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ABSTRACT: RESET and T-S RESET are two popular tests for specification error
in the classical linear regression model. A major weakness of these two tests is that they
have little statistical power if the test variables are not correlated with the omitted
variables. In this paper we propose a new RESET that does not suffer from this
deficiency. We create several dummy variables by categorizing the data into a few groups
according to the values of the included regressors, and then use the dummy variables as
the test variables. If the functional form is incorrect or some regressors are omitted, then
the means of the omitted variables differ across the groups. An F-test on the coefficients
of the dummy variables will detect the specification error if the difference is large
enough. The strength of the dummy variable test (DVT) is that it does not rely on the
correlations between the omitted variables and the included regressors. Our Monte Carlo
study shows that, although DVT does not completely dominate RESET and T-S RESET,
it offers a promising alternative to the two tests. When RESET or T-S RESET performs
well, DVT performs equally well in most cases. On the other hand, when RESET and
T-S RESET fail, DVT still has considerable power in detecting the specification error.

KEY WORDS: Dummy variable; Incorrect functional form; Monte Carlo
Experiment; Omitted variable; RESET; Specification error test; T-S RESET.
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1. INTRODUCTION

In the classical linear regression model, incorrect functional form or omitted
variables may result in biased estimates and invalid hypothesis testing. Even if the
omitted variable is uncorrelated with every included variable, so that the coefficient
estimates are unbiased and consistent, hypothesis testing remains invalid because the
intercept estimate is still biased. Any forecast based on the estimates is also biased.
Statistical tests for these types of specification errors have been developed, the most
popular of which is Ramsey’s (1969) RESET (regression specification error test).’

In addition to Ramsey’s RESET, Thursby and Schmidt (1977) propose a variant
of RESET, T-S RESET, which differs from RESET only in the set of test variables.
While RESET uses the powers of the predicted value of the dependent variable as the test
variables, T-S RESET employs the powers of the included regressors. Thursby and
Schmidt’s Monte Carlo study suggests that T-S RESET is superior to RESET and several
other choices of test variables.

A major weakness of RESET and T-S RESET is that they have little statistical
power if the test variables are not correlated with the omitted variables. In this paper we
propose a new RESET that does not suffer from this deficiency. We create several
dummy variables by categorizing the data into a few groups according to the values of

the included regressors, and then use the dummy variables as the test variables. If the

! RESET is now available in some econometric software packages, e.g., MICROFIT
3.0 (Pesaran and Pesaran 1991). The test can be invoked by a single command, making
it extremely easy to use.



functional form is incorrect or some regressors are omitted, then the means of the omitted
variables differ across the groups. An F-test on the coefficients of the dummy variables
will detect the specification error if the difference is large enough. Our test, which we
label DVT for convenience, is a variant of RESET because the only difference is in the
set of test variables. The strength of DVT is that it does not rely on the correlations
between the omitted variables and the included regressors.

We carried out a series of Monte Carlo experiments to evaluate the three tests.
We find that DVT performs well when RESET and T-S RESET fail. Even when RESET
and T-S RESET perform well, DVT performs better or equally well in some cases, and
it is only slightly inferior in others. The experiments show that, although DVT does not
completely dominate RESET and T-S RESET, it serves as an excellent complement (if
not substitute) for RESET and T-S RESET. A byproduct of our experiments is that, in
contrast to Thursby and Schmidt’s (1977) findings, T-S RESET is not always superior
to RESET.

The plan of the paper is as follows. Section 2 gives a brief review of RESET and
T-S RESET. Section 3 introduces DVT. Section 4 describes the designs of the

experiments and Section 5 reports the simulation results. Section 6 concludes the paper.

2. Review of RESET and T-S RESET

Consider the standard classical linear regression model

y=X8+u, 1)



where y is an Nx1 vector of observations on the dependent variable, X = (x; X, ... Xg)
is an NxK matrix of regressors, and u is an Nx1 vector of normally distributed error
terms. Both RESET and T-S RESET seek to test the null hypothesis E(u|X) = 0 versus
the alternative E(u|X) # 0. Hence, the tests are designed to check for specification
errors such as omitted variables, incorrect functional form, or nonzero correlation
between X and u. Ramsey (1969) assumes that, under the alternative, E(u|X) can be
approximated by a linear combination of some observable variables Z, i.e., Eu|X) =
Z6 (Z is an NxG matrix and 6 a Gx1 vector), so one can test for specification error by
testing whether 6 = 0. Ramsey and Schmidt (1976) show that Ramsey’s (1969) RESET
test for these types of specification errors is equivalent to testing whether § = 0 in the
augmented regressiony = Xg + Z6 + u.

