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COMPETITIVE EQUILIBRIUM TURNPIKE II

This paper is an extension of my paper The Competitive Equilibrium
Turnpike. The earlier paper asserts that the combination of the turnpike theorem
for optimal growth paths and the existence theorem for competitive equilibria
provides a competitive equilibrium turnpike theorem when the discount factor is
close enough to 1. However the proof of this result is not given. The proof
requires returning to the proof of the turnpike theorem itself and showing how the
proof can be carried through despite the changing weights on individual utilities
used to define the welfare function as the equilibrium changes. At each step the
results must hold uniformly over the variation of weights. It is not sufficient to
show that the competitive equilibrium may be used to define an optimal growth
problem where the turnpike theorem may be applied.

In The Competitive Equilibrium Turnpike we consider a Malinvaud model
E m of an economy with an infinite horizon satisfying assumptions which imply

that a competitive equilibrium exists. This is a period model with separability

h
t

possible consumption of the hith consumer in the tth period. We assume that

between periods in both production and consumption. Let C. C R® be the
Ch . C f h — a0 h .

p = or all t. Let C = Et=1 Ct' Bold type is used for symbols that
represent infinite sequences. In E, the utility of a consumer’s consumption path
& = (zl,z2,---) e C s given by Uh(zh) = El’?:l ptu(zltl) where p is the
discount factor 0 < p < 1. We assume that p is the same for all consumers.

Let v = ('yl,---,'yH) where 'yh > 0. We define a social welfare function

W(z,7,0)) = maximum EI}?:I 'yhUh(zh) over all 7' e CM with z = EEzl .
The welfare weights 'yh are normalized so that 0 < 'yh <1, 211-11=1 ryh = 1. We

. s s H h
consider a competitive equilibrium path x = (xl,x2,---) where x, = 2h=1 Xy

and the discount factor on utility for all consumers is p. Choose the welfare

weight fyh equal to the marginal utility of income for the hth consumer. They



may be made to sum to 1 by choosing the length of the equilibrium price vector.
It is proved that W(x,7,0) maximizes the welfare function over all x € Y n C
where Y is the social production set and the initial stocks are k0 = X In the

Malinvaud model Y = X% Yt, where Y' is the production set for the tth

t=1
period. That is, y € \& implies Yi_q € 0, ¥i 2 0 and all other components equal
to 0. Let Y' be the set (yt-—l,yt) for y € Y'. We assume that Yt, considered
to lie in IR2n, is equal to Y for all t.

In the Competitive Equilibrium Turnpike an optimal growth model is
derived for the economy E_. Let F(kk’) = {z| (-kz+k’) € Y and z € C},

that is, the set of consumption levels feasible in one period when the initial

stocks are k and the terminal stocks are k’. F(kk’) is convex and closed from

the convexity and closedness of Y and C. Define w(k,k’,7) = maximum
EE=1 'thh(zh) over all z° such that EI}f:l =z e F(k,k’). Then if x is a

competitive equilibrium path with k =(k,,k -) as the path of capital stocks,
0

e
W(x,7,p) = E‘;’=1 ptw(kt_l,kt,'y). Since W(x,7,0) > W(z,7,0) for any feasible

choice of 2z consistent with the initial stocks k it follows that

0
5_; pwik, 1 k7) > B0, pw(ki_ki7) for any feasible choice of (k;)P_,
with kg = k. In other words k = (k,){_, is an optimal path of capital
accumulation when the welfare function is W(x,7,0). We define a value function
for capital stocks k by V(k,7,p) = 2‘::1 ptw(kt_l,kt,'y) when k is an optimal
path for initial stocks kO = k given p and 7. We will often consider welfare
functions V and value functions W where v € 9(p) and +(p) is the set of «
consistent with some competitive equilibrium path for the discount factor p. We
will also write (p) for an arbitrary selection from the set 7(p) when this will not
cause confusion. There may be many competitive equilibrium paths with the

discount factor p and there may be many values of v for a given competitive

equilibrium path.



Let S g be the subspace of R™ spanned by the coordinate axes for storable
goods. To simplify the notation statements about capital stock vectors will be
understood to be relative to the subspace Sg without explicit mention. Let D be
the set of (kk’) such that F(kk‘) is not empty. In the present setting the
assumptions for the turnpike theorem in McKenzie (1982) may be given in the
following form.

