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Abstrct

This paper provides a selective survey of the recent literature of unit
root econometrics. Since the seminal work of Nelson and Plosser (1982) was
published, much theoretical and empirical research has been done in the area
of unit root nonstationarity. Nelson and Plosser found that the null
hypothesis of unit root nonstationarity was not rejected for many
macroeconomic series. When a linear combination of unit root nonstationary
variables is stationary, they are said to be cointegrated. Recent
developments in estimation method for coitegrated systems allow researchers
to estimate structural parameters and make inferences without exogeneity
assumptions.
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1. Introduction

Since the seminal work of Nelson and Plosser (1982) was published, much
theoretical and empirical research has been done in the area of unit root
nonstationarity. Nelson and Plosser found that the null hypothesis of unit
root nonstationarity was not rejected for many macroeconomic series. When
one or more variables of interest are unit root nonstationary, standard
asymptotic distribution theory does not apply to the econometric system
involving these variables. The spurious regresssion results disucssed in
Section 3 are concrete examples of this type of problem.

When a variable is unit root nonstationary, it has a stochastic trend.
If linear combinations of two or more unit root nonstationary variables do
‘not contain stochastic trends, then these variables are said to be
cointegrated. Then the cointegrating vector, that eliminates the stochastic
trends, can be estimated consistently by regressions without the use of
instrumental variables, even when no variables are exogenous. If the
- cointegrating vector includes structural parameters, then the econometrician
can estiamte these structural parameters without making exogeneity
assumptions. !

The rest of this paper is organized as follows. In Section 2,
univariate unit root econometrics is discussed. It begins with definitions
of basic concepts such as stationarity, difference stationarity, and trend
stationarity. Then a decomposition of a difference stationary variable into

a determinstic trend, a stochastic trend, and a stationary component is

IStock and Watson (1988b), Deibold and Nerlove (1990), Cambell and
Perron (1991), and Watson (1992) are examples of surveys for unit root
econometrics.



discussed. Spurious regression results, tests for the null of differnce
stationarity, and tests for the null of stationarity are reviewed.

Section 3 reviews multivariate unit root econometrics. Cointegration,
stochastic cointegration, and the deterministic cointegration restriction
are defined. Then some estimators for cointegrating vectors are described.
Tests for the null of no cointegration the null of cointegratio as well as
tests for the number of cointegrating vectors are presented.

Section 4 discusses how cointegration may be combined with standard
econometric methods that assume stationarity. This is accomplished in the
context of the Generalized Method of Moments, which includes many estimation

methods as special cases.

2. Unit Root Nonstationarity

This section deals with a time series of a scalar random variable.
2.1. Definitions

Consider a stochastic process, {x;: t=..,-2,-1,0,1,2,...}, which is a
sequence of random variables. If the joint distributions of
{XXip1oeXeg)  are the same  as  [XyXpepeXuker)> them  x, is
(strictly) stationary. If x, has finite second moments, and if E(x) =
E(x,r) and E(xtx'_,t)=E(xt aXuxp) for all t, 1, k, then x, is said to be
covariance stationary. If x, is stationary and has finite second moments,
then X is covariance stationary.

Many macroeconomic variables tend to grow over time, so that their
distributions shift upward over time. Hence they are not stationary.
However, there are many possible forms of nonstationarity, and it is not

clear which form of nonstationarity is appropriate in representing



macroeconomic variables. It may be reasonable to assume that the growth
rate or the first difference of (natural) log of a variable is stationary
for many macroeconomic variables. Let us now assume that the first
difference of x (Axl=xt-x,_1) is stationary. Then X, is either difference
stationary or trend stationary. If x, is stationary after removing a
deterministic time trend, then X is said to be trend stationary. Because
Ax, is assumed to be stationary, X has a linear time trend when X, is trend

stationary:
2.1) x = 0+ pr+ €

where € is stationary with mean zero. If Axl is stationary and if Axt has
a positive long-run variance, then X, is said to be (first) difference
- stationary.  Alternatively, X is said to be wunit root nonstationary or
integrated of order one. The long-run variance of a stationary variable y,

is defined by

22 o= F E(bEID,EO).

T=-0

The trend stationary process is also stationary after taking the first
difference but its first difference has a zero long-run variance.
A special case of a difference stationary process is a random walk. If

E(x « X L) s

+1 t -1’

_ . 2
xt_2,...)—xt and if E((Axm) X, X X
constant over time, then x is a random walk. If Axt is a random walk, then
A,xt does not have serial correlation. In general, if X, is difference

stationary, then Axt has nonzero serial correlation.

2.2. Decompostions

It is often convenient to decompose a difference stationary process



into components representing a determinstic trend, a stochastic trend, and a
stationary component.

Let x, be a difference stationary process:
2.3) X -xX =H+E

for t=1 where € is stationary with mean zero. Here W is called a drift,

which is the mean of Axt. Then

2.4) X =H+x +€= 2u + X, + €, +E
t
=3u + X, *€,+E, +& =.=W+x + ):e,c.
T=1
Hence

@5)  x=p+s

where x(: is

t
(2.6) K= x, + Y E.
i T=1"!

Relation (2.6) decomposes the difference stationary process X, into a
deterministic trend arising from drift p, and the difference stationary
process without drift x(:.