Since Z is unknown to the researcher, the main issue is what proxies should be
used as the test variables. Let W denote a matrix of test variables, then the regression

y=X8+Wy+u (¥))

gives 31 = (WMW)'W’M,y, where My = I-XX(X’X)'X’. Under the null hypothesis,
E(&) = (. Under the alternative, E('?) = (W MW)'W’M,Z6. Therefore, RESET has
power against the null hypothesis if either W is correlated with Z; or if W is uncorrelated
with Z, both W and Z are correlated with X (Thursby and Schmidt 1977). If either one
of these two conditions holds, then W’MsZ6 # 0, hence EG) # 0.

Ramsey (1969) suggests using the powers of S' as the test variables, i.e., W =

[Y@,59,59,...], wherey = XB and y© (j = 2,3,4,...) denotes the Nx1 vector obtained



from raising each element of 3! to the jth power. In their Monte Carlo study, Ramsey and
Gilbert (1972) find that W = [y®,y ® y @] is sufficient for practical purposes. Thursby
and Schmidt (1977) propose using the powers of the regressors as the test variables, i.e.,
W = [X®,X® X® ], where XO = (x,% x,9 ... x(®) if x, is not a column of ones, and
X9 = (x,9 ... x®) if x, is a column of ones. They conduct a Monte Carlo experiment
to compare four different sets of test variables (including Ramsey’s) and find that the

powers of the regressors are the best.

3. DUMMY VARIABLE TEST

By making use of dummy variables, we propose an alternative to RESET and T-S
RESET. Let ¢ be a scalar variable with observed range [c,c]. For instance, c may be one
of the regressors. Suppose ¢ is categorized into Q intervals [hy,h,), [h;,hy), ..., [ho.,hg),
where hy, = ¢ and hy, = €. Define Q dummy variables d;, (i= 1,2,...,N; q=1,2,...,Q) as
follows:

d, =1 if¢; € [hg,hy),
= ( otherwise,
and dy = 1if ¢, = hy. Let d; = (di,...,di04), D = (d/',...,d"), and ¥ = (1,000
We then consider the regression model
y=XB + Dy + u 3)
The last dummy, dy, is excluded from D in order to avoid perfect collinearity in (3).

To run DVT, one must choose a categorizing variable and decide the number and



the length of the intervals. On the choice of the test variables, Thursby and Schmidt
(1977, p.637) have rightly remarked that "we have little choice except to make the matrix
Z of test variables depend on X in one way or another.” Given a limited choice, the
categorizing variable ¢ has to be chosen from the set C = {xl,xz,...,x,(,;l}. We suggest
two ways to categorize the data. First, for each ¢ € C, the intervals [h,,h) (@ =
1,2,...,Q) are evenly spaced, i.e., h.-h,, = h,-h,, with hy = ¢ and hy = T ([¢,¢] is the
observed range of ¢). For convenience, we call this Categorization Method I. In practice,
we find that DVT has reasonable power for Q = 2, 3, 4. If there are too few
observations in some of the intervals, DVT does not work well, so an alternative way of
categorizing the data is needed. In these situations we rank the observations in ascending
(or descending) order of ¢ and then divide them into Q groups such that each group has
the same number of observations (or roughly the same number of observations if N/Q
is not an integer). We label this Categorization Method II.2

It is possible that DVT may have low power against the null for a particular Q.
We therefore suggest using several values of Q. In practice, we increase Q from 2 to 4,
and we find that the test has quite good power against the null for at least one of the
three values of Q. If DVT rejects the null hypothesis at a particular Q, then it is

unnecessary to continue the test for higher values of Q.

The advantage of DVT over RESET and T-S RESET is that DVT does not

2 One reason for including 9 in the set of categorizing variables is that if all the
regressors {X,,X,,...,Xx} are dummy variables, then the regressors cannot be used as
categorizing variables. In this case, the only available categorizing variable is y .

