffs given the
twin expectations of other players’ actions in that period, a_*_i(O), and the
continuation payoffs, vj(l); ii) the continuation payoffs must themselves be drawn
from the set of equilibrium payoffs V. Moreover, an identical argument is true for
every equilibrium strategy profile and after all histories, i.e. an equilibrium in the
repeated game is a sequence of incentive—compatible "static" equilibria.

Now consider an arbitrary set of continuation payoffs W ¢ IRm; these need
not be equilibrium payoffs. Define an action profile Ex to be enforceable, with
respect to W, if there are payoff profiles wj € W, j=1,.n with the property that (;z
is a Nash equilibrium of the '"static" game with payoffs (1-6)T;(a) + @Ew,(a).
Let B(W) be the set of Nash equilibrium payoffs to these "static" games (with all
possible continuation payoffs being drawn from W). If a bounded set W has the
property that W ¢ B(W), (and Abreu, Pearce and Stachetti call such a set

self-generating) then it can be shown that all payoffs in B(W) are actually
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repeated—game equilibrium payoffs, i.e. B(W) ¢ V.8 In other words a sequence of
static Nash equilibria, all of whose payoffs are self-referential in the manner
described above, is a perfect equilibrium of the repeated game.

More formally let us define, for any set W ¢ R™:

B(W) = {w € R™: 3 wl e R™, j=1,.n, and 3 a s.t.

w, = (1-6)Ty(a) + ? w) o) (5.9)
(1-8)T5(a) + dw) p(0) > (1-6)Ty(apa ) + L) pi(apay) Viay) (5.10)
J J

Theorem 5.4 (Abreu, Pearce and Stachetti (1990)):i) (Sufficiency) Every bounded
self-generating set is a subset of the equilibrium payoffs set; if W is bounded and
W ¢ B(W) then B(W) c V.

ii) (Necessity) The equilibrium payoffs set V is the largest self-generating set

among the class of bounded self-generating sets; V = B(V).

The recursive approach has two useful consequences. The sufficiency
characterization, part i), says that if a subset of feasible payoffs can be shown to
be self-generating, then all of its elements are equilibrium payoffs; this
(constructive) approach can be used to provide upper bound on the difference
between second-best and efficient payoffs. The constructive approach is used in

proving the folk theorem that we discuss shortly.

39The argument is as follows: by definition, if w is in B(W), then it can be
decomposed into an action profile a(0) and "continuation" payoffs w(1) where o(0)
is a Nash equilibrium in the "static" game with payoffs (1-86)T;(a) + SEw,(a).

Since \;7(1) € W ¢ B(W), it can also be similarly decomposed. In other words there

is a strategy o, which can be deduced from these arguments, with the property that
no one—shot deviation against it is profitable for any player. The unimprovability
principle of discounted dynamic programming then implies that there are, in fact, no

profitable deviations against o.
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A second (inductive) approach can be employed to determine properties of
the second-best equilibrium. In this approach one conjectures that the equilibrium
payoff set has the properties one seeks to establish and then demonstrates that
such properties are, in fact, maintained under the recursion. Abreu, Pearce and
Stachetti (1986, 1990) have utilized this approach to provide conditions on the
primitives under which the equilibrium payoff set is compact, convex and

monotonically increasing in the discount factor.

5.2.2 A Folk Theorem with Imperfect Monitoring

We turn now to the second-best problem: how large is the inefficiency caused
by free-riding in a game of imperfect monitoring? The repeated perspective allows
the design of a richer set of incentives. This is immediate from the incentive
constraint, (5.10), above; by way of different specifications of the promised future
payoff, Wg, there is considerable room to fine-tune current incentives. However, for
the future to have significant bearing on the players’ decisions today it must be
the case that there is sufficient weight attached to the future; indeed, the folk
theorem, which answers the second-best question, is, in fact, an asymptotic result
that obtains for players with ¢ close to 1.

There is a formal similarity between the payoffs to risk—neutral players in the
static partnership model and the intertemporal decomposition of payoffs in the
repeated game, (5.9). In the static model, the player’s (risk-neutral) payoffs are
?Si( Gj)goj(a) ~ Q;(¢). The intertemporal payoff is (1-6)Ty(a) + é?wi] (pj(a), where
wg can be interpreted as player i’s "share" of future payoffs resulting from an

output Gj.40 The difference in the analyses is that the future payoffs wf, have to

0Indeed it is easy to check that in all of the analyses of the static risk-neutral case,
the own action—contingent utility, Qi(ai)’ could be replaced with the exact analogue

in (5.9), I'(a) = E[U.(G,a)| @), without changing any of the results.  Hence, the
correspondence, between the intertemporal (possibly risk-averse) payoffs and the
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be self-generated whereas the static shares Si(Gj)’ have to satisfy budget—balance,
iESi(Gj) = Gj'