Let us now consider the Beveridge-Nelson (1981) decomposition, which
further decompose x? into a random walk component and a stationary
component. Because Ax? is covariance stationary, it has a Wold

representation:
2.7) (1-L)x(: = A(L)v,

. T 0= 0.0 0
where L is the lag operator, A(L)=Z°° AL, and v=x-E(xIlx x ...
T=0 ¥ t ot t t-17 -2

Here E(-lx?_l,x?_2,...) is the linear projection operator. Then



o _
2.8) x =z +C,
where

2.9 Z =2z + A(l)vt,
is the random walk component or a stochastic trend, and

2.10) ¢ =(T AV + (T AV

+ (L A‘C)V + ..}
T-1 t T t1 -2

T=3

is the stationary component of X Thus a difference stationary process X,
is decomposed into a deterministic trend, a stochastic trend, and a
stationary component.

The variance of the random walk component, Var(Azt), is equal to
_A(1)2Var(vt), which in turn is equal to the long-run variance of Axt and 271
times the spectral density of Axl at frequency zero. If the long-run
variance is zero, then X = W+c, and X, is trend stationary.

Cochrane (1988), among others, uses Var(Azt)/Var(Axt) as a measure of
persistence of X This measure is zero for trend stationary x and is one
for a random walk. Cochrane estimates Var(Az‘) by 1/k times the variance of
k-differences of X, for a large enough k. Cochrane’s estimator is
essentially the same as the Barlett estimator, which was advocated by Newey
and West (1984) in a different context. Any estiamtor of the long-run
variance or the spectral density at frequency zero can be used for the

purpose of estimating Cochrane’s measure of persistence.

2.3. Spurious Regressions
One reason why macroeconomists need to be careful about unit root

nonstationary variables is that standard regression theory can be very



misleading when variables in a regression are difference stationary.

For example, suppose that Y, is a random walk and X, is a random walk
which is independent of Yy Granger and Newbold (1974) found that the
standard Wald test for the hypoethesis that the coefficient on x is zero
tended to be large (compared with standard critical values) in ordinary
least squares (OLS) regressions of y, onto x in their Monte Carlo
experiments. Later, Phillips (1986) showed that the Wald test diverges to
infinity as the sample size is increased. In a regression with two
independent difference stationary variables without drift, the random walk
components will dominate the stationary components at least asymptotically.
Hence these spurious regression results imply that the absolute value of the
t-ratio of the regressor tends to be larger than the critical valued implied
by the standard statistical theory that assumes stationarity. An
econometrician who ignores unit root nonstationarity issues tend to
spuriously conclude that two independent difference staitonary variables are
related.

Another example of the spurious regression results is in Durlauf and
Phillips (1988). When a difference stationary X without drift is regressed
onto a constant and a  linear time trend, the Wald test statistic for the
hypothesis that a coeficient for the linear trend is zero diverges to

infinity as the sample size increases.

2.4. Near Observational Equivalence
Most of the tests that will be described in sections 2.4 and 2.5 below
seek to discriminate between difference stationary and trend stationary

processes. In the finite samples that we observe, there is a conceptual



difficulty with this task. In finite samples, any difference stationary
process can be approximated arbitrary well by a series of trend stationary
processes. This can be done by driving the dominant autoregressive root of
trend stationary processes to one from below.  After all, it is very
difficult to discriminate between the dominant autoregressive root of 0.999
and that of one. This type of problem exists for virtually any hypothesis
testing. What is special about hypothesis testing for unit root
nonstationarity is that the opposit is also true: any trend stationary
process can be approximated arbitrary well by a series of difference
stationary processes. This can be done by driving the long-run variance of
the first difference of diffrence staitonary processes to zero. Some
“authors call this problem the near observational equivalence problem (see,
e.g., Blough (1988), Campbell and Perron (1991), Christiano and Eichenbaum
(1990), Cochrane (1988)).

2.5. Tests for the Null of Difference Stationarity

This section explains Dickey-Fuller (1979), Said-Dickey (1984),
Phillips-Perron (1988), and Park’s (1990a) tests for the null of difference
stationarity. More recent work to improve small sample properties of tests
includes Kahn and Ogaki (1990), Elliott, Rothenburg, and Stock (1992), and
Hansen (1993).
2.5.1. Dickey-Fuller Tests

Dickey and Fuller (1979) propose to test for the null of a unit root in

an AR(1) model:2

2lt should be noted that Dickey and Fuller’s (1981) joint tests with
determinstic terms can have significantly lower power than Dickey and
Fuller’'s (1979) one-tailed single unit root tests as explained by Parks
(1989).



(2.1 x = 0+ ur+ ox  + €.

where € is NID. One of their test is based on T(&-l), where T is the
sample size and (/)\c is the OLS estimator for o in (2.11) and another test is
based on the t-ratio for the hypothesis a=1. These test statistics do not
have standard distributions. Depending on whether or not a constant and a
linear time trend are included, distributions of these tests under the nuil
are different.3  Fuller (1976, Tables 8.5.1 and 8.5.2) tabulates critical
values for Dickey-Fuller tests.

Whether or not a constant and a linear time trend should be included in
the regression depends on what type of alternative is appropriate. If the
alternative hypothesis is that X, is stationary with mean zero, then no
“ deterministic terms should be included. This alternative is not appropriate
for most of the macroeconomic time series. If the alternative hypothesis is
that X, is stationary with unknown mean, then a constant should be included.
This alternative is appropriate for the time series which exhibit a
consistent tendency to grow (or shrink) over time. If the alternative is
that X, is trend stationary, then a constant and a linear time trend should
be included. This alternative is appropriate for the time series which
exhibit a consistent tendency to grow (or shrink) over time. When these
test statistics are negative and greater than the appropriate critical value
in absolute value, then the null of a unit root is rejected in favor of one

of these alternatives.

