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1. Introduction

Many R&D projects are sequential in character; there are several steps to a project
and a natural progression which requires completion of the n—th step before inception of
the n+1—st. In some cases the project is successfully completed, and payoffs are realized,
only if each of these intermediate steps is successfully finished. In some other instances,
completion of an intermediate step might itself be profitable. The issue I am interested in
is, how much of resources ought to be allocated at each stage of an R&D project?

In order to analyze this question I assume that the total amount of resources
available for allocation between the different stages is fixed a priori, i.e., that the real
decision is: how should the project’s budget be distributed among its various parts? There
is, to my mind, at least three reasons why we should be interested in the budget allocation
problem (as contrasted with an allocation process in which the financing for each atage is
decided independently). Casual empiricism suggests that in many instances R&D financing
is indeed project—specific. This seems especially so when the actual implementation of an
R&D project is in the hands of an agent (a research team or an outside laboratory e.g.). In
such cases specifying a total budget may be a response to the attendant agency problems
(more on this in Section 7). Finally, academic research has almost exclusively taken the
stage by stage perspective on R&D financing (for example, see Grossman and Shapiro
(1986), Harris and Vickers (1986) and Kamien and Schwartz (1982)). The budget
perspective taken in this paper can therefore be viewed, at the very least, as a robustness
check on the available literature.

There are only a few papers that develop the intertemporal nature of R&D activity.
One exeception is Grossman and Shapiro (1986) which analyses expenditure allocation in a
sequential R&D problem. Omne of the models I study is similar to the one employed in
Section 5 of that paper; the important difference is that they did not impose any aggregate

budget constraint.! In turn, Grossman and Shapiro were a generalization of earlier work by



Lucas (1971). Mention should also be made of two other papers which model the
sequential nature of R&D explicitly; Gallini and Kotowitz (1985) and Granot and
Zuckerman (1991). In these papers, at each stage of the R&D project, a decision—maker
chooses one of a finite set of available processes, i.e., the central question there is the
sequencing of stages in an R&D project; my focus is on the intensity of R&D effort or
expenditure at each stage of a given sequence of stages.? Finally, there is a (non—R&D)
literature in operations research which examines the sequential budget allocation problem.
The prototypical problem in that literature has been (colorfully) nicknamed the "bomber
problem" since it analyzes the optimal rationing scheme of a gunner faced with a sequence
of enemy bombers and a fixed cache of ammunition — see Simmons and Yao (1990) and
Shepp, Simmons and Yao (1990) (as well as Ross (1983, Chapter 1) for a non—bomber
example). (These papers are discussed in greater detail in Section 7.)

Like all of the above papers, I adopt the framework of the decision—theoretic
literature on R&D and treat dynamic R&D investment as the outcome of an optimization
problem faced by a single firm. The analysis applies immediately to a monopolist
undertaking R&D or to a competitive firm that believes its decisions leave its rivals’ R&D
expenditures unchanged or to a research group or manager whose payoffs are directly
determined by the success of the R&D project it is charged with implementing. In Section
7, I will return to a further discussion of these interpretations as well as the significance of
my results for game—theoretic and information—theoretic analyses of R&D. I will not
distinguish, for now, between the different interpretations and in the sequel I will refer to
the decision—maker variously as the firm or R&D manager.

The structure of the allocation problem I study is as follows: in each period an
allocation is made (out of the remaining budget) and the size of this allocation determines
the probability of successfully completing the current stage (on that attempt). Naturally,
the higher is the allocation the more likely is success but the smaller consequently is the

size of the budget remaining. I study two polar specifications of the number of attempts



that can be made at completing each stage: the "single attempt" model in which the first
failure at any stage prevents the project from going any further and the “infinite
attempt" model in which any number of attempts can be made till a stage is (finally)
cleared.

I start in Section 3 with the problem in which intermediate steps are valuable;
completing a stage yields a (stage—dependent) profit. This seems a good description of a
development project and I will call this the flow payoff model. In this model, when only
single attempts are permissible, the optimal time—path of R&D expenditures is actually
decreasing, i.e. the earlier the stage, the greater is the allocation to that stage and this is
true regardless of the properties of the stage payoffs. With infinite mistakes, the same
conclusion holds provided the stage payoffs are geometrically increasing or the allocations
are stage—specific.

I investigate next in Section 4 the comparative dynamic properties of the optimal
allocation and in particular the consequences of increasing the initial budget size. An
example demonstrates that a higher budget does not necessarily imply a higher allocation
at every stage (and this even if the probabilty of success function is subject to decreasing
returns). However, the budget remaining after each stage is greater, the bigger the initial
budget. These results apply to both the single and infinite attempt versions of the
problem.

Of some interest is the possible optimality of exclusive budgeting, i.e. the spending
of all remaining budget on the current stage — this behavior has been termed "bold play" in
the gambling literature (see Dubins and Savage (1965)). I give a simple mecessary and
sufficient condition for the optimality of bold play for an R&D manager: the marginal
probabilty of success to zero allocation should be finite. This set of issues, still within the
flow payoff model, is discussed in Section 5.

Section 6 analyzes the terminal payoffs model in which profits are realized only after

all stages have been successfully concluded. This model is arguably a better description of



a pure research problem. I demonstrate that under a log—concavity assumption on the
probabilty of success function, (satisfied in particular if the function is subject to
decreasing returns) the optimal expenditure pattern is to spread the budget evenly among
all stages of an R&D project.

Section 7 presents some extensions of the model and a discussion of the literature

while Section 8 concludes.

2. The Model

Let y > 0 denote a given budget. Informally, a feasible allocation is a distribution
of the budget over the different stages of the project such that the total allocation is no
greater than y. The precise definition of a feasible allocation is a little bit more
complicated since I allow multiple attempts at completing any one stage.

Let n = 1,..N denote the stages of the R&D project (where N < o) and let t = 1, 2,

... denote time—periods. By the beginning of time T, evidently n—1 < T—1 stages are

T-1
complete and Yo = tzl X, is the remaining budget, where X, denotes the allocation in

period t. The allocation in period T is made contingent on the current stage, i.e. n, and the
remaining budget, i.e. y, and is denoted a(yT,n).3 Of course, it is further required that 0
< a(yT,n) {yp An R&D budget strategy for the firm is a sequence of such allocation

functions o = [a(.,n): n = 1,..N]. The allocation in period T suffices to complete the n—th

stage with probability p( a(yT,n)) and with the remaining probabilty, the project remains
at stage n. Suppose also that success in different periods are independent events.