It turns out, however, that the analogy between the two models goes a little
further still. This is because the folk—theorem proof techniques of Fudenberg,
Levine and Maskin (1989) and Matsushima (1989) critically employ a construction
in which actions are enforced by continuation payoffs W‘ij that are restricted to lie

on a hyperplane, i.e., are such that ¥ Wf = 0. This is, of course, a restatement of
i

the budget balance condition, after relabelling variables. This explains why one
hypothesis of the folk theorem below is an asymmetry condition like the ones that

were used in solving the static risk-neutral incentives problem:

Pairwise Full Rank The stage game satisfies the pairwise full rank condition if,

for all pairs of players (i,i, i#i) there exists a profile « such that the matrix

{ ‘Pj( i’a—i)’(’gj( i’a—i)}

with rows corresponding to the elements of Ai x Ai and columns corresponding to

the outcomes Gj’ j =1,.n, has rank [A/] + [A[ - L4

Theorem 5.5 (Fudenberg, Levine and Maskin (1989)): Suppose the stage game
satisfies the pairwise full rank condition and, additionally, the following two
hypotheses:

i)  for all players i and all pure action profiles :;, the IAiI vectors, {‘pj(ai’;‘——i)’
j=1,..n}, are linearly independent

ii) the set of individually rational payoff vectors, say F* has dimension equal to

static risk-neutral payoffs, is exact.

41This is really a full rank condition since the row vectors must always admit at least
one linear dependency. Also, a mnecessary condition for the pairwise full rank
condition to hold is clearly that the number of outcomes n > |A;| + [A;] — L
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the number of players.42
Then, for every closed set W in the relative interior of F* there is a § < 1

such that for all § > §, every payoff in W is a perfect public equilibrium payoff.

Remarks: 1.An obvious implication of the above result is that, as 6 - 1, any
corresponding sequence of second—best equilibrium payoffs is asymptotically efficient.
2. In the absence of the pairwise full rank condition, asymptotic efficiency may
fail to obtain; Radner, Myerson and Maskin (1986) contains the appropriate
example. In this example, the aggregate condition of Section 5.2 (condition (5.4))
holds and hence, for reasons identical to the static risk—neutral case, the efficient
solution cannot be sustained as equilibrium behavior.

3. Condition i) is required to ensure that player i, when called upon to play
action ;.i cannot play a more profitable action z;i whose outcome consequences are
identical to those of ;Li. Condition ii) is required to ensure that there are feasible
asymmetric lifetime payoffs; when a deviation by player i (respectively i) is
inferred, there exists a continuation strategy ai whose payoffs are vsmaller than the
payoffs to some other continuation strategy o (and vice—versa for player i).43

4.  Since the principal-agent model of Sections 2—4 is a special case of the game
with imperfect monitoring, Theorem 5.5 also yields a folk theorem, and asymptotic
efficiency, in that model. However, the informational requirements of this result
are evidently more stringent than those employed by Radner (1985) to prove

asymptotic efficiency in the principal-agent model. Restricted to the

#2Note that mixed strategies are admissible and hence an individually rational payoff
vector is one whose components dominate the mixed strategy minimax for each
player.

43A similar condition is also required in repeated games with perfect monitoring; see
Fudenberg and Maskin (1986). Recent work (Abreu, Dutta and Smith (1992)) has
shown that, under perfect monitoring, the full-dimensionality assumption can be
replaced by the weaker requirement that players’ preferences not be representable by
an identical ordering over mixed action profiles. Whether full-dimensionality can be
similarly weakened in the imperfect monitoring case remains an open question.
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principal-agent model, Theorem 5.5 can, however, be proved under weaker
hypotheses, and Radner’s result can be generalized; see Fudenberg, Levine and
Maskin (1989) for details.

To summarize, under certain conditions, repetition of a partnership allows the
design of intertemporal incentives such that the free-rider problem can be
asymptotically resolved by patient partners. Of course, the curse of the Folk
Theorem, Theorem 5.5, is that it proves that a lot of other, less attractive,
arrangements can also be dynamically sustained.

In many partnerships there are variables other than just the partners’ actions
that determine the output, as for example the usage of (commonly owned) capital
stock; this is an additional source of information. Omne question of interest, for
both static and especially repeated partnership models, is whether, and how much,
such additional information alleviates the free-rider problem. A second open
question is whether bounds can be derived for the rate of convergence to efficiency
as the discount factor goes to ome (in a spirit similar to the Dutta and Radner

(1992) exercise for the principal-agent model).