3If the data are demeaned prior to the regression, then the test
statistics have the same distributions as those from the regression with a
constant in (2.11). If the data are detrended prior to the regression, then
the test statistics have the same distributions as those from the regression
with a constant and a linear time trend.

8



Dickey-Fuller tests assume that the econometrician knows the order of
AR. The following tests treat the case of unknown order of AR (or even more

general cases).

2.5.2. Said-Dickey Test
Said and Dickey (1984) extend the Dickey-Fuller’s t-ratio test to the

case where the order of AR is unknown. Consider a regression
(2.11) Ax =0 + pr+ px  + Blet_1 + o+ Bprt_P + V.

When the order of the AR, p, is increased as the sample size at a certain
rate, the t-ratio for the hypothesis p=0 has the same asymptotic
distribution as Dickey-Fuller t-ratio test. Some authors call this test the
augmented Dickey-Fuller (ADF) test while others reserve the word ADF for the
’corresponding cointegration test. A constant and a linear time trend are
included or excluded according to the appropariate alternative hypothesis as
before.

In many applications, the Said-Dickey test results are very sensitive
to the choice of the order of the AR, p. Campbell and Perron (1991) propose
to start with a reasonably large value of p that is chosen a priori and

decreases p until the coefficient on the last included lag is significant.

2.5.3. Phillips-Perron Tests

Phillips (1987) and Phillips and Perron (1988) use a nonparametric
method to correct for serial correlation of €. Their modification of the
Dickey-Fuller T(&-l) test is called Z(o) test, while their modification of
the Dickey-Fuller t-ratio test is called Z(t) test. These corrections are

based on a nonparametric estimate of the long run variance of €. See



Section 3.2.3 below for a discussion of nonparametric estimation methods.
Phillips-Perron tests are constructed so that they have the same asymptotic
distributions as corresponding Dickey-Fuller tests.

An advantage of the Phillips-Perron tests over the Said-Dickey test is
that they tend to be more powerful as shown in Monte Carlo experiments of
Phillips and Perron. A drawback of the Phillips-Perron tests is that they
are subject to more severe size distortions than the Sadi-Dickey test (see
Monte Carlo results of Phillips and Perron(1988) and Schwert (1989)). Size
distortion exists when the actual size of a test in small samples is very
different from the size of the test indicated by asymptotic theory. Such

differences are due to approximations involved in the asymptotic theory.

" 2.54. Park’s J Tests
Park’s (1990a) J tests based on a variable addition method are
originally proposed by Park and Choi (1988). These tests are based on

spurious regression results. Consider a regression

P, 3o
(2.12) xt=2u,ct + Y pt +1M.

T=0 "C=p+’f t
Here the maintained hypothes is that X possesses the deterministic time
polynominals up to the order of p (typically, p is zero or ome). The
additional time polynomials are spurious time trends. Let F(p,q) be the
standard Wald test statistic (without any correction for serial correlation
of nt) for the null hypothesis ].Lp+l=...=uq=0. Under the null hypothesis
that m, is unit root nonstationary, spurious regression results imply that
F(p,q) explodes but F(p,q)/T has an asymptotic distribution. The J(p,q)
test is defined as F(p,q)/T. The null hypothesis of the difference

staitonarity is rejected against the alternative of trend stationarity when

10



J(p,q) is small because J(p,q) converges 10 zero under the alternative
hypothesis of trend stationarity. Part of Park and Choi’s table of critical

values for J tests are reproduced in Table 1 for convenience.

(Table 1 around here)

The J(p,q) tests do not require the estimation of the long-run variance
of n, and thus have an advantage over the Said-Dickey and Phillips-Perron
tests in that neither the order of autoregression nor the lag truncation
number needs to be chosen. Park and Choi’s Monte Carlo experiments show
that J tests have relatively stable sizes and are not dominated by Said-

_Dickey and Phillips-Perron tests in terms of size-adjusted power.

2.6. Tests for the Null of Stationarity

In some cases, it is useful to test the null of stationarity (or trend
stationarity) rather than the null of difference stationarity. For example,
if an econometrician plans to apply econometric theory that assumes
stationarity, a natural procedure is to test the null of stationarity rather
than test the null of difference stationarity.  Tests for the null of
stationarity will also lead to tests for the null of cointegration as will
be discussed in Section 3.4. However, most of the tests in the unit root
literature take the null of a unit oot rather than the null of
stationarity. Only recently, Fukushige, Hatanaka, and Koto (1990), Kahn and
Ogaki (1992), Kwiatkowski, Phillips, Schmidt, and Shin (1992), Birens and
Guo (1993), and Choi and Ahn (1993) among others have developed tests for

the null of stationarity.
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Park’s (1990a) G tests for the null of stationarity were first
developed by Park and Choi (1988). These tests, which have been used in
empirical work by several researchers, are based on the same spurious
regression results as Park’s J tests. With the notations in Section 244,
G(p,q)=F(p,q)é\)'2 /(/t\)z, where & =(1/’I‘)Z;r=1ﬁf, &’ is an estimate of the long-run
variance of n, and ﬁt is the esimated residual in regression (2.12). Under
the null that X, is stationary after removing the maintained deterministic
time terms of time polynominal of order p, G(p,q) test has asymptotic chi-
square distribution with the degree of freedom g-p. Under the alternative
hypothesis that X is difference stationary (after removing the maintained
deterministic terms), the G(p,q) statistic diverges to infinity.  This is
“due to the spurious regression result that time polynonimals tend to mimic a
stochastic trend.

