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1. Introduction

Steady states play an important role in the analysis of optimal growth models. The
Euler equations may be linearized about the steady states. Their stability properties inform
us about the stability of the optimal paths. Moreover, the linearization is often useful
in numerical approximations to the optimal paths. In models with additively separable
utility, the issue of existence of steady states has long been settled. It was first broached in
multisector models by Sutherland (1970). The first real existence results were obtained by
Hansen and Koopmans (1972) in a type of von Neumann model, and by Peleg and Ryder
(1974) in a consumption-based model. Cass and Shell (1976) handled the continuous-time
case. Flynn (1980) and McKenzie (1982, 1986) independently established the current theory
for reduced-form models. This analysis has been further enriched by Kahn and Mitra (1986),
using purely primal methods, and by Becker and Foias (1986), who use Ky Fan’s Inequality

instead of the Kakutani Theorem.

Models with more general recursive preferences are a different story. If there is one sector,
the existence of steady states follows from appropriate Inada conditions and the intermediate
value theorem. If a steady state exists, a local analysis of the optimal path is sometimes
possible (e.g., Epstein 1987a, b). Unfortunately, conditions that guarantee existence of

steady states in general multisector models have previously been unknown.

This paper proves the existence of a non-trivial stationary optimal path in a reduced-form
multisectoral capital accumulation model with recursive preferences. The key to the proof
is a new form of §-normality that is appropriate for use with recursive preferences. Under
some mild conditions on the aggregator, non-trivial steady states exist when the technology
is bounded and é-normal. The actual proof is akin to those in McKenzie (1982, 1986) and

Khan and Mitra (1986).
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Section Two sets up the basic model. Section Three proves the existence of steady states.

Some concluding remarks are in Section Four.

2. Multi-Sector Capital Accumulation Models

The reduced-form model is described by a technology set T C R3™ obeying (T1)-(T5) and
an aggregator function W: T x Ry — Ry obeying (A1)-(A6) below. Given a technology
set T and initial capital stock ko, a path k = {k;}2, is feasible from ko if (ki—1, k) € T
for t = 1,2,.... Define the shift operator S by Sk = (ki,ks,...). The utility function is
defined as the unique function U that obeys the recursion U(k) = W (ko, k1, U(Sk)) for all
feasible k. The function W is referred to as the aggregator.! The aggregator allows us to
express lifetime utility as a function of current inputs, current outputs and future utility.
By recursively applying W, we may generate the lifetime utility function. An optimal path
from kg is a feasible path that maximizes utility over all feasible paths from ko. A stock &

is a steady state if (k,k,...) is optimal from k.

TECHNOLOGY ASSUMPTIONS. A set T C R?™ is a bounded Malinvaud technology set if:

T1) T is a closed set. (closure)

T2) T is a convex set. (convexity)

—

)
)
T3) There is (a,b) € T with b>> 0. (productivity)
4) If (a,b) € T and @’ > a, 0 < ¥ < b, then (o', V') € T. (free disposal)
T5) There is a 8 > 0 such that ||4]| < ||la|| whenever (a,b) € T with ||a|| > 3. (bounded-

ness)

When (a,b) € T, we interpret a as the input stock and b as the output stock, once
consumption has been subtracted. These assumptions on technology: closure, convexity,

1 See Koopmans (1960) for a discussion of the properties of preferences that yield such a utility function.
The preferences considered here are somewhat more general. The converse problem of deriving a utility
function U from the aggregator W is discussed in Lucas and Stokey (1984) and Boyd (1990).
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productivity, free disposal and boundedness, are all fairly standard. Neither the inaction
postulate (0 € T) nor the no free lunch postulate ((0,b) € T implies b = 0) are needed.
When T satisfies boundedness, the technology is bounded in the sense that all feasible paths
are bounded. If (k,k,...) is feasible, boundedness implies [|k|| < . Any steady state k
must have ||[k|| < B, and any feasible path starting at ko with ||kl < B obeys ||k|| < 5.

Boundedness does not imply the set T is bounded.

Let U be a closed interval in RU {—o0}.