6.  Additional Bibliographical Notes

Notes on Section 3: In the field of economics, the first formal treatment of the
principal-agent relationship and the phenomenon of moral hazard was probably
given by Arrow (1963, 1965), although a paper by Simon (1951) was an early

forerunner of the principal-agent literature.44 Early work on one-sided moral

44The recognition of incentive problems is of much older vintage however. In an
often quoted passage from the "Wealth of Nations" Adam Smith says, "The
directors of such companies, being the managers rather of other peoples’ money than
their own, it cannot well be expected, that they should watch over it with the same
anxious vigilance with which the partners in a private copartnery frequently watch
over their own... Negligence and profusion therefore must always prevail in the
management of the affairs of such a company." (p. 700 ibid).
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hazard was done by Wilson (1969), Spence and Zeckhauser (1971) and Ross (1973).
James Mirrlees contributed early, and sophisticated, analyses of the problem; much
of his work is unpublished (but see Mirrlees (1974, 1976)). Holmstrom (1979) and
Shavell (1979) investigated conditions under which it is beneficial for the principal
to monitor the agent, or use any other sources of information about the agent’s
performance in writing the optimal contract. In addition to these papers other
characterizations of the second-best contract, all of which employ the first—order
approach, include Harris and Raviv (1979) and Stiglitz (1983). (For analyses that
provide sufficient conditions under which the first—order approach is valid, see
Rogerson (1985b) and Jewitt (1988)). The paper by Grossman and Hart (1983)
provides a particularly thorough and systematic treatment of the one-period model.

The static principal-agent model has been widely applied in economics. As
we have indicated earlier, the phenomenon, and indeed the term itself, came from
the study of insurance markets. One other early application of the theory has
been to agrarian markets in developing economies; a principal question here is to
understand the prevalence, and uniformity, of sharecropping contracts. An
influential paper is Stiglitz (1974) that has subsequently been extended in several
directions by, for example, Braverman and Stiglitz (1982); for a recent survey of
this literature, see Singh (1989). Other applications of the theory include
managerial incentives to a) invest capital in productive activities, rather than
perquisites (Grossman and Hart (1982)), b) to invest in human capital, (Holmstrom
and Ricart i Costa (1986)) and c) to obtain information about and invest in risky
assets, (Lambert (1986)).

Three topics in static moral hazard that we have not touched upon are: a)
incentive issues when moral hazard is confounded with informational asymmetries
due to adverse selection; see, for example, Foster and Wan (1984) who investigate

involuntary unemployment due to such a mix of asymmetries, and defense



44

contracting issues as studied by Baron and Besanko (1987) and McAfee and
McMillan (1986);  b) the general equilibrium consequences of informational
asymmetries, a topic that has been studied in different contexts by Joseph Stiglitz
and his coauthors; see, for example, Arnott and Stiglitz (1986) and Greenwald and
Stiglitz (1986) and c) the implications of contract renegotiation. The last topic
asks the question, (when) will principal and agent wish to write a new contract to
replace the current one and has been recently addressed by a number of authors
including Fudenberg and Tirole (1990). The survey of principal-agent models by
Hart and Holmstrom (1986) is a good overview of the literature; furthermore, it

expands on certain other themes that we have not been able to address.

Notes on Section 4: Lambert (1983) derives a characterization of dynamic
second—best contracts that also yields the history—dependence implied by Rogerson’s
result; he takes, however, a first—order approach to the problem.  Spear and
Srivastava (1988) employ the methods of Abreu, Pearce and Stachetti (1990) to
derive further characterizations of the optimal compensation scheme, such as
monotonicity in output.

The second strand in the literaure on dynamic principal agent contracts has
explored the implications of simple contracts that condition on history in a
parsimonious fashion.  Relevant papers here are Radner (1981, 1985, 1986b),
Rubinstein (1979), Rubinstein and Yaari (1983), and Dutta and Radner (1992).
These papers have been reviewed in some detail in Section 4.2.

Recently a number of papers have investigated the consequences of allowing
the agent to borrow and lend and thereby provide himself with self-insurance.
Indeed if the agent is able to transact at the same interest rates as the principal,
an assumption that is plausible if capital markets are perfect (but only then), there

exist simple output contingent schemes (that look a lot like franchises) which
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approximate efficiency. Papers in this area include Allen (1985), Malcomson and
Spinnewyn (1988), and Fudenberg, Holmstrom and Milgrom (1990).

In the study of labor contracts a number of authors have investigated some
simple history—dependent incentive schemes under which an employee cannot be
compensated on the basis of observed output but rather has to be paid a fixed
wage; the employee may, however, be fired in the event that shirking is detected. 45
Shapiro and Stiglitz (1984) show that involuntary unemployment is necessary, and
will emerge, in the operation of such incentive schemes. An application of these
ideas to explain the existence of dual rural labor markets in agrarian economies

can be found in Easwaran and Kotwal (1985).