Unlike Park’s J tests, Park’s G tests require estimation of the long-
run variance. Kahn and Ogaki’s (1992) Monte Carlo experiments on Park’s G
tests suggest that it is advisable to use relatively small q when the sample

size is small and not to use prewhitening method discussed in Section 3.2.3.

3. Cointegration
When the stochastic trends of two or more difference stationary
variables are eliminated by forming a linear combination of these variables,
the variables are said to be cointegrated in the terminology of Engle and
Granger (1987). What is striking about cointegration is that a
cointegrating vector that eliminates the stochastic trends can be estimated
consistently by regressions without using instrumental variables, even when

no variables are exogenous.

12



3.1. Definitions

Let Z, be a nxl vector of difference stationary random variables with
AZt being stationary. If there exists a nonzero vector of real numbers o
such that OL’Zt is stationary, then Zt is said to be cointegrated with a
cointegrating vector o. If o is a cointegrating vector, bo is also a
cointegrating vector for any real number b. It is often convenient to
normalize one element by one. Suppose that the first elment of o is
nonzero, then partition Zt by Zt=(yt, th) and normalize o by o=(1,-Y).
Here Y, is a difference stationary process, Xt is a vector difference
stationary process, and Y is a normalized cointegrating vector.

There may exist more than one linearly independent cointegrating
_vectors. Suppose that there are r linear independent cointegrating vectors
(O=r=n-1). Then Zt possesses only n-r common stochastic trends (see Stock
and Watson (1988a)).

We now introduce the notions of stochastic cointegration and the
determinstic  cointegration restriction, as defined by Ogaki and Park

(1989).4 Consider a vector difference stationary process Xt with drift:
3.1 Xt - Xt_1 =H +V

for t=1 where M is a (n-1)-dimensional vector of real numbers where v is
stationary with mean zero. As in (2.5), recursive substitution in (3.1)

yields

(G2 X =pr+ x°

t

4West (1988) consider estimation under the determinstic cointegration
restriction for the special case of one regressor. Hansen (1992) and Park
(1992) consider the deterministic cointegration restriction under more
general cases.

13



where X(: is difference stationary without drift. Relation (3.2) decomposes
the difference stationary process X into deterministic trends arising from
drift M and the difference stationary process without drift, X? . Suppose
that yt is a scalar difference stationary process with drift uy. Similarly,
decompose yt into a deterministic trend ).Lyt and a difference stationary

process without drift y? as in (2.7):

(33) y =pt+ y‘f.

Difference stationary processes yt and Xt are said to be stochastically
cointegrated with a normalized cointegrating vector Y when there exists a
(n-1)-dimensional vector Y such that y(: - 'y’X(: is stationary.  Stochastic
cointegration only requires that stochastic trend components of the series
“are cointegrated. We may then write y? - y’X‘: = Gc + €, where € is

stationary with mean zero. Then by (3.2) and (3.3),
(3.4 yt = Oc + y’Xt + €
where
ORI
Nest, suppose that a vector y* satisfies

*
GO  m=1H
Then Yt - 'ym’Xt does not possess any deterministic trend, and Yt and Xt are
cotrended with a normalized cotrending vector 'Y*. If n>2 and if one of the
components of K is nonzero, there are infinitely many cotrending vectors.
Consider an extra restriction that the normalized cointegrating vector Y is

a cotrending vector. This restriction, which we call the deterministic

cointegration restriction, tequires that the cointegrating vector eliminates

14



both the stochastic and deterministic trends. In this case,

3.7 yt = Gc + y’Xt + €.

3.2. Estimation

When y, and Xt are cointegrated, an OLS regression (3.4) (or (3.7)
either if the determistic cointegration restriction is satisfied or if the
drift terms are known to be zero) is called a cointegrating regression. The
OLS estimator is consistent (see Phillips and Durlauf (1986) and Stock
(1987)), but is asymptotically biased. It also has a nonstandard
distribution, which make statistical inference very difficult. For example,
the OLS standard errors calculated in the standard econometric packages for
OLS are not very meaningful for cointegrating regressions. Many efficient
‘estimation methods that solve all or part of these problems have been
developed by Phillips and Hansen (1990), Phillips and Loretan (1988),
Saikkonen (1991), and Stock and Watson (1993) among others. In the
following, we focus on Johansen’s (1988, 1991) Maximum Likelihood Estimation

and Park’s (1992) Canonical Cointegrating Regressions.

3.2.1. Error Correction and Johansen’s Maximum Likelihood Estimation
Johansen’s (1988, 1991) maximum likelihood (ML) estimation is based on

an error correction representation:
(3.8) AZ =p + Ao Z 6+ BIAZt_1 + [32AZt_2 + .+ [3pAZt_p + €,

where Zt and at are nx1 vectors of random variables, A and o are nxr

matrices of real numbers, and PB’s are nxn matrices of real numbers. The
1

15



first term koc’Zt_1 is called an error correction term.”> Engle and Granger
(1987) show that first difference stationary Zt has a possibly infinite
order error correction representation with a nonzero A under general
regularity conditions if Zt is cointegrated with r linear independent
cointegrating vectors. The columns of « are these cointegrating vectors.

It should be noted that Johansen’s assumption that the error correction
representation of finite order can be very restrictive in some applications.
For example, Gregory, Pagan, and Smith (192) shows that linear quadratic
economic models with adjustment costs imply moving average terms in the
error correction representation. Phillips’s (1991) ML estimation method may
be useful in these circumstances.