M1. The function w is concave and continuous.

M2.  There is ¢ > 0 such that (k
[k | < €1k, 41,

M3. If (k

t—1X;) € D and |k, ,| > ¢ implies

for 0 < ¢ < 1.

k,) € D, then (k; ki) € D for all ki , 2k and

t-1° t-1
0 < ki < k. Moreover w(k;_;ki{) > wik,_;k,)

t—1

M4. There is (k,_;,k;) € D and p < 1 such that pk, > k.

-1’

Let ¥ be the set of all k such that (kk) € D, that is, the set of sustainable
stocks. = Then Y% is compact. Let A(y) be the set of k € ¥ such that
w(kk,y) > v = W(k_t_l,Et,'y).

M5. The function w(k,k,7) is uniformly strictly concave for k € % for all 7.

Given 7 define the optimal stationary stock k* by w(k*k*y) > w(kk,7) for
all k € ¥. Assumption M5 implies that k* is unique.

M6’. The optimal stationary stock k* is expansible. Also A(%) lies in the
relative interior of % for all 7.

Define a nontrivial stationary optimal path for a given 7 as an optimal path
k, = kP, all t, which satisfies the condition that W(k'o ,kp,fy) > w(k’,k’’,) for all
(kk’’) € D such that pk’’ — k’ > (p-1)k’. Note for p > p < 1 the set of
vectors satisfying pk’’ — k> (0-1)k? always includes (k,_;k;) from Assumption

M4. So w(k’k’9) > w(k,_;k;,7) and (k” k?) € A(9). These paths are proved

-1
to exist in McKenzie (1982).

It was shown in The Competitive Equilibrium Turnpike that Assumption



M6/ implies

M6. Let kt = kP, t = 0,1,---, be a non—trivial stationary optimal path for
p<p<1l Let (kk’) € D. Then there is 7 > 0 and ¢ > 0 such that
|k — k”| < 75 implies that (k,k+eeg) € D.

These assumptions are consistent with the assumptions used to prove
existence of equilibrium. From them a turnpike theorem for optimal growth
paths may be proved. If the welfare weights v are given in advance the turnpike
theorem gives a convergence result when the discount factor p approaches 1.
However if the welfare function is derived from a competitive equilibrium the
choice of 4 is limited by the particular competitive equilibrium. A welfare
function derived from a competitive equilibrium will be written W(x(p),7(0),p),
where p may be chosen independently but both x and 7 must be consistent with
a competitive equilibrium which has p as the discount factor. This means that
the corresponding optimal capital accumulation path k(7(p)) depends on p both
directly as a discount factor applied to w and indirectly from the requirement
that 7 must be a selection from <(p). Thus we must repeat some of the
arguments used to prove the turnpike theorem for optimal growth in the more
general context of competitive equilibrium. In the following theorem write kP for

kP (1(p)).

Theorem.  Assume that Assumptions M1 — M6’ hold in the Malinvaud

1

economy E . Then a competitive equilibrium path (p,yx ,---,xh) from a

E=1 kg defines an optimal growth program for the

sufficient stock ky = %
objective function W(x,7(p)) for any p with 1 > p > p. Given an e-ball Se(kp)
about k”, there are p’ > 7 and T such that k.(p) € SE(kp) for all t > T and all
p with p < p < L.

It was proved in McKenzie (1994) that an optimal growth program is given

by a competitive equilibrium. In order to prove that the optimal growth program



has a turnpike property for p near 1 we must first bound the value function
V(k,7(p),p) as p - 1 along a sequence p°, s = 1,2,---. This result us to bound
the value of the Liapounov function which is used in the proof of the main
theorem. From the Boyd-McKenzie paper (1993) there is at least one
competitive equilibrium for each value of p. The admissible +(p) are restricted to
equilibria consistent with p.