I examine two different specifications of payoffs:

Flow Payoffs Completing stage n yields a profit of Y, > 0 This profit may be
viewed either as a once—for—all return or the present discounted value of all future returns
generated by the completion of this stage. Clearly, the expected return in period T,

conditional on being at (yT,n) and the consequent expenditure, is p(a(yT,n))fyn.



Furthermore, any budget strategy o and the success probability function p define a

period—T distribution over the set of remaining budgets and the number of completed

stages‘— and hence yield an expected profit for period T which I call I‘T(y;g). The

expected lifetime payoffs to the R&D allocation is therefore

8

Rivie) = glst‘l ' (v;e) (1.1)

The objective for the firm is to maximize the expected lifetime payoffs by the choice
of budget strategy. In order to fix ideas, let me report the precise form of (1.1) in the two
polar cases of single and infinite admissible attempts. When the first failure terminates the

R&D project, the expected lifetime allocation becomes

R(y;0) = p(a(y,1))7; + 8p(e(y,1)) x p(ayg,2))] 7y + ---6nc_?{1p(a(y¢0'yn +..
_ 3 Aty —
= et Tn (=1 P(xc)

where x ¢ is simply oy ¢ ¢). On the other hand, if infinite attempts are permissible then

the expected lifetime payoffs become

R(y;0) = p(afy,1))7; + dle(aly,1))xp(e(y,2))] 7y + él(1—p(aly,1)))xp(a(yq, 1))l 7y + -
A second formulation of returns to R&D budget allocation is:

Terminal Payoffs Here returns only accrue after all stages are complete (and so
this formulation is appropriate only when N < o). Let this terminal payoff be denoted W.

It is clear that any budget strategy o generates a probability that the entire project is in
fact completed at period t; denote this probabilty - Then, the expected lifetime profits

are

i(y;q)= % &1 A (1.2)

=+
| a8
—



As before, in order to fix ideas consider the case of a single permissible attempt at

each stage. In that setting,
N

N-1
i(y;0) =6 7 Hlﬂ(x§)]W
The following two, mild, assumptions will be maintained on the probability of
success function p:
(A1) pis a continuous function

(A2) p is weakly monotonic, x* > x implies p(x") > p(x).

Remark: (A1) is only required in order to ensure that the budget allocation problem has a
solution. The monotonicity assumption, (A2), is in fact an assumption that can be made
without loss of generality; if p were actually declining over some allocations, then, in an
optimal solution, expenditures would never be made from such decreasing segments.

In Section 7, I discuss extensions of the analysis to the case in which the probabilty
of success at any stage may depend on the stage itself (in addition to the allocation made
at that stage). Also, at various points of the discussion, I will mention the extent to which
the results remain unchanged if the framework above is enlarged to admit a scrap—value
payment which is made on the budget remaining unused when the project is either
| completed or terminated. Section 7 also contains a discussion of a number of other

directions for future research.

3. The Time—Path of Optimal Allocations 4

In this section I derive the time—path of optimal R&D expenditures when
completing intermediate steps of the project yield flow payoffs. This is the appropriate
framework, for instance, for a sequential development project, each step of which is the
further improvement of a basic technology or the further increment of quality of product.

It is evident that the flow payoff problem can be cast in the language of dynamic

programming with the remaining budget and the number of the current stage as the state



variable and the immediate allocation as the action or control variable. In order to ensure

that expected lifetime payoffs are well—defined (in the potentially troublesome case where

@®

N = o), I assume that there is an upper bound M such that foralln > 1, % g1 "it(n) <
t=1

M, where 7,(n) = max (v . Armed with this assumption, a direct appeal to
t n

+17 Tn4t
standard results in dynamic programming implies that there is a continuous value function,
denoted V(y,n), and an optimal budget allocation function a*(y,n) (see, for example,
Stokey et. al. (1989, Theorem 4.14) for details).®

Consider, to begin with, the allocation problem when the first failure terminates the
R&D project. In this case, the actual allocations are as follows: xI = a*(y,l), the
remaining budget y, is defined inductively as y, 1=V a*(yt,t) and the allocation at

* * :
the t+1 stage (and time—period) is X = O (yt +1,t+1). Of course, a stage is reached

+1

only if all previous stages have been successfully completed. In principle, there may be
*

several optimal budget allocation policies a (y,n), and I shall call the time—allocation

implied by any one of them an optimal allocation. The following result characterizes the

time—path of optimal R&D allocations:

*
Proposition 1 Under (A1) and (A2), there is at least one optimal allocation (x, t21)
such that

* *
X 2% 621 (3.1)

If the probability of success function is strictly monotonic, then all optimal

allocations satisfy (3.1).
*
Proof: Suppose that o (y,n) is an optimal budget strategy with an associated
*
allocation x, t21. Consider any stage n (equivalently, time—period ¢ = n) and further,
N *
consider an alternative strategy, say a, whose allocation is identical to that of a except
~ * ~ * ~

tl;at the period ¢ and ¢(+1 allocations are switched; Xe =X ey X=X ¢ and X, =
X 4 for all t # {, (+1, ( < N. Evidently, this is a feasible budget strategy. Further, the

probability of succeeding in all of the first t stages remains completely unchanged provided
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* * (-1«
t # ¢ and when t = (, the probabilities of success differ by [p(x C) — p(x ¢ +1)] I p(x) It
t=1

follows then that

* ¢-1

R(via') — R(re) = 80o(x) — by LT alxpl (3.2)

II
t=1
. 3 . . . * . 3 * *
From (3.2) it is evident that the optimality of o implies p(x C) > p(x ¢ +1), for all ¢
* *
< N. In the light of the weak monotonicity assumption (A2), this says that x ¢ <x C+1 is
only possible if the two allocations lie in an interval over which the function p is constant.
*
But in that instance, we can amend a by requiring that it use the smallest allocation
consistent with that constant probability of success as the allocation at stage ¢ + 1.
Furthermore, it is clear that by adjusting the allocations in such a manner at all
*

time—periods where o takes values in a "flat" of the probabilty function, we have an
optimal R&D allocation strategy which satisfies (3.1).