5



depend on the correlation between Z and X. To compare these three tests, let W, =
¥©.59,39], W, = [X®,X®,X®], and W, = D. Assuming that the first column of X
is a column of ones, then we can express more conveniently the dependent variable and
the regressors as deviations from the means

E(y) = (W*M W*'W*'M,.Z*0, @)
where the asterisks denote that the elements of the matrix are deviations from the means.
Consider the special case in which W¥Z* = 0, W§Z* = 0, and X*'Z* = 0, then
E(}) = 0 for RESET and T-S RESET. For DVT, E(y) = (D¥*'My.D*)'D¥Z*6. Let a,
(q = 1,2,...,Q-1) denote the gth element of the (Q-1)x1 vector D¥’Z*§, then it can be
shown that

a, = L., 0, TV (A - 4@ - 2,
where ciq and ig are the means of d, and z; (i=1,2,...,N), respectively. Since

N (A - )@ - 2) = T iz - 2) = NU@E - 2,) = NOIN®@EE' - z9/N, where

N¢ (t = 0,1) is the number of observations in which d,, = t and ig‘ is the mean of z; of
these observations, therefore

a, = L9, 6,NIN®zE - zO)/N.
Even though W¥Z* = 0, W¥'Z* = 0, and X*'Z* = 0, a_ is not necessarily zero. The
power of DVT comes from the grouping of the observations. Each dummy variable
separates the sample into two groups. If there are omitted variables, the means of the
omitted variables may differ between the two groups. DVT will detect the specification

error if the difference in the means of the omitted variables is large enough.



A simple example can be used to illustrate the point. LetK = 2and G = 1, i.e.,
y; = B, + Bx + u (i=1,2,...,N). The true model is y; = §; + Bx; + 6z + u;
Assume that x; ~ U(-0.9%,0.9%),% and z; = x} - x} + 27x/140. One can verify that
cov(z,x)) = 0, j = 1,2,3,4. Since z is uncorrelated with x{ § = 1,2,3,4), W¥Z*,
W#¥Z* and X*’Z* are likely to be close to zero. As a result, both RESET and T-S
RESET will have very low power.

For DVT, if Q = 2, then a, = N'Nz" - z!°)/N. Suppose x is the categorizing
variable. As shown in Figure 1, Q = 2 means that [h,,h,) = [-0.9%,0) and [h,,h;] =
[0,0.9%], i.e., d, = 1if x, € [-0.9%,0) and 0 otherwise; d;, = 1 if x; € [0,0.9*] and
0 otherwise. Consider the expression

A = E@lios% 6(0)VEos% o®)) - E@o04 () Edlos,(X)),
where 1,(x) (an indicator function) equals 1 if x € A, and 0 otherwise. One can verify
that E(zo 0% 5 (X)) = -E@lgs%(X) = - | 8% (x*x° +27x/140)/[2(0.9)*]dx = -0.00305.
Thus, A = -0.0122. Since z!' - zI° is the sample analog of A,* therefore zV -z = 0.
Hence, a, # 0 and DVT should have good power against the null when Q = 2. An
important feature of this example is that DVT works well even though the omitted
variable z is uncorrelated with the categorizing variable x at all.

DVT may fail to have power against the null for some particular values of Q. For

3 Throughout the paper, x; ~ U(s,,S,) means that x; has a uniform distribution with
range [s,,s,].

41t can be shown that, under standard regularity conditions, z! - z1° converges to
A in probability.



instance, suppose that the true model is y; = B, + Bx; + 0z, + u, and the null
hypothesis is y; = 8, + Bx; + w, where x; ~ U(-1,1) and z, = x}. If Q = 2 and x is
the categorizing variable, then the expression
A* = E@l10(0)E(1,0(X)) - E@loy®)/Edpq(X)

is equal to zero because E(x’I, 4 (x)) = E(x%I;(x)). As a result, z! - 219, the sample
analog of A, is close to zero. It follows that a, is close to zero and DVT is likely to have
low power in detecting the omitted variable z when Q = 2. The symmetry of z on [-1,0)
and [0, 1] nullifies the ability of DVT to generate two different means for z on these two
intervals. If Q = 3, then a, = ON"N'(z!" - z'°)/N and a, = §N*N®(z* - z%)/N. The
intervals become [hy,h,) = [-1,-¥5), [h,,h,) = [-¥5,5), and [h,,h;] = [V5,1]. One can easily
verify that

4y = Bzl ) E(L,50(X)) - B2l (X)) E(Lyq(x) # 0, and

A, = E(@l,3(X)El%,%®)) - E@l,56 0000V Ed g, umn®) # 0.
Hence, z'! - z°° (the sample analog of A,) and z2! - z2 (the sample analog of A,), should
also be different from zero. Thus, DVT should have good power against the null when
Q = 3. In this case, z is no longer symmetric on [-1,-¥5) and [-Ys,1). This example
explains why we recommend that one should run DVT for several values of Q.