Notes on Section 5: Static partnership models were first studied formally by
Holmstrom (1982) — see also the less formal discussion in Alchian and Demsetz
(1972). For characterizations of conditions under which the first—best is sutainable
as an equilibrium by risk-neutral partners, see, in addition to the Williams and
Radner (1989) paper that we have discussed, Legros (1989), Matsushima (1989D)
and Legros and Matsushima (1991). For a discussion of the case of risk-averse
partners see Rasmussen (1987).

Mookherjee (1984) generalized the Grossman and Hart (1983) approach to
single-sided moral hazard problems to characterize the second-best contract when
there is a principal and several agents (or partners). (His framework covers both
the case of a partnership, where production is joint, as well as the case of
independent production). He derived an optimality condition that is the analog of

condition (3.4) above and used this to investigate conditions under which a) an

45These contracts therefore bear a family resemblence to the bankruptcy schemes we
have discussed in this paper; the ome difference is that in a bankruptcy scheme
observed output is utilized in deciding whether or not to terminate an agent’s
contract whereas in the papers referred to here it is usually assumed that shirking
can be directly observed (and penalized).
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agent’s compensation should be independent of other agents’ output, and b) agents’
compensations should be based solely on their "rank" (an ordinal measure of
relative output).  The attainability of first-best outcomes through rank order
tournaments has also received extensive treatment in the context of labor contracts;
see Lazear and Rosen (1981) for the first treatment and subsequent analyses by
Green and Stokey (1983) and Nalebuff and Stiglitz (1983).

Radner (1986a) was the first paper to study repeated partnerships; in his
model partners do not discount the future but rather employ the long—run average
criterion to evaluate lifetime utility. This paper showed that the efficient expected
utility vectors can be sustained as a perfect equilibrium of a repeated partnership
game (even under risk-aversion) for a 'large" class of partnership models.48
Subsequent work, which has incorporated discounting of future payoffs, has included
Radner, Myerson and Maskin (1986), Abreu, Milgrom and Pearce (1991) and
Radner and Rustichini (1989). Radner, Myerson and Maskin (1986) gave an
example in which equilibrium payoffs for the repeated game with discounting are
uniformly bounded away from one-period efficiency for all discount factors strictly

less than one.4” A model formally similar to a repeated partnership is that of a

46The exact condition that needs to be satisfied is as follows: fix a sharing rule S and
suppose a is the (efficient) input profile that is to be sustained. Then there exist
positive constants K. such that [EU.(S;(G)a) - EU,(S,(G),a_;,a)] + K.[E(G|a_;a,) -

E(G|a)] < 0, for all a, where the expectations are taken under the input profiles a
and (a_;,a;).

47As discussed above there is a formal similarity between the two models, static
partnerships in which the sharing rule is endogenous and a discounted repeated
partnership with a fixed sharing rule (but endogenous future compensation). In
particular in both of these cases an ability to treat partners asymmetrically is
essential to the sustainability of efficient outcomes. The Radner, Myerson and
Maskin example restricts itself to the aggregate condition (5.4), much as the
Holmstrom analysis did in the static partnership context (and furthermore only
considers a symmetric sharing rule). Hence in both cases efficiency cannot be
sustained. The undiscounted case is different in that the asymmetric treatment of
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oligopoly with unobserved quantity choices by each firm; this model was studied by
Porter (1983), Green and Porter (1984) and Abreu, Pearce and Stachetti (1986).

Abreu, Pearce and Stachetti (1986, 1990) contain the analyses, reported in in
Section 5.2, that characterize the equilibrium payoff set in repeated games with
discounting and imperfect monitoring. Fudenberg, Levine, and Maskin (1989), and
Matsushima (1989) have employed the sufficiency part of the characterization to
prove that efficiency is sustainable, even with many-sided moral hazard, for a large
class of repeated games with imperfect monitoring. These results are important in
that they make clear the conditions needed to give agents appropriate dynamic
incentives in order to sustain efficiency.

As noted in Section 1, models of adverse selection and misrepresentation have
not been discussed in the present article. For this topic the reader is referred to
Melumad and Reichelstien (1989) and the references cited there. For a recent
survey of the related topic of incentive compatibility and the revelation of
preferences for public goods, see Groves and Ledyard (1987). An elementary
exposition of the problem of misrepresentation and the Groves—Vickrey—Clark
mechanism can be found in Radner (1987), and further work on incentive

compatibility appears in the volume edited by Groves, Radner and Reiter (1987).

partners is inessential to the sustainability of efficient outcomes.
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