If p is strictly increasing (3.2) evidently implies (3.1). O

Remark Suppose the stage payoffs T depend on the size of the allocation X, as well.
The argument, and hence the result, is unchanged if 7, 18 2 non—decreasing function. As a
second generalization, consider the possibility that if the R&D project is terminated (upon
failure at some stage), then a termination or scrap—value payment is made, say Sn’ which
is contingent on the number of completed stages. It is straightforward to check that the
above argument remains completely unchanged.®

The reason why an R&D manager will allocate greater funds to earlier stages of the
project is quite straightforward; conditional on successful completion of the t—th stage, the
expenditures in stages t and t+1 have a symmetric effect on all subsequent payoffs.
However, the funds spent in stage t additionally determine the likelihood of successfully
completing the t—th stage.

The conclusion that more of the budget is spent in earlier stages is not an artifact of

the requirement that each stage can be attempted only once. To see this, I establish an
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analogous property in the model where the firm gets many attempts to complete each stage
and in fact gets as many attempts as it needs. Expositionally, an immediate problem is
that the actual allocation of the R&D budget is now a stochastic process and hence the
notion of a time—pattern of allocation is ambiguous. Moreover, the optimal budget
strategies a*(y,n) will not, in general, satisfy convenient monotonicity properties; for
example of the form the smaller the number of completed stages, the higher (or lower) is
the allocation out of any remaining budget.” There are however two important
formulations of the infinite attempt problem which are tractable and whose conclusions
mirror those under single attempts.

In the first formulation, following Dasgupta and Stiglitz (1980) or Kamien and
Schwartz (1982), I make the simplifying assumption that the total allocation for any stage
is all that the R&D manger can choose. In other words, at the beginning of stage n, the
R&D manager picks an allocation x which is targetted towards completing that stage.
The number of attempts, T, it takes to actually complete the stage is given by a
distribution function F(.;xn) (with an associated density, say f(.;xn)). A higher allocation

is (stochastically) more likely to complete a stage sooner, i.e. the analog of (A2) is

(A2’) x’ > x implies that the distribution F(.;x’) first—order stochastically dominates the
distribution F(.;x).

* * * %k
Write X for the optimal allocation at stage n, i.e. X, = (yn,n) and note that

Viym) = [y + Vi atD)] [2° 6TH(Tx )] (3.3)

By virtue of (A2’), the expected discounted time to success, ¥ 6Tf(T;x), is a

non—decreasing function of the allocation x. To conserve exposition I will refer to the
expected discounted time to success as 7(x) from this point on. It is now clear from (3.3)

that the structure of the problem is identical to the single attempt case with the expected
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discounted time to success playing here the role that the probability of success function

played in the previous formulation. Identical arguments as in Proposition 1 yield:

Proposition 2 Under (A1) and (A2), optimal budgetary allocations are
* *
non—increasing in the number of completed stages, i.e. X, 2% 41

A second tractable formulation allows the decision—maker to adjust his expenditures

within any one stage but requires a geometric structure of the payoffs:

(A3) The stage payoffs increase geometrically; 7, 1= p7,, where B> 1.8 Further, there

are an infinite number of stages, i.e. N = .

In this formulation, the agent’s decision rules have the following stationarity

property:

Proposition 3 Under (A1)—(A3), optimal budgetary strategies are independent of
the number of completed stages, i.e. are of the form a*(y,n) = a*(y,n+1), forall y,n < N.
Furthermore, the value function is multiplicative in budget size and the number of the
current stage, V(y,n) = A" —1V(y,1).

Proof: In Appendix B.U

In the light of Proposition 3 it is clear that the optimal R&D allocation in any

*
time—period t is a constant, X, - Of course, which stage of the project this constant
allocation is being employed for depends on the past history of successes and failures. The

following result characterizes the time—path of optimal R&D allocations:

Proposition 4 Under (A1)—(A3), there is at least ome optimal allocation which
* *
assigns decreasing expenditures over time, i.e. x; 2 X, 41 If the probabilty of success

function is strictly increasing, then all optimal allocations have this feature.

Proof: The optimality equation, evaluated at period t, yields

Vi(gym) = plxp)y, + S1{1=px) ol )7 + OR0 4 )]
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+52[p(xt)p(xt+1)V(yt+2,n+2) + Ll lo(xeg )+ 1-p(xy L Do)}V (3 90+1)

+ [p(x 1o, , DIV, oo0)] (3.4)

Consider, as in the proof of Proposition 1, switching the allocations in period t and
~ o * - * - *

t+1; so, in the alternative strategy o, XC = XC’ (#t,t+1 and X =X X 1= Xy This
leaves y, o unchanged, as also the multiplicative probabilities p(x,)p(x, +1) and
[1——,o(xt)][1——p(xt +1)]. Using that information it is evident that all terms in (3.4), except
the first two, are in fact identical. In other words, the difference in expected payoffs,
starting at period t, between the optimal strategy and the switched strategy is simply 'yn(l -
8)[p(x;) — p(x, _I_l)]'yn. From that it follows that p(x;) > p(x; +1). Having established the
time—pattern of success probabilties, the remaing arguments that establish the

time—pattern of optimal allocations are identical to those used in the analogous part of the

proof of Proposition 1. Y

4. The Effects of Changing The Size of the Research Budget

Suppose the initial budget y is increased. In this section I examine the effect of a
change in budget size on its allocation; in particular, I ask (when) is it the case that
increasing y, a) increases the optimal allocation a*(y,n) and/or b) increases the size of
unspent budget y — a*(y,n) (in each case, for all n). A corollary of the latter is evidently
that the entire time—path of optimal unused budget, [y:, t > 1], is shifted up with an
increase in the size of the initial budget. In turn, if both a) and b) hold, then the entire
time—path of budget usage, [xi:, t > 1], shifts up with an increase in the initial budget.

The critical factor turns out to be whether or not there are increasing returns in the
probabilty of success function p. Now the probabilty of success function is, in my model,
the analog of an "innovation production function." Whether or not it is subject to
increasing returns was the subject of considerable empirical research in the 1960’s (see

Kamien and Schwartz (1982, Chapter 3) for a lucid review). That literature suggested that
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in some industries there is indeed evidence of increasing returns to R&D production (at
least initially) although many others appear to exhibit decreasing returns throughout. I
will show that in the presence of decreasing returns to the probability of success function,
unspent budget is increasing in budget size. However, even with such decreasing returns,
budget expenditures need not be increasing in budget size.