Let kt = kP (7), all t, be a stationary optimal path of capital accumulation
in the model of capital accumulation derived from the welfare function that uses
utility weights + and discount factor p. From Lemma 4 of McKenzie (1982)
there is p”(7) € R™ such that

(1) w(kP(N)K (1) + (1P K() > wlikkr) +

PNk~ o (K,
for all (k,k’) € D. In order to prove that V(kg,¥(p),p) is bounded above we will
need to prove that the prices p”(4) are uniformly bounded for for p near 1 and
7 = 9(p) where 7(p) are utility weights derived from competitive equilibria.
Write kP(7) for k°(y(p)).

Lemma 1. Let kt(fy(p),p) = kP(7), all t > 0, be an optimal stationary path
of capital accumulation for the welfare function based on utility weights 7(p).
Let p”(y) be support prices for k’(7). Then pP(9) is uniformly bounded as
p - L

Proof. The argument of Lemma 5 of McKenzie (1982) applies. Suppose
5
there is a subsequence p° (preserve notation) such that p° -1 and |p'0 ('ys)[ 4
5
as s » w. Let 7= 7(p) in (1). Divide (1) through by |p” (1°)| and consider a

S §
further subsequence (preserve notation) for which p” (7*)/|p” ()| = p. From
(1) we obtain 0 > p(k’ —k) for all (kk’) € D where p >0, p # 0. This

contradicts Assumption 4. Since the choice of the subsequence is arbitrary this



proves the lemma. n

Lemma 2. If k, is sufficient and the capital accumulation path k(%(p))
corresponds to a competitive equilibrium allocation x(7(p)) then V(kO,fy(p),p) is
bounded as p - 1.

Proof. Let k’(7) be the capital stock of a nontrivial optimal stationary
path. Let k(y(p)) be a path of capital accumulation which is consistent with a
competitive equilibrium path from initial stocks k0 when the discount factor is p.
We will suppress 7(p) in the expressions for w and k. Given p subtract
w(kp,kp)/nyh(p) from each ul' so that w(kPkP) = 0. This has no effect on the
comparison of paths for the particular p. Then multiplying (1) through by ,ot
gives

(2) o' — oy wik,_(0) k() +

PPe(p) = 0y (o)),
Summing (2) from t = 1 to t = o, together with the definition of V, gives

(3)  V(kpp)p) = ELl ptW(kt(p),ktH(p)) < Pk, - 1P).

Thus we have V(ko,'y(p),p) < ppko. Then V(ko,fy(p),p) is uniformly bounded
above as p - 1 since p” is bounded as p -+ 1 by Lemma 1.

To show that V(ky,7(p),p) is bounded below note that k sufficient implies
that there is a path {kt}, t =0,1,--+,T, where ky is expansible.  Suppose
y > ky. In the following the argument y(p) for w and k is omitted. By Gale’s
lemma (McKenzie (1982)) there is an infinite path {k.}, t = T,T+1,---, where

k = a'kp + (1-a")k’, with 0<a<1, and wkp, k ) 2

T+7 T+ TH+7r+1

o'wkpkpyq) + (12" )w(kl k) = o"wlkpky +1)» since w(k” k) is put equal to
0. Then E‘sz ptw(kt,kt+1,'y(p)) > (pT/(l—pa))w(kT,kT+1,'y(p)). Suppose there
were a sequence p° - 1 for which W(kT,kT_l,fy(pS)) - —w. Since v lies in a
compact set there is a subsequence for which ~(p°) (retain notation) converges to

4. Since the w(kT,kT +1,'y(ps)) is a continuous function of < this implies that



w(kp ke _H,f_y) is not well defined contradicting the fact that (kp.kp +1) € D.
Thus no such sequence exists and w(kT,kT +1,fy(ps)) is bounded below as p - 1.
The utility accumulated in the first T periods is 2?:1 EI}-f:l w(kt_l,kt,'y(ps)),

which is finite from (k,_,k,) € D for t = 1,..,T. Since (pT/(l—-pa)) -+ 1/(1-a)