The only case in which DVT fails for all values of Q is when z and x are
independent. For any intervals A and B on which x is defined, independence of z and x
implies that E(zl,(x)) = E()E(,(x)) and E@ly(x)) = E(@E((x)). Consequently,

E@L(X))/E1,(x)) - E@Iz(x))/E(s(x)) = E(z) - E(z) = 0, and DVT does not work well



for any value of Q.° Of course, in this case both RESET and T-S RESET also have little
power because z and x are uncorrelated.

Although the above theoretical investigation demonstrates that DVT is more
powerful than RESET and T-S RESET in some special cases, its performance in more
general cases remains to be examined. As theoretical comparisons of these three tests are
intractable, we have to rely on Monte Carlo experiments to examine their relative

effectiveness.

4, MONTE CARLO DESIGN

We conducted an extensive Monte Carlo investigation with a large number of
models, and for brevity, we only report the results of 15 specifications here. Table 1
describes the models and the data generating processes. Two types of specification errors
are studied:; incorrect functional forms in Models 2 and 3, and omitted variables in
Models 4 through 15. There is no specification error in Model 1. There are 1000
replications in each experiment and two sample sizes for each model (N = 50 and 200).

The specifications of Models 1 - 8 are identical to the ones studied by Thursby

and Schmidt (1977).° The data for x, and x, were taken from appendix A in Ramsey and

5 The reverse implication is also true. If EzI,(x))/E(,(x)) - EIz(x))/E(3(x)) = 0
for any sub-intervals A and B, then E(zl,(x))/E(I,(x)) = H must hold for any sub-
interval A, where H is a constant. This implies that E{[E(z|x)-H]I,(x)} = O for arbitrary
A, so E(z|x) must be equal to H, and therefore z and x must be independent.

¢ Thursby and Schmidt’s (1977) Models 1, 2, and 8 were in turn drawn from Ramsey
and Gilbert (1972).



Gilbert (1972) and were repeated five and twenty times to obtain samples of sizes 50 and
200. Regressors x; and x, were drawn independently from U(-1.5,1.5).” The
specifications of Models 6 - 8 are identical except that the coefficients of the omitted
variables are different. Models 9 - 15 are similar to Models 4 and 5; the only difference
is the specification of the omitted variables. The omitted variables in Models 9 - 11 are
cross products of the included regressors X and x, (namely, X¢/X;, X¢X;, XgX;). In Models
12 and 13, the omitted variables are powers of x4 (namely, 1/x,,XZ). Model 14 considers
the case in which the omitted variable is a dummy variable whose value depends on xe.
Finally, Model 15 examines the example discussed in Section 4: the omitted variable x;s
is uncorrelated with the first four powers of the included regressor xg, where xg and x;
were independently drawn from U(-0.9*,0.9%). The error terms in Models 1 - 15 are the
same and they were drawn from a standard normal distribution N(0,1).*

The test variables are [y®,y®,y®] for RESET and [X®,X® X®] for T-S
RESET. As there are always two regressors in the null specification in each of the 15

models, for convenience we label the first and the second regressors generically as r, and

7 The random variables x, and x, were generated using the GAUSS program (Aptech
Systems 1992) with starting seeds 5598976 and 7900889. As Thursby and Schmidt (1977)
did not detail how their x; and x; were generated (they just indicated that x, was a
rearrangement of x,, and X, and x, were orthogonal to x,), we set x; = x; + x3 and X,
= 6x4 + x2. Similar to their design, our x, is orthogonal to x, and x,. In their Models
4 and 5, the R% of the auxiliary regressions of x; + u and x; + u on x4 and x, were 0
and 0.96, respectively. In our design, the corresponding R’ were 0 and 0.97, closely
matching their R.

® The starting seeds for x; and x; are 5598976 and 7900889, respectively. The
starting seeds for y, are 10, 20, 30, ..., 10000 for the 1000 replications.

10



r,. Accordingly, the set of categorizing variables for DVT is {r,,r2,§ }. We employed
Categorization Method I to group the data. In some cases this method did not work well
(serious collinearity problems due to insufficient observations in some of the intervals),
so Categorization Method II was used. Weset Q = 2,3, 4 forr, and r,, and Q = 2,..,5
for S’ All tests were performed at the five percent significance level. For misspecified
models, the higher the rejection frequency, the better is the test. The rejection frequency
indicates the power of the test. Since there is no misspecification in Model 1, the

rejection frequency is expected to be around 5 percent.