I start with the second question, present a counter—example when p has increasing
returns and then prove a monotonicity result for concave p. Note that if the probability of
success function is convex, at least over some allocations, then the optimal usage may
involve immediate exhaustion of the entire budget. However, if increasing returns are
strong only for sufficiently large allocations, then a smaller budget need not be immediately
exhausted in any optimal scheme. Hence, with non—convexities in the probability of
success function, unused budget may not be larger from a bigger initial budget. Example 1

makes precise this intuition.

Example 1. The optimal budget allocations are such that the unspent budget is

smaller when the initial budget is in fact larger.

Details: Let p be defined on the domain [0, 1] by the requirements that i) it has a
strictly concave segment on [0, 1/2] followed by a strictly convex segment on [1/2, 1].
Further, ii) p is strictly increasing and symmetric about x = 1/2, iii) p(0) = 0 (and p(1) =
1) and iv) p is differentiable with p’(1/2) = 0. (All of these conditions are satisfied, for
example, by p(x) = 1/2 + 4(x — 1/2)3). Further, for simplicity, consider the single
attempt case when N = 2, § = 1 and the stage payoffs are a constant (say 1). Under the

above restrictions, p looks as in Figure 1:
(Figure 1)

Suppose the initial budget is 1. Then, R = p(x) + p(x)p(1—=x) = p(x)[2 — p(x)],

where the last equality utilized the fact that p is symmetric about x = 1/2. Since p(x) €
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[0,1] clearly the optimal first period allocation x* = 1, i.e. the budget is completely
exhausted. Suppose instead that the initial budget is 1/2. I claim that the optimal
allocation leaves some budget unspent; to see this note that if the optimal allocation were
exhaustion of budget, then marginal payoff at that utilization must be non—negative, i.e.

?1_(1_R|x —1/2 > 0. However, d_dR|X —1)27 —n(1/2)p7 (0) = —(1/2)p’(0) < 0.0
x x

The driving force behind Example 1 is of course the increasing returns to probabilty
of success, for allocations in [1/2, 1]. If the probabilty of success function is subject to
decreasing returns, then the larger the budget the greater the amount left unspent after any
period’s or any stage’s allocation. Note, incidentally, that whenever I refer to the multiple

attempt formulation I speak of the two frameworks covered by (either) (A2’) or (A3). |

Proposition 5 Consider either the single attempt or the multiple attempt cases.
Suppose, additionally, that p (respectively, 1) is strictly concave.” Then in any optimal

* *
budget strategy a , y — a (y,n) is non—decreasing in y, for all n.

Proof: I present the argument only for the single attempt case. A straightforward
adaptation of the argument applies in the multiple attempt problem. Let a* be any
optimal budget strategy and consider two initial budgets y and y’, withy > y’. Letz=1y —
a*(y,n) and 2’ = y’ — a*(y’,n). For simplicity of notation, in what follows I drop the
argument n from the value functions and write V(y) instead of V(y,n) throughout.
Suppose, in contradiction to the result claimed, z < z’. From the optimality equation it

follows that

o(y — )7, + 6p(y —2)V(2) 2 p(y —2) 7y + 8oy — 2)V(2)
p(y’ —2)7, + 8o(y’ =2 )V(2) 2 p(y’ — 2)7, + Bo(y’ —2)V(2)

Combinining the two inequalities yields

[o(y —2) — p(y’ = 2)][1, + 8V(2)] 2 [p(y —2) — p(y’ — 2], + 6V(2)]
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The inequality above, together with the fact that V(.,n) is strictly increasing,

implies that

[o(y —2) — oy’ = 2)] > [p(y — 2) — p(y* — 7] (4.1)
(4.1) yields a contradiction in light of the strict concavity of p. O

As noted above, an obvious corollary to the above proposition is the following: the
time—path of optimal allocations shifts monotonically up when the initial budget size is
increased; Vi 2 ¥ b2 1.

The presence of decreasing returns in p does not however guarantee that an increase
in the budget necessarily increases the size of allocation out of it; i.e. it does not guarantee
that a*(y,n) is non—decreasing in y. It turns out that such monotonicity in usage is
determined by whether or not the value function has decreasing returns. Even if the
probability of success function is concave, the value function is not in general concave since
the objective function R(-) contains terms involving the product of probabilities of success
and hence may not be concave. In the event that the value function is convex, an increase
in the initial budget may induce the R&D manager to reduce his current allocation in order
to exploit the increasing returns present in the value function.

I now present a three—stage example whose optimal stage one budget strategy has
the following feature: for "small" y all of the budget is allocated in the first stage itself. At
a critical budget size §r, the R&D manager is indifferent between spending all of his budget
and spending only a fraction of it, x1(§) < ;r Budgets in excess of 3} are allocated in the
first stage according to the (continuous) function xl(.). Hence, the optimal budget

strategy is discontinuous and higher budgets can lead to smaller allocations.

*
Example 2 The optimal budget allocation « is not non—decreasing even though p is
strictly concave.

Details: Let p(x) = _* , a strictly increasing and strictly concave function.

x+1
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Consider the single attempt problem and let there be three stages. Further, to facilitate
computation, let N ="713=1 and Yy =0 and suppose that § = 1. When two stages are

left, the optimization problem out of a remaining budget of size y is, Ma)[c ]p(x)p(y—x).
x€|0,y

From the strict concavity of p it follows that the optimal choice at that stage is to spread

*
the budget evenly between the two stages, i.e. the optimal choice is x = y/2. Notice that,

y
as a consequence, V(y,2) = (m)2’ a convex function for y > 1.
The three stage optimization problem is hence given by

x y—x

T L G )

Max

4.9
x€[0,y] 2)

In Appendix A I demonstrate that the objective function in (4.2) has, for every y,
one local maximum at x; € (0,y) and a local minimum at Xq € (xl,y). In other words, the

function looks as follows
(Figure 2)

Evidently, the solution to the optimization problem is either Xy Ory. I further show
in the appendix that the optimal budget strategy is (essentially) given by: there is ;r > 0,
such that for all y < §, the optimal allocation is y, whereas for y > ;r, the optimal
allocation is x; and at } the budget manager is indifferent between these two options.
Evidently then, the optimal allocation "jumps down" at 3; o

If the value functions happen to be concave, then monotonicity does obtain in the

usage of the budget:

Proposition 6 Consider either the single attempt or the multiple attempt case.
Suppose, additionally that V(.,n) is strictly concave for all n. Then, in any optimal budget

*  x
strategy @ , a (y,n) is non—decreasing in y, for all n.