-1
we have that V(kO,'y(p),p) is bounded below uniformly as p = 1. o

Let k,’(p) = 1/2 (ky(p) + k?). Define the utility gain in period t by
g ((0).K?) = wlk, ;" (0)k,"(0) — 1/2(w(k,_(0)k,(s)) + W(K?).  Concavity
of v implies gt(k(p),kp ) > 0. The utility gain is relative to k” which may be
arbitrarily chosen from the set of kP consistent with p and 4(p). Also k(p)
depends on p and 7(p). Recall that +4(p) is derived from the marginal utilities of
income consistent with a competitive equilibrium where p is the discount factor.
For notational simplicity these relations are not always explicitly recognized.
Define the Liapounov function Gt(k(p),kp) = 2‘:=1 pTgt +T(k(p),kp). Then
Gy 1(k(p)K?) — Gy(k(p)K) = 37_; #7gy 1y — % g #'gyy,  where  the
arguments of the g functions are omitted. Thus omitting the arguments (k(p),k”)
of both G and g functions we have

(4) Gip1— Gy =10 t ~ Et410

For any 6 > 0 we may choose p close enough to 1 to give (p"1 -1)Gy < §

1 _1)a

provided that GO(k(p),kp) is bounded as p -+ 1. This is proved in

Lemma 3. Go(k(p),kp) is bounded for p near 1, p < 1.

Proof. Write VP(k) for V(k,7(p),p). Then

Go(k(p). k") = VA(1/2(ky + k) - 1/2 (VP(k)) + VP(K)).

We note that G0 > 0 follows from g; 2 0. Thus boundedness below is immediate
and only boundedness above needs to be proved. V” (kO) is bounded below by
Lemma 2 since k; is sufficient. Also VP(1/2(k + X)) is bounded above by the
first part of the proof of Lemma 2. Since w(k”k”7(p)) = 0 by the

normalization at 7(p) we have that VP(k’) = 0 as well.  Therefore G, is



bounded above. O

In order to show that the path of a competitive equilibrium must enter an
arbitrary e-neighborhood of kP for p sufficiently close to 1 we must prove that
the Liapounov function Gt(k(p),kp) decreases by at least § > 0 each period that
the path is outside the e-neighborhood.

Since GO(k(p),kp) is bounded as p » 1 by Lemma 2, for any § > 0 we may
choose p near enough to 1 so that (,o_1 - 1)G) < 6. A first step to establish G,
as a Liapounov function is to show for any ¢ that there is § > 0 such that the
left side of (4) when t = 0 is less than —§ when kg - k’] > e. However this
follows since |(kg.k;(p)) - (k" kP)| > e implies gl(k(p),kp) > 26 for some § > 0
by uniform strict concavity of w(kk,y) over all k € ¥ and 7 € Sgp the unit
simplex in R, Thus Gy - Gy < -0 may be guaranteed for some § > 0 when
k0 is outside the e-neighborhood of k” by choosing p near enough to 1.

The argument continues by induction.  Suppose G, 41 Gt < -6 and
(p‘1 - 1)Gt < 6, relations which have been established for t = 0. Then

—1

-1 :
(o —1)Gt+1 < (p -1)G, < 6  On the other hand if |(kt+1(p) — )| > e

holds then, as in the argument above, by uniform strict concavity 811 > 26
holds, so wusing (4) again we have G, 41~ G < —4. In other words
G,y — G; < —0 continues to hold for t > 0 so long as k,(p) remains outside an
e-neighborhood of kP. By summing these inequalities we then obtain
(5) Gop(k(p), k") < Gy (k(p) k) - T4,

if kt(p) is outside the e-neighborhood of k” from t = 0 until t = T. Since G
is nonnegative by its definition the inequality (5) forces kt(p) eventually to enter
the e-neighborhood to avoid contradiction. Note that if the argument holds for
p’ it holds uniformly for all p such that p’ < p < 1. Also given p with
p’ ¢ p <1 all nontrivial stationary optimal paths k” must lie in the

e-neighborhood of any one of them.



We have shown that paths cannot stay outside any mneighborhood U of
(kkP) indefinitely. However to complete the proof we must show that once a
path has entered U there is a neighborhood W which it cannot leave. For this
purpose another lemma is needed. In the lemma it is understood that the welfare
function is defined by p and 7(p).

Lemma 4. If k(p) is an optimal path from k, then for any § > 0 there is
€ > 0 such that |(kyk(p)) - (k*X°)| < ¢ implies Gy(k(p),k?) < &, uniformly
for p < p < 1 and all nontrivial stationary paths for p.