Johansen makes an additional assumption that € is normaly distributed
and derive maximum likelihood estimator for o. In his procedure, all
parameters are jointly estimated and his estimators are asymptotically
efficient. Another way to estimate an error correction representation is to
use Engle and Granger’s (1987) two step estimation method. In the first
step, cointegrating vectors are estimated. For example, if there is only
one linear independent cointegrating vector, it can be estimated by an OLS.
Other efficient estimators may be used in this first step. Then the rest of
the parameters in the error correction representation are estimated in the
second step. Because cointegrating vector estimators converge faster than
Ii the first step estimation does not affect asymptotic distributions of

the second step estimators. In the second step, only stationary variables

5Johansen uses an error correction term ?‘,OL’Zt instead of more

conventional 7»05’2t v Hoever, these two representations can be shown to be

equivalent.
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are involved, so the standard econometric theory can be used.

3.2.2. Canonical Cointegrating Regression

Johansen’s maximum likelihood estimation makes a parametric correction
for long-run correlation of AX‘ and €. Another way to obtain an efficient
estimator is to utilize a nonparametric estimate of the long-run covariance
parameters. Both Phillips and Hansen’s (1990) and Park (1992) employ such
covariance estimatees. Here, attention is confined to Park’s Canonical
Cointegration Regressions (CCR).

Consider a cointegrated system
(3.9 y, = Xt'y + €
(3.10) AXt =V,
- where Y, and Xt are difference stationary, and € and v, are stationary with
zero mean.® Here Y, is a scalar and Xt is a (n-1)x1 random vector. Let
(3.11) w o= (81’ vt’).
Define ®(i) = E(wtwt_i’), =®0), I' = Z‘?:OCI)(i), and Q = ZT;OO@(i). Here Q
is the matrix version of (2.2) and is called the long run variance (or
covariance) matrix of w. Partition Q as
3.12) Q-= el
G Q21 sz n-1

and partition I" comformably. Define

_ -1
(3.13) Qu.z - Qu ) 912922921

’

and F2 = (l"n,

I,)". The CCR procedure assumes that Q  is positive

definite, implying that Xt is not itself cointegrated (see, e.g., Phiilips

6There are no deterministic terms in (1) and (2), but it is simple to
analyze effects of deterministic terms on the asympotic distributions in the
CCR system.

17



(1986) and Engle and Granger (1987)). This assumption assures that (1,-Y)
is the unique cointegrating vector (up to a scale factor).’

The OLS estimator in (3.9) is super-comsistent in that the estimator
converge to P at the rate of T (smaple size) even when Ax(t) and u(t) are
correlated. The OLS estimator, however, is not asymptotically efficient.

Consider transformations

% _ ’
(3.12) y, =yt Hyw‘

(3.13) X¥ =X + Mw,

Because w is stationary, yT and XT are cointegrated with the same
cointegrating vector (1, -B) as Y, and Xt for any I, and II,. The idea of
the CCR is to choose I, and II,, so that the OLS estimator is asymptotically

efficient when y, 1 regressed on X t.8 This requires

- -1 -1y,
(3.14) I, =2Ty+ 0,2 Q)

(3.15) I, =X'T,

In practice, long-run covariance parameters in these formulas are
estimated, and estimated I, and II, are used to transform y, and Xt. As long

as these parameters are. estimated consistently, the resultant CCR estimator

7For many applications, it is natural to assume that A'I&:t is not
cointegrated with Xt. This assumption implies that Qu ) is positive. Park
(1992) calls cointegration between Y, and Xt singular when an is zero.

For the singular models, either a different CCR procedure described by Park
is necessary (the removable singularity case) or the CCR procedure is not
applicable (the essential singularity case). '

8Under gemeral conditions, a sequence of functions (1/T )m):;r_lw(t)
converges in distribution to a vector Brownian motion B with covariance
matrix Q. The OLS estimator converges in distribution to ????
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is asymptotically efficient.

Here we have considered a single regression. If there are many
cointegrating regressions with  disturbances with nonzero long-run
covariances in an econmetric system of interest, then asymptotically it is
more efficient to apply seemingly unrelated regressions. Park and Ogaki
(1990a) develop a method of Seemingly Unrelated Canonical Cointegrating
Regressions (SUCCR) for this case. In the SUCCR, transformations of Y, and
Xt that are slightly different from (3.14) and (3.15) are applied in each
regression.  After transforming variables, the standard seemingly unrelated

regression method is applied to the transformed variables.

3.2.3. Estimation of Long-Run Covariance Parameters

In order to use efficient estimators for cointegrating vectors based on
nonparametric correction such as CCR estimators, it is necessary to estimate
long-run covariance parameters Q and T. In many applications of
cointegration, the order of serial correlation is unknown. Let

(IJ(‘l:)=E(wtw’t -'C)’

_ 1 T AA , .
(3.16) (I)T('t) = _T_ET,,IW‘W"T for 1=0,

and CI)T('C)=CDT(-’C)’ for 1t<0, where v’t\)t is constructed from a consistent
estimate of the cointegrating vector, Many estimators for € in the

literature have the form

T-1 T
G1) Q=75 T k) S0,
T

T=-T+1
where k(-) is a real-valued kernel, and ST is a band-width parameter. The

factor T/(T-p) is a small sample degrees of freedom adjustment. See Andrews

(1991) for examples of kernels. Similary, I" is estimated by
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T-1 T
(3.18) T = TT_p L k) @ ().
T=0 T

One important problem is how to choose the bandwidth parameter S .
Andrews (1991) provides formulas for optimal choice of the bandwidth
parameter for a variety of kemels.  These formulas include unknown
parameters and Andrews proposes automatic bandwidth estimators in which
these unknown parameters are estimated from the data. The first step is to
use a parametric approximation to estimate the law of motion of the
disturbance w. The second step is to calculate the parameters for the
optimal bandwidth parameter from the estimated law of motion. In his Monte
Carlo simulations, Andrew uses a AR(1) parameterization for each term of the
disturbance. This seems to work well in the models he considers. More

“recently, Newey and West (1992) provided an alternative method to choose the
bandwidth parameter.