Proof: I prove the single attempt case since the multiple attempt problem is again a

minor variant. Further, the single attempt proof is itself very similar to the proof in
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*
Proposition 5 and is therefore only sketched. Let y > y’ and denote a (y,n) as x
*
(respectively, a (y’,n) as x’). Suppose, in contradiction to the result claimed, x < x’.
Since x is a feasible allocation from y’ and x’ is similarly feasible from y, the optimality

equation yields

p(x)7, + Sp(x)V(y—=x) 2 p(x) 7, + Bo(x’)V (y—x')
p(x) 7, + So(x)V(y'—x) 2 p(x) 7, + Bp(x)V(y'—x)

Combinining the two inequalities yields

o) [Vy—x) — V()] 2 o) V(7<) = V(y'—")]
The inequality above yields a contradiction given the strict concavity of the value

function. U

5. Exhausting the Budget

Will it ever be optimal to spend all of the remaining budget at one go, whenever
there is less than some critical amount, say ;r, left? In the mathematical analyses of
gambling such behavior is characterized "bold play" (see, e.g., Dubins and Savage (1965))
and there is a substantial literature that investigates conditions under which such behavior
is optimal. Borrowing the term from that literature, I say that bold play is optimal
behavior at stage n if there exists § such that a*(y,n) =yforally< §

For simplicity, in this section I confine discussion to the single attempt case. The
generalization to the multiple attempts case is immediate. I strengthen the continuity

assumption on the probability of success function to differentiability:

(A1) p is continuously differentiable for x > 0. Further, lil m p’(x) = p’(0) exists and is
x| 0

positive. 0

Proposition 7 Under (A1)’ and (A2), for bold play to be optimal at any stagen < N
it must be the case that p’(0) < w. Further, if p(0) = 0, then p’(0) < w is also sufficient
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for bold play to be optimal at every stage of the R&D project.

Proof: Necessity: Consider any stage n < N, and suppose that there is y > 0 such

that the optimal allocation starting at y is immediate exhaustion of the budget. In
particular, this strategy is optimal among those that allocate x < y at the current stage

and the rerhajnder, y — x in the very next stage. In other words,

d . .
o PR g+ Belx) Ay = x) W]l 20

N—
¥

_ t—1
where W = (6p(0)) Tnat NOW

1

d

X

[o(x)+80(x)o(y = X)W 1| o = " (5[, +E(OYW ] = bo(y)p’ ()W, (5.1)
From (5.1) it immediately follows that p’(0) < w.

Sufficiency: Suppose p’(0) > 0. I will divide the proof of sufficiency into two parts, one
for finite N and the second for infinite N.

Case 1 — N < o: At stage N it is evidently optimal to exhaust any remaining budget.
Make the induction hypothesis that bold play is, in fact, optimal when we are at stage
n+1. Let 3: be a budget size below which it is optimal to exhaust the budget; i.e.,
oz*(y,n+1) =y, for all y 3: Now suppose we are at stage n with a budget y < ;r
Evidently the lifetime returns from an allocation x at stage n is given by R(x,y) = p(x)[7,
+ 5p(y~—x)Wn]. I claim that there is always ;r > 0 such that R(y,x) is increasing over [0,y)
whenever y < ;r Suppose to the contrary we have a sequence ¥p~ 0, and X, in [0, yp], with

d R(yp,xp) < 0. Taking limits (and note that the limit is

dx
well—defined since p’(0) < o) we have,

xp -0, as p = w, such that

lim 4 R(y

e ) = p"(0)[7, + 8p(0)W ] — dp* (0)p(0}W = p’(0)y, > 0

p*p
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The last inequality yields a contradiction. In turn that establishes, for stage n, the
optimality of bold play for all y < y.
Case 2 — N = »: We cannot use a backward induction argument for this case. Therefore,

we will need the following lemma, which is, in any case, a result of independent interest:

Lemma For every stage n, the value function, V(.,n) is a differentiable function (on
R +) and the derivative is given by:
*
V'(y,n) = p’(x ) [, + V(y—=x,n+1)] (5.2)

* * *
where x is the optimal allocation out of a budget of size y at stagen,ie,x = a (y,n).

Proof of lemma: Consider any y > 0 with an optimal allocation x (for notational simplicity
suppress the *). From a budget y + ¢, ¢ > 0, a feasible (but possibly inoptimal) allocation

is x + ¢ Hence, V(y+e¢) 2 p(x+e)[y, + 8V(y—=xn+1)]. Consequently,

V(y+e) = V(y) 2 [p(x+e) — p(x)][7, + V(y—=xn+1)] (5.3)

Taking limits, as ¢ - 0, it follows from (5.3) that V(y) > p’(x)[y, + 6V(y—xn+1)].
order to establish the opposite inequality, note first that a consequence of the assumption
that p(0) = 0 is that x > 0. So take any e < x and consider a budget of size y — €. A
feasible allocation is x — ¢ and hence V(y—e) > p(x—¢)[7, + 6V(y—x,n+1)]. Consequently,

V(y) = V(y—e) < [o(x) — p(x—e)][7, + 6V(y—=xn+1)] (5.4)
From (5.4) it follows that V’(y) < p’(x)[y, + 6V(y—=x,n+1)]. The lemma is proved. U

We now return to the proof of Case 2. The lifetime returns at stage n from a
budget y and allocation x is R(x,y) = p(x)[7, + 6V (y—=x,n+1)]. I claim that there is always

y > 0 such that R(y,x) is increasing over [0,y) whenever y < y. Suppose to the contrary we

have a sequence Yp ™ 0, and X, in [0, yp], with X o 0, as p - o, such that jx R(yp,xp)
< 0, ie., p’ (x N, + 6V(y X, n+1)] — 6p(x YW (y —x_,n+1) < 0. Given the lemma

PP

above, V'(y p—xp,n+1) = p’ (xp)[’Yn + 0V (zp,n+2)], where X, is the optimal allocation out
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of a budget Yo~ %p at stage n+1 and Z5 is the consequent budget remaining at stage n+2.
Substituting for the above expression and taking limits we have,

lim_9 Ry x) = o7 (0)ln, + OV(On+1)] = 80(0)p’ (0)[1y 4 + EV(00+2)]

P
= p (0)71, + 80(0)p" (0)[7y.1+6V(0,n+2)] — 8p(0)p” (0)[1 4 1 +6V(0,0+2)] (5.5)
=p’(0)y, >0
In (5.5) I used the fact that V(0,n+1) = p(O)[fyn+1+6V(0,n+2)]. The last
inequality above yields a contradiction. In turn that establishes, for stage n, the optimality

of bold play for all y < }; The proposition is proved. -

Remark: From the proof above it is clear that the condition p(0) = 0 is only required
for the case N = o (it was used in proving the lemma and only used then to argue that an
optimal allocation must be positive). It is my conjecture that the lemma, and therefore
Proposition 7, is true even without this condition.