AGGREGATOR ASSUMPTIONS. The aggregator W: T x U — U obeys:

A1) W(a,b,u)is finite whenever (a, ) € int T and u > —oo. If —co € U, then W(a,b, —o00)
— oo for all (a,) € T.

A2) W is both upper semicontinuous and lower semicontinuous on T X U.2

A3) W(a,b,u) is concave in (a,b) for each u € U.

A4) W3 = dW/du exists and is continuous in (a,b,u) whenever W(a,b,u) > —oo. More-
over, 0 < §~ < Wy < 6t < 1 for some §~ and 6.

AB) Ifa' > a, 0 <V <band v > uthen W(d',0',v') > W(a,b,u). (monotonicity)

A6) Let u € U. Each W™ defined inductively by W™(k) = W (ko, k1, W"~'(Sk)) and

WO(k) = u is concave in k.

Assumptions (A1) and (A2) are meant to include commonly used cases, such as the
additively separable aggregator W(a,b,u) = log(f(a) — b) 4+ éu in the case m = 1. Here
the technology set is T = {(a,b) € RZ : b < f(a)} with f a smooth, increasing, concave
production function with f(0) = 0 and f'(a) < a for a > 8. This example also illustrates that
continuity of W with respect to (a,b) does not follow from (A4). Assumption (A6) amounts
to assuming that the derived utility function U is concave. The concavity assumption (A3)

and monotonicity (A6) are standard in reduced-form models.

2 This means W is continuous as an extended real-valued function.
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There are also non;separable examples that satisfy (A1)-(A6). Again take the one-sector
case with production function f above. Let W(a,b,u) = —1 +e )-8y withu € U =R_,
where v is a smooth, increasing, concave function with v(0) > 0. Properties (A1)-(A3) and
(AB) are obvious. Set 6~ = 7@ and §* = e7"® to satisfy (A4). To see that (A6) holds,

examine

Wn(k) = — Zexp (— X—: v(f(kr1) — kT)) + uexp (— Z v(f(ki-1) — kt)> .

t=1 =1 t=1

el

Now W™ is concave because the mapping  — —e ™ is concave and each of the sums

Sl o(f(kr—1) — k) is concave.
Let u € U and set By = sup U and B; = sup{W(a,b,u) : (a,b) € T and |a|| < }. Let
B; = max{u, B;} and B = min{ By, (1 — §*)"}(B; — 6Tu)}. Note B > u. By (A4),

Wi(a, b, B) < W(a,b,u)+ §7(B = u)

for all (a,b) € T with ||a|| < ﬂ Confining our attention to feasible paths starting at some ko
with |[ko|| < 3, define W™ as above using u = B. We have seen that W'(k) < B = WO(k).
An easy induction shows W"(k) < W*=(k) for all n. Define the utility function U(k) =
inf,, Wn(k).

The Lipschitz condition implicit in (A4) implies that basing W™ on u' rather than u
makes a difference of less than (67)*|u — u/|. As a result, the infimum of the W™ does
not depend on our starting point u. The function U is recursive as U(k) = inf W"(k) =
inf W (ko, ky, W1(Sk)) = W(ko, ky,inf W"(Sk)) = W (ko, k1, U(Sk)).® The infimum is
upper semicontinuous in the product topology. Condition (A6) guarantees that U is concave.

3 This construction is based on the “partial summation” method of Boyd (1990).
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When (k, k) € T with ||k|| < 3, define ®(k) = U(k, k,...). Note that if W(k, k,u) > —o0
for some u € U then ®(k) > —oo. Of course @ is upper semicontinuous because U is.

We also need a joint assumption on W and T. Even in the additive case, productivity

must be sufficient to overcome discounting if there is to be a steady state. Define 6, =
Wa(k, k,®(k)). This is the discount factor on the constant path (k,k,...). Let § = inf éx >

6~ > 0.

§-NORMALITY ASSUMPTION. The reduced-form model (T, W) is 6-normal if there is a pair
(@,b) € T such that 0 < @ < 8b and ®(a) > ®(0), where we interpret ®(0) as —oo if
(0,0) ¢ T.

Here ®(a) makes sense as (d,a) € T by free disposal.