Proof. By the definition of Goand the feasibility of the intermediate path

(6) Gy(k(p) k) < w(L/2 (kg + KP),1/2 (k (o) + ¥))

112 (w(igky () + W(LJP))

+ VP(L/2 (ky(o) + ¥7) - 1/2 o(VP(ky(p)) + VP(KP).
It is implied by Assumption 2 and the definition of k° that w(k'o kP ) > w(x,y) for
all k¥, p<p < 1. Thus k° € A(v(p)). By Assumptions M5 and M6’ we have
that A(«) is relative interior to the set ¥ of sustainable stocks and w is uniformly
concave over Y and all 7 € Sg-  This implies that w(k,k,7) is uniformly
continuous with respect to k over all k € A(y) and all v € SH' Suppose that
(ko k;7) = (&P,k”) implies VP(k,’) = VP(kP). Then from (6) it follows that Gy
is small for (kg,ki(p)) near (k” kP). However, Assumption M6’ implies that k” is
uniformly expansible for p with p < p < 1 and 7 ¢ SH' Expansibility of k” and
free disposal imply that (k” ki(p)) € D for ki(p) near k”.  This implies
w(k k) + pVA(kP) > w(kPki(p)) + pVP(ki(p)). Therefore VP(ki(p)) ¢ VA(KP)
+ € may be assured for any assigned ¢ > 0 for any p, p < p < 1, and any k”
by bringing (kO’,kl’(p)) near to (kP k).

This argument may be repeated for a switch from kO’ to k°. Let ¥’ be a
compact set contained in the relative interior of ¥ having A(+(p)) in its interior

relative to ¥ (see Berge (1963), p. 68). Then by the proof of Lemma 9 of The
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Competitive Equilibrium Turnpike k is uniformly expansible over all k € ¥/ for
all p and 9(p) with p < p < 1. Then k” may be reached from k¢ near KP.
This gives VP(kP) < Vp(ki(p)) + € for any assigned ¢ > 0 when (kjki(p)) is
sufficiently near (k”k”). Thus Vp(ki(p)) + VP(kP) as needed. ©

We may now complete the proof of the Theorem. Choose an arbitrary
€ > 0. We have shown that there is p’ such that the optimal path from a
sufficient k may be brought within e of any k” for any p and 7(p) where
p’ < p < 1. To complete the proof we must show that given any ¢’ > 0 it is
possible to choose € so small that once the path has become within € of kP it
must lie within e/ > 0 of k” thereafter. Choose 7 < pGO(’y(p),p). By strict
concavity, = Assumption 1, given ¢’ there is 75 so small that

1 2 ) )
| (0) K 2(0)) — (K KP)| > ¢ implies

~1
(7) Giy1 28,020 1
uniformly for all k” and all p with 5 < p < 1. Relation (4) implies
~1
(8) Giyg $0 Gy

By Lemma 4 for any n > 0 there is an ¢ > 0 such that |(kt(p)’kt+1(p)) -
(kP k)| < € implies Gy < 7. Inserting this bound for G, into (8) gives a
contradiction of (7). Therefore, if (k,(0) K, +1(p)) lies in the e-neighborhood of
(k" kP), (7) cannot hold and (ky, 1(p)k;  o(0)) must lie within e of (kPkP). If
(kt+1(p)’kt+2(p)) is not within ¢ of (k”k”), we have

1

Gitg < Giyq < p_th <P
Therefore By g < p_ln and the inequality for G, 49 analogous to (7) cannot
hold and (kt +2’kt +3) lies within e/ of (k”k”). The first part of the proof
implies that G_ decreases for 7 > t + 1 until (k_(p)k,_ +1(p)) is within ¢ of
(k’ kP) once more. Therefore (kT(p),kH'l(p)) cannot leave the neighborhood of
(k kP) defined by ¢’ as 7 - w. O

This completes the proof of the Theorem. For p sufficiently near 1 it is



also possible to prove a neighborhood turnpike theorem for the von Neumann
facet F(p) when F(p) is not trivial. Moreover this result may be extended to a
neighborhood theorem for an optimal stationary stock k(p) when k(p) is unique
and F(p) is stable. Finally with some conditions of negative definiteness for the
Hessian matrix of u the stability can be extended to asymptotic convergence of
the optimal path to k(p). See McKenzie (1982).
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