If the success probability function p is convex then bold play is optimal regardless of
the size of the remaining budget. Of course, since it only takes values in [0,1], p cannot be
convex throughout but suppose it is convex on an initial segment. (Recall from the earlier
discussion that a number of empirical studies of the innovation production function have
suggested that it may indeed be subject to initial increasing returns). So suppose there is

some X in (0, w) such that p(x) = 1, x > X and p(x) < 1, x < X and convex.!! Define the

bold play path as
X, = X, fory, 2 X
X, =V, Wherem =inf{t: y— tx < x}
X, = 0, t > m.

In words, allocations of x (ensuring success) are used when the remaining budget is

greater than x. The first time the budget dips below x, all of the remainder is exhausted.

Proposition 8 Suppose that in addition to (A1)’ and (A2), p is convex and
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increasing over some initial interval. Then, the bold play path is optimal.

Proof: In Appendix B.U

Remark: A similar result is true for S—shaped p, i.e., that for which there are initial
increasing returns to allocation, followed by subsequent decreasing returns. In this case,
allocations are decreasing over time but greater than x as long as the remaining budget is

at least as large as x. Thereafter, everything is staked in one period.

6. Terminal Payoffs

In a pure research project it may be reasonable to suppose that returns accrue only
after all stages of the project have been successfully completed. I turn now to this terminal
payoff specification. As in the flow payoff model, the analysis is contingent on whether or
not the R&D manager can make one or an infinite number of attempts in order to complete
any one stage; however, the results are very similar in the two cases. I start with the single

attempt specification. Letting W denote the terminal payoffs, the problem of allocating a

N N
budget of size y is: max W. II p(XC) s.t. ¥ ng y.
(=1

* *
Proposition 9 Suppose (A1) holds. Let (xl, - xN) be an optimal allocation for the
terminal payoff problem. Then,
* * *
i) any permutation (xa . ) of x is also an optimal solution. Further, if p(0) =
N

*
0, then x, > 0,t=1, .., N.

ii) if In p is a concave function, x: = y/N, t = 1, ..., N, ie, spreading the budget
evenly, is an optimal solution. If In p is strictly concave, equal allocation in the only
optimal allocation.

iii)  if In p is convex over [0,y], then xz = y for some (, x: =0, for all t # (, is an

optimal allocation. If Inp is strictly convex, that is the only optimal allocation.

Proof: The proofs are all trivial. For ii) and iii), note only that an equivalent
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maximizization problem is to maximize the log of the objective function, i.e., max

N T
Y Inp(x;) st B x, <y, %20 O
t=1 t=1

Suppose instead that any number of attempts can be made till (eventually) a stage
is successfully completed. As in the flow payoff model I shall make the simplifying

assumption that the total allocation for any stage is all that the decision—maker can

choose. It is evident that V(y,n) = max V(y—=xn+1)7(x). It should be
x€ [0,y]
N
straightforward to see that the infinite mistake problem reduces to max 1II T(Xn)
n=1
N

s.t. ¥ x, <. Consider the following assumption on the distribution of completion times
n=1

whose implication is that the expected discounted time to success, 7, is a concave function:
(A4) AF(.x) + (1-M\)F(.;x,) first—order stochastically dominates F(;Ax;+(1-))x,) for
all x;, x, and A € [0,1].

Remark: If the distribution of completion times is exponential, i.e. F(T;x) = 1 —

e_Tx, then (A4) is satisfied.

Proposition 10 Under (A4), the optimal allocation is to distribute the budget evenly

*
between all stages of the project,iex = y/n.

7. Extensions and Discussion

In this section I discuss two extensions and some avenues of future research. The
first generalization is to allow probabilities of success that depend not just on the current
allocation but also on the current stage. This is motivated by the observation that the
stages in the R&D project may refer to very different tasks or problems.!?

In general, the characterization requirements are going to be more stringent. To
understand why, consider the flow payoff problem. With p independent of n but increasing
the earlier the period the higher the allocation; for any two consecutive periods (t, t+1),

allocations X X1 affect probabilities of success in periods t + 1 and beyond in an

+
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identical way but x, also affects the probability of surviving until t + 1. The second

argument still holds but the first is modified as follows. Since p(x,t) and p(x; ;,t+1)

t+1
enter multiplicatively in determining the probability of success in periods t+1 onwards, if
the returns from period t+1 were the only consideration, the optimal allocation would
maximize this product, i.e. should equate the marginal returns to In p(.,t). Given the

additional desirability of attaining stage t+1, an optimal allocation in the flow payoff

d

d
model exhibits the property 5+—1In p(x, t) < 5—1n p(x t+1) (see Dutta (1988) for

t+1
details).’® Indeed the same logic also says that in the terminal payoff specification, the

d % d *
optimal allocations have the property that g——In p(x;,t) = g—In p(x, +1,t+1). (A

number of other results may be found in Dutta (1988)).

A second generalization is to admit scrap—value payments for abandonement of the
project. Qualitatively, the results remain unchanged and indeed in the discussion in
previous sections I have already indicated some details on this issue.

A few comments on the interpretation of the models studied in this paper are in
order. The models apply directly to the R&D decision—making of a monopolist or a
competitive firm which believes that its decisions do not alter the R&D expenditures of its
competitors. In the latter case the probability of success function and the stage rewards
are determined by the rivals’ actions as well as technological factors. If the decision—maker
is an R&D manager then the flow payoff model is an analysis of a manager who is paid Yo
only when the n—th stage is completed. The single attempt model is an incentive scheme
in which, additionally, the manager loses his job in the event of failure. The terminal
payoff model, then, is an incentive scheme in which the manager is paid only when the
entire project is successfully completed; again the single attempt version incorporates
dismissal for unsatisfactory performance.