3. The Existence of Steady States

In this section, we will assume (T, W) obeys (T1)-(T5), (Al)-(A6) and é-normality.
Define T; = {a € RT : (a,b) € T for some b and [|a|| < B} and K = {k eR7T:(kk) €T
and ®(k) > ®(a)}. We will obtain a steady state in K. Of course, ||k|| < 8 whenever k € K,
so K ¢ T;. Note that K is compact and convex. It also contains @ by free disposal and
monotonicity from (a,b). Even if (0,0) € T, 0 ¢ K because ®(0) < ®(a). As a result, any

steady state in K is automatically non-trivial.

For k € Ty, g(k) denote the closest point in K to k. This defines a continuous function
from T; to K. The mappings k — &y and k — ®(g(k)) extend é; and @x. Abusing
notation, we also denote the extensions by 6; and ®(k).

For k € Ty, define (k) = {(a,b) € T : a < (1 — éx)k + 6b}. Because (a,a) € ¢(k),
¢(k) is non-empty and ¢: Ty - T defines a correspondence. If (a,b) € ¢(k) with ||af| > 3,
lall < (1= &) |[|| + 8kl|bll < (1 —6x)[[k]| + 6k||a| by boundedness. But then, ||la|| < [|k[| < B.

It follows that |la|| < 8 for all (a,b) € ¢(k). But then ||b]] < 8 too, as we could otherwise
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take @’ > a with |[b]| > ||| > 8 and (a’,b) € T. This would violate boundedness. Therefore
$(k) is compact and convex for every k € T;.

A stock k € K is a recursive golden rule stock if (k,k) € T and W(k,k ®(k)) >
W (a, b, ®(k)) for all (a, ) € ¢(k). Notice that 0 cannot be a recursive golden rule as 0 ¢ K.
When W is additively separable, with W(a,b,u) = v(a,b) + éu, this definition reduces to

the usual definition of a non-trivial discounted golden rule.

Given a stock k € Ty, the implicit programming problem is to solve
J(k) = sup{W (a,b, B(K) : (a,5) € 6(k)).

This problem has a solution because ¢(k) is compact and W(a,b, ®(k)) is upper semicon-
tinuous in (a,b). Because (T, W) is é-normal, not only is (a,5) € (k) for all k € K,
but J(k) > W (@b &(k)). Since ®(k) > ®(a), it follows that J(k) > W(a,b,(a)) >
W(a,a, ®(a)) = ®(a) > —oo by free disposal and monotonicity. We may examine the set of

solutions (k). More formally, the correspondence p(k) is given by

pk) = {(a,b) € 6(k) : W(a,b,®(k)) = J(k)}.

Note that u(k) is also non-empty, compact and convex for each k¥ € K. Thus a stock k € K

is a recursive golden rule if and only if (k, k) € u(k).

We will only show the existence of non-trivial golden rules when the technology is both
bounded and é-normal. As is well-known, discounted golden rules may not exist if the
technology is not bqunded, even in the one-sector case. This occurs in models that genérate
balanced growth. If the technology is not sufficiently productive, all optimal paths may
converge to 0. The §-normality condition rules out cases where all optimal paths converge

to 0, and is a generalization of the requirement that 6 f/(04) > 1 in the one-sector model.
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The proof of existence of golden rules proceeds as follows. We start with a preliminary
lemma that shows ® and é; are continuous on T{. We next show ¢ has a lower semicontinuity
property in Lemma 2. We then use that fact to show (k) is a closed correspondence in
Lemma 3.* Finally, we project g onto the input space T;. This new correspondence ¥ on
T, is closed with compact and convex values. The Kakutani Fixed Point Theorem yields a
fixed point of v, and that fixed point is a recursive golden rule. Finally, we show that if &

is a recursive golden rule, the path (k,k,...) is optimal from k.
LEMMA 1. The function ® and the mapping k +— 6 are continuous on T}.