Monte Carlo experiments by Newey and West (1992) show the choice of
kernel is less important than the choice of the bandwidth parameter for the
purpose of more accurate inference. The Bartlett kermel recommended by
Newey and West (1987) has been used by many applied researchers. Andrews
(1991) recommends quadratic spectral (QS) kernel that has certain asymptotic
optimal properties.

Andrews and Monahan (1992) propose a VAR prewhitening method to
estimate Q. Their Monte Carlo experiments, in the context of inference in
systems with stationary variables, show that the VAR prewhitening improves
small sample properties of estimators of ) substantially. The intuition
behind this is that the estimators of the form (3.18) only take care of MA

components of w, and cannot handle the AR components well in small samples.
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Park and Ogaki (1990) extend the VAR prewhitening method to estimation
of T, so that it can be applied to cointegrating regressions. The first

step in the VAR prewhitening method is to run a VAR:
(19 w=Aw +Aw +.. +A W +e.

Note that the model (3.19) need not be a true model in any sense. Then the
estimated VAR is used to form an estimate 2 and estimators of the form
(3.17) and (3.18) are applied to the estimated e to estimate the long-run
variance of e Q" and the paramter I" for e I". The estimator based on
the QS kemnel with the automatic bandwidth parameter can be used to e for

example. Then the sample counterpart of the formulas
k k
(3200 Q=[-YAI'QM-JAT

i=1 i=1
k k

(3.21) I = ®0) + [I-ZA]'I(I“*-E(elet’)(I-ZA’)'I

i=1 =1
k k1 k

+ [I-ZA]"Z Y A
=1 =0 i=jHl
are used to form estimates of Q and I'.9

Monte Carlo experiments in Park and Ogaki (1990) show that the VAR
prewhitening improves small sample properties of CCR estimators

substantially.

3.3. Tests for the Null of No Cointegration
Many tests for cointegration apply unit root tests to the residuals of
a cointegrating regression. When tests for the null hypothesis of unit root

nonstatioarity are applied to residuals, the null of no cointegration is

9See Park and Ogaki (1992) for a derivation of (3.21).
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tested against the alternative of cointegration. It should be noted that
the asymptotic distributions of these tests generally depend on the number
of the variables in the cointegrating regression.

Engle and Granger’s (1987) augmented Dickey-Fuller (ADF) test applies
the Said-Dickey test to the residual from cointegrating regressions.
Asymptotic properties of the ADF test is studied in Phillips and Ouliaris
(1990). These authors and MacKinnon (1990) tabulate critical values from
Monte Carlo simulations. Note that these critical values assume the OLS is
used for the cointegrating regression, so that the efficient estimation
methods discussed in Section 3.2 above shoud not be used for this test.
Just as the Said-Dickey test, the ADF test may be sensitive to the choice of
~the order of the order of AR.

Phillips and Ouliaris also study asymptotic properties of tests for
cointegration obtained by applying the Phillips-Perron test to OLS
cointegrating regression residuals. ~ Asymptotic critical values are reported
by Phillips and Ouliaris. This test requires an estimate of the long run
variance of the residual.

Park’s (1990a) I(p,q) test basically applies his J(p,q) test to OLS
cointegrating regression residuals. This test was originally developed by
Park, Ouliaris, and Choi (1988). The I(p,q) test is computed by adding
spurious time trends as additional regressors in the cointegrating

regression:
|
(3.22) y =Y Hot™ + YRt + y’Xl + €.
t T=0 T=p+
Here, time polynomials up to the order of p represent maintained trends,

while higher order time polynomials are spurious trends. Part of Park,
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Ourliaris, and Choi’s table of critical values for I(p,q) tests are
reproduced here in Table 2. This test has an advantage over ADF and
Phillips-Ouliaris tests in that neither the order of AR or the bandwidth

parameter needs to be chosen.

(Table 2 around here)

3.4. Tests for the Null of Cointegration

When an economic model implies cointegration, it is often more
appealing to test for the null of cointegration, so that an econometrician
can control the probability of rejecting a valid economic model.  Phillips
“and Ouliaris (1990) discussed why it was hard to develop tests for the null
of cointegration. More recently, Fukushige, Hatanaka, and Koto (1990),
Hansen (1992b), and Kwiatowski, Phillips, Schmidt, and Shin (1992), among
others, have developed tests for the null of cointegration.

Park’s (1990a) H(p,q) test is computed by applying the CCR to (3.22).
Thus, this test essentially applies Park’s G(p,q) test to CCR residuals. A
similar test was originally developed by Park, Ouriaris, and Choi (1988),
where G(p,q) tests were applied to OLS residuals, and their tests have
nonstandard distributions. In contrast, Park’s H(p,q) tests have asymptotic
chi-squre distributions with p-q degrees of freedom. The H(p,q) test is
computed by applying CCR to (3.22).  Under the alternative of no
cointegration, the H(p,q) statistic diverges to infinity because spurious
trends try to mimick the stochastic trend left in the residual.  Therefore,

this test is consistent.
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In many applications, it is appropriate to model each variable in the
econometric system as first difference sationary with drift.  Beacus of
drift, each vairable possess a linear deterministic trend as well as a
stochastic trend in Section 3.1. In this case, H(l,q) statistics test the
null hypothesis of stochastic cointegration. The H(0,1) test can be
considered as a test for the deterministic cointegration restriction because
the restriction implies that the cointegrating vector that eliminates the

stochastic trends also eliminates the liear deterministic trends.