I turn now to future research issues. I did not address in this paper the question:

why is there an aggregate budget constraint for the R&D allocation problem? I believe one
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reason has to do with the fact that R&D is typically carried out by research groups within
the firm or contracted out; the separation between firm management and R&D
management creates an agency problem and a budgetary mechanism is one incentive
system that deals with this problem. The premise of the argument is that, ceteris paribus,
it is better to give R&D managers flexibility in resource allocation; for example, they may
acquire information about the level of difficulty or the time to completion of various stages
along the way and the greater the flexibility they have the more profitably (and
quickly) they can address this information. However complete discretion on expenditure
may have bad incentive effects; R&D managers are prone to waste funds or not take
adequate precautions if they do not face a budget or cost constraint. These arguments are,
of course, conjectures at this point and it remains to construct a more formal framework
within which the aggregate budget specification can be endogeneously derived.!4

Granot and Zuckerman (1991) and Gallini and Kotowitz (1985) concerned
themselves with the question: if the R&D manager has a choice over the sequence in which
he picks the stages of research to pursue, what would be an optimal way to do so? Note
that in their formulations the manager does not choose any expenditure levels but rather
has available a menu of immediate rewards Ty and probabilities [ and selects sequentially
from that menu. The techniques employed in this paper may be useful in combining the
sequencing and expenditure problems.

Grossman and Shapiro (1986) showed that in the problem with an aggregate budget
constraint and terminal payoffs the optimal time—path of allocation is to increase the stage
expenditures as the project progresses. This contrasts with my result in Proposition 9 that
the optimal allocation is stage—independent. The intuition for their result is of course that,
in the absence of a budget constraint, the allocation is determined period by period and the
marginal benefits are higher when a greater number of stages have already been
successfully completed. V

As noted in the introduction, a related literature is that on the "bomber problem"
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in operations research. Two questions have been addressed in this literature: i) what is the
expected survival time for the gunner (this is the flow payoff problem under the restriction
that y, = 1for all n and a single attempt at each stage)? And ii) what is the probability
of surviving all of the enemy aircraft (this is the terminal payoff problem with a single
attempt at each stage). (See Shepp, Simmons and Yao (1990) for i) and Simmons and Yao
(1990) for ii)). There are three main points of difference between this paper and the above
literature. First, much of that literature places functional form restrictions on p; for
example, Shepp, Simmons and Yao (1990) examines the case p(x) = 1 — e * (whereas I
consider a general formulation for p). In that sense, my results on time and budget
monotonicity in the flow payoff model can be viewed as a generalization of their results.
Second, I examine the bold play issue which is not addressed by this literature. And, third,
I analyze multiple attempts and allow stage—dependent payoffs as well. Ross (1983) also

discusses the terminal payoff problem and presents a version of Proposition 9.

8. Conclusion

I examined the dynamics of optimal management of a sequential R&D project. I
showed that if the total expenditure is fixed a priori, then the optimal allocation in a
development project involves greater expenditures in early stages regardless of the
specification of flow payoffs. However, if the project is a basic research type whose payoffs
come only at the end, then the optimal allocation is to spread the budget evenly if the
innovation production function is subject to decreasing returns. Increasing the size of the
budget does not in general lead to higher allocations at every stage although it does
increase the budget remaining after each stage. Finally, an Inada—type boundary condition
is both necessary as well as sufficient for the optimality of "bold play" in the usage of the
budget. All of these results hold in the two alternative specifications of a single permissible

attempt at each stage or an infinite number of attempts.
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Footnotes

! In Sections 2—4, Grossman and Shapiro studied a sequential R&D formulation to
which there is no immediate analog in this paper.

2 A third set of dynamic considerations relate to the following "stopping" or
adoption problem: an R&D manager explores a sequence of technological opportunities
and has to determine at which point to stop exploring and adopt a currently available
technology. This set of adoption issues are at the heart of Roberts and Weitzman
(1981)— and I do not investigate them in this paper. Some game-theoretic models also
examine dynamic R&D issues (for example, Fudenberg et.al (1983) and Harris and
Vickers (1989)), although their discussion of the dynamics is more limited and their
focus more directly on the strategic aspects of the problem.

3 In principle, the expenditure should also be contingent on the number of further
attempts that can be made at completing the current stage; in the two cases I study,
single attempt and infinite attempts, the firm respectively, cannot and need not
condition on this variable and hence I ignore it in the above formulation.

4 The distribution will also depend on which of the two cases of admissible
number of mistakes, single or infinite, is being analyzed.

5 The sufficient condition for existence is unduly strong. Weaker conditions are
not offered here since their statement would involve additional notation and other
unnecessary complications and further the existence issue is not the focus of this paper.
However note that Dutta (1988) shows, for example, that in the instance that the stage
game payoffs are constant, i.e. Ty = payoffs are well-defined and there is a solution

to the infinite stage problem even when 6 = 1.

6 If the scrap—values also depend on the size of unspent budget, the proposition
goes through provided p(x)y,(x) + [1-p(x)]S (y—x) is non—decreasing in x, for all y.

4 Such a systematic increase (or decrease) in the allocation turns out to be
equivalent to the property that the cross—partial of the value function be positive (or
negative) throughout. As we will see in the sequel it may not even be possible to
ensure more elementary properties like the concavity of the value function, leave alone
modularity properties.

8 The boundedness condition that suffices for the existence of an optimal solution
is satisfied if 6 < 1.

o Assumption (A4) in Section 6 is a sufficient condition under which the expected
discounted time to success, 7, is a strictly concave function.

10 The fact that p is strictly increasing at x = 0 rules out the possibility that o(x)
= 0 over some initial interval of allocations. Indeed that is desirable because bold
play would otherwise, and trivially, be optimal behavior as a consequence of that
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possibility alone.
i (A1) should be taken to mean that p is differentiable over [0,x).

12 When the probability of success functions are contingent on immediate allocations
as well as the stage itself, i.e. they may be denoted p(.,n), existence of optimal
budgetary strategies in the potentially troubling case where the number of stages is
infinity, requires joint restrictions on p(.,n), the immediate payoffs Yo and the discount

factor 6. For a fuller discussion of the existence issue, see Dutta (1988).