5. SIMULATION RESULTS

The simulation results for sample sizes of 50 and 200 are given in Tables 2 and
3, respectively. The categorizing variables for DVT are r, and r, in both tables. Table
4 contains the results usinggl as the categorizing variable. The correlations between the
omitted variables and the test variables are reported in Table 5.°

Model 1 has no misspecification and the rejection frequencies of RESET, T-S
RESET, and DVT are all close to the size of the test (5 percent). All three tests have
perfect power (100 percent rejection frequency) in detecting the incorrect functional
forms in Models 2 and 3. For Models 4 and 5, DVT (Q = 4) outperforms RESET and
performs almost as well as T-S RESET. All three tests have low power in Model 6; the

rejection frequencies range from 5.0 percent to 6.2 percent when N = 50, and they are

® For brevity the correlations for Q = 4 and for ¢ = y are not reported.

11



only slightly higher when N = 200. The tests fail to detect the omitted variable in Model
6 because the true coefficient of x, is 0.1, too small to be detectable. The power of the
tests increases considerably in Model 7 when the coefficient of x, is raised to 1. The
results in Model 7 show that DVT (Q = 4, ¢ = r,) and T-S RESET, which have similar
rejection frequencies, are much more powerful than RESET when N = 50. RESET
regains its power when N is increased to 200. In Model 8, RESET is still dominated by
DVT and T-S RESET when N = 50. All three tests have 100 percent rejection frequency
when N = 200.

The results from Models 1 - 8 verify Thursby and Schmidt’s claim that T-S
RESET performs better than RESET. DVT is also more powerful than RESET in Models
1 - 8. Although DVT does not dominate T-S RESET, its overall performance is as good
as T-S RESET.

When the omitted variables are cross products of x, and x, (Models 9 - 11), T-S
RESET is inferior to DVT. In Model 9, DVT dominates RESET and T-S RESET. Both
RESET and T-S RESET completely fail to detect the omitted variable when N = 50. The
rejection frequency of T-S RESET improves substantially when N is increased to 200.
Although DVT is still more powerful than T-S RESET in Models 10 and 11, both tests
are dominated by RESET. RESET performs well in these two models presumably
because the test variables of RESET are composed of cross-products of x4 and x,. This
finding invalidates Thursby and Schmidt’s (1977) claim that the best set of test variables

is the powers of the regressors.

12



Table 4 shows that DVT performs much better in Models 10 and 11 when the
categorizing variable is 3' . Although RESET is still superior to DVT in these two models,
the rejection frequencies of DVT are significantly higher and are closer to those of
RESET.

Perhaps the most striking result is the perfect power of DVT and the zero power
of RESET and T-S RESET in detecting the omitted variable in Model 12. While DVT
(Q = 2, ¢ = r,) achieves 100 percent rejection frequency for both sample sizes, RESET
and T-S RESET have no power at all at the 5 percent significance level." Table 5
shows that their failure can be attributed to the lack of correlations between the omitted
variables and the test variables.

For Model 13, T-S RESET is the ideal test because the omitted variable x,, is the
square of the included regressor xZ. It is therefore not surprising to find that T-S RESET
attains 100 percent rejection frequency for both sample sizes. However, DVT (Q = 3
and ¢ = r,) also has the same perfect power as T-S RESET." Even though x, and x,,
are uncorrelated and the data are categorized according to x4, DVT still accomplishes 100
percent rejection frequency. This confirms that DVT still has power even when there is
no correlation between the omitted variable and the categorizing variable. Notice that

DVT works very well when Q = 3 but not when Q = 2. In fact, DVT has very little

10 To check the robustness of our results, we tried various modifications of x,, (e.g.,
X, = 10/xq, 30/%4, 50/%,, 1/x3, 1/x3). In all these cases DVT continues to substantially
outperform RESET and T-S RESET.

11 Tn addition to x2, we also tried the cases x,; = x3, X¢, and the results were similar.

13



power for both sample sizes when Q = 2. This corroborates the example in Section 4
that DVT does not work well when z = x> and Q = 2 because the omitted variable x,,
is the square of the categorizing variable X."