3.5. Tests for the Number of Cointegrating Vectors

Johansen’s (1988, 1991) likelihood ratio tests and Stock and Watson’s
(1988a) tests for common trends are often used to determine the number of
" cointegrating vectors in a system. These tests take the null hypothesis
that a nx1 vector process Zt has r=0 linear independent cointegrating
vectors (or it has n-r common stochastic trends) against the alternative
that it has k>r linear independent cointegrating vectors (or it has n-k
common stochastic trends). Hence if r=0, these statistics test the null
hypothesis of no cointegration against the alternative of cointegration.

Podivinsky’s (1990) Monte Carlo results suggest that there can be
severe size distortion préblem with Johansen’s tests when the sample size is
small. For example, when there is no cointegrating vector in the data
generation process and when asymptotic critical values are used, Podivinsky
finds a tendency for the test with the null hypothesis of r=0 to overreject

and the test with the null hypothesis of r=I to underreject.

3.6. How Should an Estimation Method be Chosen?

There exist many estimation and testing methods for cointegration. It
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is advisable for an applied researcher to try at least two methods and check
sensitivity of empirical results. When the researcher to chooses a main

method to be used, the following considerations naturally come to mind.

3.6.1. Are Short-Run Dynamics of Interest?

If, in addition to coinetrating vectors, the short-run dynamics are of
interest, then it seems (at least conceptually) natural to estimate short-
run dynamics and cointegrating vectors simultaneously. For example, this
can be done by applying Johansen’s ML method to estimate an error correction
model.

On the other hand, the researcher is often interested in the
cointegrating vector but not in short-run dynamics (see, e.g., Atkeson and
© Ogaki (1991), Clarida (1993ab), and Ogaki (1992a)). In such cases, it is
desirable to avoid making unnecessary assumptions about short-run dynamics.
An estimation method that uses a nonparametric method to estimate long-run

covariance parameters such as CCR is natural in these circumstances.

3.6.2. The Number of the Cointegrating Vectors

In some empirical applications, the researcher may have many economic
variables and may not have any guidance from economic models about which
variables may be cointegrated. In such applications, tests for the number
of cointegrating vectors are useful. It should be noted, however, that
these tests may not have very good small sample properties because of the
near observational equivalence problem discussed in Section 2.4. For this
reason, it is desirable to use economic models to give some a priori
information about which variables should be cointegrated.

In some applications, an economic model implies that there exist two or
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more linearly independnet cointegrating vectors. In this case of multiple
cointegrating vectors in a cointegrating regression, neither OLS nor CCR can
be used to identify cointegrating vectors. Tests for the null of
cointegration based on CCR discussed above also assume that there is only
one cointegrating vector and hence cannot be used. However, it is sometimes
possible to use a priori information from economic models to handle multiple
cointegrating vectors with the CCR methodology.10 Johansen’s ML method has
an advantage that it allows multiple cointegrating vectors. However, as
pointed out by Park (1991) and Pagan (1992) among others, cointegrating

vectors may not be identified even by the Johansen’s ML method.

3.6.1. Small Sample Properties

It is known that Johansen’s ML estimates and test results can be very
sensitive to the choice of the order of autoregression in empirical
applications (see, e.g., Stock and Watson (1993)). Therefore, it is
important to check sensitivity of empirical results with respect to the
order of autoregression when Johansen’s method is used. This may be related
to the fact that Johansen’s estimator for a normlized cointegrating vector
has very large mean square error when the sample size is small (see Park and
Ogaki (1991b)). Gonzalo (1991) also reports this even though he emphasizes
that Johansen’s estimator has good small sample properties when the sample
size is increased. Podvinsky’s (1990) result that Johansen’s likelihood
ratio tests have severe size distortion problems in some circumsances
discussed in Section 3.5 may be to these observations.

Park and Ogaki (1991b) find that the CCR estimator typically has

10See Kakkar and Ogaki (1993) for an example of an empirical
application.
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smaller mean square errors than Johansen’s ML estimator when the
prewhitening method is used. Han and Ogaki (1991) find that Park’s tests
for the null of cointegration have reasonable small sample properties.

To improve small sample properties of CCR estimators, iterations on the
estimation of the long-run covariance parameters are recommended. In
empirical applications of CCR, OLS is typically used as an initial
estimator. Since OLS coincides with CCR when there is no correlation
between the disturbance term and the first difference of the regressors at
all leads and lags, the initial OLS may be called the first stage CCR. The
second stage CCR is obtained from the long-run covariace parameters
calculated from the first stage CCR estimates. The third stage CCR is
~obtained from the long-run covariance parameters calculated from the second
stage CCR estimates, and so on. Park and Ogaki (1991b) report that the
small sample properties of the third stage CCR estimator is typically better
than those of the second stage CCR estimator. On the other hand, the fourth
stage CCR estimator sometimes had significantly larger mean square error.
For Park’s tests for the null of cointegration to be consistent, it is
necessary to bound both the eigenvalues of the VAR prewhitening coefficient
matrices and the bandwidth parameter estimate. For example, while using the
first order VAR for prewhitening, Han and Ogaki bounds the singular values
of the VAR coefficient matrix by 0.99 and the bandwidth parameter by the
square root of the sample size. When the variables are cointegrated, the
CCR estimators have better small sample properties without these bounds.
Because of this, Han and Ogaki recommend reporting the third stage CCR
estimates without the bounds imposed and the fourth stage CCR test results

with the bounds imposed.
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4. Generalized Method of Moments and Unit Roots