PROOF. Because ¢ is continuous, it is enough to show é; and ®(k) are continuous on
K. Let ¢ > 0 and £k € K. Set u = ®(k) in the definition of W". 1 first claim that for
EeK, Wik )=o) < (1-6T)"YW(K, K, 0(k))—W(k,k, &(k))| where k' = (K, K',...).
This is established by induction. When n = 1, it follows because (1 — 67)™' > 1 and

W(k' k', ®(k)) = WHk'). Now suppose it holds for n. Then

W (K) — B(k)| = [W(K, K, W (K')) — O(k)]
< W (K, K W) = WK, K, @)+ (WK, K, B(k)) — B(k)
< EHWK) — (k)| + (W (K, K, @(k)) — (k)|
6+
<
—1-=46t
< (1= §) WK, K, 0(k)) — W (k, k, ®(k))].

(WK K, @(k)) — (k)| + [W(K, k', @(k)) — (k)]

The claim now follows by induction.

Because W (k, k, ®(k)) > —oo, (A2) implies we may pick n > 0 with |W™(k')—®(k)| < ¢/2
for |k — k|| < n. Letting n — oo shows |®(k') — ®(k)| < e for ||k — k|| < 7.

Now & = Wi(k, k,®(k)). By (A4) and the continuity of ®, 6y is also continuous. O

4 A correspondence ¢ is closed if whenever x, — # and y,, — y with y € ¢(z,), we have y € ¢(z).
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LEMMA 2. Suppose (z,y) € ¢(k) with (z,y) # (a,b). Ife > 0, there is a with 0 < a <
min{1,¢/(||(z,y) — (a,b)|])} and n > 0 such that ((1 ~ &)z + aa, (1 — a)y + ab) € (k')

whenever ||k' — k|| < 7.

PROOF. Let z = (1 — a)z + ed and w = (1 — @)y + b. By convexity of T, (z,w) € T.

Then define

g(k') = (1 — a)(8p — &)y + [(1 = &)k — (1 — a)(1 = 6p)k] + (b — 6)0.

Note that g is continuous in k" and that ¢(k) = a(1 — &)k + a6k — 6)b > 0. There are now
two cases to consider. First, if & > 6, q(k) > 0. It follows that ¢(k’) > 0 for &’ near k.
Second, if &5 = &, the first and third terms of ¢(k') are always non-negative, and the middle
term is non-negative when &' is sufficiently near k. Either way, we may choose 7 > 0 with

q(k') > 0 for ||k — k|| <.

Using o to form a convex combination of z < (1 —6k)k + bry and a < b, we find
2 < (1= &)k + bpw — q(K') < (1= )k + dpw

for ||k' — k|| < 5. It follows that (z,w) € ¢(K') for [[k' — k|| <n. O
LEMMA 3. The correspondence y: K —» T is a closed correspondence.

PROOF. Suppose (an,by) € p(k,) with (as,b,) — (a,b) and k, — k. Then (a,b) € T by
closure and @ < (1—8;)k+6xb, 50 (a,b) € (k). Since W and @ are upper semicontinuous and
W is non-decreasing in u, J(k) > W(a,b, ®(k)) = lim sup W(an, bn, ®(k,)) = limsup J ().
We need only show W(a,b,®(k)) = lim sup W (an, bn, ®(k.)) > J(k) to complete the proof.

Note that W (a, b, ®(k)) > limsup J(k,) > W(a,b,®(k)). Suppose J(k) > W (a,b, &(k)).
Then J(k) > W (a, b, ®(k)). Take (z,y) € ¢(k) with W (z,y, ®(k)) = J(k). By Lemma 2, we
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can construct a subsequence of the &, (also labeled k) and o, < 1/n with (z.,y,) € ¢(ky,)

where 7, = (1 — o) + ayza and y, = (1 — a,)y + anb.

Now W(z, Yn, ®(ks)) < J(k,) because (x,,yn) € ¢(ky). Furthermore,
W (2, > ®(kn)) > (1 = an)W (2, y, @(kn)) + 0nW (@, b, @(kn))
by concavity. Rearranging and using J(k») > W(zn, ¥n, @(kn)), we obtain
an[W(z, y, ®(kn)) = W(a, b, @(k,))] = W(z,y, ®(kn)) — J (kn)

Let € > 0. We know

W (2,5, ®(k)) — W (a,b, ®(ka))] — [J(k) = W(a, b, &(k))] > 0

by Lemma 1 and the continuity of W in u. For n large, we then have ¢ > [W(z,y, ®(kn)) —
J(k,)]. But W(z,y,®(ka)) — J(k), so ¢/2 + J(k,) > J(k) for n large. It follows that
J(k) > limsup J(k,) > liminf J(k,) > J(k), and so W(a, b, ®(k)) = J(k). This shows p is
closed. O

THEOREM 1. Suppose (Al)-(A6), (T1)-(T5) and é-normality hold. A recursive golden rule

exists.