For Model 14, DVT is the ideal test because the omitted variable is a dummy
variable whose value depends on x. The results confirm that DVT Q=2,¢c=r1)
dominates both RESET and T-S RESET for both sample sizes. While RESET remains
to have low power, the rejection frequency of T-S RESET increases considerably (from
18.7 percent to 79.6 percent) when N increases from 50 to 200.7

Since the omitted variable x,; in Model 15 is uncorrelated with x,, X3, X3, and Xg,
RESET and T-S RESET are expected to have low power. This is confirmed in Tables
2 and 3, which show that DVT is much more powerful than RESET and T-S RESET.
Although theoretically this design is the worst situation for T-S RESET, the simulation
results reveal that the test still has some power. Unlike Model 12 in which T-S RESET

has no power at all, the rejection frequencies are not zero (3.9 percent when N = 50 and

3.3 percent when N = 200). For Q = 2 and ¢ = r,, DVT has a remarkable increase in

12 When Q = 2, the intervals of x4 are [-1.5,0) and [0,1.5}, so x,; is symmetric on
these two intervals. When Q = 3, the intervals become [-1.5,-0.5), [-0.5,0.5), and
[0.5,1.5], so X5 is no longer symmetric on [-1.5,-0.5) and [-0.5,1.5].

13 We also studied a variation of Model 19 in which x,, = 0 if x} < 0.75, and x,,
= 1 if 2 > 0.75. In this case the categorizing variables of DVT (%, and x,) are
uncorrelated with the variable (x2) that actually categorizes the data. We found that DVT
is still more powerful than T-S RESET and RESET. The percentage rejection frequencies
of DVT (Q = 4, ¢ = 1)), T-S RESET, and RESET are 60.9, 39.2, and 9.7 when N =
50; and 98.4, 97.7, and 21.1 when N = 200.

14



power (from 1.4 to 95.6 percent) when the sample size is expanded to 200.*

Some general remarks .are in order. First, Table 4 indicates that DVT performs
quite well (especially in Models 10 and 11) when y is used as the categorizing variable.
Second, the power of the tests can be quite sensitive to the sample size. For example, the
rejvection frequency of T-S RESET in Model 9 jumps from O to 87.8 percent when N
increases from 50 to 200. Likewise, DVT (Q = 2 and ¢ = r,) shows substantial
improvement in Model 15 when N increases to 200. RESET seems to be relatively more
stable. Third, Table 5 shows that high correlations between the test variables and the
omitted variables are not sufficient for RESET and T-S RESET to work. As shown in
Models 6 - 8 in Tables 2 and 3, the power of the tests depend on other factors such as
the coefficient of the omitted variable. On the other hand, holding other factors constant
(such as the sample size and the magnitude of the coefficient of the omitted variable), if
the correlations between the test variables and the omitted variables are uniformly low,
then RESET and T-S RESET have very low power. For example, Table 5 shows that all
of the three correlation coefficients for RESET are very small in Models 9, 12, 14, and
15, and the corresponding rejection frequencies in Table 3 are very low. Similarly, T-S
RESET has very low power in Models 10, 12, and 15 because the correlation coefficients

are also uniformly small.

14 Unlike Models 9 - 14, the coefficient of the omitted variable x,; is 40 (instead of
1.5). A larger coefficient is employed in this model because the regressors xg and x; have
smaller ranges than those of x¢ and x, in the previous models. We tried many different
values (from 1.5 to 100) for the coefficient of x,5 and we found that DVT always
dominated RESET and T-S RESET.

15



In sum, our Monte Carlo study shows that, although DVT does not completely
dominate RESET and T-S RESET, it offers a promising alternative to the two tests.
When RESET or T-S RESET performs well, DVT performs equally well in most cases.
On the other hand, when RESET and T-S RESET fail, DVT still has considerable power

in detecting the specification error.

6. CONCLUSION

In this paper we propose a new regression test for specification error. Our
dummy variable test builds on Ramsey’s (1969) RESET and employs dummy variables
as the test variables. The main advantage of DVT over RESET and T-S RESET is that
it does not rely on the correlations between the omitted variables and the regressors.
Although DVT may not be a perfect substitute for RESET and T-S RESET, our
simulation results indicate that it is an excellent complement to the two tests.

The attractiveness of RESET lies in its ease of computation. Although DVT is
computationally more involved than RESET and T-S RESET (especially when there are
many explanatory variables), the implementation is not really time-consuming. Our
experience is that DVT can easily be programmed into a single command in most

statistical packages.
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Figure 1
z2=x5—x3+27x/140
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