13 A natural question to ask is: under what conditions on p(.,n) do the actual
allocations decline with time? Dutta (1988) presents several sufficient conditions for
this to hold; by way of an example, it may be noted that if p is multiplicative in
stage and allocation, i.e. p(x,n) = k(n)p(x), then actual R&D expenditures do in fact
decline over time.

1 I have taken the size of the budget to be exogeneously given and investigated its
optimal usage. It is evident that one can investigate the question of the optimal size
of the budget y by combining the two functions; lifetime profits from optimal
allocation, V(y,1), and a cost function, say c(y).
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Appendix A
In this appendix I provide details of the computations involved in Example 2.
Recall from (4.2) that the optimal choice involves

X y—Xx

2
Max  — = [L+ (3557

x€[0,y]
Let the maximand in (A.1) be denoted y(x;y). A straightforward computation

(A1)

reveals that

1
vy = I Hxy) (A.2)
where
1 —X —X
f(x7Y) = X—I-I{l + (yzx+2 )2] _4x[( ?—-X+2 ) 3]

Evidently, from (A.2)it follows that ¢ _ has the same sign as f(x,y) on x > 0.
Further, a little algebra reveals that on x € [0,y], f(x,y) > 0 if and only if the function
P(x,y) 2 0, where

2

Wxg) = X5 + (46)x2 — (By>+10y+6)x + (yo+4y2+6y+9) (A.3)

Notice that 4(0,y) > 0 as also 9(y,y) > 0. Further,
¥ (x,y) = 3x° + 2(y+6)x — (3y°+10y+6) (A.4)

It is immediate from (A.4) that ¢ (0,y) < 0 and P (v.y) = 2y2 + 2y — 6. In other
words, for all y 9 is a strictly convex function which is strictly positive but declining at x =
0 and strictly positive also at x = y. Moreover, from the above expressions it is clear that
for small y, say y < ;r, % > 0 throughout, i.e. that ¢ > 0 on [0,y] and hence that the
optimal solution of (A.1) is attained at x* = y. For larger y, it follows from (A.4) that ¢ is
as depicted in Figure 3:

(Figure 3)

Remembering that the sign of ¢ is the same as that of O it is immediate that, for
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such y, ¢ increases over [0,x,(y)], decreases over [xl(y),x2(y)] and increases again over
[x5(v),y]. Hence, the maximum payoff is achieved either at x,(y) or at y.

Claim: For large enough y, the optimum choice must be at xl(y). To see this note

that o(y/2;y) = —)—,—_};—_T—— 1+ (_y_—}i’——fl—)2]’ whereas ¢(y;y) = ——3,%— Simple algebraic
manipulation reveals that there is a critical y’ such that ¢(y/2;y) > @(y;y) iff y > y’. The
claim follows.

We know then, that for y < ):, the optimal choice is x* =y and that for y > y’, the
optimal choice is at x* = xl(y) < y. Furthermore, by examining the conditions defining
xl(y), it is straightforward though tedious to show that there cannot be an interval over
which ¢(y;y) = <p(x1(y);y); since the correspondence of maximizers to (A.1l) is upper
semi—continuous, there is clearly one such point at which the decision—maker is indifferent
between Xl(Y) and y. Collecting all of this, we can assert that there is some ;r to the left of
which the unique optimal choice is x* =y and to the right of which the unique optimal

choice becomes xl(y). Since, xl(y) <y, the optimal allocation "jumps down" at y.g

Appendix B

Proof of Proposition 3: I first demonstrate that the value function has the form
claimed above. Consider being at n completed stages with a remaining budget of y. A
candidate budgetary strategy is to mimic the optimal allocation that is employed from n+1
completed stages and an identical budget. Clearly, the returns to doing so are 1/p
V(y,n+1) and this, by definition is no greater than V(y,n), i.e. V(y,n+1) < AV(yn).
However, this argument inverts; starting from n+1 completed stages with a remaining
budget of y, a feasible budgetary strategy is to mimic the optimal strategy from n
completed stages and an identical leftover budget. That argument yields, V(y,n+1) >
BV(y,n). The value function evidently has the claimed structure.

The optimality equation for this problem is
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V(yn) = max {p(x)7, + dp(x)V(y—xn+1) + (1-p(x))V(y—xn)]}
0<x<y

Given the form of the value function, writing V(y) for V(y,0) and A" for Ty the

optimality equation reduces to
V(yn) = " Ogl;}(ty{p(xw + 8p(x)BV (y—=x) + (1-p(x))V(y—x)]}

Evidently, the maximization is independent of n and hence so is any optimal budget

strategy (which are all selections from the set of maximizers). ™

Proof of Proposition 8: Let me first show that if y < x, then immediate
exhaustion is optimal. Since this is evidently true for stage n=N, suppose in fact that n <
N. So I .claim that at such a stage the value function for budgets in [0,x] is V(y,n) =

N—
oY), + W_], where W_ = % (5;)(0))15_1 7. ,,. Clearly it suffices to check that this
n n nooy n+t

function satisfies the optimality equation over [0,X], i.e.

V(y,n) = max p(x) + dp(x)p(y—=x)W 4|, V¥ <X (A.5)
X€ Y

It is easy to show that p(x)p(y—x) is a convex function of x. Hence the maximand in (A.5)
is convex and so the maximum is achieved at either 0 or y. From Proposition 1 it is known
that the maximum cannot be achieved at 0 (else, x, =0 for all t thereafter and that
allocation cannot be optimal).

Suppose now that we start with y > x. By the above arguments the budget is
always exhausted after a finite number of allocations even if there are infinite stages in the
R&D project. The last positive allocation is in (0, x]. Without loss of generality we can
restrict attention to the infinite stage problem; for the finite stage problem if the last
positive allocation is at least X then so are the previous ones and by Proposition 1 the bold
play path is optimal while on the other hand if the last allocation is in (0, x], the analysis is

identical to that which now follows. I shall now show that the penultimate positive
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allocation is x. Clearly I only need to show that an allocation as (xl, Xq, 0, 0...) where x >
Xy 2 Xy > 0and x; + x9 > x, is inoptimal. The argument is identical to that used for the
case above. Note that the maximization problem is the same as (A.5) except for the fact
that the effective domain from which x is chosen is [0,x]. Since the maximand is convex
the maximizer must be either of the two extremes and it cannot be 0. The proposition is

proved. Y
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