PROOF. Define a correspondence ¢: Ty — Ty by ¢(k) = {a € Ty : (a,b) € pu(k) for
some b}. We know 1) maps into T; because ¢ and p are bounded by 8. It is clear that ¢
has convex, compact, non-empty values. It is also closed. Let k, — k and a, — a with
an € P(k,). Take b, with (an,b,) € p(ks). Now |la,|| < 8 and 16| < B. By passing to a
subsequence, we may assume b, — b. But then (a,b) € u(k) because p is closed. Hence ¢

is closed.
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Now apply the Kakutani Fixed Point Theorem to obtain k with k € (k). There is a
y with (k,y) € p(k). Then k < (1 — &)k + éxy, which implies k& < y. By free disposal
(k,k) € T, and W(k,k, ®(k)) > W(k,y, ®(k)) = J(k) by monotonicity. It then follows
that J(k) = W(k, k, ®(k)) > W(a,b, ®(k)) for all (a,b) € ¢(k). Moreover, (k) = J(k) >

®(a) > —oo. Thus k € K, and so is a recursive golden rule. 0

The final step is to show that any recursive golden rule yields a stationary optimal pro-

gram.

THEOREM 2. Suppose (Al)-(A6), (T1)~(T5) and é-normality hold. If k is a recursive

golden rule, the stationary path (k,k,...) is optimal from k.

PROOF. By é-normality, ¢(k) has an interior. Now (a,b) — W{(a,b, ®(k)) is concave on
#(k), and has a maximum at (k, k). Thus there is a vector (p, q) which supports both W and
é(k). In other words, W(a,b, ®(k)) < W(k,k,®(k)) + p(a — k) + q(b— k) for all (a,b) € T,
and (p,q) = A(p', ¢') + S0y Ai(ei, —8ke;) for some A, A; > 0 where (p', ¢') supports T.> That
is, p'a + ¢'b < pk + ¢k for all (a,b) € T.

Set u = ®(k) in the definition of W™ and let k = (k, k,...). Then W"(k) = U(k) = ®(k).
Because W™ is concave, and W is continuously differentiable and non-decreasing in the third

argument, we have

[usy

n—

W(x) = W(k) < plao — B) + 3 (6xp + )85 (2 — k) + 87q(zn = k).

t=1

Recalling that zo = k, and taking the limit as n — oo yields

o

Ux) S UK)+ > (6p + q)6% (@ — k).

t=1

5 Here e; denotes the i** standard basis vector of R™.
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Now éxp + q = Abxp’ —|~‘/\q’ + 577 Ni(Bre; — bkei) = Aérp’ + Abiq'. Consider the convex
=1

combination (1 — &)~ 13250 657 (z4-1,7¢) € T.® By the support property of v, q),

Z 87 (p'zim1 + ¢'ey) < Z &'k + ¢'k)
=1 t=1

Since x is feasible from o = ko, we can rewrite to obtain > .o, 6;‘1(6kp' +q)(ze — k) <0.

But 8xp + ¢ = 8ip’ + ¢/, so U(x) < U(k). Thus k is optimal from k. [0

4. Conclusion

As we see above, stationary optimal programs will exist in a wide variety of multisector
models with recursive utility. This provides a firm ground for local analysis of the steady

states.

A still broader existence theorem might be possible in the recursive case. One important
difference between recursive models and additively separable models is that the discount
factor can adjust in recursive models. As a result, it is common in oné—sector recursive
models to have steady states even when the economy can grow at a high rate. In contrast,
this only occurs in the additive case under special circumstances. The general question of
existence of steady states in multisector models with unbounded technology remains open,

both in the recursive setting, and in the special case of additive utility.

6 This construction has been used in a primal context by Dechert and Nishimura (1983) and Khan and
Mitra (1986).
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