When difference stationary variables are involved in the econometric
system, standard econometric methods that assume stationarity are not
applicable because of spurious regresssion problems. Hence econometricians
detrend data by taking growth rates of variables, for example. However, by
detrending data, the econmetrician loses the information contained in
stochastic and deterministic trends. It is thus natural to seek a method to
combine standard econometric methods and cointegrating regressions.
Estimating an error correction representation explained in Section 3.2.1 is
an example of such a method in vector autoregressions. Let us now consider
this problem in the context of Hansen’s (1982) Generalized Method of Moments
"~ (GMM) estimation. This is particularly useful because'many estimators can
be considered special cases of GMM.11

Let {Xt:t=1,2,...) be a collection of random vectors Xt’s, BO be a p-
dimensional vector of the parameters to be estimated, and f(Xt,B) a q-
dimensional vector of functions (qzp). We refer to u‘=f(Xt,B0) as the

disturbance of GMM. Consider the (unconditional) moment restrictions

4.1) E(fX, B)) = 0.

Suppose that a law of large numbers can be applied to j(X‘,B) for all
admissible B, so that the sample mean of f(Xt,B) converges to its population

mean:

T
42) lim Ly X, B) = BAX, B)

Tow T =1

with probability one (or in other words, almost surely). The basic idea of

11See Ogaki (1993) for a survey of GMM.
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GMM estimation is to mimic the moment restrictions (2.1) by minimizing a

quadratic form of the sample means

T T
1
(4.3) IB) = (LK, BV W—TAX, B))
T t=1 T t=1
with respect to f3; where WT is a positive semidefinite matrix, which
satisfies
4.4) limW,_=W.

Towo
with probability one for a positive definite matrix W o The matrices WT and

W0 are both referred to as the distance or weighting matrix. The GMM
estimator, BT, is the solution of the minimization problem (4.3). Under
fairly general regularity conditions, the GMM estimator BT is a consistent
7 estimator for arbitrary distance matrices.

Let Q be the long run variance of the GMM disturbance u. Then the
optimal choice of the distance matrix is WO=Q'1, iﬁ the sense that this
distance matrix yields the most efficient GMM estimator. Under suitable
regularity conditions, VT (BT-BO) approximately has a normal distribution
with mean zero and the covariance matrix {D’Q'ID}'1 in large samples, where
D=E( af(Xt,B)/aﬁ' ).  Moreover, with this | choice of the distance matrix,
TJT(BT), has an asymptotic chi-square distribution with q-p degrees of
freedom. This test is sometimes called Hansen’s J test and is used to test
if the moment condtions (4.1) are satisfied by the data.

The asymptotic theory of GMM does not make strong distributional
assumptions, such as that the varibles are normaly distributed. However,
Hansen assumes that X‘ is stationary. Hence if variables are difference
stationary, the econometrician needs to transform the variables to induce

stationarity. One such transformation is to take the first difference of a
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variable, or to take the growth rate of the variables if the log of the
variable is difference stationary. But it may not be possible to take
growth rates of all variables for some functions in j(X‘,B) while retaining
moment condtions. In such cases, it may be possible to use cointegrating
relationships to induce staitonarity by taking linear combinations of
variables. In empirical applications of Eichenbaum and Hansen (1990) and
Eichenbaum, Hansen, and Singleton (1988), their economic models imply some
variables are cointegrated with a known cointegrating vector. They use this
coinegration relationship to induce stationarity for the equations involving
the first order condition that equate the relative price and the marginal
rate of substitution.

In Cooley and Ogaki (1991), their economic model implies a
cointegration relationship, but the cointegrating vector is not known. They
employ a two-step procedure. In the first step, they estimate the
cointegrating vector, using a cointegrating regression. In the second step,
they plug in estimates from the first step into GMM functions f(Xt,B). This
two step procedure is similar to Engle and Granger’s two step procedure for
error correction model discussed in Section 3.2.1 above.  Asymptotic
distributions of GMM estimators in the second step are not affected by the
first step estimation because cointegrating regression estimators converge

at a faster rate than »Ff

5. Concluding Remarks
This paper has surveyed the recent leterature on unit roots. An
important related issue left out from this survey is a model of breaks in

determinstic trends proposed by Perron (1989). Macroeconomic time series
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may be modeled as stationary fluctuations around determinstic trends that
change over time. Even in this case, an idea similar to cointegration can
be applied if economic variables have common deterministic trends. Because
no interated variables are involved, such relationships may be called
cotrending as in Chapman and Ogaki (1993). Under certain conditions,
cotrending relationships can be used to estimate cotrending vectors and test

economic models.
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TABLE 1

Critical Values of Park’s J(p,q) Tests for
the Null of Different Stationarity

Size 0.010 0.025 0.050 0.100

J(0,3) 0.1118 0.2072 0.3385 0.5773
J(1,5) 0.1228 0.1977 0.2950 0.4520

Note: These critical values are from Park and Choi (1988).

TABLE 2

Critical Values of Park’s I(p,q) Tests for
Null of No Cointegration

Number of Regressors Size 1(0,3) 1(1,5)

1 0.01 0.06864 0.10269
0.05 0.23286 0.25064
0.10 0.39897 0.49845

2 0.01 0.05520 0.00819
0.05 0.17539 0.21040
0.10 0.29622 0.32251

Note: These critical values are from Park, Ourliaris, and Choi (1988).
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